code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : jnp.ndarray lowercase_ : jnp.ndarray class lowercase ( nn.Module ): lowercase_ : int lowercase_ : Tuple[int] =(16, 32, 96, 256) lowercase_ : jnp.dtype =jnp.floataa def A__ ( self): lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) lowercase = [] for i in range(len(self.block_out_channels) - 1): lowercase = self.block_out_channels[i] lowercase = self.block_out_channels[i + 1] lowercase = nn.Conv( A__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(A__) lowercase = nn.Conv( A__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(A__) lowercase = blocks lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,A__): lowercase = self.conv_in(A__) lowercase = nn.silu(A__) for block in self.blocks: lowercase = block(A__) lowercase = nn.silu(A__) lowercase = self.conv_out(A__) return embedding @flax_register_to_config class lowercase ( nn.Module , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase_ : int =32 lowercase_ : int =4 lowercase_ : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase_ : Union[bool, Tuple[bool]] =False lowercase_ : Tuple[int] =(320, 640, 1280, 1280) lowercase_ : int =2 lowercase_ : Union[int, Tuple[int]] =8 lowercase_ : Optional[Union[int, Tuple[int]]] =None lowercase_ : int =1280 lowercase_ : float =0.0 lowercase_ : bool =False lowercase_ : jnp.dtype =jnp.floataa lowercase_ : bool =True lowercase_ : int =0 lowercase_ : str ="rgb" lowercase_ : Tuple[int] =(16, 32, 96, 256) def A__ ( self ,A__): # init input tensors lowercase = (1, self.in_channels, self.sample_size, self.sample_size) lowercase = jnp.zeros(A__ ,dtype=jnp.floataa) lowercase = jnp.ones((1,) ,dtype=jnp.intaa) lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa) lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase = jnp.zeros(A__ ,dtype=jnp.floataa) lowercase , lowercase = jax.random.split(A__) lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A__ ,A__ ,A__ ,A__ ,A__)["params"] def A__ ( self): lowercase = self.block_out_channels lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase = self.num_attention_heads or self.attention_head_dim # input lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift) lowercase = FlaxTimestepEmbedding(A__ ,dtype=self.dtype) lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) lowercase = self.only_cross_attention if isinstance(A__ ,A__): lowercase = (only_cross_attention,) * len(self.down_block_types) if isinstance(A__ ,A__): lowercase = (num_attention_heads,) * len(self.down_block_types) # down lowercase = [] lowercase = [] lowercase = block_out_channels[0] lowercase = nn.Conv( A__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(A__) for i, down_block_type in enumerate(self.down_block_types): lowercase = output_channel lowercase = block_out_channels[i] lowercase = i == len(A__) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase = FlaxCrossAttnDownBlockaD( in_channels=A__ ,out_channels=A__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: lowercase = FlaxDownBlockaD( in_channels=A__ ,out_channels=A__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(A__) for _ in range(self.layers_per_block): lowercase = nn.Conv( A__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(A__) if not is_final_block: lowercase = nn.Conv( A__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(A__) lowercase = down_blocks lowercase = controlnet_down_blocks # mid lowercase = block_out_channels[-1] lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=A__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) lowercase = nn.Conv( A__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,A__ ,A__ ,A__ ,A__ ,A__ = 1.0 ,A__ = True ,A__ = False ,): lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase = jnp.flip(A__ ,axis=1) # 1. time if not isinstance(A__ ,jnp.ndarray): lowercase = jnp.array([timesteps] ,dtype=jnp.intaa) elif isinstance(A__ ,jnp.ndarray) and len(timesteps.shape) == 0: lowercase = timesteps.astype(dtype=jnp.floataa) lowercase = jnp.expand_dims(A__ ,0) lowercase = self.time_proj(A__) lowercase = self.time_embedding(A__) # 2. pre-process lowercase = jnp.transpose(A__ ,(0, 2, 3, 1)) lowercase = self.conv_in(A__) lowercase = jnp.transpose(A__ ,(0, 2, 3, 1)) lowercase = self.controlnet_cond_embedding(A__) sample += controlnet_cond # 3. down lowercase = (sample,) for down_block in self.down_blocks: if isinstance(A__ ,A__): lowercase , lowercase = down_block(A__ ,A__ ,A__ ,deterministic=not train) else: lowercase , lowercase = down_block(A__ ,A__ ,deterministic=not train) down_block_res_samples += res_samples # 4. mid lowercase = self.mid_block(A__ ,A__ ,A__ ,deterministic=not train) # 5. contronet blocks lowercase = () for down_block_res_sample, controlnet_block in zip(A__ ,self.controlnet_down_blocks): lowercase = controlnet_block(A__) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase = controlnet_down_block_res_samples lowercase = self.controlnet_mid_block(A__) # 6. scaling lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A__ ,mid_block_res_sample=A__)
101
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , a_ , ) super().__init__(*a_ , **a_ )
102
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __snake_case : _a = 42 _a = None _a = None def UpperCamelCase( ): lowerCAmelCase_ : Any = Node(1 ) lowerCAmelCase_ : List[str] = Node(2 ) lowerCAmelCase_ : Optional[Any] = Node(3 ) lowerCAmelCase_ : int = Node(4 ) lowerCAmelCase_ : Any = Node(5 ) return tree def UpperCamelCase( __UpperCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase( __UpperCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase( __UpperCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase( __UpperCamelCase : Node | None ): return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def UpperCamelCase( __UpperCamelCase : Node | None ): lowerCAmelCase_ : list[Any] = [] if root is None: return output lowerCAmelCase_ : Optional[Any] = deque([root] ) while process_queue: lowerCAmelCase_ : Optional[int] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase( __UpperCamelCase : Node | None ,__UpperCamelCase : int ): lowerCAmelCase_ : list[Any] = [] def populate_output(__UpperCamelCase : Node | None ,__UpperCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(__UpperCamelCase ,__UpperCamelCase ) return output def UpperCamelCase( __UpperCamelCase : Node | None ,__UpperCamelCase : int ): lowerCAmelCase_ : list[Any] = [] def populate_output(__UpperCamelCase : Node | None ,__UpperCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(__UpperCamelCase ,__UpperCamelCase ) return output def UpperCamelCase( __UpperCamelCase : Node | None ): if root is None: return [] lowerCAmelCase_ : list[Sequence[Node | None]] = [] lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[str] = height(__UpperCamelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__UpperCamelCase ,__UpperCamelCase ) ) lowerCAmelCase_ : str = 1 else: output.append(get_nodes_from_right_to_left(__UpperCamelCase ,__UpperCamelCase ) ) lowerCAmelCase_ : Optional[Any] = 0 return output def UpperCamelCase( ): # Main function for testing. lowerCAmelCase_ : Any = make_tree() print(f"""In-order Traversal: {inorder(__UpperCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(__UpperCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(__UpperCamelCase )}""" ,'''\n''' ) print(f"""Height of Tree: {height(__UpperCamelCase )}""" ,'''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(__UpperCamelCase ) ,'''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 ,height(__UpperCamelCase ) + 1 ): print(f"""Level {level}:""" ,get_nodes_from_left_to_right(__UpperCamelCase ,level=__UpperCamelCase ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
103
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] def __init__( self : List[Any] ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = True ,**lowercase__ : Any ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''shortest_edge''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) __lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : str ,): __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase = get_resize_output_image_size(lowercase__ ,size=size['''shortest_edge'''] ,default_to_square=lowercase__ ) return resize(lowercase__ ,size=lowercase__ ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Any ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowercase__ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[int, float] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ,): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[str] ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : bool = None ,lowercase__ : float = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowercase__ : Dict ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ,param_name='''size''' ,default_to_square=lowercase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ,default_to_square=lowercase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowercase__ ,size=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
104
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Any ) ->Any: '''simple docstring''' a : List[str] = 1 a : List[Any] = 2 while i * i <= n: a : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' a : Union[str, Any] = 1 a : str = 1 while True: i += 1 t_num += i if count_divisors(_lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
105
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xlm-roberta" def __init__( self : Tuple ,lowercase_ : Optional[int]=3_0_5_2_2 ,lowercase_ : List[Any]=7_6_8 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : Dict=1_2 ,lowercase_ : List[str]=3_0_7_2 ,lowercase_ : Optional[int]="gelu" ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : List[Any]=5_1_2 ,lowercase_ : List[str]=2 ,lowercase_ : List[str]=0.02 ,lowercase_ : List[str]=1E-12 ,lowercase_ : List[str]=1 ,lowercase_ : Optional[Any]=0 ,lowercase_ : Any=2 ,lowercase_ : Tuple="absolute" ,lowercase_ : Optional[int]=True ,lowercase_ : Optional[int]=None ,**lowercase_ : Tuple ,): super().__init__(pad_token_id=lowercase_ ,bos_token_id=lowercase_ ,eos_token_id=lowercase_ ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : int = classifier_dropout class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def __lowerCAmelCase ( self : Any ): if self.task == "multiple-choice": lowerCAmelCase__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
106
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class snake_case__ (unittest.TestCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Optional[int] ) -> List[str]: a = parent def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: return {} def __magic_name__ ( ): '''simple docstring''' a = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" a = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def __UpperCAmelCase ( self : int ) -> Union[str, Any]: a = MarkupLMFeatureExtractionTester(self ) @property def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __UpperCAmelCase ( self : int ) -> Tuple: # Initialize feature_extractor a = self.feature_extraction_class() # Test not batched input a = get_html_strings()[0] a = feature_extractor(__lowerCamelCase ) # fmt: off a = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] a = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , __lowerCamelCase ) self.assertEqual(encoding.xpaths , __lowerCamelCase ) # Test batched a = get_html_strings() a = feature_extractor(__lowerCamelCase ) # fmt: off a = expected_nodes + [["My First Heading", "My first paragraph."]] a = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __lowerCamelCase ) self.assertEqual(encoding.xpaths , __lowerCamelCase )
107
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(SCREAMING_SNAKE_CASE ) * abs(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A: Union[str, Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") A: Union[str, Any] = parser.parse_args() if args.model_type == "bert": A: Dict = BertForMaskedLM.from_pretrained(args.model_name) A: Dict = "bert" else: raise ValueError("args.model_type should be \"bert\".") A: str = model.state_dict() A: str = {} for w in ["word_embeddings", "position_embeddings"]: A: Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: A: Optional[Any] = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] A: int = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: A: Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] A: List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] A: List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] A: List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] A: Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] A: Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] A: Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] A: Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 A: Dict = state_dict["cls.predictions.decoder.weight"] A: Union[str, Any] = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: A: List[str] = state_dict[f"""cls.predictions.transform.dense.{w}"""] A: Optional[Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
109
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[int] , **__lowercase : Dict ): '''simple docstring''' super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__lowercase ).content else: with open(__lowercase , """rb""" ) as f: __a = f.read() if isinstance(__lowercase , __lowercase ): __a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate ) if not isinstance(__lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__lowercase ) for x in candidate_labels] __a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase ) __a = [text_inputs] return inputs def UpperCamelCase_ ( self : Any , __lowercase : Any ): '''simple docstring''' __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowercase ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__lowercase , **__lowercase ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] ) ] return result
302
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = tempfile.mkdtemp() # fmt: off __magic_name__ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __magic_name__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __magic_name__ : Any = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __magic_name__ : Tuple = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def __magic_name__ ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : int = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Any = self.get_image_processor() __magic_name__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : int = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : List[Any] = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __magic_name__ : int = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : Optional[Any] = image_processor(__lowercase , return_tensors="""np""" ) __magic_name__ : List[Any] = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : str = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[Any] = """lower newer""" __magic_name__ : Union[str, Any] = processor(text=__lowercase ) __magic_name__ : Optional[Any] = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : List[str] = """lower newer""" __magic_name__ : Optional[int] = self.prepare_image_inputs() __magic_name__ : int = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(__lowercase ): processor() def __magic_name__ ( self ) -> int: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : List[str] = processor.batch_decode(__lowercase ) __magic_name__ : List[Any] = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self ) -> str: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __magic_name__ : int = """lower newer""" __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[str] = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : int = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : List[Any] = TFAutoModel.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Optional[int] = AutoModel.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : Dict = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : str = TFAutoModelForPreTraining.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Union[str, Any] = AutoModelForPreTraining.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> List[str]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(__lowercase ,from_pt=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Dict = AutoModelForCausalLM.from_pretrained(__lowercase ,from_tf=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Tuple = TFAutoModelWithLMHead.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Dict = AutoModelWithLMHead.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(__lowercase ,from_pt=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : str = TFAutoModelForMaskedLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : str = AutoModelForMaskedLM.from_pretrained(__lowercase ,from_tf=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = AutoModelForMaskedLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase ,from_pt=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : str = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ,from_tf=__lowercase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( __lowercase ,output_loading_info=__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) @slow def UpperCAmelCase_ ( self ) -> List[str]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowerCAmelCase__ : int = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) lowerCAmelCase__ : int = AutoModelForQuestionAnswering.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Dict = TFAutoModelWithLMHead.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) ,1_4410 ) lowerCAmelCase__ : Optional[int] = AutoModelWithLMHead.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) ,1_4410 ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__lowercase ,from_pt=__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) ,1_4410 ) lowerCAmelCase__ : int = AutoModelWithLMHead.from_pretrained(__lowercase ,from_tf=__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) ,1_4410 )
37
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = 1 __UpperCamelCase : int = 2 while i * i <= n: __UpperCamelCase : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : int = 1 __UpperCamelCase : str = 1 while True: i += 1 t_num += i if count_divisors(_SCREAMING_SNAKE_CASE) > 500: break return t_num if __name__ == "__main__": print(solution())
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list ): if not nums: raise ValueError("List is empty" ) return sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Tuple = KandinskyVaaPriorPipeline UpperCamelCase : Union[str, Any] = ['prompt'] UpperCamelCase : Any = ['prompt', 'negative_prompt'] UpperCamelCase : List[str] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] UpperCamelCase : List[Any] = False @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return self.time_input_dim @property def UpperCAmelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): return 100 @property def UpperCAmelCase_ ( self ): __A : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : List[str] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __A : Dict = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __A : str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __A : int = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCAmelCase_ ( self ): __A : List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase_ ( self ): __A : List[str] = self.dummy_prior __A : Optional[int] = self.dummy_image_encoder __A : Optional[Any] = self.dummy_text_encoder __A : List[str] = self.dummy_tokenizer __A : int = self.dummy_image_processor __A : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=1_0.0 , ) __A : Tuple = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def UpperCAmelCase_ ( self , _A , _A=0 ): if str(__lowercase ).startswith('mps' ): __A : List[str] = torch.manual_seed(__lowercase ) else: __A : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __A : Any = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCAmelCase_ ( self ): __A : int = 'cpu' __A : int = self.get_dummy_components() __A : Tuple = self.pipeline_class(**__lowercase ) __A : Tuple = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __A : Any = pipe(**self.get_dummy_inputs(__lowercase ) ) __A : Optional[Any] = output.image_embeds __A : Union[str, Any] = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __A : Tuple = image[0, -10:] __A : List[str] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __A : Union[str, Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self ): __A : int = torch_device == 'cpu' __A : Tuple = True __A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCAmelCase_ ( self ): __A : Optional[Any] = torch_device == 'cpu' __A : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__ ( lowerCamelCase__ ): A = (EulerDiscreteScheduler,) A = 10 def __UpperCamelCase ( self : Optional[int],**_A : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__lowercase ) return config def __UpperCamelCase ( self : Tuple ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase ) def __UpperCamelCase ( self : Dict ): """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001],[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowercase,beta_end=__lowercase ) def __UpperCamelCase ( self : int ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowercase ) def __UpperCamelCase ( self : int ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : Dict = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.scale_model_input(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = model(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step(__lowercase,__lowercase,__lowercase,generator=__lowercase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(__lowercase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = self.dummy_model() SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : Dict = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.scale_model_input(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : str = model(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler.step(__lowercase,__lowercase,__lowercase,generator=__lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(__lowercase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps,device=__lowercase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample.to(__lowercase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Tuple = scheduler.scale_model_input(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Dict = model(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : int = scheduler.step(__lowercase,__lowercase,__lowercase,generator=__lowercase ) SCREAMING_SNAKE_CASE_ : List[Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : Any = torch.sum(torch.abs(__lowercase ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**__lowercase,use_karras_sigmas=__lowercase ) scheduler.set_timesteps(self.num_inference_steps,device=__lowercase ) SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample.to(__lowercase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.scale_model_input(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : str = model(__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step(__lowercase,__lowercase,__lowercase,generator=__lowercase ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(__lowercase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Dict = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __A ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : str ,_snake_case : Union[str, Any] ,_snake_case : Any=1_024 ,_snake_case : Optional[Any]=1_024 ,_snake_case : Any=3.6 ) -> Dict: """simple docstring""" lowercase__ : int = tokenizer lowercase__ : Union[str, Any] = tokenizer.bos_token_id lowercase__ : Optional[Any] = dataset lowercase__ : Any = seq_length lowercase__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = iter(self.dataset ) lowercase__ : Optional[int] = True while more_examples: lowercase__ , lowercase__ : List[str] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__lowercase )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ : Optional[Any] = False break lowercase__ : Dict = tokenizer(__lowercase ,truncation=__lowercase )['''input_ids'''] lowercase__ : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(__lowercase ) ,self.seq_length ): lowercase__ : List[Any] = all_token_ids[i : i + self.seq_length] if len(__lowercase ) == self.seq_length: yield torch.tensor(__lowercase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = {'''streaming''': True} lowercase__ : Optional[Any] = load_dataset(args.dataset_name , split='''train''' , **_SCREAMING_SNAKE_CASE ) lowercase__ : Dict = ConstantLengthDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , seq_length=args.seq_length ) lowercase__ : Union[str, Any] = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) return eval_dataloader def __UpperCAmelCase ( __lowerCamelCase ) -> str: model.eval() lowercase__ : int = [] for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): with torch.no_grad(): lowercase__ : Tuple = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_SCREAMING_SNAKE_CASE ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ : Any = torch.mean(torch.cat(_SCREAMING_SNAKE_CASE ) ) try: lowercase__ : str = torch.exp(_SCREAMING_SNAKE_CASE ) except OverflowError: lowercase__ : Dict = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ ,lowerCAmelCase_ = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
16
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
from __future__ import annotations from collections.abc import Iterator class _snake_case : def __init__( self , _a ): __magic_name__ : Tuple = value __magic_name__ : Optional[int] = None __magic_name__ : Any = None class _snake_case : def __init__( self , _a ): __magic_name__ : Any = tree def SCREAMING_SNAKE_CASE ( self , _a ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
281
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: if index == len(_SCREAMING_SNAKE_CASE ): return True # Recursive Step for i in range(_SCREAMING_SNAKE_CASE ): if valid_coloring(graph[index] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Color current vertex lowerCamelCase__ : Dict = i # Validate coloring if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ): return True # Backtrack lowerCamelCase__ : List[Any] = -1 return False def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : List[Any] = [-1] * len(_SCREAMING_SNAKE_CASE ) if util_color(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ): return colored_vertices return []
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
a__: str = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a__: int = frozenset(['prompt', 'negative_prompt']) a__: int = frozenset([]) a__: Dict = frozenset(['image']) a__: int = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a__: Union[str, Any] = frozenset(['image']) a__: Union[str, Any] = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a__: Optional[Any] = frozenset(['prompt', 'image', 'negative_prompt']) a__: Dict = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a__: List[str] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a__: str = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a__: List[str] = frozenset(['image', 'mask_image']) a__: Dict = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a__: Optional[Any] = frozenset(['example_image', 'image', 'mask_image']) a__: List[str] = frozenset(['class_labels']) a__: int = frozenset(['class_labels']) a__: str = frozenset(['batch_size']) a__: int = frozenset([]) a__: Any = frozenset(['batch_size']) a__: Any = frozenset([]) a__: Union[str, Any] = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a__: Tuple = frozenset(['prompt', 'negative_prompt']) a__: List[str] = frozenset(['input_tokens']) a__: str = frozenset(['input_tokens'])
193
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
def UpperCamelCase ( _A ): """simple docstring""" return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __magic_name__: Dict = int(input("Enter number: ").strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
342
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
0
'''simple docstring''' from collections import namedtuple _lowerCAmelCase = namedtuple('''from_to''', '''from_ to''') _lowerCAmelCase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0454, 264.172), '''cubicyard''': from_to(0.7_6455, 1.3_0795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.0_0023_6588, 4226.75), } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(_SCREAMING_SNAKE_CASE ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(_SCREAMING_SNAKE_CASE ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
37
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowercase : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCamelCase : List[str] = os.getenv("SM_HP_MP_PARAMETERS" , "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. __UpperCamelCase : int = json.loads(_SCREAMING_SNAKE_CASE) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __UpperCamelCase : int = os.getenv("SM_FRAMEWORK_PARAMS" , "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __UpperCamelCase : Any = json.loads(_SCREAMING_SNAKE_CASE) if not mpi_options.get("sagemaker_mpi_enabled" , _SCREAMING_SNAKE_CASE): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' _A = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def _lowerCamelCase ( self :Optional[int] ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , __lowercase , ) @cached_property def _lowerCamelCase ( self :Optional[int] ) -> str: logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __UpperCamelCase : str = torch.device("cpu" ) __UpperCamelCase : List[Any] = 0 elif is_sagemaker_model_parallel_available(): __UpperCamelCase : Tuple = smp.local_rank() __UpperCamelCase : Optional[int] = torch.device("cuda" , __lowercase ) __UpperCamelCase : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __UpperCamelCase : Tuple = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __UpperCamelCase : List[Any] = torch.device("cuda" , self.local_rank ) __UpperCamelCase : Dict = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __UpperCamelCase : Union[str, Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __UpperCamelCase : Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __UpperCamelCase : Dict = torch.device("cuda" , self.local_rank ) __UpperCamelCase : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(__lowercase ) return device @property def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _lowerCamelCase ( self :str ) -> Tuple: return not is_sagemaker_model_parallel_available() @property def _lowerCamelCase ( self :str ) -> List[Any]: return False
232
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase__ = {ord(char) for char in VALID_CHARS} lowerCAmelCase__ = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : tuple[int, ...] ): _A : str = "" _A : List[Any] = 42 _A : Tuple = 42 _A : List[str] = 42 for keychar, cipherchar in zip(cycle(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): _A : Optional[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_SCREAMING_SNAKE_CASE ) return decoded def _UpperCAmelCase (UpperCamelCase__ : list[int] ): _A : List[str] = [] for key in product(_SCREAMING_SNAKE_CASE , repeat=3 ): _A : List[Any] = try_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(_SCREAMING_SNAKE_CASE ) return possibles def _UpperCAmelCase (UpperCamelCase__ : list[str] , UpperCamelCase__ : str ): return [possible for possible in possibles if common_word in possible.lower()] def _UpperCAmelCase (UpperCamelCase__ : str = "p059_cipher.txt" ): _A : Tuple = 42 _A : Optional[Any] = 42 _A : Union[str, Any] = 42 _A : List[Any] = 42 _A : int = Path(_SCREAMING_SNAKE_CASE ).parent.joinpath(_SCREAMING_SNAKE_CASE ).read_text(encoding="utf-8" ) _A : Dict = [int(_SCREAMING_SNAKE_CASE ) for number in data.strip().split("," )] _A : Dict = filter_valid_chars(_SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: _A : int = filter_common_word(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 1: break _A : Tuple = possibles[0] return sum(ord(_SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
11
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
import random def _SCREAMING_SNAKE_CASE ( a , a ) -> Union[str, Any]: __A , __A , __A : Optional[int] = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def _SCREAMING_SNAKE_CASE ( a , a ) -> int: if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __A : str = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __A : List[Any] = 0 __A , __A , __A : Optional[Any] = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Tuple = len(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
280
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
0
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE_ : int = grid[0] for row_n in range(1 , len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE_ : List[str] = grid[row_n] SCREAMING_SNAKE_CASE_ : Optional[Any] = fill_row(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = grid[row_n] return grid[-1][-1] def _snake_case ( lowerCAmelCase : list , lowerCAmelCase : list ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_SCREAMING_SNAKE_CASE ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
18
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase_ : Union[str, Any] = get_logger(__name__) lowerCamelCase_ : Any = Path(__file__).parent / """model_card_template.md""" lowerCamelCase_ : Optional[int] = uuida().hex lowerCamelCase_ : str = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase_ : Tuple = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase_ : Dict = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _A ( lowercase = None ): """simple docstring""" a =f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def _A ( lowercase , lowercase = None , lowercase = None ): """simple docstring""" if token is None: a =HfFolder.get_token() if organization is None: a =whoami(_SCREAMING_SNAKE_CASE )['''name'''] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def _A ( lowercase , lowercase ): """simple docstring""" if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_SCREAMING_SNAKE_CASE , '''local_rank''' ) and args.local_rank not in [-1, 0]: return a =args.hub_token if hasattr(_SCREAMING_SNAKE_CASE , '''hub_token''' ) else None a =get_full_repo_name(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) a =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_SCREAMING_SNAKE_CASE , model_name=_SCREAMING_SNAKE_CASE , repo_name=_SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(_SCREAMING_SNAKE_CASE , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_SCREAMING_SNAKE_CASE , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_SCREAMING_SNAKE_CASE , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_SCREAMING_SNAKE_CASE , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_SCREAMING_SNAKE_CASE , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_SCREAMING_SNAKE_CASE , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_SCREAMING_SNAKE_CASE , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_SCREAMING_SNAKE_CASE , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_SCREAMING_SNAKE_CASE , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) a =os.path.join(args.output_dir , '''README.md''' ) model_card.save(_SCREAMING_SNAKE_CASE ) def _A ( lowercase , lowercase = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash a =str(Path(_SCREAMING_SNAKE_CASE ).as_posix() ) a =re.search(R'''snapshots/([^/]+)/''' , _SCREAMING_SNAKE_CASE ) if search is None: return None a =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase_ : int = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowerCamelCase_ : Any = os.path.join(hf_cache_home, """diffusers""") def _A ( lowercase = None , lowercase = None ): """simple docstring""" if new_cache_dir is None: a =DIFFUSERS_CACHE if old_cache_dir is None: a =old_diffusers_cache a =Path(_SCREAMING_SNAKE_CASE ).expanduser() a =Path(_SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a =new_cache_dir / old_blob_path.relative_to(_SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) os.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) try: os.symlink(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase_ : List[Any] = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowerCamelCase_ : Any = 0 else: with open(cache_version_file) as f: try: lowerCamelCase_ : List[Any] = int(f.read()) except ValueError: lowerCamelCase_ : List[str] = 0 if cache_version < 1: lowerCamelCase_ : Any = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowerCamelCase_ : str = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' """the directory exists and can be written to.""" ) def _A ( lowercase , lowercase = None ): """simple docstring""" if variant is not None: a =weights_name.split('''.''' ) a =splits[:-1] + [variant] + splits[-1:] a ='''.'''.join(_SCREAMING_SNAKE_CASE ) return weights_name def _A ( lowercase , *, lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None , ): """simple docstring""" a =str(_SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(_SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint a =os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): a =os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse('''0.20.0''' ) ): try: a =hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.''' , _SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual a =hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( lowerCamelCase__ ): '''simple docstring''' lowerCAmelCase : Tuple = 'openai/whisper-base' lowerCAmelCase : Tuple = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) lowerCAmelCase : str = 'transcriber' lowerCAmelCase : Any = WhisperProcessor lowerCAmelCase : int = WhisperForConditionalGeneration lowerCAmelCase : Optional[Any] = ['audio'] lowerCAmelCase : Dict = ['text'] def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> List[str]: """simple docstring""" return self.pre_processor(__lowercase ,return_tensors='''pt''' ).input_features def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[Any] ) -> Any: """simple docstring""" return self.model.generate(inputs=__lowercase ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[Any] ) -> Dict: """simple docstring""" return self.pre_processor.batch_decode(__lowercase ,skip_special_tokens=__lowercase )[0]
16
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : List[Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
281
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self: int , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int=13 , UpperCamelCase__: int=32 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]=4 , UpperCamelCase__: Dict=[10, 20, 30, 40] , UpperCamelCase__: str=[2, 2, 3, 2] , UpperCamelCase__: str=True , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Optional[int]=37 , UpperCamelCase__: Dict="gelu" , UpperCamelCase__: Dict=10 , UpperCamelCase__: Any=0.02 , UpperCamelCase__: Tuple=["stage2", "stage3", "stage4"] , UpperCamelCase__: int=[2, 3, 4] , UpperCamelCase__: List[str]=None , ): lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Any = image_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Any = num_stages lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : List[str] = depths lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = out_features lowerCamelCase__ : str = out_indices lowerCamelCase__ : List[str] = scope def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Union[str, Any] ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Any = ConvNextVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Dict = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Dict , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Tuple = ConvNextVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Optional[int] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple ): lowerCamelCase__ : str = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : int = model(__lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : List[str] = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase__ : Optional[int] = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs lowerCamelCase__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : List[Any] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class _lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : str = ConvNextVaModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def lowerCamelCase_ ( self: Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self: str ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: List[Any] ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase_ ( self: List[Any] ): pass def lowerCamelCase_ ( self: List[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : Tuple = True if model_class.__name__ in [ *get_values(__lowercase ), *get_values(__lowercase ), ]: continue lowerCamelCase__ : str = model_class(__lowercase ) model.to(__lowercase ) model.train() lowerCamelCase__ : str = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCamelCase__ : Dict = model(**__lowercase ).loss loss.backward() def lowerCamelCase_ ( self: Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : List[str] = False lowerCamelCase__ : int = True if ( model_class.__name__ in [*get_values(__lowercase ), *get_values(__lowercase )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : Dict = model_class(__lowercase ) model.to(__lowercase ) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ : Any = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) lowerCamelCase__ : Optional[int] = model(**__lowercase ).loss loss.backward() def lowerCamelCase_ ( self: int ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(__lowercase ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowerCamelCase_ ( self: Optional[Any] ): def check_hidden_states_output(UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Dict = model(**self._prepare_for_class(__lowercase , __lowercase ) ) lowerCamelCase__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Any = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Dict = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def lowerCamelCase_ ( self: Optional[int] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = ConvNextVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def SCREAMING_SNAKE_CASE_ () -> int: lowerCamelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: str ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__lowercase ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : str = preprocessor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**__lowercase ) # verify the logits lowerCamelCase__ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __lowercase ) lowerCamelCase__ : Dict = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
def UpperCamelCase__( UpperCamelCase__ : list )->Optional[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True A__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCamelCase__( UpperCamelCase__ : list )->Any: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Input list must be a non empty list''' ) A__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
193
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[int] , **__lowercase : Dict ): '''simple docstring''' super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__lowercase ).content else: with open(__lowercase , """rb""" ) as f: __a = f.read() if isinstance(__lowercase , __lowercase ): __a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate ) if not isinstance(__lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__lowercase ) for x in candidate_labels] __a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase ) __a = [text_inputs] return inputs def UpperCamelCase_ ( self : Any , __lowercase : Any ): '''simple docstring''' __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowercase ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__lowercase , **__lowercase ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] ) ] return result
302
0
from __future__ import annotations from collections import namedtuple def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Optional[Any] = namedtuple("""result""", """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""", power / current ) elif current == 0: return result("""current""", power / voltage ) elif power == 0: return result("""power""", float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1000 ): """simple docstring""" return sum(e for e in range(3 , _SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
37
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Dict = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Dict , a :int ) -> List[Any]: __UpperCamelCase : str = deque() __UpperCamelCase : Any = set() if not n: __UpperCamelCase : Tuple = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : int = n def _lowerCamelCase ( self :Optional[int] , a :T ) -> Optional[int]: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : Union[str, Any] = self.dq_store.pop() self.key_reference.remove(__lowercase ) else: self.dq_store.remove(__lowercase ) self.dq_store.appendleft(__lowercase ) self.key_reference.add(__lowercase ) def _lowerCamelCase ( self :Dict ) -> List[str]: for k in self.dq_store: print(__lowercase ) def __repr__( self :List[Any] ) -> Any: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : Union[str, Any] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'time_series_transformer' __SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "student_t" , __lowerCamelCase = "nll" , __lowerCamelCase = 1 , __lowerCamelCase = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase = "mean" , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 3_2 , __lowerCamelCase = 3_2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = 2 , __lowerCamelCase = True , __lowerCamelCase = "gelu" , __lowerCamelCase = 6_4 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0_2 , __lowerCamelCase=True , **__lowerCamelCase , ) -> Dict: _A : Union[str, Any] = prediction_length _A : Dict = context_length or prediction_length _A : int = distribution_output _A : Union[str, Any] = loss _A : Dict = input_size _A : Optional[int] = num_time_features _A : int = lags_sequence _A : Any = scaling _A : List[str] = num_dynamic_real_features _A : List[Any] = num_static_real_features _A : Any = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowercase) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`") _A : Any = cardinality else: _A : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowercase) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`") _A : int = embedding_dimension else: _A : Any = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] _A : Optional[Any] = num_parallel_samples # Transformer architecture configuration _A : Tuple = input_size * len(__lowercase) + self._number_of_features _A : Any = d_model _A : List[Any] = encoder_attention_heads _A : Optional[int] = decoder_attention_heads _A : int = encoder_ffn_dim _A : Optional[Any] = decoder_ffn_dim _A : Tuple = encoder_layers _A : str = decoder_layers _A : Any = dropout _A : Any = attention_dropout _A : List[Any] = activation_dropout _A : Any = encoder_layerdrop _A : List[str] = decoder_layerdrop _A : Tuple = activation_function _A : Any = init_std _A : List[str] = use_cache super().__init__(is_encoder_decoder=__lowercase , **__lowercase) @property def _lowerCamelCase ( self) -> Tuple: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
import numpy # List of input, output pairs UpperCAmelCase : int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase : int = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCAmelCase : Optional[Any] = [2, 4, 1, 5] UpperCAmelCase : str = len(train_data) UpperCAmelCase : Dict = 0.009 def _SCREAMING_SNAKE_CASE ( a , a="train" ) -> str: return calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - output( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: __A : Optional[Any] = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _SCREAMING_SNAKE_CASE ( a , a ) -> Union[str, Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _SCREAMING_SNAKE_CASE ( a , a=m ) -> Tuple: __A : Optional[int] = 0 for i in range(_SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(_SCREAMING_SNAKE_CASE ) else: summation_value += _error(_SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def _SCREAMING_SNAKE_CASE ( a ) -> List[Any]: __A : str = summation_of_cost_derivative(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def _SCREAMING_SNAKE_CASE ( ) -> List[str]: global parameter_vector # Tune these values to set a tolerance value for predicted output __A : List[str] = 0.000_002 __A : Union[str, Any] = 0 __A : Dict = 0 while True: j += 1 __A : Dict = [0, 0, 0, 0] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) ): __A : Dict = get_cost_derivative(i - 1 ) __A : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE , rtol=_SCREAMING_SNAKE_CASE , ): break __A : Any = temp_parameter_vector print(('Number of iterations:', j) ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: for i in range(len(_SCREAMING_SNAKE_CASE ) ): print(('Actual output value:', output(_SCREAMING_SNAKE_CASE , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
def _snake_case ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : set ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE_ : Any = 0 count += depth_first_search(_SCREAMING_SNAKE_CASE , row + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , row - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col + 1 , _SCREAMING_SNAKE_CASE ) count += depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , col - 1 , _SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase_ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] lowerCamelCase_ : Dict = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] lowerCamelCase_ : Optional[int] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase_ : Optional[int] = F'down_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Dict = F'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase_ : Optional[Any] = F'down_blocks.{i}.attentions.{j}.' lowerCamelCase_ : List[str] = F'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase_ : Dict = F'up_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Any = F'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase_ : List[Any] = F'up_blocks.{i}.attentions.{j}.' lowerCamelCase_ : str = F'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase_ : str = F'down_blocks.{i}.downsamplers.0.conv.' lowerCamelCase_ : Optional[int] = F'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase_ : Optional[int] = F'up_blocks.{i}.upsamplers.0.' lowerCamelCase_ : str = F'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase_ : Tuple = """mid_block.attentions.0.""" lowerCamelCase_ : Tuple = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase_ : Optional[int] = F'mid_block.resnets.{j}.' lowerCamelCase_ : int = F'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( lowercase ): """simple docstring""" a ={k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: a =sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v a ={v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase_ : Any = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase_ : Union[str, Any] = F'encoder.down_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Union[str, Any] = F'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase_ : Dict = F'down_blocks.{i}.downsamplers.0.' lowerCamelCase_ : List[str] = F'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase_ : Dict = F'up_blocks.{i}.upsamplers.0.' lowerCamelCase_ : str = F'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase_ : Optional[int] = F'decoder.up_blocks.{i}.resnets.{j}.' lowerCamelCase_ : Dict = F'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase_ : Optional[Any] = F'mid_block.resnets.{i}.' lowerCamelCase_ : Any = F'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase_ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _A ( lowercase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( lowercase ): """simple docstring""" a ={k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: a =v.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =v a ={v: vae_state_dict[k] for k, v in mapping.items()} a =['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) a =reshape_weight_for_sd(_SCREAMING_SNAKE_CASE ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase_ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] lowerCamelCase_ : List[Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase_ : int = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase_ : Union[str, Any] = {"""q""": 0, """k""": 1, """v""": 2} def _A ( lowercase ): """simple docstring""" a ={} a ={} a ={} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): a =k[: -len('''.q_proj.weight''' )] a =k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: a =[None, None, None] a =v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): a =k[: -len('''.q_proj.bias''' )] a =k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: a =[None, None, None] a =v continue a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =torch.cat(_SCREAMING_SNAKE_CASE ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) a =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )] , _SCREAMING_SNAKE_CASE ) a =torch.cat(_SCREAMING_SNAKE_CASE ) return new_state_dict def _A ( lowercase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) lowerCamelCase_ : Tuple = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase_ : Optional[int] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") lowerCamelCase_ : Tuple = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") lowerCamelCase_ : Optional[Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase_ : Union[str, Any] = load_file(unet_path, device="""cpu""") else: lowerCamelCase_ : Dict = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") lowerCamelCase_ : Dict = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): lowerCamelCase_ : List[Any] = load_file(vae_path, device="""cpu""") else: lowerCamelCase_ : Optional[Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") lowerCamelCase_ : int = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): lowerCamelCase_ : List[Any] = load_file(text_enc_path, device="""cpu""") else: lowerCamelCase_ : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") lowerCamelCase_ : Dict = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model lowerCamelCase_ : Optional[int] = convert_unet_state_dict(unet_state_dict) lowerCamelCase_ : int = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase_ : Tuple = convert_vae_state_dict(vae_state_dict) lowerCamelCase_ : Optional[Any] = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase_ : Union[str, Any] = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase_ : Tuple = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} lowerCamelCase_ : Optional[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase_ : Tuple = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase_ : Tuple = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase_ : List[Any] = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase_ : Optional[int] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase_ : Optional[int] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase_ : Union[str, Any] = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
81
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCamelCase__ ): '''simple docstring''' lowerCAmelCase : str = ['image_processor', 'tokenizer'] lowerCAmelCase : Union[str, Any] = 'ChineseCLIPImageProcessor' lowerCAmelCase : Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : List[Any] ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,__lowercase ,) lowercase__ : List[str] = kwargs.pop('''feature_extractor''' ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase ,__lowercase ) lowercase__ : Dict = self.image_processor def __call__( self : int ,_snake_case : List[Any]=None ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,**_snake_case : Union[str, Any] ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(__lowercase ,return_tensors=__lowercase ,**__lowercase ) if images is not None: lowercase__ : Optional[int] = self.image_processor(__lowercase ,return_tensors=__lowercase ,**__lowercase ) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) ,tensor_type=__lowercase ) def UpperCAmelCase ( self : Dict ,*_snake_case : Optional[Any] ,**_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__lowercase ,**__lowercase ) def UpperCAmelCase ( self : Dict ,*_snake_case : str ,**_snake_case : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__lowercase ,**__lowercase ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,__lowercase ,) return self.image_processor_class
16
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors snake_case : Optional[Any] = logging.getLogger(__name__) class _snake_case ( lowerCamelCase__ ): UpperCamelCase__ = 'sequence-classification' def __init__( self , _a ): if type(__lowercase ) == dict: __magic_name__ : Tuple = Namespace(**__lowercase ) __magic_name__ : Any = glue_output_modes[hparams.task] __magic_name__ : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(__lowercase , __lowercase , self.mode ) def SCREAMING_SNAKE_CASE ( self , **_a ): return self.model(**__lowercase ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __magic_name__ : str = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __magic_name__ : Tuple = self(**__lowercase ) __magic_name__ : Dict = outputs[0] __magic_name__ : List[str] = self.trainer.lr_schedulers[0]["scheduler"] __magic_name__ : int = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.hparams __magic_name__ : Any = processors[args.task]() __magic_name__ : Any = processor.get_labels() for mode in ["train", "dev"]: __magic_name__ : Optional[int] = self._feature_file(__lowercase ) if os.path.exists(__lowercase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , __lowercase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __magic_name__ : int = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __magic_name__ : Tuple = convert_examples_to_features( __lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , __lowercase ) torch.save(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a = False ): __magic_name__ : List[str] = "dev" if mode == "test" else mode __magic_name__ : List[Any] = self._feature_file(__lowercase ) logger.info("Loading features from cached file %s" , __lowercase ) __magic_name__ : List[Any] = torch.load(__lowercase ) __magic_name__ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __magic_name__ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __magic_name__ : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __magic_name__ : str = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __magic_name__ : List[str] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase ) , batch_size=__lowercase , shuffle=__lowercase , ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __magic_name__ : Tuple = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __magic_name__ : Optional[Any] = self(**__lowercase ) __magic_name__ , __magic_name__ : int = outputs[:2] __magic_name__ : Union[str, Any] = logits.detach().cpu().numpy() __magic_name__ : Any = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __magic_name__ : Tuple = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __magic_name__ : Union[str, Any] = np.argmax(__lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": __magic_name__ : List[str] = np.squeeze(__lowercase ) __magic_name__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) __magic_name__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] __magic_name__ : str = [[] for _ in range(out_label_ids.shape[0] )] __magic_name__ : Optional[int] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , __lowercase , __lowercase )} __magic_name__ : Optional[int] = dict(results.items() ) __magic_name__ : List[str] = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ , __magic_name__ , __magic_name__ : int = self._eval_end(__lowercase ) __magic_name__ : Dict = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = self._eval_end(__lowercase ) __magic_name__ : Tuple = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE ( _a , _a ): BaseTransformer.add_model_specific_args(__lowercase , __lowercase ) parser.add_argument( "--max_seq_length" , default=128 , type=__lowercase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=__lowercase , required=__lowercase , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=__lowercase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' __magic_name__ : str = argparse.ArgumentParser() add_generic_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) __magic_name__ : str = GLUETransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , os.getcwd() ) __magic_name__ : List[Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __magic_name__ : List[Any] = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __magic_name__ : Dict = GLUETransformer(_SCREAMING_SNAKE_CASE ) __magic_name__ : Union[str, Any] = generic_train(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __magic_name__ : int = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_SCREAMING_SNAKE_CASE ) ) __magic_name__ : List[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
281
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _A : List[str] =float('''nan''') class _lowercase : def __init__( self: List[str] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = sys.stdout lowerCamelCase__ : Union[str, Any] = open(__lowercase , """a""" ) def __getattr__( self: str , UpperCamelCase__: Union[str, Any] ): return getattr(self.stdout , __lowercase ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str ): self.stdout.write(__lowercase ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" , """""" , __lowercase , 0 , re.M ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase=80 , UpperCamelCase=False ) -> int: lowerCamelCase__ : Union[str, Any] = [] # deal with critical env vars lowerCamelCase__ : Any = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: lowerCamelCase__ : int = os.environ.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) lowerCamelCase__ : Dict = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Any = """""" while len(_SCREAMING_SNAKE_CASE ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : str = """""" return "\\\n".join(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: lowerCamelCase__ : Any = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase__ : Tuple = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir lowerCamelCase__ : List[str] = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) lowerCamelCase__ : Optional[Any] = subprocess.run(_SCREAMING_SNAKE_CASE , capture_output=_SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams lowerCamelCase__ : Any = variation.replace(""" """ , """-""" ) with open(Path(_SCREAMING_SNAKE_CASE ) / f'''log.{prefix}.stdout.txt''' , """w""" ) as f: f.write(result.stdout ) with open(Path(_SCREAMING_SNAKE_CASE ) / f'''log.{prefix}.stderr.txt''' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ : List[str] = json.load(_SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : int = [] lowerCamelCase__ : Dict = f'''{id}: {variation:<{longest_variation_len}}''' lowerCamelCase__ : Tuple = f'''{preamble}: ''' lowerCamelCase__ : Any = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_SCREAMING_SNAKE_CASE ) , desc=_SCREAMING_SNAKE_CASE , leave=_SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Tuple = process_run_single( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[Any] = single_run_metrics[target_metric_key] if not math.isnan(_SCREAMING_SNAKE_CASE ): metrics.append(_SCREAMING_SNAKE_CASE ) results.append(_SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" lowerCamelCase__ : List[Any] = f'''\33[2K\r{outcome}''' if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCamelCase__ : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase__ : Tuple = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase__ : List[str] = f'''{outcome} {mean_target}''' if len(_SCREAMING_SNAKE_CASE ) > 1: results_str += f''' {tuple(round(_SCREAMING_SNAKE_CASE , 2 ) for x in results )}''' print(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Optional[Any] = variation return mean_metrics else: print(_SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : Optional[int] = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f'''\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: lowerCamelCase__ : int = pd.DataFrame(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[Any] = """variation""" lowerCamelCase__ : Tuple = """diff_%""" lowerCamelCase__ : Optional[int] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase__ : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel lowerCamelCase__ : Tuple = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Optional[Any] = df.apply( lambda UpperCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns lowerCamelCase__ : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase__ : Tuple = df.reindex(_SCREAMING_SNAKE_CASE , axis="""columns""" ) # reorder cols # capitalize lowerCamelCase__ : Tuple = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible lowerCamelCase__ : Optional[int] = df.rename(lambda UpperCamelCase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) lowerCamelCase__ : str = df.rename(lambda UpperCamelCase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) lowerCamelCase__ : str = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_SCREAMING_SNAKE_CASE , floatfmt=""".2f""" )] print("""\n\n""".join(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , nargs="""+""" , required=_SCREAMING_SNAKE_CASE , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=_SCREAMING_SNAKE_CASE , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=_SCREAMING_SNAKE_CASE , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=_SCREAMING_SNAKE_CASE , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=_SCREAMING_SNAKE_CASE , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) lowerCamelCase__ : Any = parser.parse_args() lowerCamelCase__ : Any = args.output_dir Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[str] = get_base_command(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations lowerCamelCase__ : Optional[Any] = [list(map(str.strip , re.split(r"""\|""" , _SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase__ : Any = list(map(str.strip , map(""" """.join , itertools.product(*_SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase__ : Optional[Any] = max(len(_SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys lowerCamelCase__ : Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase__ : Any = f'''benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) lowerCamelCase__ : Optional[Any] = Tee(_SCREAMING_SNAKE_CASE ) print(f'''\n*** Running {len(_SCREAMING_SNAKE_CASE )} benchmarks:''' ) print(f'''Base command: {' '.join(_SCREAMING_SNAKE_CASE )}''' ) lowerCamelCase__ : Optional[int] = """variation""" lowerCamelCase__ : List[str] = [] for id, variation in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc="""Total completion: """ , leave=_SCREAMING_SNAKE_CASE ) ): lowerCamelCase__ : Any = base_cmd + variation.split() results.append( process_run( id + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.repeat_times , _SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(_SCREAMING_SNAKE_CASE , args.target_metric_key , _SCREAMING_SNAKE_CASE , args.base_variation , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a__: Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self,**__lowerCamelCase ): super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self,__lowerCamelCase,**__lowerCamelCase ): return super().__call__(__lowercase,**__lowercase ) def UpperCamelCase ( self,**__lowerCamelCase ): A__ = {} if "candidate_labels" in kwargs: A__ = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: A__ = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None,__lowerCamelCase="This is a sound of {}." ): if isinstance(__lowercase,__lowercase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ = requests.get(__lowercase ).content else: with open(__lowercase,'''rb''' ) as f: A__ = f.read() if isinstance(__lowercase,__lowercase ): A__ = ffmpeg_read(__lowercase,self.feature_extractor.sampling_rate ) if not isinstance(__lowercase,np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) A__ = self.feature_extractor( [audio],sampling_rate=self.feature_extractor.sampling_rate,return_tensors='''pt''' ) A__ = candidate_labels A__ = [hypothesis_template.format(__lowercase ) for x in candidate_labels] A__ = self.tokenizer(__lowercase,return_tensors=self.framework,padding=__lowercase ) A__ = [text_inputs] return inputs def UpperCamelCase ( self,__lowerCamelCase ): A__ = model_inputs.pop('''candidate_labels''' ) A__ = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0],__lowercase ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**__lowercase,**__lowercase ) A__ = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def UpperCamelCase ( self,__lowerCamelCase ): A__ = model_outputs.pop('''candidate_labels''' ) A__ = model_outputs['''logits'''][0] if self.framework == "pt": A__ = logits.softmax(dim=0 ) A__ = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) A__ = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowercase,__lowercase ),key=lambda __lowerCamelCase : -x[0] ) ] return result
193
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__: Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class snake_case__ ( lowerCamelCase__ , unittest.TestCase ): lowercase__ : Optional[int] = ReformerTokenizer lowercase__ : Optional[Any] = ReformerTokenizerFast lowercase__ : List[str] = True lowercase__ : Optional[Any] = False lowercase__ : int = True def __magic_name__ ( self ) -> str: super().setUp() __magic_name__ : List[Any] = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : Any = """<s>""" __magic_name__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__lowercase ) , 10_00 ) def __magic_name__ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __magic_name__ ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : List[str] = self.get_rust_tokenizer() __magic_name__ : List[str] = """I was born in 92000, and this is falsé.""" __magic_name__ : int = tokenizer.tokenize(__lowercase ) __magic_name__ : Tuple = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __magic_name__ : int = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __magic_name__ : List[Any] = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __magic_name__ : Tuple = self.get_rust_tokenizer() __magic_name__ : Dict = tokenizer.encode(__lowercase ) __magic_name__ : int = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self , lowerCAmelCase__=15 ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # Simple input __magic_name__ : Optional[int] = """This is a simple input""" __magic_name__ : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__ : Optional[int] = ("""This is a simple input""", """This is a pair""") __magic_name__ : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) def __magic_name__ ( self ) -> Union[str, Any]: pass def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) __magic_name__ : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [2_85, 46, 10, 1_70, 3_82] , ) __magic_name__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __magic_name__ : int = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __magic_name__ : Tuple = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __magic_name__ ( self ) -> Any: return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = """Hello World!""" __magic_name__ : List[Any] = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Tuple = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __magic_name__ : Any = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def __magic_name__ ( self ) -> Any: import torch from transformers import ReformerConfig, ReformerModel # Build sequence __magic_name__ : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __magic_name__ : Union[str, Any] = """ """.join(__lowercase ) __magic_name__ : Optional[int] = self.big_tokenizer.encode_plus(__lowercase , return_tensors="""pt""" ) __magic_name__ : Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) __magic_name__ : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __magic_name__ : Optional[int] = encoded_sequence["""input_ids"""].shape __magic_name__ : Any = ReformerModel(__lowercase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Union[str, Any] = {"""input_ids""": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __magic_name__ : List[Any] = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=__lowercase , sequences=__lowercase , )
342
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = [] lowerCAmelCase__ : Dict = 11 lowerCAmelCase__ : Any = int("""1""" + """0""" * digit_len ) for num in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCAmelCase__ : Optional[Any] = 10 return solutions def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 2 ): """simple docstring""" lowerCAmelCase__ : str = 1.0 for fraction in fraction_list(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Optional[int] = Fraction(_SCREAMING_SNAKE_CASE ) result *= frac.denominator / frac.numerator return int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
37
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
0
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :int , *a :Union[str, Any] , **a :List[Any] ) -> str: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Dict , *a :List[Any] , **a :Optional[Any] ) -> int: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Tuple , *a :Any , **a :Dict ) -> int: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Dict , *a :Tuple , **a :Any ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Tuple , *a :Optional[int] , **a :Any ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :str , *a :Any , **a :str ) -> Any: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :int , *a :Optional[Any] , **a :Dict ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Dict , *a :str , **a :Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :int , *a :str , **a :str ) -> str: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Optional[Any] , *a :Tuple , **a :List[Any] ) -> List[Any]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Optional[Any] , *a :Optional[Any] , **a :Any ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Union[str, Any] , *a :List[str] , **a :List[Any] ) -> Any: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Tuple , *a :int , **a :int ) -> Any: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Tuple , *a :str , **a :List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :str , *a :List[Any] , **a :int ) -> str: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :List[str] , *a :List[str] , **a :Optional[Any] ) -> Any: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Optional[Any] , *a :str , **a :List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Optional[int] , *a :Dict , **a :Dict ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Optional[int] , *a :Dict , **a :List[str] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[Any] , *a :Optional[int] , **a :Optional[Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Dict , *a :Any , **a :str ) -> str: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :str , *a :Any , **a :List[Any] ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :int , *a :int , **a :int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Tuple , *a :str , **a :Any ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :List[str] , *a :int , **a :int ) -> List[str]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[Any] , *a :Optional[Any] , **a :str ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Dict , *a :str , **a :List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :str , *a :Optional[int] , **a :Any ) -> Any: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[str] , *a :str , **a :int ) -> Any: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[Any] , *a :List[str] , **a :int ) -> Dict: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Optional[Any] , *a :List[Any] , **a :List[str] ) -> int: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[str] , *a :List[str] , **a :List[Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Optional[Any] , *a :List[str] , **a :List[str] ) -> Dict: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Optional[Any] , *a :Tuple , **a :int ) -> List[str]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :List[str] , *a :List[str] , **a :Dict ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Union[str, Any] , *a :Union[str, Any] , **a :Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class lowerCamelCase__ ( metaclass=lowerCamelCase__): '''simple docstring''' _A = ['flax'] def __init__( self :Dict , *a :int , **a :Any ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def _lowerCamelCase ( cls :Any , *a :List[Any] , **a :Optional[Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def _lowerCamelCase ( cls :int , *a :Optional[Any] , **a :Union[str, Any] ) -> Dict: requires_backends(cls , ["flax"] )
232
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__( self , __lowerCamelCase = 1_0_1) -> Dict: _A : int = length def __len__( self) -> str: return self.length def __getitem__( self , __lowerCamelCase) -> Optional[int]: return i class lowerCAmelCase__ : '''simple docstring''' def __call__( self , __lowerCamelCase) -> Tuple: return {"input_ids": torch.tensor(__lowercase), "labels": torch.tensor(__lowercase)} class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self) -> Tuple: super().__init__() # Add some (unused) params otherwise DDP will complain. _A : str = nn.Linear(1_2_0 , 8_0) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None) -> Tuple: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' @require_torch_neuroncore def _lowerCamelCase ( self) -> int: _A : Any = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _A : Any = self.get_auto_remove_tmp_dir() _A : int = F"--output_dir {output_dir}".split() _A : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__lowercase , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' @require_torch_multi_gpu def _lowerCamelCase ( self) -> List[str]: _A : str = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _A : Dict = self.get_auto_remove_tmp_dir() _A : Any = F"--output_dir {output_dir}".split() _A : List[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(__lowercase , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCAmelCase__ = HfArgumentParser((TrainingArguments,)) lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: lowerCAmelCase__ = DummyDataset(dataset_length) def _UpperCAmelCase (UpperCamelCase__ : EvalPrediction ): _A : Any = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) _A : int = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} lowerCAmelCase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase__ = 2 lowerCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase__ = None
11
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : List[Any] = _symbol_database.Default() UpperCAmelCase : List[str] = _descriptor_pool.Default().AddSerializedFile( B'''\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) UpperCAmelCase : List[str] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = B'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : List[Any] = 45 UpperCAmelCase : List[Any] = 15_81 UpperCAmelCase : int = 15_17 UpperCAmelCase : str = 15_70 UpperCAmelCase : Dict = 15_84 UpperCAmelCase : int = 17_93 UpperCAmelCase : Union[str, Any] = 17_95 UpperCAmelCase : Dict = 19_16 UpperCAmelCase : Union[str, Any] = 18_64 UpperCAmelCase : Dict = 19_05 UpperCAmelCase : List[str] = 19_19 UpperCAmelCase : Optional[int] = 24_29 UpperCAmelCase : Union[str, Any] = 22_08 UpperCAmelCase : str = 24_18 UpperCAmelCase : List[str] = 23_23 UpperCAmelCase : List[str] = 24_07 # @@protoc_insertion_point(module_scope)
280
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Dict ): """simple docstring""" for attribute in key.split("." ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: SCREAMING_SNAKE_CASE_ : str = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: SCREAMING_SNAKE_CASE_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ : Optional[int] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ : Union[str, Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ : int = value else: SCREAMING_SNAKE_CASE_ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : List[str] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ : List[str] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ : str = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_ : int = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_ : List[str] = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE_ : str = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ : Any = name.split(_SCREAMING_SNAKE_CASE )[0].split("." )[-2] SCREAMING_SNAKE_CASE_ : str = mapped_key.replace("*" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ : Any = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_ : List[str] = "weight_v" elif "weight" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = "weight" elif "bias" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = "bias" else: SCREAMING_SNAKE_CASE_ : List[Any] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_ : List[str] = name.split("." ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(items[0] ) SCREAMING_SNAKE_CASE_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE_ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = SEWConfig() if is_finetuned: SCREAMING_SNAKE_CASE_ : Optional[int] = model.wav_encoder.wav_model.cfg else: SCREAMING_SNAKE_CASE_ : Tuple = model.cfg SCREAMING_SNAKE_CASE_ : Tuple = fs_config.conv_bias SCREAMING_SNAKE_CASE_ : List[str] = eval(fs_config.conv_feature_layers ) SCREAMING_SNAKE_CASE_ : Optional[int] = [x[0] for x in conv_layers] SCREAMING_SNAKE_CASE_ : Tuple = [x[1] for x in conv_layers] SCREAMING_SNAKE_CASE_ : str = [x[2] for x in conv_layers] SCREAMING_SNAKE_CASE_ : Dict = "gelu" SCREAMING_SNAKE_CASE_ : Tuple = "layer" if fs_config.extractor_mode == "layer_norm" else "group" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.0 SCREAMING_SNAKE_CASE_ : List[Any] = fs_config.activation_fn.name SCREAMING_SNAKE_CASE_ : Dict = fs_config.encoder_embed_dim SCREAMING_SNAKE_CASE_ : Dict = 0.02 SCREAMING_SNAKE_CASE_ : str = fs_config.encoder_ffn_embed_dim SCREAMING_SNAKE_CASE_ : Tuple = 1E-5 SCREAMING_SNAKE_CASE_ : int = fs_config.encoder_layerdrop SCREAMING_SNAKE_CASE_ : str = fs_config.encoder_attention_heads SCREAMING_SNAKE_CASE_ : int = fs_config.conv_pos_groups SCREAMING_SNAKE_CASE_ : Dict = fs_config.conv_pos SCREAMING_SNAKE_CASE_ : Any = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = fs_config.encoder_layers SCREAMING_SNAKE_CASE_ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: SCREAMING_SNAKE_CASE_ : List[Any] = model.cfg SCREAMING_SNAKE_CASE_ : Dict = fs_config.final_dropout SCREAMING_SNAKE_CASE_ : Tuple = fs_config.layerdrop SCREAMING_SNAKE_CASE_ : int = fs_config.activation_dropout SCREAMING_SNAKE_CASE_ : List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 SCREAMING_SNAKE_CASE_ : str = fs_config.attention_dropout SCREAMING_SNAKE_CASE_ : int = fs_config.dropout_input SCREAMING_SNAKE_CASE_ : Tuple = fs_config.dropout SCREAMING_SNAKE_CASE_ : List[Any] = fs_config.mask_channel_length SCREAMING_SNAKE_CASE_ : str = fs_config.mask_channel_prob SCREAMING_SNAKE_CASE_ : Dict = fs_config.mask_length SCREAMING_SNAKE_CASE_ : List[str] = fs_config.mask_prob SCREAMING_SNAKE_CASE_ : List[Any] = "Wav2Vec2FeatureExtractor" SCREAMING_SNAKE_CASE_ : int = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=True ): """simple docstring""" if is_finetuned: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: SCREAMING_SNAKE_CASE_ : Dict = SEWConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_config(model[0] , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = model[0].eval() SCREAMING_SNAKE_CASE_ : List[str] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE_ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE_ : List[str] = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE_ : Union[str, Any] = target_dict.pad_index SCREAMING_SNAKE_CASE_ : Tuple = target_dict.bos_index SCREAMING_SNAKE_CASE_ : Optional[int] = target_dict.pad_index SCREAMING_SNAKE_CASE_ : int = target_dict.bos_index SCREAMING_SNAKE_CASE_ : List[str] = target_dict.eos_index SCREAMING_SNAKE_CASE_ : int = len(target_dict.symbols ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , "vocab.json" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = SEWForCTC(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[str] = SEWModel(_SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCamelCase : int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
18
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase_ : Optional[int] = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase_ : Any = logging.get_logger(__name__) class __A ( lowerCamelCase__ ): """simple docstring""" __lowerCAmelCase = 'maskformer' __lowerCAmelCase = {'hidden_size': 'mask_feature_size'} __lowerCAmelCase = ['resnet', 'swin'] __lowerCAmelCase = ['detr'] def __init__( self , __A = 256 , __A = 256 , __A = 0.1 , __A = False , __A = None , __A = None , __A = 0.02 , __A = 1.0 , __A = 1.0 , __A = 1.0 , __A = 20.0 , __A = None , **__A , ) -> Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k a =SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(__lowercase , __lowercase ): a =backbone_config.pop('''model_type''' ) a =CONFIG_MAPPING[backbone_model_type] a =config_class.from_dict(__lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 a =DetrConfig() else: # verify that the decoder is supported a =( decoder_config.pop('''model_type''' ) if isinstance(__lowercase , __lowercase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(__lowercase , __lowercase ): a =CONFIG_MAPPING[decoder_type] a =config_class.from_dict(__lowercase ) a =backbone_config a =decoder_config # main feature dimension for the model a =fpn_feature_size a =mask_feature_size # initializer a =init_std a =init_xavier_std # Hungarian matcher && loss a =cross_entropy_weight a =dice_weight a =mask_weight a =use_auxiliary_loss a =no_object_weight a =output_auxiliary_logits a =self.decoder_config.encoder_attention_heads a =self.decoder_config.num_hidden_layers super().__init__(**__lowercase ) @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , __A , **__A ) -> Any: return cls( backbone_config=__lowercase , decoder_config=__lowercase , **__lowercase , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =copy.deepcopy(self.__dict__ ) a =self.backbone_config.to_dict() a =self.decoder_config.to_dict() a =self.__class__.model_type return output
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : List[str] = botoa.client('''iam''' ) lowercase__ : Union[str, Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_SCREAMING_SNAKE_CASE , AssumeRolePolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) lowercase__ : int = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_SCREAMING_SNAKE_CASE , PolicyName=f"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[Any] = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_SCREAMING_SNAKE_CASE )["Role"]["Arn"] def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Optional[int] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _SCREAMING_SNAKE_CASE , ) lowercase__ : Optional[Any] = None if credentials_configuration == 0: lowercase__ : Optional[int] = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowercase__ : str = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowercase__ : int = _ask_field('''AWS Access Key ID: ''' ) lowercase__ : List[str] = aws_access_key_id lowercase__ : int = _ask_field('''AWS Secret Access Key: ''' ) lowercase__ : Union[str, Any] = aws_secret_access_key lowercase__ : Optional[Any] = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowercase__ : List[str] = aws_region lowercase__ : Dict = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _SCREAMING_SNAKE_CASE , ) if role_management == 0: lowercase__ : Union[str, Any] = _ask_field('''Enter your IAM role name: ''' ) else: lowercase__ : Dict = '''accelerate_sagemaker_execution_role''' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(_SCREAMING_SNAKE_CASE ) lowercase__ : str = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowercase__ : Union[str, Any] = None if is_custom_docker_image: lowercase__ : Optional[Any] = _ask_field('''Enter your Docker image: ''' , lambda __lowerCamelCase : str(_SCREAMING_SNAKE_CASE ).lower() ) lowercase__ : int = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowercase__ : Tuple = None if is_sagemaker_inputs_enabled: lowercase__ : Any = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda __lowerCamelCase : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowercase__ : List[Any] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowercase__ : Optional[int] = None if is_sagemaker_metrics_enabled: lowercase__ : List[Any] = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda __lowerCamelCase : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowercase__ : Optional[Any] = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowercase__ : Optional[int] = {} lowercase__ : int = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowercase__ : Tuple = '''dynamo_''' lowercase__ : Any = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase__ : Union[str, Any] = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowercase__ : List[str] = _ask_options( '''Which mode do you want to use?''' , _SCREAMING_SNAKE_CASE , lambda __lowerCamelCase : TORCH_DYNAMO_MODES[int(_SCREAMING_SNAKE_CASE )] , default='''default''' , ) lowercase__ : List[str] = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowercase__ : Union[str, Any] = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowercase__ : Dict = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: lowercase__ : Union[str, Any] = _ask_options( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lambda __lowerCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_SCREAMING_SNAKE_CASE )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase__ : str = _ask_field(_SCREAMING_SNAKE_CASE , lambda __lowerCamelCase : str(_SCREAMING_SNAKE_CASE ).lower() , default='''ml.p3.2xlarge''' ) lowercase__ : Union[str, Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase__ : List[Any] = _ask_field( '''How many machines do you want use? [1]: ''' , _SCREAMING_SNAKE_CASE , default=1 , ) lowercase__ : Optional[Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_SCREAMING_SNAKE_CASE , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_SCREAMING_SNAKE_CASE , use_cpu=_SCREAMING_SNAKE_CASE , dynamo_config=_SCREAMING_SNAKE_CASE , eca_instance_type=_SCREAMING_SNAKE_CASE , profile=_SCREAMING_SNAKE_CASE , region=_SCREAMING_SNAKE_CASE , iam_role_name=_SCREAMING_SNAKE_CASE , mixed_precision=_SCREAMING_SNAKE_CASE , num_machines=_SCREAMING_SNAKE_CASE , sagemaker_inputs_file=_SCREAMING_SNAKE_CASE , sagemaker_metrics_file=_SCREAMING_SNAKE_CASE , )
16
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _snake_case ( lowerCamelCase__ ): UpperCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
281
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _A : str =TypeVar('''T''') class _lowercase ( Generic[T] ): def __init__( self: List[str] , UpperCamelCase__: T ): lowerCamelCase__ : List[Any] = data lowerCamelCase__ : int = None def __str__( self: List[str] ): return F'''{self.data}''' class _lowercase ( Generic[T] ): def __init__( self: Union[str, Any] ): lowerCamelCase__ : List[Any] = None def __iter__( self: List[str] ): lowerCamelCase__ : List[str] = self.top while node: yield node.data lowerCamelCase__ : int = node.next def __str__( self: Optional[Any] ): return "->".join([str(__lowercase ) for item in self] ) def __len__( self: Any ): return len(tuple(iter(self ) ) ) def lowerCamelCase_ ( self: Any ): return self.top is None def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: T ): lowerCamelCase__ : Dict = Node(__lowercase ) if not self.is_empty(): lowerCamelCase__ : Optional[int] = self.top lowerCamelCase__ : Optional[Any] = node def lowerCamelCase_ ( self: Optional[Any] ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __lowercase ) lowerCamelCase__ : Union[str, Any] = self.top lowerCamelCase__ : List[str] = self.top.next return pop_node.data def lowerCamelCase_ ( self: Optional[Any] ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a__: Optional[int] = TypeVar('T') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): def __init__( self,__lowerCamelCase = True ): A__ = {} # dictionary of lists A__ = directed def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) self.adj_list[destination_vertex].append(__lowercase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) A__ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__lowercase ) A__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A__ = [destination_vertex] A__ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__lowercase ) A__ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A__ = [destination_vertex] A__ = [] return self def __repr__( self ): return pformat(self.adj_list )
193
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[int] , **__lowercase : Dict ): '''simple docstring''' super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__lowercase ).content else: with open(__lowercase , """rb""" ) as f: __a = f.read() if isinstance(__lowercase , __lowercase ): __a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate ) if not isinstance(__lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__lowercase ) for x in candidate_labels] __a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase ) __a = [text_inputs] return inputs def UpperCamelCase_ ( self : Any , __lowercase : Any ): '''simple docstring''' __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowercase ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__lowercase , **__lowercase ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] ) ] return result
302
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=4 , ) -> List[Any]: __magic_name__ : List[str] = parent __magic_name__ : Dict = batch_size __magic_name__ : Any = seq_length __magic_name__ : Tuple = is_training __magic_name__ : Any = use_attention_mask __magic_name__ : Any = use_token_type_ids __magic_name__ : List[Any] = use_labels __magic_name__ : str = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : str = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Tuple = hidden_act __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : int = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : List[Any] = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : int = num_choices def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any = None if self.use_attention_mask: __magic_name__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = config_and_inputs __magic_name__ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = config_and_inputs __magic_name__ : int = True __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case__ ( lowerCamelCase__ , unittest.TestCase ): lowercase__ : Optional[Any] = True lowercase__ : Optional[int] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : str = FlaxRobertaModelTester(self ) @slow def __magic_name__ ( self ) -> List[str]: for model_class_name in self.all_model_classes: __magic_name__ : int = model_class_name.from_pretrained("""roberta-base""" , from_pt=__lowercase ) __magic_name__ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase )
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( lowerCamelCase__ ): '''simple docstring''' __lowercase : Dict = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BICUBIC ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 255 ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> List[str]: super().__init__(**__lowercase ) lowerCAmelCase__ : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase__ : Optional[Any] = get_size_dict(__lowercase ) lowerCAmelCase__ : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase__ : Dict = get_size_dict(__lowercase ,default_to_square=__lowercase ,param_name="""crop_size""" ) lowerCAmelCase__ : Optional[Any] = do_resize lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : List[Any] = do_center_crop lowerCAmelCase__ : List[Any] = crop_size lowerCAmelCase__ : Tuple = size lowerCAmelCase__ : List[str] = resample lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase__ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> List[Any]: lowerCAmelCase__ : Tuple = get_size_dict(__lowercase ) if "shortest_edge" in size: lowerCAmelCase__ : List[Any] = get_resize_output_image_size(__lowercase ,size=size["""shortest_edge"""] ,default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowerCAmelCase__ : Optional[int] = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__lowercase ,size=__lowercase ,resample=__lowercase ,data_format=__lowercase ,**__lowercase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> List[Any]: lowerCAmelCase__ : Dict = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowercase ,size=(size["""height"""], size["""width"""]) ,data_format=__lowercase ,**__lowercase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ) -> Optional[int]: return rescale(__lowercase ,scale=__lowercase ,data_format=__lowercase ,**__lowercase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Tuple: return normalize(__lowercase ,mean=__lowercase ,std=__lowercase ,data_format=__lowercase ,**__lowercase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> Union[str, Any]: lowerCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : str = get_size_dict(__lowercase ,param_name="""crop_size""" ,default_to_square=__lowercase ) lowerCAmelCase__ : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Any = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : List[str] = size if size is not None else self.size lowerCAmelCase__ : List[str] = get_size_dict(__lowercase ) if not is_batched(__lowercase ): lowerCAmelCase__ : Union[str, Any] = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ : int = [to_numpy_array(__lowercase ) for image in images] if do_resize: lowerCAmelCase__ : List[str] = [self.resize(image=__lowercase ,size=__lowercase ,resample=__lowercase ) for image in images] if do_center_crop: lowerCAmelCase__ : Optional[Any] = [self.center_crop(image=__lowercase ,size=__lowercase ) for image in images] if do_rescale: lowerCAmelCase__ : List[Any] = [self.rescale(image=__lowercase ,scale=__lowercase ) for image in images] if do_normalize: lowerCAmelCase__ : str = [self.normalize(image=__lowercase ,mean=__lowercase ,std=__lowercase ) for image in images] lowerCAmelCase__ : List[Any] = [to_channel_dimension_format(__lowercase ,__lowercase ) for image in images] lowerCAmelCase__ : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__lowercase ,tensor_type=__lowercase )
37
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def _lowerCamelCase ( self :int ) -> str: __UpperCamelCase : List[str] = SMALL_MODEL_IDENTIFIER __UpperCamelCase : Tuple = "pt" __UpperCamelCase : Tuple = "tf" def _lowerCamelCase ( self :Optional[int] , a :str ) -> Optional[Any]: __UpperCamelCase : Dict = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__lowercase ) def _lowerCamelCase ( self :Any , a :Dict ) -> int: __UpperCamelCase : List[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=__lowercase ) model_tf.save_pretrained(__lowercase ) def _lowerCamelCase ( self :Optional[int] ) -> str: __UpperCamelCase : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides __UpperCamelCase : List[str] = FeaturesManager.determine_framework(self.test_model , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCamelCase : Any = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def _lowerCamelCase ( self :int ) -> Optional[int]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase ) __UpperCamelCase : Tuple = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(__lowercase ) self.assertEqual(__lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__lowercase ): __UpperCamelCase : List[str] = FeaturesManager.determine_framework(__lowercase ) def _lowerCamelCase ( self :Any ) -> Tuple: __UpperCamelCase : Optional[int] = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ): __UpperCamelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCamelCase : Tuple = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_torch_available" , __lowercase ): __UpperCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCamelCase : int = MagicMock(return_value=__lowercase ) __UpperCamelCase : int = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ), patch( "transformers.onnx.features.is_torch_available" , __lowercase ): __UpperCamelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__lowercase , self.framework_pt ) # Both not in environment -> raise error __UpperCamelCase : Any = MagicMock(return_value=__lowercase ) __UpperCamelCase : Dict = MagicMock(return_value=__lowercase ) with patch("transformers.onnx.features.is_tf_available" , __lowercase ), patch( "transformers.onnx.features.is_torch_available" , __lowercase ): with self.assertRaises(__lowercase ): __UpperCamelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'vit' def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__lowercase) _A : Union[str, Any] = hidden_size _A : str = num_hidden_layers _A : Tuple = num_attention_heads _A : int = intermediate_size _A : Any = hidden_act _A : Tuple = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Any = layer_norm_eps _A : int = image_size _A : Optional[Any] = patch_size _A : Union[str, Any] = num_channels _A : Any = qkv_bias _A : List[Any] = encoder_stride class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("1.11") @property def _lowerCamelCase ( self) -> List[Any]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def _lowerCamelCase ( self) -> Tuple: return 1e-4
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _A: """simple docstring""" UpperCamelCase : List[Any] = LEDConfig UpperCamelCase : Any = {} UpperCamelCase : Optional[Any] = 'gelu' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , _A=4 , ): __A : Optional[int] = parent __A : Optional[Any] = batch_size __A : Optional[int] = seq_length __A : str = is_training __A : Optional[int] = use_labels __A : Optional[int] = vocab_size __A : Any = hidden_size __A : List[str] = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[int] = intermediate_size __A : str = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : int = eos_token_id __A : str = pad_token_id __A : Optional[int] = bos_token_id __A : List[str] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __A : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __A : Optional[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ): __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __A : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __A : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __A : Dict = prepare_led_inputs_dict(__lowercase , __lowercase , __lowercase ) __A : List[Any] = tf.concat( [tf.zeros_like(__lowercase )[:, :-1], tf.ones_like(__lowercase )[:, -1:]] , axis=-1 , ) __A : Union[str, Any] = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , _A , _A ): __A : List[str] = TFLEDModel(config=__lowercase ).get_decoder() __A : str = inputs_dict['input_ids'] __A : str = input_ids[:1, :] __A : List[Any] = inputs_dict['attention_mask'][:1, :] __A : Any = 1 # first forward pass __A : int = model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) __A , __A : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __A : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __A : int = tf.concat([input_ids, next_tokens] , axis=-1 ) __A : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __A : Tuple = model(__lowercase , attention_mask=__lowercase )[0] __A : Optional[int] = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __A : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __A : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] __A : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def _SCREAMING_SNAKE_CASE ( a , a , a , a=None , a=None , a=None , a=None , ) -> str: if attention_mask is None: __A : Tuple = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __A : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __A : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _A( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase : str = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase : Any = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase : Any = True UpperCamelCase : Optional[Any] = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Any = False def UpperCAmelCase_ ( self ): __A : Optional[int] = TFLEDModelTester(self ) __A : Dict = ConfigTester(self , config_class=__lowercase ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) def UpperCAmelCase_ ( self ): __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = tf.zeros_like(inputs_dict['attention_mask'] ) __A : int = 2 __A : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) __A : int = True __A : Union[str, Any] = self.model_tester.seq_length __A : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_A ): __A : Tuple = outputs.decoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_A ): __A : Tuple = [t.numpy() for t in outputs.encoder_attentions] __A : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __A : Union[str, Any] = True __A : Any = False __A : Tuple = False __A : List[Any] = model_class(__lowercase ) __A : Union[str, Any] = model(self._prepare_for_class(__lowercase , __lowercase ) ) __A : Any = len(__lowercase ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) if self.is_encoder_decoder: __A : Optional[Any] = model_class(__lowercase ) __A : List[str] = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_decoder_attentions_output(__lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : Any = True __A : Any = model_class(__lowercase ) __A : Optional[Any] = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) # Check attention is always last and order is fine __A : List[Any] = True __A : Union[str, Any] = True __A : Union[str, Any] = model_class(__lowercase ) __A : str = model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowercase ) ) self.assertEqual(model.config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): pass def _SCREAMING_SNAKE_CASE ( a ) -> Optional[Any]: return tf.constant(_SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCAmelCase : List[Any] = 1E-4 @slow @require_tf class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[str] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here __A : Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : Tuple = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : Dict = prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __A : str = model(**__lowercase )[0] __A : str = (1, 1024, 768) self.assertEqual(output.shape , __lowercase ) # change to expected output here __A : int = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here __A : Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : List[str] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __A : List[Any] = prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __A : Dict = model(**__lowercase )[0] __A : List[str] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __lowercase ) # change to expected output here __A : Optional[int] = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 , rtol=1e-3 )
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Tuple = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[str] = logging.get_logger(__name__) # TODO Update this lowerCamelCase_ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class __A ( lowerCamelCase__ ): """simple docstring""" __lowerCAmelCase = 'esm' def __init__( self , __A=None , __A=None , __A=None , __A=768 , __A=12 , __A=12 , __A=3072 , __A=0.1 , __A=0.1 , __A=1026 , __A=0.02 , __A=1E-1_2 , __A="absolute" , __A=True , __A=None , __A=False , __A=False , __A=None , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__lowercase , mask_token_id=__lowercase , **__lowercase ) a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =initializer_range a =layer_norm_eps a =position_embedding_type a =use_cache a =emb_layer_norm_before a =token_dropout a =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) a =EsmFoldConfig() elif isinstance(__lowercase , __lowercase ): a =EsmFoldConfig(**__lowercase ) a =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) a =get_default_vocab_list() else: a =vocab_list else: a =None a =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __lowercase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =super().to_dict() if isinstance(self.esmfold_config , __lowercase ): a =self.esmfold_config.to_dict() return output @dataclass class __A : """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = 128 __lowerCAmelCase = None def SCREAMING_SNAKE_CASE ( self ) -> str: if self.trunk is None: a =TrunkConfig() elif isinstance(self.trunk , __lowercase ): a =TrunkConfig(**self.trunk ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =asdict(self ) a =self.trunk.to_dict() return output @dataclass class __A : """simple docstring""" __lowerCAmelCase = 48 __lowerCAmelCase = 1024 __lowerCAmelCase = 128 __lowerCAmelCase = 32 __lowerCAmelCase = 32 __lowerCAmelCase = 32 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = False __lowerCAmelCase = 4 __lowerCAmelCase = 128 __lowerCAmelCase = None def SCREAMING_SNAKE_CASE ( self ) -> int: if self.structure_module is None: a =StructureModuleConfig() elif isinstance(self.structure_module , __lowercase ): a =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) a =self.sequence_state_dim // self.sequence_head_width a =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =asdict(self ) a =self.structure_module.to_dict() return output @dataclass class __A : """simple docstring""" __lowerCAmelCase = 384 __lowerCAmelCase = 128 __lowerCAmelCase = 16 __lowerCAmelCase = 128 __lowerCAmelCase = 12 __lowerCAmelCase = 4 __lowerCAmelCase = 8 __lowerCAmelCase = 0.1 __lowerCAmelCase = 8 __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = 7 __lowerCAmelCase = 10 __lowerCAmelCase = 1e-8 __lowerCAmelCase = 1e5 def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return asdict(self ) def _A ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
81
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
"""simple docstring""" from statistics import mean import numpy as np def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Optional[Any] = 0 # Number of processes finished lowercase__ : str = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase__ : List[Any] = [0] * no_of_process # List to include calculation results lowercase__ : Optional[Any] = [0] * no_of_process # Sort by arrival time. lowercase__ : Union[str, Any] = [burst_time[i] for i in np.argsort(_SCREAMING_SNAKE_CASE )] lowercase__ : str = [process_name[i] for i in np.argsort(_SCREAMING_SNAKE_CASE )] arrival_time.sort() while no_of_process > finished_process_count: lowercase__ : Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase__ : Dict = arrival_time[i] lowercase__ : Optional[int] = 0 # Index showing the location of the process being performed lowercase__ : Optional[Any] = 0 # Saves the current response ratio. lowercase__ : Any = 0 for i in range(0 , _SCREAMING_SNAKE_CASE ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase__ : Optional[int] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase__ : Optional[int] = temp lowercase__ : Tuple = i # Calculate the turn around time lowercase__ : Any = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase__ : Union[str, Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : List[str] = [0] * no_of_process for i in range(0 , _SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCAmelCase_ = 5 lowerCAmelCase_ = ['A', 'B', 'C', 'D', 'E'] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = [1, 2, 3, 4, 5] lowerCAmelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCAmelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
16
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : List[Any] = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
281
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _A : Any =logging.get_logger(__name__) _A : Tuple =Dict[str, Any] _A : Tuple =List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class _lowercase ( lowerCamelCase__ ): def __init__( self: Tuple , *UpperCamelCase__: Tuple , **UpperCamelCase__: Optional[int] ): super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase_ ( self: Optional[int] , **UpperCamelCase__: List[str] ): lowerCamelCase__ : str = {} if "threshold" in kwargs: lowerCamelCase__ : Tuple = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self: List[Any] , *UpperCamelCase__: Any , **UpperCamelCase__: Tuple ): return super().__call__(*__lowercase , **__lowercase ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple ): lowerCamelCase__ : Tuple = load_image(__lowercase ) lowerCamelCase__ : List[Any] = torch.IntTensor([[image.height, image.width]] ) lowerCamelCase__ : Tuple = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: lowerCamelCase__ : Tuple = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) lowerCamelCase__ : Optional[Any] = target_size return inputs def lowerCamelCase_ ( self: Dict , UpperCamelCase__: List[str] ): lowerCamelCase__ : Union[str, Any] = model_inputs.pop("""target_size""" ) lowerCamelCase__ : Dict = self.model(**__lowercase ) lowerCamelCase__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: lowerCamelCase__ : Dict = model_inputs["""bbox"""] return model_outputs def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any]=0.9 ): lowerCamelCase__ : str = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase__ , lowerCamelCase__ : List[Any] = target_size[0].tolist() def unnormalize(UpperCamelCase__: Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCamelCase__ : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase__ : Any = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] lowerCamelCase__ : List[str] = ["""score""", """label""", """box"""] lowerCamelCase__ : Optional[int] = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase__ : str = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) lowerCamelCase__ : Dict = raw_annotations[0] lowerCamelCase__ : Union[str, Any] = raw_annotation["""scores"""] lowerCamelCase__ : Any = raw_annotation["""labels"""] lowerCamelCase__ : List[str] = raw_annotation["""boxes"""] lowerCamelCase__ : Any = scores.tolist() lowerCamelCase__ : int = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase__ : Union[str, Any] = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase__ : List[Any] = ["""score""", """label""", """box"""] lowerCamelCase__ : Tuple = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = box.int().tolist() lowerCamelCase__ : str = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self ): self.test() def UpperCamelCase ( self ): A__ = 0 A__ = False while not completed: if counter == 1: self.reset() A__ = self.advance() if not self.does_advance(__lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) A__ , A__ , A__ = self.update(__lowercase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self,__lowerCamelCase ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self,__lowerCamelCase ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self,__lowerCamelCase=False ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self,__lowerCamelCase ): super(__lowercase,self ).__init__() if not isinstance(__lowercase,__lowercase ) or len(__lowercase ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(__lowercase,__lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) A__ = token_ids A__ = len(self.token_ids ) A__ = -1 # the index of the currently fulfilled step A__ = False def UpperCamelCase ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(__lowercase,__lowercase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(__lowercase,__lowercase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}" ) A__ = False A__ = False A__ = False if self.does_advance(__lowercase ): self.fulfilled_idx += 1 A__ = True if self.fulfilled_idx == (self.seqlen - 1): A__ = True A__ = completed else: # failed to make progress. A__ = True self.reset() return stepped, completed, reset def UpperCamelCase ( self ): A__ = False A__ = 0 def UpperCamelCase ( self ): return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase ( self,__lowerCamelCase=False ): A__ = PhrasalConstraint(self.token_ids ) if stateful: A__ = self.seqlen A__ = self.fulfilled_idx A__ = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=True ): A__ = max([len(__lowercase ) for one in nested_token_ids] ) A__ = {} for token_ids in nested_token_ids: A__ = root for tidx, token_id in enumerate(__lowercase ): if token_id not in level: A__ = {} A__ = level[token_id] if no_subsets and self.has_subsets(__lowercase,__lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f" {nested_token_ids}." ) A__ = root def UpperCamelCase ( self,__lowerCamelCase ): A__ = self.trie for current_token in current_seq: A__ = start[current_token] A__ = list(start.keys() ) return next_tokens def UpperCamelCase ( self,__lowerCamelCase ): A__ = self.next_tokens(__lowercase ) return len(__lowercase ) == 0 def UpperCamelCase ( self,__lowerCamelCase ): A__ = list(root.values() ) if len(__lowercase ) == 0: return 1 else: return sum([self.count_leaves(__lowercase ) for nn in next_nodes] ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.count_leaves(__lowercase ) return len(__lowercase ) != leaf_count class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self,__lowerCamelCase ): super(__lowercase,self ).__init__() if not isinstance(__lowercase,__lowercase ) or len(__lowercase ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(__lowercase,__lowercase ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(__lowercase,__lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) A__ = DisjunctiveTrie(__lowercase ) A__ = nested_token_ids A__ = self.trie.max_height A__ = [] A__ = False def UpperCamelCase ( self ): A__ = self.trie.next_tokens(self.current_seq ) if len(__lowercase ) == 0: return None else: return token_list def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(__lowercase,__lowercase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) A__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(__lowercase,__lowercase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}" ) A__ = False A__ = False A__ = False if self.does_advance(__lowercase ): self.current_seq.append(__lowercase ) A__ = True else: A__ = True self.reset() A__ = self.trie.reached_leaf(self.current_seq ) A__ = completed return stepped, completed, reset def UpperCamelCase ( self ): A__ = False A__ = [] def UpperCamelCase ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase ( self,__lowerCamelCase=False ): A__ = DisjunctiveConstraint(self.token_ids ) if stateful: A__ = self.seqlen A__ = self.current_seq A__ = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = constraints # max # of steps required to fulfill a given constraint A__ = max([c.seqlen for c in constraints] ) A__ = len(__lowercase ) A__ = False self.init_state() def UpperCamelCase ( self ): A__ = [] A__ = None A__ = [constraint.copy(stateful=__lowercase ) for constraint in self.constraints] def UpperCamelCase ( self ): A__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase ( self ): A__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A__ = constraint.advance() if isinstance(__lowercase,__lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase,__lowercase ): token_list.extend(__lowercase ) else: A__ = self.inprogress_constraint.advance() if isinstance(__lowercase,__lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase,__lowercase ): token_list.extend(__lowercase ) if len(__lowercase ) == 0: return None else: return token_list def UpperCamelCase ( self,__lowerCamelCase ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A__ , A__ = self.add(__lowercase ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(__lowercase,__lowercase ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) A__ , A__ = False, False if self.completed: A__ = True A__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A__ , A__ , A__ = self.inprogress_constraint.update(__lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowercase ) ) A__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A__ = None if len(self.pending_constraints ) == 0: # we're done! A__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowercase ): A__ , A__ , A__ = pending_constraint.update(__lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowercase ) A__ = None if not complete and stepped: A__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase ( self,__lowerCamelCase=True ): A__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A__ = [ constraint.copy(stateful=__lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A__ = self.inprogress_constraint.copy(stateful=__lowercase ) A__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
193
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class snake_case__ ( lowerCamelCase__ ): lowercase__ : Dict = '' lowercase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ : str = None # compression type in fsspec. ex: "gzip" lowercase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowerCAmelCase__ = "" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[int]: super().__init__(self , **__lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __magic_name__ : Union[str, Any] = fsspec.open( __lowercase , mode="""rb""" , protocol=__lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __magic_name__ : Union[str, Any] = os.path.basename(self.file.path.split("""::""" )[0] ) __magic_name__ : Optional[Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __magic_name__ : Optional[Any] = None @classmethod def __magic_name__ ( cls , lowerCAmelCase__ ) -> Dict: return super()._strip_protocol(__lowercase ).lstrip("""/""" ) def __magic_name__ ( self ) -> List[str]: if self.dir_cache is None: __magic_name__ : str = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __magic_name__ : Union[str, Any] = {f["""name"""]: f} def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]: return self.file.open().read() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[Any]: __magic_name__ : Dict = self._strip_protocol(__lowercase ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class snake_case__ ( lowerCamelCase__ ): lowercase__ : str = 'bz2' lowercase__ : Any = 'bz2' lowercase__ : List[str] = '.bz2' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[Any] = 'gzip' lowercase__ : Optional[Any] = 'gzip' lowercase__ : List[Any] = '.gz' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[str] = 'lz4' lowercase__ : Optional[Any] = 'lz4' lowercase__ : Dict = '.lz4' class snake_case__ ( lowerCamelCase__ ): lowercase__ : str = 'xz' lowercase__ : Optional[Any] = 'xz' lowercase__ : Dict = '.xz' class snake_case__ ( lowerCamelCase__ ): lowercase__ : List[Any] = 'zstd' lowercase__ : str = 'zstd' lowercase__ : List[Any] = '.zst' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = DEFAULT_BLOCK_SIZE , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__( fo=__lowercase , mode=__lowercase , target_protocol=__lowercase , target_options=__lowercase , block_size=__lowercase , **__lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __magic_name__ : int = self.file.__enter__ class snake_case__ : def __init__( self , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Tuple = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: self._file.__exit__(*__lowercase , **__lowercase ) def __iter__( self ) -> str: return iter(self._file ) def __magic_name__ ( self ) -> Optional[Any]: return next(self._file ) def __getattr__( self , lowerCAmelCase__ ) -> Tuple: return getattr(self._file , __lowercase ) def fixed_enter(*lowerCAmelCase__ , **lowerCAmelCase__ ): return WrappedFile(_enter(*__lowercase , **__lowercase ) ) __magic_name__ : List[str] = fixed_enter
342
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
37
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = DownBlockaD # noqa F405 _A = 'down' def _lowerCamelCase ( self :Tuple ) -> str: __UpperCamelCase : Tuple = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = ResnetDownsampleBlockaD # noqa F405 _A = 'down' def _lowerCamelCase ( self :Dict ) -> Tuple: __UpperCamelCase : Tuple = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnDownBlockaD # noqa F405 _A = 'down' def _lowerCamelCase ( self :str ) -> Any: __UpperCamelCase : List[str] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = CrossAttnDownBlockaD # noqa F405 _A = 'down' def _lowerCamelCase ( self :List[Any] ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase : Any = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : str = 3_2 return init_dict, inputs_dict def _lowerCamelCase ( self :Dict ) -> Optional[Any]: __UpperCamelCase : Dict = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = SimpleCrossAttnDownBlockaD # noqa F405 _A = 'down' @property def _lowerCamelCase ( self :List[str] ) -> List[str]: return super().get_dummy_input(include_encoder_hidden_states=__lowercase ) def _lowerCamelCase ( self :Any ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Any = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : int = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def _lowerCamelCase ( self :str ) -> Dict: __UpperCamelCase : Dict = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = SkipDownBlockaD # noqa F405 _A = 'down' @property def _lowerCamelCase ( self :int ) -> Dict: return super().get_dummy_input(include_skip_sample=__lowercase ) def _lowerCamelCase ( self :List[str] ) -> int: __UpperCamelCase : List[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnSkipDownBlockaD # noqa F405 _A = 'down' @property def _lowerCamelCase ( self :Optional[Any] ) -> str: return super().get_dummy_input(include_skip_sample=__lowercase ) def _lowerCamelCase ( self :str ) -> Optional[Any]: __UpperCamelCase : Optional[int] = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = DownEncoderBlockaD # noqa F405 _A = 'down' @property def _lowerCamelCase ( self :Optional[int] ) -> int: return super().get_dummy_input(include_temb=__lowercase ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : List[str] = { "in_channels": 3_2, "out_channels": 3_2, } __UpperCamelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self :int ) -> Any: __UpperCamelCase : str = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnDownEncoderBlockaD # noqa F405 _A = 'down' @property def _lowerCamelCase ( self :Dict ) -> List[str]: return super().get_dummy_input(include_temb=__lowercase ) def _lowerCamelCase ( self :Tuple ) -> Dict: __UpperCamelCase : Tuple = { "in_channels": 3_2, "out_channels": 3_2, } __UpperCamelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: __UpperCamelCase : int = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = UNetMidBlockaD # noqa F405 _A = 'mid' def _lowerCamelCase ( self :int ) -> str: __UpperCamelCase : List[str] = { "in_channels": 3_2, "temb_channels": 1_2_8, } __UpperCamelCase : Any = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self :Optional[Any] ) -> Optional[int]: __UpperCamelCase : Tuple = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = UNetMidBlockaDCrossAttn # noqa F405 _A = 'mid' def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : Any = 3_2 return init_dict, inputs_dict def _lowerCamelCase ( self :int ) -> List[Any]: __UpperCamelCase : Optional[Any] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = UNetMidBlockaDSimpleCrossAttn # noqa F405 _A = 'mid' @property def _lowerCamelCase ( self :str ) -> Optional[Any]: return super().get_dummy_input(include_encoder_hidden_states=__lowercase ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase : List[Any] = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : Optional[int] = 3_2 return init_dict, inputs_dict def _lowerCamelCase ( self :Any ) -> List[str]: __UpperCamelCase : Tuple = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = UpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :int ) -> Union[str, Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def _lowerCamelCase ( self :List[str] ) -> Tuple: __UpperCamelCase : Tuple = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = ResnetUpsampleBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :str ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def _lowerCamelCase ( self :List[str] ) -> Dict: __UpperCamelCase : List[Any] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = CrossAttnUpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :Optional[Any] ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def _lowerCamelCase ( self :int ) -> Tuple: __UpperCamelCase , __UpperCamelCase : str = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : str = 3_2 return init_dict, inputs_dict def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = SimpleCrossAttnUpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :List[Any] ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase , include_encoder_hidden_states=__lowercase ) def _lowerCamelCase ( self :List[Any] ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common() __UpperCamelCase : Optional[int] = 3_2 return init_dict, inputs_dict def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Optional[int] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnUpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :Optional[Any] ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def _lowerCamelCase ( self :str ) -> Dict: __UpperCamelCase : str = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = SkipUpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :Tuple ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : Optional[int] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnSkipUpBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :int ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase ) def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: __UpperCamelCase : Dict = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = UpDecoderBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :str ) -> List[Any]: return super().get_dummy_input(include_temb=__lowercase ) def _lowerCamelCase ( self :Any ) -> Union[str, Any]: __UpperCamelCase : str = {"in_channels": 3_2, "out_channels": 3_2} __UpperCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self :str ) -> Dict: __UpperCamelCase : Dict = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__lowercase ) class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' _A = AttnUpDecoderBlockaD # noqa F405 _A = 'up' @property def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[int]: return super().get_dummy_input(include_temb=__lowercase ) def _lowerCamelCase ( self :str ) -> str: __UpperCamelCase : Union[str, Any] = {"in_channels": 3_2, "out_channels": 3_2} __UpperCamelCase : int = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : str = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__lowercase )
232
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def _UpperCAmelCase (): _A : Optional[int] = 10 _A : List[str] = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _A : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(_SCREAMING_SNAKE_CASE ) ), } , features=_SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): _A : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files lowerCAmelCase__ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Any ): _A : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.txt" _A : int = FILE_CONTENT with open(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): import bza _A : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _A : Dict = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with bza.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): import gzip _A : List[str] = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _A : Optional[Any] = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): if datasets.config.LZ4_AVAILABLE: import lza.frame _A : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _A : str = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with lza.frame.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _A : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(_SCREAMING_SNAKE_CASE , "w" ) as archive: archive.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Any ): import tarfile _A : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[str] ): import lzma _A : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _A : str = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with lzma.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): import zipfile _A : str = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _A : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _A : Dict = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with zstd.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : int ): _A : int = tmp_path_factory.mktemp("data" ) / "file.xml" _A : Dict = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return filename lowerCAmelCase__ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase__ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase__ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase__ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def _UpperCAmelCase (): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str ): _A : List[str] = datasets.Dataset.from_dict(_SCREAMING_SNAKE_CASE ) _A : int = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] ): _A : Any = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_SCREAMING_SNAKE_CASE ) ) as con: _A : Union[str, Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A : str = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: _A : str = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_SCREAMING_SNAKE_CASE , "w" , newline="" ) as f: _A : Any = csv.DictWriter(_SCREAMING_SNAKE_CASE , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): import bza _A : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(_SCREAMING_SNAKE_CASE , "rb" ) as f: _A : Optional[int] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _A : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ): _A : Dict = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): _A : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): _A : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _A : Tuple = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_SCREAMING_SNAKE_CASE , "wb" ) as f: _A : Optional[int] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE ) _A : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=_SCREAMING_SNAKE_CASE ) writer.write_table(_SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Any ): _A : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _A : Tuple = {"data": DATA} with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): _A : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _A : Tuple = {"data": DATA_DICT_OF_LISTS} with open(_SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Tuple ): _A : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Dict ): _A : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_312: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : str ): import gzip _A : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): import gzip _A : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_SCREAMING_SNAKE_CASE , "rb" ) as orig_file: with gzip.open(_SCREAMING_SNAKE_CASE , "wb" ) as zipped_file: zipped_file.writelines(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): _A : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ): _A : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): _A : str = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): _A : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ): _A : str = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join("nested" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] ): _A : List[str] = ["0", "1", "2", "3"] _A : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Tuple ): _A : int = ["0", "1", "2", "3"] _A : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Any ): _A : List[str] = ["0", "1", "2", "3"] _A : List[str] = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): _A : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): _A : int = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.join("main_dir" , os.path.basename(_SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): _A : int = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported.ext" ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str ): _A : Dict = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _A : Any = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (): return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def _UpperCAmelCase (): return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : int ): _A : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(_SCREAMING_SNAKE_CASE , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ) ) f.write(_SCREAMING_SNAKE_CASE , arcname=os.path.basename(_SCREAMING_SNAKE_CASE ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def _UpperCAmelCase (UpperCamelCase__ : str ): _A : List[str] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
11
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Any = {'''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase : Optional[Any] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class _A( lowerCamelCase__ ): """simple docstring""" UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = ['input_ids', 'attention_mask'] UpperCamelCase : Dict = None def __init__( self , _A=None , _A=None , _A=None , _A="<unk>" , _A="<s>" , _A="</s>" , _A="<pad>" , _A=False , _A=False , **_A , ): super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , add_prefix_space=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) __A : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __lowercase ) != add_prefix_space: __A : Tuple = getattr(__lowercase , pre_tok_state.pop('type' ) ) __A : List[Any] = add_prefix_space __A : Optional[Any] = pre_tok_class(**__lowercase ) __A : Union[str, Any] = add_prefix_space def UpperCAmelCase_ ( self , *_A , **_A ): __A : Any = kwargs.get('is_split_into_words' , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def UpperCAmelCase_ ( self , *_A , **_A ): __A : Any = kwargs.get('is_split_into_words' , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*__lowercase , **__lowercase ) def UpperCAmelCase_ ( self , _A , _A = None ): __A : str = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def UpperCAmelCase_ ( self , _A ): __A : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: __A : int = input_ids[-self.model_max_length :] return input_ids
280
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _snake_case ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(example["content"] , truncation=_SCREAMING_SNAKE_CASE )["input_ids"] SCREAMING_SNAKE_CASE_ : Tuple = len(example["content"] ) / len(output["input_ids"] ) return output __lowerCamelCase : str = HfArgumentParser(PretokenizationArguments) __lowerCamelCase : Any = parser.parse_args() if args.num_workers is None: __lowerCamelCase : str = multiprocessing.cpu_count() __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __lowerCamelCase : List[str] = time.time() __lowerCamelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') __lowerCamelCase : Any = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
18
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
"""simple docstring""" from __future__ import annotations lowerCamelCase_ : List[str] = """#""" class __A : """simple docstring""" def __init__( self ) -> Union[str, Any]: a ={} def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: a =self._trie for char in text: if char not in trie: a ={} a =trie[char] a =True def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =self._trie for char in prefix: if char in trie: a =trie[char] else: return [] return self._elements(__lowercase ) def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =[] for c, v in d.items(): a =[''' '''] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase_ : int = Trie() lowerCamelCase_ : List[str] = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def _A ( lowercase ): """simple docstring""" a =trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def _A ( ): """simple docstring""" print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class _snake_case ( lowerCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase__ = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase__ = Features({'text': Value('string' )} ) UpperCamelCase__ = Features({'labels': ClassLabel} ) UpperCamelCase__ = "text" UpperCamelCase__ = "labels" def SCREAMING_SNAKE_CASE ( self , _a ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __lowercase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __magic_name__ : List[Any] = copy.deepcopy(self ) __magic_name__ : Dict = self.label_schema.copy() __magic_name__ : Union[str, Any] = features[self.label_column] __magic_name__ : Optional[int] = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self ): return { self.text_column: "text", self.label_column: "labels", }
281
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _A : str =logging.getLogger(__name__) _A : Optional[int] =list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _A : Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : a = field( default=lowerCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.""" ) } , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCamelCase__ )} , ) a = field( default=lowerCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a = field( default=lowerCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase_ ( self: List[Any] ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _lowercase : a = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a = field(default=lowerCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) a = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there\'s no validation split""" } , ) a = field( default=lowerCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a = field( default=lowerCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowerCamelCase_ ( self: Optional[int] ): if self.train_file is not None: lowerCamelCase__ : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase__ : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase__ : Optional[int] = [json.loads(_SCREAMING_SNAKE_CASE ) for line in f.read().splitlines() if (len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace())] assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Dict = {c: dataset[c] for c in dataset.column_names} lowerCamelCase__ : List[Any] = refs return Dataset.from_dict(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _SCREAMING_SNAKE_CASE ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) lowerCamelCase__ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowerCamelCase__ : Tuple = {} if data_args.train_file is not None: lowerCamelCase__ : Optional[Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase__ : Optional[int] = data_args.validation_file lowerCamelCase__ : Optional[int] = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCamelCase__ : Dict = """text""" lowerCamelCase__ : List[str] = load_dataset(_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Dict = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : int = AutoConfig.from_pretrained(model_args.config_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: lowerCamelCase__ : int = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) lowerCamelCase__ : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCamelCase__ : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCamelCase__ : Dict = AutoModelForMaskedLM.from_config(_SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase__ : Union[str, Any] = datasets["""train"""].column_names else: lowerCamelCase__ : int = datasets["""validation"""].column_names lowerCamelCase__ : List[str] = """text""" if """text""" in column_names else column_names[0] lowerCamelCase__ : Tuple = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase ): # Remove empty lines lowerCamelCase__ : int = [line for line in examples["""text"""] if len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length ) lowerCamelCase__ : List[Any] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase__ : Optional[int] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase__ : Tuple = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase__ : Tuple = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase__ : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase__ : Optional[int] = DataCollatorForWholeWordMask(tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase__ : Optional[int] = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase__ : Tuple = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase__ : List[str] = model_args.model_name_or_path else: lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowerCamelCase__ : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase__ : Optional[Any] = trainer.evaluate() lowerCamelCase__ : Dict = math.exp(eval_output["""eval_loss"""] ) lowerCamelCase__ : int = perplexity lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: main() if __name__ == "__main__": main()
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase__( UpperCamelCase__ : int )->Union[str, Any]: A__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] A__ = True if '''large''' in model_name or '''huge''' in model_name else False A__ = True if '''large''' in model_name or '''huge''' in model_name else False A__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: A__ = [3, 3, 3, 3] A__ = [5, 5, 5, 5] elif "fl4" in model_name: A__ = [4, 4, 4, 4] A__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: A__ = [3, 3, 3, 3] if "lrf" in model_name: A__ = [3, 3, 3, 3] else: A__ = [2, 2, 2, 2] if "tiny" in model_name: A__ = 96 elif "small" in model_name: A__ = 96 elif "base" in model_name: A__ = 1_28 elif "large" in model_name: A__ = 1_92 elif "xlarge" in model_name: A__ = 2_56 elif "huge" in model_name: A__ = 3_52 # set label information A__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: A__ = '''imagenet-22k-id2label.json''' else: A__ = '''imagenet-1k-id2label.json''' A__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = FocalNetConfig( embed_dim=_SCREAMING_SNAKE_CASE , depths=_SCREAMING_SNAKE_CASE , focal_levels=_SCREAMING_SNAKE_CASE , focal_windows=_SCREAMING_SNAKE_CASE , use_conv_embed=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE , use_post_layernorm=_SCREAMING_SNAKE_CASE , use_layerscale=_SCREAMING_SNAKE_CASE , ) return config def UpperCamelCase__( UpperCamelCase__ : Tuple )->Union[str, Any]: if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A__ = '''encoder.''' + name if "encoder.layers" in name: A__ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: A__ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: A__ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: A__ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: A__ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": A__ = '''layernorm.weight''' if name == "norm.bias": A__ = '''layernorm.bias''' if "head" in name: A__ = name.replace('''head''' , '''classifier''' ) else: A__ = '''focalnet.''' + name return name def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=False )->Union[str, Any]: A__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on A__ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _SCREAMING_SNAKE_CASE ) A__ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(_SCREAMING_SNAKE_CASE ) A__ = val A__ = get_focalnet_config(_SCREAMING_SNAKE_CASE ) A__ = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify conversion A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = BitImageProcessor( do_resize=_SCREAMING_SNAKE_CASE , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=2_24 , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , ) A__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) A__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A__ = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) A__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _SCREAMING_SNAKE_CASE , atol=1e-4 ) A__ = model(**_SCREAMING_SNAKE_CASE ) A__ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": A__ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": A__ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": A__ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": A__ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": A__ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": A__ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": a__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) a__: str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
193
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[int] , **__lowercase : Dict ): '''simple docstring''' super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__lowercase ).content else: with open(__lowercase , """rb""" ) as f: __a = f.read() if isinstance(__lowercase , __lowercase ): __a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate ) if not isinstance(__lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__lowercase ) for x in candidate_labels] __a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase ) __a = [text_inputs] return inputs def UpperCamelCase_ ( self : Any , __lowercase : Any ): '''simple docstring''' __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowercase ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__lowercase , **__lowercase ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] ) ] return result
302
0
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[str] = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(1, len(_SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming __magic_name__ : Optional[int] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __magic_name__ : Tuple = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __magic_name__ : List[str] = j return prefix_result def UpperCamelCase ( _A ): """simple docstring""" return max(prefix_function(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: self.assertEqual(len(__lowercase ) ,len(__lowercase ) ) for a, b in zip(__lowercase ,__lowercase ): self.assertAlmostEqual(__lowercase ,__lowercase ,delta=__lowercase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[str] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step ,3 ) self.assertEqual(len(accumulator.gradients ) ,1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step ,0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1E-2 ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Dict = None ops.enable_eager_execution_internal() lowerCAmelCase__ : Tuple = tf.config.list_physical_devices("""CPU""" ) if len(__lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase__ : str = tf.config.list_logical_devices(device_type="""CPU""" ) lowerCAmelCase__ : Tuple = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase__ : Any = GradientAccumulator() lowerCAmelCase__ : List[str] = tf.Variable([4.0, 3.0] ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = create_optimizer(5E-5 ,10 ,5 ) lowerCAmelCase__ : Optional[int] = tf.Variable([0.0, 0.0] ,trainable=__lowercase ) def accumulate_on_replica(__UpperCAmelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable] ) ) ) @tf.function def accumulate(__UpperCAmelCase ,__UpperCAmelCase ): with strategy.scope(): lowerCAmelCase__ : int = strategy.experimental_local_results(__lowercase ) local_variables[0].assign(__lowercase ) local_variables[1].assign(__lowercase ) strategy.run(__lowercase ,args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowercase ) def _check_local_values(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : str = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() ,__lowercase ,tol=1E-2 ) self.assertListAlmostEqual(values[1].value() ,__lowercase ,tol=1E-2 ) accumulate([1.0, 2.0] ,[-1.0, 1.0] ) accumulate([3.0, -1.0] ,[-1.0, -1.0] ) accumulate([-2.0, 2.0] ,[3.0, -2.0] ) self.assertEqual(accumulator.step ,3 ) _check_local_values([2.0, 3.0] ,[1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step ,0 ) _check_local_values([0.0, 0.0] ,[0.0, 0.0] )
37
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : int) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Dict = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE) print(F'Building PyTorch model from configuration: {config}') __UpperCamelCase : str = AlbertForPreTraining(_SCREAMING_SNAKE_CASE) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } lowerCAmelCase__ = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ElectraTokenizer def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase="[UNK]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="[PAD]" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) _A : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , __lowercase) != do_lower_case or normalizer_state.get("strip_accents" , __lowercase) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowercase) != tokenize_chinese_chars ): _A : Tuple = getattr(__lowercase , normalizer_state.pop("type")) _A : Optional[Any] = do_lower_case _A : Dict = strip_accents _A : Optional[Any] = tokenize_chinese_chars _A : List[Any] = normalizer_class(**__lowercase) _A : List[Any] = do_lower_case def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=None) -> Optional[Any]: _A : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple: _A : List[str] = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple: _A : int = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase)
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a ) -> Tuple: __A : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( a , a ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __A : Any = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __A : Optional[int] = in_proj_weight[ : encoder_config.hidden_size, : ] __A : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __A : Any = in_proj_weight[ -encoder_config.hidden_size :, : ] def _SCREAMING_SNAKE_CASE ( a , a , a ) -> str: __A : Any = dct.pop(_SCREAMING_SNAKE_CASE ) __A : int = val def _SCREAMING_SNAKE_CASE ( a ) -> Optional[Any]: if "handwritten" in checkpoint_url: __A : Optional[Any] = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __A : Optional[int] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' __A : Dict = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[Any]: __A : int = ViTConfig(image_size=3_84 , qkv_bias=_SCREAMING_SNAKE_CASE ) __A : List[str] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __A : int = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder __A : List[Any] = 10_24 __A : str = 40_96 __A : Any = 24 __A : Optional[int] = 16 __A : Tuple = 10_24 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __A : List[Any] = False __A : Union[str, Any] = 'relu' __A : List[Any] = 10_24 __A : int = True __A : str = False __A : Tuple = False # load HuggingFace model __A : List[Any] = ViTModel(_SCREAMING_SNAKE_CASE , add_pooling_layer=_SCREAMING_SNAKE_CASE ) __A : Dict = TrOCRForCausalLM(_SCREAMING_SNAKE_CASE ) __A : Any = VisionEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) model.eval() # load state_dict of original model, rename some keys __A : Tuple = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE )['model'] __A : Any = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __A : List[str] = state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith('decoder' ) and "output_projection" not in key: __A : Union[str, Any] = val else: __A : Tuple = val # load state dict model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image __A : Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size ) __A : List[Any] = RobertaTokenizer.from_pretrained('roberta-large' ) __A : Union[str, Any] = TrOCRProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Optional[Any] = processor(images=prepare_img(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).pixel_values # verify logits __A : str = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __A : str = model(pixel_values=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) __A : int = outputs.logits __A : Optional[Any] = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: __A : Tuple = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: __A : Dict = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: __A : Optional[Any] = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: __A : Union[str, Any] = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _SCREAMING_SNAKE_CASE , atol=1e-3 ), "First elements of logits not as expected" Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
280
class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = val __a = None __a = None def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __a = Node(__lowercase ) else: self.left.insert(__lowercase ) elif val > self.val: if self.right is None: __a = Node(__lowercase ) else: self.right.insert(__lowercase ) else: __a = val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if root: inorder(root.left , _SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return arr __a = Node(arr[0] ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. __a = [] inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
302
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class a__ ( lowerCamelCase__ ): A = 'perceiver' def __init__( self : Dict,_A : List[Any]=256,_A : List[Any]=1280,_A : Tuple=768,_A : str=1,_A : List[str]=26,_A : Any=8,_A : Dict=8,_A : Optional[Any]=None,_A : str=None,_A : Optional[int]="kv",_A : Dict=1,_A : Optional[int]=1,_A : List[str]="gelu",_A : List[str]=0.1,_A : Union[str, Any]=0.02,_A : Tuple=1E-12,_A : Optional[Any]=True,_A : List[str]=262,_A : List[Any]=2048,_A : str=56,_A : str=[368, 496],_A : Dict=16,_A : Union[str, Any]=1920,_A : Tuple=16,_A : List[str]=[1, 16, 224, 224],**_A : str,): """simple docstring""" super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_latents SCREAMING_SNAKE_CASE_ : Optional[int] = d_latents SCREAMING_SNAKE_CASE_ : Optional[int] = d_model SCREAMING_SNAKE_CASE_ : int = num_blocks SCREAMING_SNAKE_CASE_ : str = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Tuple = num_self_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = qk_channels SCREAMING_SNAKE_CASE_ : int = v_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : List[Any] = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[str] = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : List[str] = image_size # flow attributes SCREAMING_SNAKE_CASE_ : int = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : List[str] = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : List[Any] = samples_per_patch SCREAMING_SNAKE_CASE_ : List[str] = output_shape class a__ ( lowerCamelCase__ ): @property def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return 1E-4 def __UpperCamelCase ( self : Any,_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional[TensorType] = None,_A : int = 3,_A : int = 40,_A : int = 40,): """simple docstring""" if isinstance(__lowercase,__lowercase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Union[str, Any] = compute_effective_axis_dimension( __lowercase,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Optional[int] = preprocessor.num_special_tokens_to_add(__lowercase ) SCREAMING_SNAKE_CASE_ : int = compute_effective_axis_dimension( __lowercase,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Optional[int] = [" ".join(["a"] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : Tuple = dict(preprocessor(__lowercase,return_tensors=__lowercase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = inputs.pop("input_ids" ) return inputs elif isinstance(__lowercase,__lowercase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Union[str, Any] = compute_effective_axis_dimension(__lowercase,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : str = self._generate_dummy_images(__lowercase,__lowercase,__lowercase,__lowercase ) SCREAMING_SNAKE_CASE_ : Tuple = dict(preprocessor(images=__lowercase,return_tensors=__lowercase ) ) SCREAMING_SNAKE_CASE_ : Tuple = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
18
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _A ( lowercase ): """simple docstring""" a =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _A ( lowercase ): """simple docstring""" a , a =emb.weight.shape a =nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) a =emb.weight.data return lin_layer def _A ( lowercase , lowercase=None ): """simple docstring""" a ={} for old_key in state_dict.keys(): a =old_key if "moe_layer.experts." in key: if expert_idx is not None: a =key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: a =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: a =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: a =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: a =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: a =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: a =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: a =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) a =state_dict[old_key] return new_dict def _A ( lowercase , lowercase , lowercase , lowercase , lowercase = WEIGHTS_NAME ): """simple docstring""" a =[] a =0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) for expert in range(_SCREAMING_SNAKE_CASE ): a =switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_SCREAMING_SNAKE_CASE ): a =torch.load(_SCREAMING_SNAKE_CASE )['''model'''] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) a =rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'''-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block a =os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'''-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) a =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) a =rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_SCREAMING_SNAKE_CASE ) == 1: a =os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index a ={} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): a =weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin''' ) a =os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for key in shard: a =shard_file # Add the metadata a ={'''total_size''': total_size} a ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''w''' , encoding='''utf-8''' ) as f: a =json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '''\n''' f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCamelCase_ : Optional[int] = parser.parse_args() lowerCamelCase_ , lowerCamelCase_ : List[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) lowerCamelCase_ : Any = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase_ : str = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
81
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
302
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> List[Any]: lowercase__ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Optional[int] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Any = 8 else: lowercase__ : Any = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": lowercase__ : List[str] = 2 # Initialize accelerator lowercase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : Union[str, Any] = int(config['''seed'''] ) lowercase__ : int = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : str = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : int = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[Any] = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ : Tuple = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase__ : Dict = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Tuple = model(**_SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) lowercase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Optional[Any]: lowercase__ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Dict = parser.parse_args() lowercase__ : int = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
16
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase_ ( _snake_case : Tuple ) -> Tuple: '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_tf class _snake_case : def SCREAMING_SNAKE_CASE ( self , _a , _a ): pass def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(__lowercase , __lowercase ) __magic_name__ : Tuple = TFVisionTextDualEncoderModel(__lowercase ) __magic_name__ : int = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ , __magic_name__ : Optional[int] = self.get_vision_text_model(__lowercase , __lowercase ) __magic_name__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __magic_name__ : Dict = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ , __magic_name__ : str = self.get_vision_text_model(__lowercase , __lowercase ) __magic_name__ : List[Any] = {"vision_model": vision_model, "text_model": text_model} __magic_name__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowercase ) __magic_name__ : List[str] = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ , __magic_name__ : Tuple = self.get_vision_text_model(__lowercase , __lowercase ) __magic_name__ : Any = TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __magic_name__ : Any = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) __magic_name__ : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __magic_name__ : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(__lowercase ) __magic_name__ : Dict = model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) __magic_name__ : List[Any] = after_output[0].numpy() __magic_name__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-5 ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ , __magic_name__ : Optional[int] = self.get_vision_text_model(__lowercase , __lowercase ) __magic_name__ : int = TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __magic_name__ : int = model( input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , output_attentions=__lowercase ) __magic_name__ : Any = output.vision_model_output.attentions self.assertEqual(len(__lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Optional[Any] = to_atuple(vision_model.config.image_size ) __magic_name__ : Any = to_atuple(vision_model.config.patch_size ) __magic_name__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ : List[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ : str = output.text_model_output.attentions self.assertEqual(len(__lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): __magic_name__ : Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(__lowercase , __lowercase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowercase ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowercase ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowercase ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**__lowercase ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowercase ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Any = self.get_pretrained_model_and_inputs() __magic_name__ : int = model_a(**__lowercase ) __magic_name__ : Tuple = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowercase ) __magic_name__ : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(__lowercase ) __magic_name__ : Tuple = model_a(**__lowercase ) __magic_name__ : Dict = after_outputs[0].numpy() __magic_name__ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-5 ) @require_tf class _snake_case ( lowerCamelCase__ , unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) __magic_name__ : str = 13 __magic_name__ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : str = random_attention_mask([batch_size, 4] ) __magic_name__ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : str = TFViTModel(__lowercase , name="vision_model" ) __magic_name__ : Tuple = TFBertModel(__lowercase , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFViTModelTester(self ) __magic_name__ : Union[str, Any] = TFBertModelTester(self ) __magic_name__ : int = vit_model_tester.prepare_config_and_inputs() __magic_name__ : int = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _snake_case ( lowerCamelCase__ , unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) __magic_name__ : Optional[int] = 13 __magic_name__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : Optional[Any] = random_attention_mask([batch_size, 4] ) __magic_name__ : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a=None , **_a ): __magic_name__ , __magic_name__ : Any = self.get_vision_text_model(__lowercase , __lowercase ) __magic_name__ : Tuple = TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __magic_name__ : Optional[Any] = model( input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , output_attentions=__lowercase ) __magic_name__ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __magic_name__ : str = to_atuple(vision_model.config.image_size ) __magic_name__ : List[str] = to_atuple(vision_model.config.patch_size ) __magic_name__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ : Tuple = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ : Any = output.text_model_output.attentions self.assertEqual(len(__lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : List[Any] = TFDeiTModel(__lowercase , name="vision_model" ) __magic_name__ : Union[str, Any] = TFRobertaModel(__lowercase , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = TFDeiTModelTester(self ) __magic_name__ : int = TFRobertaModelTester(self ) __magic_name__ : int = vit_model_tester.prepare_config_and_inputs() __magic_name__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _snake_case ( lowerCamelCase__ , unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) __magic_name__ : Union[str, Any] = 13 __magic_name__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : Tuple = random_attention_mask([batch_size, 4] ) __magic_name__ : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Union[str, Any] = TFCLIPVisionModel(__lowercase , name="vision_model" ) __magic_name__ : Tuple = TFBertModel(__lowercase , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFCLIPVisionModelTester(self ) __magic_name__ : Tuple = TFBertModelTester(self ) __magic_name__ : Optional[int] = clip_model_tester.prepare_config_and_inputs() __magic_name__ : Dict = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ : Dict = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=__lowercase ) __magic_name__ : str = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) __magic_name__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __magic_name__ : Tuple = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__lowercase , padding=__lowercase , return_tensors="np" ) __magic_name__ : List[str] = model(**__lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ : int = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowercase , atol=1e-3 ) )
281
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
0
'''simple docstring''' import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: return np.where(vector > 0 , _SCREAMING_SNAKE_CASE , (alpha * (np.exp(_SCREAMING_SNAKE_CASE ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
41
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a__: Dict = None a__: Optional[int] = logging.get_logger(__name__) a__: List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a__: Tuple = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } a__: Optional[Any] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } a__: str = '▁' class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = AlbertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase="[CLS]",__lowerCamelCase="[SEP]",__lowerCamelCase="<unk>",__lowerCamelCase="[SEP]",__lowerCamelCase="<pad>",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",**__lowerCamelCase,): A__ = ( AddedToken(__lowercase,lstrip=__lowercase,rstrip=__lowercase,normalized=__lowercase ) if isinstance(__lowercase,__lowercase ) else mask_token ) super().__init__( __lowercase,tokenizer_file=__lowercase,do_lower_case=__lowercase,remove_space=__lowercase,keep_accents=__lowercase,bos_token=__lowercase,eos_token=__lowercase,unk_token=__lowercase,sep_token=__lowercase,pad_token=__lowercase,cls_token=__lowercase,mask_token=__lowercase,**__lowercase,) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( __lowercase,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file,__lowercase ) return (out_vocab_file,)
193
from __future__ import annotations lowerCamelCase__ = """#""" class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' __a = self._trie for char in text: if char not in trie: __a = {} __a = trie[char] __a = True def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = self._trie for char in prefix: if char in trie: __a = trie[char] else: return [] return self._elements(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __a = [] for c, v in d.items(): __a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase__ ( ): """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__: Union[str, Any] = logging.get_logger(__name__) __magic_name__: Tuple = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case__ ( lowerCamelCase__ ): lowercase__ : Any = 'vivit' def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=32 , lowerCAmelCase__=[2, 16, 16] , lowerCAmelCase__=3 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu_fast" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-0_6 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Optional[int]: __magic_name__ : List[Any] = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : int = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : str = image_size __magic_name__ : int = num_frames __magic_name__ : List[Any] = tubelet_size __magic_name__ : Any = num_channels __magic_name__ : Union[str, Any] = qkv_bias super().__init__(**__lowercase )
342
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]) -> Dict: '''simple docstring''' __UpperCamelCase : str = s.rsplit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return new.join(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Tuple: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items()) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = {} __UpperCamelCase : Optional[int] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase : Optional[int] = key.replace(F'{group_key}.' , F'{group_key}.group.') if "res_path" in key: __UpperCamelCase : List[Any] = key.replace("res_path." , "res_path.path.") if key.endswith(".w"): __UpperCamelCase : Optional[Any] = rreplace(_SCREAMING_SNAKE_CASE , ".w" , ".weight" , 1) if key.endswith(".b"): __UpperCamelCase : str = rreplace(_SCREAMING_SNAKE_CASE , ".b" , ".bias" , 1) __UpperCamelCase : List[str] = value.float() return upgrade @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=True) -> Optional[Any]: '''simple docstring''' from dall_e import Encoder __UpperCamelCase : Optional[int] = Encoder() if os.path.exists(_SCREAMING_SNAKE_CASE): __UpperCamelCase : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE) else: __UpperCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __UpperCamelCase : Optional[Any] = ckpt.state_dict() encoder.load_state_dict(_SCREAMING_SNAKE_CASE) if config_path is not None: __UpperCamelCase : Any = FlavaImageCodebookConfig.from_pretrained(_SCREAMING_SNAKE_CASE) else: __UpperCamelCase : Tuple = FlavaImageCodebookConfig() __UpperCamelCase : Dict = FlavaImageCodebook(_SCREAMING_SNAKE_CASE).eval() __UpperCamelCase : List[Any] = encoder.state_dict() __UpperCamelCase : Union[str, Any] = upgrade_state_dict(_SCREAMING_SNAKE_CASE) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE) __UpperCamelCase : Optional[int] = hf_model.state_dict() __UpperCamelCase : Tuple = count_parameters(_SCREAMING_SNAKE_CASE) __UpperCamelCase : Optional[int] = count_parameters(_SCREAMING_SNAKE_CASE) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3) if save_checkpoint: hf_model.save_pretrained(_SCREAMING_SNAKE_CASE) else: return hf_state_dict if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
232
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" __a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __a = 128 elif "12-12" in model_name: __a = 12 __a = 12 elif "14-14" in model_name: __a = 14 __a = 14 elif "16-16" in model_name: __a = 16 __a = 16 else: raise ValueError("""Model not supported""" ) __a = """huggingface/label-files""" if "speech-commands" in model_name: __a = 35 __a = """speech-commands-v2-id2label.json""" else: __a = 527 __a = """audioset-id2label.json""" __a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if "module.v" in name: __a = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __a = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __a = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __a = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: __a = key.split(""".""" ) __a = int(key_split[3] ) __a = config.hidden_size if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val[:dim] __a = val[dim : dim * 2] __a = val[-dim:] else: __a = val return orig_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" __a = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" __a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE ) __a = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __a = model_name_to_url[model_name] __a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) # remove some keys remove_keys(_SCREAMING_SNAKE_CASE ) # rename some keys __a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load 🤗 model __a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 __a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 __a = 1024 if """speech-commands""" not in model_name else 128 __a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: __a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __a = dataset[0]["""audio"""]["""array"""] else: __a = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE ) __a = waveform.squeeze().numpy() __a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" ) # forward pass __a = model(**_SCREAMING_SNAKE_CASE ) __a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __a = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __a = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __a = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __a = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __a = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __a = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __a = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __a = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = 0 @slow def _lowerCamelCase ( self) -> Dict: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _A : Tuple = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(__lowercase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(__lowercase) , 0) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def _lowerCamelCase ( self) -> int: _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def _lowerCamelCase ( self) -> List[str]: _A : Optional[int] = AutoConfig.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) # Check that tokenizer_type ≠ model_type _A : Dict = AutoTokenizer.from_pretrained(__lowercase , config=__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def _lowerCamelCase ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt")) _A : int = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert" , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt")) _A : Dict = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2" , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) @require_tokenizers def _lowerCamelCase ( self) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowercase , "vocab.txt")) _A : Tuple = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="bert") self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowercase , "vocab.json")) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowercase , "merges.txt")) _A : List[str] = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type="gpt2") self.assertIsInstance(__lowercase , __lowercase) def _lowerCamelCase ( self) -> Optional[Any]: with pytest.raises(__lowercase): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx") @require_tokenizers def _lowerCamelCase ( self) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _A : int = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) if isinstance(__lowercase , __lowercase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowercase) else: self.assertEqual(tokenizer.do_lower_case , __lowercase) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def _lowerCamelCase ( self) -> Union[str, Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowercase , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): _A : Union[str, Any] = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def _lowerCamelCase ( self) -> Optional[Any]: _A : List[Any] = TOKENIZER_MAPPING.values() _A : Optional[int] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowercase) @require_tokenizers def _lowerCamelCase ( self) -> List[str]: self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=__lowercase) , __lowercase) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased") , __lowercase) @require_tokenizers def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=__lowercase) _A : Any = "Hello, world. How are you?" _A : Tuple = tokenizer.tokenize(__lowercase) self.assertEqual("[UNK]" , tokens[0]) _A : Any = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=__lowercase) _A : int = tokenizer.tokenize(__lowercase) self.assertEqual("[UNK]" , tokens[0]) @require_tokenizers def _lowerCamelCase ( self) -> Optional[int]: _A : List[str] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") self.assertEqual(type(__lowercase) , __lowercase) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , "[UNK]") self.assertEqual(tokenizer.padding_side , "right") self.assertEqual(tokenizer.truncation_side , "right") def _lowerCamelCase ( self) -> str: _A : List[str] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Optional[int] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def _lowerCamelCase ( self) -> str: _A : str = AutoTokenizer.from_pretrained("ctrl") # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowercase , __lowercase) def _lowerCamelCase ( self) -> Tuple: _A : List[Any] = get_tokenizer_config("bert-base-cased") _A : Optional[int] = config.pop("_commit_hash" , __lowercase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowercase , {"do_lower_case": False}) # This model does not have a tokenizer_config so we get back an empty dict. _A : List[str] = get_tokenizer_config(__lowercase) self.assertDictEqual(__lowercase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _A : List[Any] = AutoTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Optional[int] = get_tokenizer_config(__lowercase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer") def _lowerCamelCase ( self) -> Dict: try: AutoConfig.register("custom" , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) _A : List[Any] = CustomTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : Tuple = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _lowerCamelCase ( self) -> Union[str, Any]: try: AutoConfig.register("custom" , __lowercase) # Can register in two steps AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowercase , slow_tokenizer_class=__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _A : int = BertTokenizerFast.from_pretrained(__lowercase) bert_tokenizer.save_pretrained(__lowercase) _A : List[Any] = CustomTokenizerFast.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : str = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) _A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): _A : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) _A : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : int = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) _A : str = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer") @require_tokenizers def _lowerCamelCase ( self) -> Dict: class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = False class lowerCAmelCase__ ( lowerCamelCase__): '''simple docstring''' __SCREAMING_SNAKE_CASE = NewTokenizer __SCREAMING_SNAKE_CASE = False try: AutoConfig.register("custom" , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # If remote code is not set, the default is to use local _A : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) _A : int = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. _A : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) _A : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub _A : Tuple = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") self.assertTrue(tokenizer.special_attribute_present) _A : List[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self) -> Union[str, Any]: _A : Dict = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast") # Test we can also load the slow version _A : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer") def _lowerCamelCase ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , "bert-base is not a local folder and is not a valid model identifier"): _A : str = AutoTokenizer.from_pretrained("bert-base") def _lowerCamelCase ( self) -> Dict: with self.assertRaisesRegex( __lowercase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): _A : Dict = AutoTokenizer.from_pretrained(__lowercase , revision="aaaaaa") def _lowerCamelCase ( self) -> Dict: _A : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _A : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
11
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ = """▁""" class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =AlbertTokenizer def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token ) super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
302
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Dict = 'hf-internal-testing/tiny-random-t5' __A : List[str] = AutoTokenizer.from_pretrained(__lowercase ) __A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __A : Optional[Any] = tokenizer('This is me' , return_tensors='pt' ) __A : Tuple = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __A : str = model.generate(**__lowercase ) __A : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __A : List[Any] = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = 'hf-internal-testing/tiny-random-t5' __A : Tuple = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __A : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __A : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
280
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] =(IPNDMScheduler,) __lowerCamelCase : int =(('num_inference_steps', 50),) def UpperCamelCase_ ( self : str , **__lowercase : Dict ): '''simple docstring''' __a = {"""num_train_timesteps""": 1000} config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] if time_step is None: __a = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) __a = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __lowercase ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample __a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2540529 ) < 10
302
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
18
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''width_multiplier''' ) ) class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=64 , __A=2 , __A=3 , __A="swish" , __A=3 , __A=32 , __A=0.1 , __A=0.02 , __A=True , __A=True , __A=10 , __A=None , __A=0.25 , __A=0.0 , __A=0.0 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =make_divisible(512 * width_multiplier , divisor=8 ) a =hidden_act a =conv_kernel_size a =output_stride a =classifier_dropout_prob a =use_labels a =is_training a =num_labels a =initializer_range a =scope a =width_multiplier a =ffn_dropout a =attn_dropout def SCREAMING_SNAKE_CASE ( self ) -> Any: a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.num_labels ) a =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Any: a =MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Dict: a =self.num_labels a =MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A ) -> Tuple: a =self.num_labels a =MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() a =model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.prepare_config_and_inputs() a , a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__, lowerCamelCase__, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCAmelCase = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =MobileViTVaModelTester(self ) a =MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self ) -> str: pass def SCREAMING_SNAKE_CASE ( self ) -> int: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__lowercase ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> int: def check_hidden_states_output(__A , __A , __A ): a =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__lowercase , __lowercase ) ) a =outputs.hidden_states a =5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a =2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowercase ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) # verify the logits a =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) a =torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: a =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =model.to(__lowercase ) a =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) a =outputs.logits # verify the logits a =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) a =torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: a =MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =model.to(__lowercase ) a =MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) a =prepare_img() a =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): a =model(**__lowercase ) a =outputs.logits.detach().cpu() a =image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) a =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) a =image_processor.post_process_semantic_segmentation(outputs=__lowercase ) a =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCamelCase__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = (IPNDMScheduler,) lowerCAmelCase : int = (('num_inference_steps', 5_0),) def UpperCAmelCase ( self : str ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = {'''num_train_timesteps''': 1_000} config.update(**__lowercase ) return config def UpperCAmelCase ( self : Any ,_snake_case : Tuple=0 ,**_snake_case : Dict ) -> Tuple: """simple docstring""" lowercase__ : Dict = dict(self.forward_default_kwargs ) lowercase__ : Optional[int] = kwargs.pop('''num_inference_steps''' ,__lowercase ) lowercase__ : Optional[int] = self.dummy_sample lowercase__ : Any = 0.1 * sample lowercase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Optional[Any] = self.get_scheduler_config(**__lowercase ) lowercase__ : Union[str, Any] = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals lowercase__ : str = dummy_past_residuals[:] if time_step is None: lowercase__ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) lowercase__ : List[Any] = scheduler_class.from_pretrained(__lowercase ) new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals lowercase__ : Tuple = dummy_past_residuals[:] lowercase__ : Dict = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : Any = new_scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Optional[int] = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : Any = new_scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( self : str ,_snake_case : int=0 ,**_snake_case : Dict ) -> Dict: """simple docstring""" lowercase__ : str = dict(self.forward_default_kwargs ) lowercase__ : Optional[Any] = kwargs.pop('''num_inference_steps''' ,__lowercase ) lowercase__ : Optional[int] = self.dummy_sample lowercase__ : List[Any] = 0.1 * sample lowercase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : str = self.get_scheduler_config() lowercase__ : List[str] = scheduler_class(**__lowercase ) scheduler.set_timesteps(__lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : Optional[int] = dummy_past_residuals[:] if time_step is None: lowercase__ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowercase ) lowercase__ : Dict = scheduler_class.from_pretrained(__lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Optional[Any] = dummy_past_residuals[:] lowercase__ : Union[str, Any] = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : int = new_scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : int = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : str = new_scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self : List[str] ,**_snake_case : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config(**__lowercase ) lowercase__ : Optional[Any] = scheduler_class(**__lowercase ) lowercase__ : List[str] = 10 lowercase__ : str = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Union[str, Any] = model(__lowercase ,__lowercase ) lowercase__ : str = scheduler.step(__lowercase ,__lowercase ,__lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ : Optional[Any] = model(__lowercase ,__lowercase ) lowercase__ : Union[str, Any] = scheduler.step(__lowercase ,__lowercase ,__lowercase ).prev_sample return sample def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = dict(self.forward_default_kwargs ) lowercase__ : Tuple = kwargs.pop('''num_inference_steps''' ,__lowercase ) for scheduler_class in self.scheduler_classes: lowercase__ : Optional[int] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**__lowercase ) lowercase__ : str = self.dummy_sample lowercase__ : int = 0.1 * sample if num_inference_steps is not None and hasattr(__lowercase ,'''set_timesteps''' ): scheduler.set_timesteps(__lowercase ) elif num_inference_steps is not None and not hasattr(__lowercase ,'''set_timesteps''' ): lowercase__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ : Any = dummy_past_residuals[:] lowercase__ : Union[str, Any] = scheduler.timesteps[5] lowercase__ : Any = scheduler.timesteps[6] lowercase__ : List[Any] = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : Any = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) lowercase__ : List[str] = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample lowercase__ : Optional[Any] = scheduler.step(__lowercase ,__lowercase ,__lowercase ,**__lowercase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__lowercase ,time_step=__lowercase ) def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowercase ,time_step=__lowercase ) def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.full_loop() lowercase__ : Union[str, Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
16
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
0
import math import os import sys def lowerCAmelCase_ ( _snake_case : str ) -> Dict: '''simple docstring''' __magic_name__ : Optional[int] = "" try: with open(_SCREAMING_SNAKE_CASE , "rb" ) as binary_file: __magic_name__ : str = binary_file.read() for dat in data: __magic_name__ : Any = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def lowerCAmelCase_ ( _snake_case : dict[str, str] , _snake_case : str , _snake_case : int , _snake_case : str ) -> Optional[int]: '''simple docstring''' lexicon.pop(_SCREAMING_SNAKE_CASE ) __magic_name__ : List[Any] = last_match_id if math.loga(_SCREAMING_SNAKE_CASE ).is_integer(): for curr_key in lexicon: __magic_name__ : List[str] = "0" + lexicon[curr_key] __magic_name__ : str = bin(_SCREAMING_SNAKE_CASE )[2:] def lowerCAmelCase_ ( _snake_case : str ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = {"0": "0", "1": "1"} __magic_name__ , __magic_name__ : Optional[int] = "", "" __magic_name__ : str = len(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __magic_name__ : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) index += 1 __magic_name__ : Optional[int] = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __magic_name__ : Any = lexicon[curr_string] result += last_match_id return result def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> Dict: '''simple docstring''' __magic_name__ : Optional[Any] = os.path.getsize(_SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[int] = bin(_SCREAMING_SNAKE_CASE )[2:] __magic_name__ : Tuple = len(_SCREAMING_SNAKE_CASE ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> Dict: '''simple docstring''' __magic_name__ : Tuple = 8 try: with open(_SCREAMING_SNAKE_CASE , "wb" ) as opened_file: __magic_name__ : int = [ to_write[i : i + byte_length] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def lowerCAmelCase_ ( _snake_case : str , _snake_case : str ) -> Tuple: '''simple docstring''' __magic_name__ : Dict = read_file_binary(_SCREAMING_SNAKE_CASE ) __magic_name__ : Dict = compress_data(_SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[int] = add_file_length(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
281
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): @property def lowerCamelCase_ ( self: Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase__ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[int] = self.dummy_uncond_unet lowerCamelCase__ : Tuple = ScoreSdeVeScheduler() lowerCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=__lowercase , scheduler=__lowercase ) sde_ve.to(__lowercase ) sde_ve.set_progress_bar_config(disable=__lowercase ) lowerCamelCase__ : str = torch.manual_seed(0 ) lowerCamelCase__ : int = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=__lowercase ).images lowerCamelCase__ : Dict = torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=__lowercase , return_dict=__lowercase )[ 0 ] lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = """google/ncsnpp-church-256""" lowerCamelCase__ : Any = UNetaDModel.from_pretrained(__lowercase ) lowerCamelCase__ : Optional[int] = ScoreSdeVeScheduler.from_pretrained(__lowercase ) lowerCamelCase__ : List[Any] = ScoreSdeVePipeline(unet=__lowercase , scheduler=__lowercase ) sde_ve.to(__lowercase ) sde_ve.set_progress_bar_config(disable=__lowercase ) lowerCamelCase__ : Any = torch.manual_seed(0 ) lowerCamelCase__ : int = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=__lowercase ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase__ : Tuple = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None __a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )] __a = 0 __a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
302
0
from math import ceil, sqrt def UpperCamelCase__( UpperCamelCase__ : int = 1_00_00_00 )->Union[str, Any]: A__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: A__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: A__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
193
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[int] , **__lowercase : Dict ): '''simple docstring''' super().__init__(**__lowercase ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ): '''simple docstring''' return super().__call__(__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ): '''simple docstring''' __a = {} if "candidate_labels" in kwargs: __a = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __a = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(__lowercase ).content else: with open(__lowercase , """rb""" ) as f: __a = f.read() if isinstance(__lowercase , __lowercase ): __a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate ) if not isinstance(__lowercase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) __a = candidate_labels __a = [hypothesis_template.format(__lowercase ) for x in candidate_labels] __a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase ) __a = [text_inputs] return inputs def UpperCamelCase_ ( self : Any , __lowercase : Any ): '''simple docstring''' __a = model_inputs.pop("""candidate_labels""" ) __a = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowercase ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**__lowercase , **__lowercase ) __a = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' __a = model_outputs.pop("""candidate_labels""" ) __a = model_outputs["""logits"""][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) __a = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] ) ] return result
302
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( lowerCamelCase__ , unittest.TestCase ): lowercase__ : Any = AudioLDMPipeline lowercase__ : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase__ : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ : Dict = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __magic_name__ ( self ) -> List[str]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowercase , ) __magic_name__ : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __magic_name__ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__ : Dict = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) __magic_name__ : List[str] = ClapTextModelWithProjection(__lowercase ) __magic_name__ : Optional[int] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __magic_name__ : List[Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowercase , ) __magic_name__ : Union[str, Any] = SpeechTaHifiGan(__lowercase ) __magic_name__ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: if str(__lowercase ).startswith("""mps""" ): __magic_name__ : Optional[Any] = torch.manual_seed(__lowercase ) else: __magic_name__ : Any = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __magic_name__ : Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Union[str, Any] = self.get_dummy_components() __magic_name__ : Union[str, Any] = AudioLDMPipeline(**__lowercase ) __magic_name__ : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Any = self.get_dummy_inputs(__lowercase ) __magic_name__ : int = audioldm_pipe(**__lowercase ) __magic_name__ : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 2_56 __magic_name__ : int = audio[:10] __magic_name__ : Optional[Any] = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = self.get_dummy_components() __magic_name__ : str = AudioLDMPipeline(**__lowercase ) __magic_name__ : Tuple = audioldm_pipe.to(__lowercase ) __magic_name__ : Tuple = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Optional[Any] = self.get_dummy_inputs(__lowercase ) __magic_name__ : Union[str, Any] = 3 * [inputs["""prompt"""]] # forward __magic_name__ : Any = audioldm_pipe(**__lowercase ) __magic_name__ : Dict = output.audios[0] __magic_name__ : Union[str, Any] = self.get_dummy_inputs(__lowercase ) __magic_name__ : Any = 3 * [inputs.pop("""prompt""" )] __magic_name__ : Tuple = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __magic_name__ : str = text_inputs["""input_ids"""].to(__lowercase ) __magic_name__ : List[str] = audioldm_pipe.text_encoder( __lowercase , ) __magic_name__ : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __magic_name__ : Union[str, Any] = F.normalize(__lowercase , dim=-1 ) __magic_name__ : Dict = prompt_embeds # forward __magic_name__ : Tuple = audioldm_pipe(**__lowercase ) __magic_name__ : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> Any: __magic_name__ : Dict = self.get_dummy_components() __magic_name__ : List[Any] = AudioLDMPipeline(**__lowercase ) __magic_name__ : Optional[int] = audioldm_pipe.to(__lowercase ) __magic_name__ : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Tuple = self.get_dummy_inputs(__lowercase ) __magic_name__ : Any = 3 * ["""this is a negative prompt"""] __magic_name__ : int = negative_prompt __magic_name__ : Optional[int] = 3 * [inputs["""prompt"""]] # forward __magic_name__ : Any = audioldm_pipe(**__lowercase ) __magic_name__ : List[Any] = output.audios[0] __magic_name__ : List[Any] = self.get_dummy_inputs(__lowercase ) __magic_name__ : str = 3 * [inputs.pop("""prompt""" )] __magic_name__ : List[str] = [] for p in [prompt, negative_prompt]: __magic_name__ : Optional[int] = audioldm_pipe.tokenizer( __lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowercase , return_tensors="""pt""" , ) __magic_name__ : Dict = text_inputs["""input_ids"""].to(__lowercase ) __magic_name__ : int = audioldm_pipe.text_encoder( __lowercase , ) __magic_name__ : int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __magic_name__ : int = F.normalize(__lowercase , dim=-1 ) embeds.append(__lowercase ) __magic_name__ ,__magic_name__ : List[Any] = embeds # forward __magic_name__ : int = audioldm_pipe(**__lowercase ) __magic_name__ : List[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> str: __magic_name__ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Dict = PNDMScheduler(skip_prk_steps=__lowercase ) __magic_name__ : List[Any] = AudioLDMPipeline(**__lowercase ) __magic_name__ : Union[str, Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Optional[int] = self.get_dummy_inputs(__lowercase ) __magic_name__ : List[str] = """egg cracking""" __magic_name__ : Tuple = audioldm_pipe(**__lowercase , negative_prompt=__lowercase ) __magic_name__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 2_56 __magic_name__ : Union[str, Any] = audio[:10] __magic_name__ : Optional[int] = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__lowercase ) __magic_name__ : str = AudioLDMPipeline(**__lowercase ) __magic_name__ : Optional[int] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Optional[int] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __magic_name__ : List[str] = audioldm_pipe(__lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts __magic_name__ : Tuple = 2 __magic_name__ : Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt __magic_name__ : Dict = 2 __magic_name__ : Optional[Any] = audioldm_pipe(__lowercase , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts __magic_name__ : int = 2 __magic_name__ : Optional[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : List[str] = AudioLDMPipeline(**__lowercase ) __magic_name__ : Optional[Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate __magic_name__ : Tuple = self.get_dummy_inputs(__lowercase ) __magic_name__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_1_6 , **__lowercase ) __magic_name__ : Tuple = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.0_1_6 __magic_name__ : str = audioldm_pipe(audio_length_in_s=0.0_3_2 , **__lowercase ) __magic_name__ : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowercase ) / vocoder_sampling_rate == 0.0_3_2 def __magic_name__ ( self ) -> List[str]: __magic_name__ : Any = self.get_dummy_components() __magic_name__ : str = AudioLDMPipeline(**__lowercase ) __magic_name__ : str = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Union[str, Any] = ["""hey"""] __magic_name__ : int = audioldm_pipe(__lowercase , num_inference_steps=1 ) __magic_name__ : List[str] = output.audios.shape assert audio_shape == (1, 2_56) __magic_name__ : Dict = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __magic_name__ : Tuple = SpeechTaHifiGan(__lowercase ).to(__lowercase ) __magic_name__ : str = audioldm_pipe(__lowercase , num_inference_steps=1 ) __magic_name__ : str = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def __magic_name__ ( self ) -> Any: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowercase ) def __magic_name__ ( self ) -> str: self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowercase ) @slow class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> List[Any]: __magic_name__ : Any = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __magic_name__ : Tuple = np.random.RandomState(__lowercase ).standard_normal((1, 8, 1_28, 16) ) __magic_name__ : Optional[int] = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __magic_name__ : int = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __magic_name__ : int = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Dict = self.get_inputs(__lowercase ) __magic_name__ : Dict = 25 __magic_name__ : List[str] = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 8_19_20 __magic_name__ : Optional[int] = audio[7_72_30:7_72_40] __magic_name__ : Dict = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) __magic_name__ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __magic_name__ : Optional[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __magic_name__ : Union[str, Any] = audioldm_pipe.to(__lowercase ) audioldm_pipe.set_progress_bar_config(disable=__lowercase ) __magic_name__ : Union[str, Any] = self.get_inputs(__lowercase ) __magic_name__ : str = audioldm_pipe(**__lowercase ).audios[0] assert audio.ndim == 1 assert len(__lowercase ) == 8_19_20 __magic_name__ : str = audio[2_77_80:2_77_90] __magic_name__ : Optional[int] = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) __magic_name__ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
342
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
0
'''simple docstring''' from manim import * class lowerCAmelCase_( lowerCamelCase__ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase__ : List[str] = Rectangle(height=0.2_5 ,width=0.2_5 ) lowerCAmelCase__ : Dict = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) lowerCAmelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : int = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : Any = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : Any = Text("""CPU""" ,font_size=24 ) lowerCAmelCase__ : Tuple = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) lowerCAmelCase__ : Dict = [mem.copy() for i in range(4 )] lowerCAmelCase__ : Optional[Any] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : Any = Text("""GPU""" ,font_size=24 ) lowerCAmelCase__ : str = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) lowerCAmelCase__ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : int = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : Any = Text("""Model""" ,font_size=24 ) lowerCAmelCase__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Dict = [] for i, rect in enumerate(__lowercase ): rect.set_stroke(__lowercase ) lowerCAmelCase__ : List[str] = Rectangle(height=0.4_6 / 4 ,width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowercase ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=__lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] ,direction=__lowercase ,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] ,direction=__lowercase ,buff=0.0 ) self.add(__lowercase ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase ,*__lowercase ,*__lowercase ) lowerCAmelCase__ : str = [mem.copy() for i in range(6 )] lowerCAmelCase__ : str = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : str = Text("""Loaded Checkpoint""" ,font_size=24 ) lowerCAmelCase__ : Any = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowercase ) lowerCAmelCase__ : str = [] lowerCAmelCase__ : int = [] for i, rect in enumerate(__lowercase ): lowerCAmelCase__ : Any = fill.copy().set_fill(__lowercase ,opacity=0.7 ) target.move_to(__lowercase ) ckpt_arr.append(__lowercase ) lowerCAmelCase__ : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowercase ) self.add(*__lowercase ,*__lowercase ) lowerCAmelCase__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : List[str] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase ,__lowercase ) lowerCAmelCase__ : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(__lowercase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__lowercase ) lowerCAmelCase__ : Union[str, Any] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) lowerCAmelCase__ : List[str] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Any = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : str = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : List[str] = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) lowerCAmelCase__ : List[Any] = Text("""Disk""" ,font_size=24 ) lowerCAmelCase__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__lowercase ,run_time=3 ) ,Write(__lowercase ,run_time=1 ) ,Create(__lowercase ,run_time=1 ) ) lowerCAmelCase__ : Optional[int] = [] for i, rect in enumerate(__lowercase ): lowerCAmelCase__ : str = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowercase ,run_time=1.5 ) ) self.play(*__lowercase ) self.play(FadeOut(__lowercase ) ) lowerCAmelCase__ : Tuple = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ) self.play( FadeOut(__lowercase ,__lowercase ,*__lowercase ,*__lowercase ) ,) self.wait()
37
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoTokenizer.from_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = tokenizer("""This is me""" , return_tensors="""pt""" ) __a = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __a = model.generate(**__lowercase ) __a = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __a = model_reloaded.generate(**__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = """hf-internal-testing/tiny-random-t5""" __a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ) __a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowercase ): model.save_pretrained(__lowercase ) __a = model.reverse_bettertransformer() model.save_pretrained(__lowercase )
302
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase : Optional[Any] = get_tests_dir('fixtures') class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : Tuple = mock.Mock() __UpperCamelCase : List[str] = 5_0_0 __UpperCamelCase : Any = {} __UpperCamelCase : Optional[int] = HTTPError __UpperCamelCase : Any = {} # Download this model to make sure it's in the cache. __UpperCamelCase : Dict = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__lowercase ) as mock_head: __UpperCamelCase : Dict = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self :int ) -> Tuple: __UpperCamelCase : List[str] = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: with self.assertRaises(__lowercase ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCamelCase : Any = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) __UpperCamelCase : Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__lowercase ) @is_staging_test class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def _lowerCamelCase ( cls :Optional[int] ) -> List[str]: __UpperCamelCase : Optional[Any] = TOKEN HfFolder.save_token(__lowercase ) @classmethod def _lowerCamelCase ( cls :Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : Dict = ViTImageProcessor.from_pretrained(__lowercase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) __UpperCamelCase : Optional[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowercase , repo_id="test-image-processor" , push_to_hub=__lowercase , use_auth_token=self._token ) __UpperCamelCase : List[Any] = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: __UpperCamelCase : int = ViTImageProcessor.from_pretrained(__lowercase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) __UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __lowercase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__lowercase , use_auth_token=self._token ) __UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) def _lowerCamelCase ( self :Tuple ) -> str: CustomImageProcessor.register_for_auto_class() __UpperCamelCase : Tuple = CustomImageProcessor.from_pretrained(__lowercase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
232
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] ='albert' def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ): '''simple docstring''' super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
302
0