code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None:
'''simple docstring'''
if start is None:
UpperCAmelCase_ = 0
if end is None:
UpperCAmelCase_ = len(snake_case_ ) - 1
if start >= end:
return
UpperCAmelCase_ = (start + end) // 2
slowsort(snake_case_ , snake_case_ , snake_case_ )
slowsort(snake_case_ , mid + 1 , snake_case_ )
if sequence[end] < sequence[mid]:
UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end]
slowsort(snake_case_ , snake_case_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoTokenizer.from_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = tokenizer("""This is me""" , return_tensors="""pt""" )
__a = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__a = model.generate(**__lowercase )
__a = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__a = model_reloaded.generate(**__lowercase )
self.assertTrue(torch.allclose(__lowercase , __lowercase ) )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowercase ):
model.save_pretrained(__lowercase )
__a = model.reverse_bettertransformer()
model.save_pretrained(__lowercase )
| 302
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Dict = logging.get_logger(__name__)
lowerCamelCase : Any = {
'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json',
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : List[str] = """lxmert"""
lowerCAmelCase__ : Tuple = {}
def __init__(self : Union[str, Any] , UpperCamelCase : int=30522 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : List[Any]=9500 , UpperCamelCase : Tuple=1600 , UpperCamelCase : List[Any]=400 , UpperCamelCase : Dict=3072 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : str=512 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : int=0.02 , UpperCamelCase : str=1E-12 , UpperCamelCase : List[str]=9 , UpperCamelCase : Dict=5 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : str=2048 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Optional[int]=6.67 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=True , UpperCamelCase : List[str]=True , **UpperCamelCase : int , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = num_qa_labels
lowercase__ = num_object_labels
lowercase__ = num_attr_labels
lowercase__ = l_layers
lowercase__ = x_layers
lowercase__ = r_layers
lowercase__ = visual_feat_dim
lowercase__ = visual_pos_dim
lowercase__ = visual_loss_normalizer
lowercase__ = task_matched
lowercase__ = task_mask_lm
lowercase__ = task_obj_predict
lowercase__ = task_qa
lowercase__ = visual_obj_loss
lowercase__ = visual_attr_loss
lowercase__ = visual_feat_loss
lowercase__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**UpperCamelCase )
| 2
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCamelCase__ = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] ='albert'
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_hidden_groups
__a = num_attention_heads
__a = inner_group_num
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = classifier_dropout_prob
__a = position_embedding_type
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 302
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Any = logging.get_logger(__name__)
lowercase : int = {
'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json',
'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json',
}
class A ( __snake_case ):
__magic_name__ = '''falcon'''
__magic_name__ = ['''past_key_values''']
def __init__( self , SCREAMING_SNAKE_CASE=65024 , SCREAMING_SNAKE_CASE=4544 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=71 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=11 , SCREAMING_SNAKE_CASE=11 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
A : Tuple = vocab_size
# Backward compatibility with n_embed kwarg
A : Dict = kwargs.pop('''n_embed''' , SCREAMING_SNAKE_CASE )
A : int = hidden_size if n_embed is None else n_embed
A : Dict = num_hidden_layers
A : List[Any] = num_attention_heads
A : Optional[Any] = layer_norm_epsilon
A : List[Any] = initializer_range
A : str = use_cache
A : Optional[int] = hidden_dropout
A : Union[str, Any] = attention_dropout
A : Dict = bos_token_id
A : List[Any] = eos_token_id
A : List[str] = num_attention_heads if num_kv_heads is None else num_kv_heads
A : int = alibi
A : List[str] = new_decoder_architecture
A : Union[str, Any] = multi_query # Ignored when new_decoder_architecture is True
A : int = parallel_attn
A : Union[str, Any] = bias
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return self.hidden_size // self.num_attention_heads
@property
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return not self.alibi
| 3
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
'''simple docstring'''
from maths.prime_check import is_prime
def a_ ( lowerCamelCase : int ):
if not isinstance(lowerCamelCase , lowerCamelCase ):
lowerCAmelCase = f'''Input value of [number={number}] must be an integer'''
raise TypeError(lowerCamelCase )
if is_prime(lowerCamelCase ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4
|
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302
| 0
|
from __future__ import annotations
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None:
"""simple docstring"""
_lowercase =len(__snake_case )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(__snake_case ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __snake_case , __snake_case , )
def UpperCAmelCase_ ( __snake_case ) -> None:
"""simple docstring"""
_lowercase =[]
depth_first_search([] , [] , [] , __snake_case , __snake_case )
# Print all the boards
for board in boards:
for column in board:
print(__snake_case )
print('''''' )
print(len(__snake_case ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 5
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = MobileViTVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowerCamelCase : Any =(
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : int =False
__lowerCamelCase : Any =False
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(__lowercase ) , __lowercase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(__lowercase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __lowercase )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=__lowercase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __lowercase )
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __lowercase )
| 302
| 0
|
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class __A:
@staticmethod
def SCREAMING_SNAKE_CASE_ ( *_snake_case , **_snake_case ) -> Optional[int]:
'''simple docstring'''
pass
def __lowerCAmelCase ( a__ ) -> str:
__a = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __A( unittest.TestCase ):
snake_case_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Tuple:
'''simple docstring'''
__a = DepthEstimationPipeline(model=_snake_case , image_processor=_snake_case )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _snake_case )
import datasets
__a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
__a = depth_estimator(
[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
] )
self.assertEqual(
[
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
] , _snake_case , )
@require_tf
@unittest.skip('''Depth estimation is not implemented in TF''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]:
'''simple docstring'''
pass
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
__a = '''Intel/dpt-large'''
__a = pipeline('''depth-estimation''' , model=_snake_case )
__a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
__a = hashimage(outputs['''depth'''] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
| 6
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 302
| 0
|
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=1024 ) -> Union[str, Any]:
'''simple docstring'''
A__ , A__ = [], []
A__ = list(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
A__ , A__ = sorted_examples[0]
def is_too_big(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tok(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
A__ = new_src + ' ' + src
A__ = new_tgt + ' ' + tgt
if is_too_big(SCREAMING_SNAKE_CASE__ ) or is_too_big(SCREAMING_SNAKE_CASE__ ): # cant fit, finalize example
finished_src.append(SCREAMING_SNAKE_CASE__ )
finished_tgt.append(SCREAMING_SNAKE_CASE__ )
A__ , A__ = src, tgt
else: # can fit, keep adding
A__ , A__ = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(SCREAMING_SNAKE_CASE__ )
finished_tgt.append(SCREAMING_SNAKE_CASE__ )
return finished_src, finished_tgt
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
'''simple docstring'''
A__ = Path(SCREAMING_SNAKE_CASE__ )
save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
for split in ["train"]:
A__ , A__ = data_dir / f'{split}.source', data_dir / f'{split}.target'
A__ = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()]
A__ = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()]
A__ , A__ = pack_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(f'packed {split} split from {len(SCREAMING_SNAKE_CASE__ )} examples -> {len(SCREAMING_SNAKE_CASE__ )}.' )
Path(save_path / f'{split}.source' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
Path(save_path / f'{split}.target' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
for split in ["val", "test"]:
A__ , A__ = data_dir / f'{split}.source', data_dir / f'{split}.target'
shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'{split}.source' )
shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'{split}.target' )
def _snake_case( ) -> Optional[int]:
'''simple docstring'''
A__ = argparse.ArgumentParser()
parser.add_argument('--tok_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('--max_seq_len' , type=SCREAMING_SNAKE_CASE__ , default=128 )
parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE__ )
parser.add_argument('--save_path' , type=SCREAMING_SNAKE_CASE__ )
A__ = parser.parse_args()
A__ = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(SCREAMING_SNAKE_CASE__ , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 7
|
import string
import numpy
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : List[str] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
__lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
__lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ )
def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ):
'''simple docstring'''
__a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__a = encrypt_key.shape[0]
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
return self.key_string.index(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : int ):
'''simple docstring'''
return self.key_string[round(__lowercase )]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = len(self.key_string )
if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1:
__a = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = [char for char in text.upper() if char in self.key_string]
__a = chars[-1]
while len(__lowercase ) % self.break_key != 0:
chars.append(__lowercase )
return "".join(__lowercase )
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[
0
]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__a = i
break
__a = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__lowercase ) )
def UpperCamelCase_ ( self : Any , __lowercase : str ):
'''simple docstring'''
__a = self.make_decrypt_key()
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = int(input("""Enter the order of the encryption key: """ ) )
__a = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(_SCREAMING_SNAKE_CASE ):
__a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
__a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__a = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__a = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
__a = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
lowerCAmelCase_ = '''bert-base-cased'''
lowerCAmelCase_ = '''google/pegasus-xsum'''
lowerCAmelCase_ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.''']
lowerCAmelCase_ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee''']
lowerCAmelCase_ = '''patrickvonplaten/t5-tiny-random'''
lowerCAmelCase_ = '''sshleifer/bart-tiny-random'''
lowerCAmelCase_ = '''sshleifer/tiny-mbart'''
lowerCAmelCase_ = '''sshleifer/tiny-marian-en-de'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = '''\n'''.join(SCREAMING_SNAKE_CASE__ )
Path(SCREAMING_SNAKE_CASE__ ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}.source''' ) , SCREAMING_SNAKE_CASE__ )
_dump_articles(os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}.target''' ) , SCREAMING_SNAKE_CASE__ )
return tmp_dir
class snake_case_ ( __A ):
'''simple docstring'''
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] ) ->int:
snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase )
snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
snake_case_ = max(len(tokenizer.encode(_UpperCamelCase ) ) for a in ARTICLES )
snake_case_ = max(len(tokenizer.encode(_UpperCamelCase ) ) for a in SUMMARIES )
snake_case_ = 4
snake_case_ = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
snake_case_, snake_case_ = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error.
snake_case_ = SeqaSeqDataset(
_UpperCamelCase , data_dir=_UpperCamelCase , type_path='''train''' , max_source_length=_UpperCamelCase , max_target_length=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , )
snake_case_ = DataLoader(_UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
snake_case_ = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] ) ->Any:
snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase )
snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
snake_case_ = max(len(tokenizer.encode(_UpperCamelCase ) ) for a in ARTICLES )
snake_case_ = max(len(tokenizer.encode(_UpperCamelCase ) ) for a in SUMMARIES )
snake_case_ = 4
snake_case_ = LegacySeqaSeqDataset(
_UpperCamelCase , data_dir=_UpperCamelCase , type_path='''train''' , max_source_length=2_0 , max_target_length=_UpperCamelCase , )
snake_case_ = DataLoader(_UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def snake_case__( self : List[Any] ) ->List[Any]:
snake_case_ = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' )
snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
snake_case_ = tmp_dir.joinpath('''train.source''' ).open().readlines()
snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_UpperCamelCase , _UpperCamelCase , 1_2_8 , _UpperCamelCase )
snake_case_ = {x.name for x in tmp_dir.iterdir()}
snake_case_ = {x.name for x in save_dir.iterdir()}
snake_case_ = save_dir.joinpath('''train.source''' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_UpperCamelCase ) < len(_UpperCamelCase )
assert len(_UpperCamelCase ) == 1
assert len(packed_examples[0] ) == sum(len(_UpperCamelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' )
def snake_case__( self : Union[str, Any] ) ->Optional[Any]:
if not FAIRSEQ_AVAILABLE:
return
snake_case_, snake_case_, snake_case_ = self._get_dataset(max_len=6_4 )
snake_case_ = 6_4
snake_case_ = ds.make_dynamic_sampler(_UpperCamelCase , required_batch_size_multiple=_UpperCamelCase )
snake_case_ = [len(_UpperCamelCase ) for x in batch_sampler]
assert len(set(_UpperCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_UpperCamelCase ) == len(_UpperCamelCase ) # no dropped or added examples
snake_case_ = DataLoader(_UpperCamelCase , batch_sampler=_UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
snake_case_ = []
snake_case_ = []
for batch in data_loader:
snake_case_ = batch['''input_ids'''].shape
snake_case_ = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
snake_case_ = np.product(batch['''input_ids'''].shape )
num_src_per_batch.append(_UpperCamelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_UpperCamelCase )
assert num_src_per_batch[0] == max(_UpperCamelCase )
if failures:
raise AssertionError(f'''too many tokens in {len(_UpperCamelCase )} batches''' )
def snake_case__( self : List[str] ) ->int:
snake_case_, snake_case_, snake_case_ = self._get_dataset(max_len=5_1_2 )
snake_case_ = 2
snake_case_ = ds.make_sortish_sampler(_UpperCamelCase , shuffle=_UpperCamelCase )
snake_case_ = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
snake_case_ = DataLoader(_UpperCamelCase , batch_size=_UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCamelCase )
snake_case_ = tokenizer.pad_token_id
def count_pad_tokens(_UpperCamelCase : str , _UpperCamelCase : List[str]="input_ids" ):
return [batch[k].eq(_UpperCamelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_UpperCamelCase , k='''labels''' ) ) < sum(count_pad_tokens(_UpperCamelCase , k='''labels''' ) )
assert sum(count_pad_tokens(_UpperCamelCase ) ) < sum(count_pad_tokens(_UpperCamelCase ) )
assert len(_UpperCamelCase ) == len(_UpperCamelCase )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any]=1_0_0_0 , _UpperCamelCase : List[Any]=1_2_8 ) ->List[Any]:
if os.getenv('''USE_REAL_DATA''' , _UpperCamelCase ):
snake_case_ = '''examples/seq2seq/wmt_en_ro'''
snake_case_ = max_len * 2 * 6_4
if not Path(_UpperCamelCase ).joinpath('''train.len''' ).exists():
save_len_file(_UpperCamelCase , _UpperCamelCase )
else:
snake_case_ = '''examples/seq2seq/test_data/wmt_en_ro'''
snake_case_ = max_len * 4
save_len_file(_UpperCamelCase , _UpperCamelCase )
snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase )
snake_case_ = SeqaSeqDataset(
_UpperCamelCase , data_dir=_UpperCamelCase , type_path='''train''' , max_source_length=_UpperCamelCase , max_target_length=_UpperCamelCase , n_obs=_UpperCamelCase , )
return ds, max_tokens, tokenizer
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_, snake_case_, snake_case_ = self._get_dataset()
snake_case_ = set(DistributedSortishSampler(_UpperCamelCase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCamelCase ) )
snake_case_ = set(DistributedSortishSampler(_UpperCamelCase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCamelCase ) )
assert idsa.intersection(_UpperCamelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def snake_case__( self : List[str] , _UpperCamelCase : Tuple ) ->Optional[Any]:
snake_case_ = AutoTokenizer.from_pretrained(_UpperCamelCase , use_fast=_UpperCamelCase )
if tok_name == MBART_TINY:
snake_case_ = SeqaSeqDataset(
_UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , )
snake_case_ = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
snake_case_ = SeqaSeqDataset(
_UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , )
snake_case_ = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_UpperCamelCase ) == 1 if tok_name == BART_TINY else len(_UpperCamelCase ) == 0
| 8
|
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] ='autoformer'
__lowerCamelCase : str ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ):
'''simple docstring'''
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowercase , **__lowercase )
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 302
| 0
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase : str ={'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] =[
'MRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MraForMaskedLM',
'MraForMultipleChoice',
'MraForQuestionAnswering',
'MraForSequenceClassification',
'MraForTokenClassification',
'MraLayer',
'MraModel',
'MraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 9
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
from __future__ import annotations
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list:
"""simple docstring"""
lowerCamelCase__: Any =[]
lowerCamelCase__ , lowerCamelCase__: Any =input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
lowerCamelCase__: str =result + left + right
return input_list
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
if len(__a ) <= 1:
return input_list
lowerCamelCase__: Any =list(__a )
# iteration for two-way merging
lowerCamelCase__: str =2
while p <= len(__a ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__a ) , __a ):
lowerCamelCase__: Dict =i
lowerCamelCase__: List[str] =i + p - 1
lowerCamelCase__: int =(low + high + 1) // 2
lowerCamelCase__: Optional[int] =merge(__a , __a , __a , __a )
# final merge of last two parts
if p * 2 >= len(__a ):
lowerCamelCase__: List[Any] =i
lowerCamelCase__: Optional[int] =merge(__a , 0 , __a , len(__a ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
__A = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
__A = []
else:
__A = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 10
|
from __future__ import annotations
lowerCamelCase__ = """#"""
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ):
'''simple docstring'''
__a = {}
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in text:
if char not in trie:
__a = {}
__a = trie[char]
__a = True
def UpperCamelCase_ ( self : Tuple , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in prefix:
if char in trie:
__a = trie[char]
else:
return []
return self._elements(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ):
'''simple docstring'''
__a = []
for c, v in d.items():
__a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )]
result.extend(__lowercase )
return tuple(__lowercase )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = trie.find_word(_SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def lowerCAmelCase__ ( ):
"""simple docstring"""
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('T')
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (position - 1) // 2
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (2 * position) + 1
def _UpperCAmelCase (UpperCamelCase__ : int ):
return (2 * position) + 2
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
def __init__( self) -> None:
_A : list[tuple[T, int]] = []
_A : dict[T, int] = {}
_A : int = 0
def __len__( self) -> int:
return self.elements
def __repr__( self) -> str:
return str(self.heap)
def _lowerCamelCase ( self) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
_A : int = self.elements
self.elements += 1
self._bubble_up(__lowerCamelCase)
def _lowerCamelCase ( self) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1)
_A , _A : Optional[Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_A , _A : str = self.heap[0]
self._bubble_down(__lowerCamelCase)
return elem
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Update the weight of the given key
_A : Optional[Any] = self.position_map[elem]
_A : Any = (elem, weight)
if position > 0:
_A : Any = get_parent_position(__lowerCamelCase)
_A , _A : Tuple = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__lowerCamelCase)
else:
self._bubble_down(__lowerCamelCase)
else:
self._bubble_down(__lowerCamelCase)
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
_A : Optional[int] = self.position_map[elem]
if curr_pos == 0:
return None
_A : Optional[Any] = get_parent_position(__lowerCamelCase)
_A , _A : Any = self.heap[curr_pos]
_A , _A : str = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_up(__lowerCamelCase)
return None
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
_A : Any = self.position_map[elem]
_A , _A : Optional[int] = self.heap[curr_pos]
_A : Optional[int] = get_child_left_position(__lowerCamelCase)
_A : List[str] = get_child_right_position(__lowerCamelCase)
if child_left_position < self.elements and child_right_position < self.elements:
_A , _A : str = self.heap[child_left_position]
_A , _A : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
if child_left_position < self.elements:
_A , _A : int = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
else:
return None
if child_right_position < self.elements:
_A , _A : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__lowerCamelCase , __lowerCamelCase)
return self._bubble_down(__lowerCamelCase)
return None
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None:
# Swap the nodes at the given positions
_A : str = self.heap[nodea_pos][0]
_A : List[Any] = self.heap[nodea_pos][0]
_A , _A : Dict = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_A : Tuple = nodea_pos
_A : int = nodea_pos
class lowerCAmelCase__ ( Generic[T]):
'''simple docstring'''
def __init__( self) -> None:
_A : dict[T, dict[T, int]] = {}
_A : int = 0
def __repr__( self) -> str:
return str(self.connections)
def __len__( self) -> int:
return self.nodes
def _lowerCamelCase ( self , __lowerCamelCase) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
_A : Optional[int] = {}
self.nodes += 1
def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(__lowerCamelCase)
self.add_node(__lowerCamelCase)
_A : Optional[int] = weight
_A : str = weight
def _UpperCAmelCase (UpperCamelCase__ : GraphUndirectedWeighted[T] , ):
_A : dict[T, int] = {node: maxsize for node in graph.connections}
_A : dict[T, T | None] = {node: None for node in graph.connections}
_A : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(UpperCamelCase__ , UpperCamelCase__ )
if priority_queue.is_empty():
return dist, parent
# initialization
_A : List[str] = priority_queue.extract_min()
_A : Tuple = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_A : Tuple = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase__ , dist[neighbour] )
_A : int = node
# running prim's algorithm
while not priority_queue.is_empty():
_A : Optional[Any] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_A : Optional[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase__ , dist[neighbour] )
_A : Any = node
return dist, parent
| 11
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__lowercase , __lowercase , 0 )
__a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__lowercase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
__a = nn.Linear(__lowercase , __lowercase )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__lowercase , __lowercase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , )
for d in range(__lowercase )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__lowercase )
elif norm_in_type is None:
__a = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
__a = nn.LayerNorm(__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = {}
def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ):
if hasattr(__lowercase , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__lowercase , __lowercase , __lowercase )
return processors
def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__a = len(self.attn_processors.keys() )
if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ):
if hasattr(__lowercase , """set_processor""" ):
if not isinstance(__lowercase , __lowercase ):
module.set_processor(__lowercase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ):
'''simple docstring'''
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__lowercase ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__lowercase )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__lowercase )
__a = self.embedding_proj(__lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__lowercase )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 )
additional_embeds.append(__lowercase )
__a = torch.cat(
__lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__lowercase )
for block in self.transformer_blocks:
__a = block(__lowercase , attention_mask=__lowercase )
__a = self.norm_out(__lowercase )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple ):
'''simple docstring'''
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ = {
'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'],
'configuration_maskformer_swin': ['MaskFormerSwinConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['MaskFormerFeatureExtractor']
UpperCAmelCase_ = ['MaskFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'MaskFormerForInstanceSegmentation',
'MaskFormerModel',
'MaskFormerPreTrainedModel',
]
UpperCAmelCase_ = [
'MaskFormerSwinBackbone',
'MaskFormerSwinModel',
'MaskFormerSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 12
|
from functools import lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
__a = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
while True:
# Increment each value of a generated range
__a = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ):
"""simple docstring"""
__a = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 302
| 0
|
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[Any] = generate_pascal_triangle(_UpperCAmelCase )
for row_idx in range(_UpperCAmelCase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=" " )
else:
print(triangle[row_idx][col_idx] , end="" )
print()
def A_ ( _UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
SCREAMING_SNAKE_CASE_: list[list[int]] = []
for current_row_idx in range(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[Any] = populate_current_row(_UpperCAmelCase , _UpperCAmelCase )
triangle.append(_UpperCAmelCase )
return triangle
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Dict = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = 1, 1
for current_col_idx in range(1 , _UpperCAmelCase ):
calculate_current_element(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return current_row
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ):
SCREAMING_SNAKE_CASE_: str = triangle[current_row_idx - 1][current_col_idx - 1]
SCREAMING_SNAKE_CASE_: Optional[int] = triangle[current_row_idx - 1][current_col_idx]
SCREAMING_SNAKE_CASE_: str = above_to_left_elt + above_to_right_elt
def A_ ( _UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
SCREAMING_SNAKE_CASE_: list[list[int]] = [[1]]
for row_index in range(1 , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = [0] + result[-1] + [0]
SCREAMING_SNAKE_CASE_: Tuple = row_index + 1
# Calculate the number of distinct elements in a row
SCREAMING_SNAKE_CASE_: Any = sum(divmod(_UpperCAmelCase , 2 ) )
SCREAMING_SNAKE_CASE_: Optional[int] = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
SCREAMING_SNAKE_CASE_: Tuple = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
SCREAMING_SNAKE_CASE_: List[str] = row_first_half + row_second_half
result.append(_UpperCAmelCase )
return result
def A_ ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) -> None:
SCREAMING_SNAKE_CASE_: int = f"{func.__name__}({value})"
SCREAMING_SNAKE_CASE_: List[str] = timeit(f"__main__.{call}" , setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 13
|
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
__a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__a = 128
elif "12-12" in model_name:
__a = 12
__a = 12
elif "14-14" in model_name:
__a = 14
__a = 14
elif "16-16" in model_name:
__a = 16
__a = 16
else:
raise ValueError("""Model not supported""" )
__a = """huggingface/label-files"""
if "speech-commands" in model_name:
__a = 35
__a = """speech-commands-v2-id2label.json"""
else:
__a = 527
__a = """audioset-id2label.json"""
__a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
if "module.v" in name:
__a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
__a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
__a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
__a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
__a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
__a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
__a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
__a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
__a = key.split(""".""" )
__a = int(key_split[3] )
__a = config.hidden_size
if "weight" in key:
__a = val[:dim, :]
__a = val[dim : dim * 2, :]
__a = val[-dim:, :]
else:
__a = val[:dim]
__a = val[dim : dim * 2]
__a = val[-dim:]
else:
__a = val
return orig_state_dict
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ):
"""simple docstring"""
__a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
__a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__a = model_name_to_url[model_name]
__a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
__a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
__a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
__a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
__a = 1024 if """speech-commands""" not in model_name else 128
__a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
__a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
__a = dataset[0]["""audio"""]["""array"""]
else:
__a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
__a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE )
__a = waveform.squeeze().numpy()
__a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
__a = model(**_SCREAMING_SNAKE_CASE )
__a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"MIT/{model_name}" )
feature_extractor.push_to_hub(f"MIT/{model_name}" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""ast-finetuned-audioset-10-10-0.4593""",
type=str,
help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase__ = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = len(lowercase_ )
A__ = []
for i in range(len(lowercase_ ) - pat_len + 1 ):
A__ = True
for j in range(lowercase_ ):
if s[i + j] != pattern[j]:
A__ = False
break
if match_found:
position.append(lowercase_ )
return position
if __name__ == "__main__":
assert naive_pattern_search("""ABCDEFG""", """DE""") == [3]
print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
| 14
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCamelCase__ = None
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
lowerCamelCase__ = """▁"""
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] =VOCAB_FILES_NAMES
__lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Any =AlbertTokenizer
def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ):
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__a = (
AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase )
if isinstance(__lowercase , __lowercase )
else mask_token
)
super().__init__(
__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , )
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = False if not self.vocab_file else True
def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__lowercase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
__a = os.path.join(
__lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ):
copyfile(self.vocab_file , __lowercase )
return (out_vocab_file,)
| 302
| 0
|
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
SCREAMING_SNAKE_CASE :Dict = 0
SCREAMING_SNAKE_CASE :Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
SCREAMING_SNAKE_CASE :Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
SCREAMING_SNAKE_CASE :Optional[int] = tuple[int, int]
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : int ,A : int ,A : int ,A : int ,A : int ,A : Node | None ,):
__A = pos_x
__A = pos_y
__A = (pos_y, pos_x)
__A = goal_x
__A = goal_y
__A = g_cost
__A = parent
__A = self.calculate_heuristic()
__A = self.g_cost + self.h_cost
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.pos_x - self.goal_x
__A = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A ) + abs(A )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Union[str, Any] ,A : Node ):
return self.f_cost < other.f_cost
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : TPosition ,A : TPosition ):
__A = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,A )
__A = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_99_99 ,A )
__A = [self.start]
__A = []
__A = False
def UpperCamelCase_ ( self : Dict ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__A = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A )
self.closed_nodes.append(A )
__A = self.get_successors(A )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A )
else:
# retrieve the best current path
__A = self.open_nodes.pop(self.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A )
else:
self.open_nodes.append(A )
return [self.start.pos]
def UpperCamelCase_ ( self : List[str] ,A : Node ):
__A = []
for action in delta:
__A = parent.pos_x + action[1]
__A = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A ,A ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,A ,) )
return successors
def UpperCamelCase_ ( self : int ,A : Node | None ):
__A = node
__A = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__A = current_node.parent
path.reverse()
return path
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[str] ,A : TPosition ,A : TPosition ):
__A = AStar(A ,A )
__A = AStar(A ,A )
__A = False
def UpperCamelCase_ ( self : List[str] ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__A = self.fwd_astar.open_nodes.pop(0 )
__A = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A ,A )
self.fwd_astar.closed_nodes.append(A )
self.bwd_astar.closed_nodes.append(A )
__A = current_bwd_node
__A = current_fwd_node
__A = {
self.fwd_astar: self.fwd_astar.get_successors(A ),
self.bwd_astar: self.bwd_astar.get_successors(A ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A )
else:
# retrieve the best current path
__A = astar.open_nodes.pop(
astar.open_nodes.index(A ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A )
else:
astar.open_nodes.append(A )
return [self.fwd_astar.start.pos]
def UpperCamelCase_ ( self : Dict ,A : Node ,A : Node ):
__A = self.fwd_astar.retrace_path(A )
__A = self.bwd_astar.retrace_path(A )
bwd_path.pop()
bwd_path.reverse()
__A = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
SCREAMING_SNAKE_CASE :List[Any] = (0, 0)
SCREAMING_SNAKE_CASE :int = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
SCREAMING_SNAKE_CASE :Dict = time.time()
SCREAMING_SNAKE_CASE :Union[str, Any] = AStar(init, goal)
SCREAMING_SNAKE_CASE :Union[str, Any] = a_star.search()
SCREAMING_SNAKE_CASE :Optional[int] = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
SCREAMING_SNAKE_CASE :Tuple = time.time()
SCREAMING_SNAKE_CASE :List[Any] = BidirectionalAStar(init, goal)
SCREAMING_SNAKE_CASE :str = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 15
|
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] =(IPNDMScheduler,)
__lowerCamelCase : int =(('num_inference_steps', 50),)
def UpperCamelCase_ ( self : str , **__lowercase : Dict ):
'''simple docstring'''
__a = {"""num_train_timesteps""": 1000}
config.update(**__lowercase )
return config
def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ):
'''simple docstring'''
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__lowercase )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
return sample
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ):
scheduler.set_timesteps(__lowercase )
elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ):
__a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__a = dummy_past_residuals[:]
__a = scheduler.timesteps[5]
__a = scheduler.timesteps[6]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.full_loop()
__a = torch.mean(torch.abs(__lowercase ) )
assert abs(result_mean.item() - 2540529 ) < 10
| 302
| 0
|
"""simple docstring"""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = '▁'
lowerCAmelCase_ = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
lowerCAmelCase_ = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
lowerCAmelCase_ = {
'facebook/s2t-small-librispeech-asr': 1_024,
}
lowerCAmelCase_ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
lowerCAmelCase_ = {'mustc': MUSTC_LANGS}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : int = MAX_MODEL_INPUT_SIZES
lowerCAmelCase : Optional[int] = ["input_ids", "attention_mask"]
lowerCAmelCase : List[int] = []
def __init__( self : Optional[Any] ,_snake_case : int ,_snake_case : Optional[int] ,_snake_case : Optional[int]="<s>" ,_snake_case : Union[str, Any]="</s>" ,_snake_case : Any="<pad>" ,_snake_case : Dict="<unk>" ,_snake_case : Optional[Any]=False ,_snake_case : int=False ,_snake_case : Optional[int]=None ,_snake_case : Dict=None ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : int ,) -> None:
"""simple docstring"""
lowercase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,pad_token=_snake_case ,do_upper_case=_snake_case ,do_lower_case=_snake_case ,tgt_lang=_snake_case ,lang_codes=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,)
lowercase__ : str = do_upper_case
lowercase__ : List[str] = do_lower_case
lowercase__ : Any = load_json(_snake_case )
lowercase__ : Dict = {v: k for k, v in self.encoder.items()}
lowercase__ : Dict = spm_file
lowercase__ : List[str] = load_spm(_snake_case ,self.sp_model_kwargs )
if lang_codes is not None:
lowercase__ : Optional[Any] = lang_codes
lowercase__ : Any = LANGUAGES[lang_codes]
lowercase__ : Optional[int] = [f"""<lang:{lang}>""" for lang in self.langs]
lowercase__ : Union[str, Any] = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs}
lowercase__ : str = self.lang_tokens
lowercase__ : Optional[int] = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
lowercase__ : Dict = {}
@property
def UpperCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return len(self.encoder )
@property
def UpperCAmelCase ( self : str ) -> str:
"""simple docstring"""
return self._tgt_lang
@tgt_lang.setter
def UpperCAmelCase ( self : Optional[int] ,_snake_case : List[Any] ) -> None:
"""simple docstring"""
lowercase__ : Optional[Any] = new_tgt_lang
self.set_tgt_lang_special_tokens(_snake_case )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ) -> None:
"""simple docstring"""
lowercase__ : List[Any] = self.lang_code_to_id[tgt_lang]
lowercase__ : str = [lang_code_id]
def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_snake_case ,out_type=_snake_case )
def UpperCAmelCase ( self : Dict ,_snake_case : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.encoder.get(_snake_case ,self.encoder[self.unk_token] )
def UpperCAmelCase ( self : List[str] ,_snake_case : int ) -> str:
"""simple docstring"""
return self.decoder.get(_snake_case ,self.unk_token )
def UpperCAmelCase ( self : List[Any] ,_snake_case : List[str] ) -> str:
"""simple docstring"""
lowercase__ : str = []
lowercase__ : List[str] = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
lowercase__ : int = self.sp_model.decode(_snake_case )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
lowercase__ : str = []
else:
current_sub_tokens.append(_snake_case )
lowercase__ : Tuple = self.sp_model.decode(_snake_case )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCAmelCase ( self : str ,_snake_case : Tuple ,_snake_case : Any=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Dict ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case )
lowercase__ : List[Any] = [1] * len(self.prefix_tokens )
lowercase__ : Tuple = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_snake_case )) + suffix_ones
return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones
def UpperCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
lowercase__ : Any = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ) -> Dict:
"""simple docstring"""
lowercase__ : int = self.__dict__.copy()
lowercase__ : Dict = None
return state
def __setstate__( self : Union[str, Any] ,_snake_case : Dict ) -> None:
"""simple docstring"""
lowercase__ : Optional[int] = d
# for backward compatibility
if not hasattr(self ,'''sp_model_kwargs''' ):
lowercase__ : int = {}
lowercase__ : List[Any] = load_spm(self.spm_file ,self.sp_model_kwargs )
def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
lowercase__ : Tuple = Path(_snake_case )
assert save_dir.is_dir(), f"""{save_directory} should be a directory"""
lowercase__ : List[Any] = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file''']
)
lowercase__ : Optional[Any] = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file''']
)
save_json(self.encoder ,_snake_case )
if os.path.abspath(self.spm_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file ,_snake_case )
elif not os.path.isfile(self.spm_file ):
with open(_snake_case ,'''wb''' ) as fi:
lowercase__ : Dict = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (str(_snake_case ), str(_snake_case ))
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> sentencepiece.SentencePieceProcessor:
lowercase__ : Any = sentencepiece.SentencePieceProcessor(**__lowerCamelCase )
spm.Load(str(__lowerCamelCase ) )
return spm
def __UpperCAmelCase ( __lowerCamelCase ) -> Union[Dict, List]:
with open(__lowerCamelCase , '''r''' ) as f:
return json.load(__lowerCamelCase )
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> None:
with open(__lowerCamelCase , '''w''' ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
| 16
|
from __future__ import annotations
lowerCamelCase__ = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ):
'''simple docstring'''
__a = graph
# mapping node to its parent in resulting breadth first tree
__a = {}
__a = source_vertex
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = {self.source_vertex}
__a = None
__a = [self.source_vertex] # first in first out queue
while queue:
__a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowercase )
__a = vertex
queue.append(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
__a = self.parent.get(__lowercase )
if target_vertex_parent is None:
__a = (
F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowercase )
return self.shortest_path(__lowercase ) + F"->{target_vertex}"
if __name__ == "__main__":
lowerCamelCase__ = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 302
| 0
|
"""simple docstring"""
_a = 6_55_21
def _A ( UpperCamelCase_ : str) -> int:
'''simple docstring'''
__lowercase = 1
__lowercase = 0
for plain_chr in plain_text:
__lowercase = (a + ord(UpperCamelCase_)) % MOD_ADLER
__lowercase = (b + a) % MOD_ADLER
return (b << 16) | a
| 17
|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple =KandinskyVaaPriorPipeline
__lowerCamelCase : Union[str, Any] =['prompt']
__lowerCamelCase : Any =['prompt', 'negative_prompt']
__lowerCamelCase : List[str] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
__lowerCamelCase : List[Any] =False
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__lowercase )
@property
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
__a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__a = PriorTransformer(**__lowercase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__a = CLIPVisionModelWithProjection(__lowercase )
return model
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.dummy_prior
__a = self.dummy_image_encoder
__a = self.dummy_text_encoder
__a = self.dummy_tokenizer
__a = self.dummy_image_processor
__a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , )
__a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ):
'''simple docstring'''
if str(__lowercase ).startswith("""mps""" ):
__a = torch.manual_seed(__lowercase )
else:
__a = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = """cpu"""
__a = self.get_dummy_components()
__a = self.pipeline_class(**__lowercase )
__a = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__a = pipe(**self.get_dummy_inputs(__lowercase ) )
__a = output.image_embeds
__a = pipe(
**self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0]
__a = image[0, -10:]
__a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = True
__a = False
self._test_inference_batch_single_identical(
test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
@skip_mps
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCamelCase : List[str] = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 18
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = Dict[str, Any]
lowerCamelCase__ = List[Prediction]
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ):
'''simple docstring'''
super().__init__(*__lowercase , **__lowercase )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ):
'''simple docstring'''
__a = {}
if "threshold" in kwargs:
__a = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ):
'''simple docstring'''
return super().__call__(*__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : Tuple ):
'''simple docstring'''
__a = load_image(__lowercase )
__a = torch.IntTensor([[image.height, image.width]] )
__a = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
__a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
__a = target_size
return inputs
def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ):
'''simple docstring'''
__a = model_inputs.pop("""target_size""" )
__a = self.model(**__lowercase )
__a = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
__a = model_inputs["""bbox"""]
return model_outputs
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ):
'''simple docstring'''
__a = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__a , __a = target_size[0].tolist()
def unnormalize(__lowercase : Optional[Any] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
__a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
__a = ["""score""", """label""", """box"""]
__a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase )
__a = raw_annotations[0]
__a = raw_annotation["""scores"""]
__a = raw_annotation["""labels"""]
__a = raw_annotation["""boxes"""]
__a = scores.tolist()
__a = [self.model.config.idalabel[label.item()] for label in labels]
__a = [self._get_bounding_box(__lowercase ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__a = ["""score""", """label""", """box"""]
__a = [
dict(zip(__lowercase , __lowercase ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
__a , __a , __a , __a = box.int().tolist()
__a = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 302
| 0
|
from collections.abc import Callable
import numpy as np
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
lowerCamelCase_ = int(np.ceil((x_end - xa) / step_size ) )
lowerCamelCase_ = np.zeros((n + 1,) )
lowerCamelCase_ = ya
lowerCamelCase_ = xa
for k in range(lowerCamelCase__ ):
lowerCamelCase_ = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] )
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"""configuration_efficientnet""": [
"""EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientNetConfig""",
"""EfficientNetOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""EfficientNetImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientNetForImageClassification""",
"""EfficientNetModel""",
"""EfficientNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 302
| 0
|
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowercase : Tuple = {"""UserAgent""": UserAgent().random}
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> dict:
lowercase : Any = script.contents[0]
lowercase : Union[str, Any] = json.loads(data[data.find("""{\"config\"""" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __snake_case :
def __init__( self ,snake_case ):
'''simple docstring'''
lowercase : List[Any] = f"https://www.instagram.com/{username}/"
lowercase : str = self.get_json()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Tuple = requests.get(self.url ,headers=snake_case ).text
lowercase : Dict = BeautifulSoup(snake_case ,"""html.parser""" ).find_all("""script""" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self ):
'''simple docstring'''
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def _snake_case( SCREAMING_SNAKE_CASE__ = "github" ) -> None:
import os
if os.environ.get("""CI""" ):
return # test failing on GitHub Actions
lowercase : Tuple = InstagramUser(SCREAMING_SNAKE_CASE__ )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE__ )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120_000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("""https://instagram.""" )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase : List[str] = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 20
|
import random
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
__a , __a , __a = [], [], []
for element in data:
if element < pivot:
less.append(_SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(_SCREAMING_SNAKE_CASE )
else:
equal.append(_SCREAMING_SNAKE_CASE )
return less, equal, greater
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0:
return None
__a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )]
__a = 0
__a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
| 302
| 0
|
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Optional[Any] = 'laion/clap-htsat-unfused'
_lowercase : Optional[Any] = tempfile.mkdtemp()
def UpperCamelCase ( self, **lowerCamelCase) -> List[Any]:
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint, **lowerCamelCase)
def UpperCamelCase ( self, **lowerCamelCase) -> str:
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowerCamelCase)
def UpperCamelCase ( self) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : str = self.get_tokenizer()
_lowercase : Optional[int] = self.get_feature_extractor()
_lowercase : int = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowercase : Union[str, Any] = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, lowerCamelCase)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, lowerCamelCase)
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
_lowercase : str = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)')
_lowercase : List[str] = self.get_feature_extractor(do_normalize=lowerCamelCase, padding_value=1.0)
_lowercase : Tuple = ClapProcessor.from_pretrained(
self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase, padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, lowerCamelCase)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, lowerCamelCase)
def UpperCamelCase ( self) -> int:
"""simple docstring"""
_lowercase : Union[str, Any] = self.get_feature_extractor()
_lowercase : List[Any] = self.get_tokenizer()
_lowercase : Dict = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase)
_lowercase : Union[str, Any] = floats_list((3, 10_00))
_lowercase : str = feature_extractor(lowerCamelCase, return_tensors='np')
_lowercase : Tuple = processor(audios=lowerCamelCase, return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2)
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Optional[int] = self.get_feature_extractor()
_lowercase : Any = self.get_tokenizer()
_lowercase : Dict = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase)
_lowercase : Any = 'This is a test string'
_lowercase : List[Any] = processor(text=lowerCamelCase)
_lowercase : Dict = tokenizer(lowerCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : Tuple = self.get_feature_extractor()
_lowercase : str = self.get_tokenizer()
_lowercase : List[str] = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase)
_lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowercase : str = processor.batch_decode(lowerCamelCase)
_lowercase : Any = tokenizer.batch_decode(lowerCamelCase)
self.assertListEqual(lowerCamelCase, lowerCamelCase)
def UpperCamelCase ( self) -> int:
"""simple docstring"""
_lowercase : Dict = self.get_feature_extractor()
_lowercase : Any = self.get_tokenizer()
_lowercase : Tuple = ClapProcessor(tokenizer=lowerCamelCase, feature_extractor=lowerCamelCase)
self.assertListEqual(
processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
| 21
|
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowerCamelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Optional[int] , **__lowercase : Dict ):
'''simple docstring'''
super().__init__(**__lowercase )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ):
'''simple docstring'''
return super().__call__(__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ):
'''simple docstring'''
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__a = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ):
'''simple docstring'''
if isinstance(__lowercase , __lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(__lowercase ).content
else:
with open(__lowercase , """rb""" ) as f:
__a = f.read()
if isinstance(__lowercase , __lowercase ):
__a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate )
if not isinstance(__lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
__a = candidate_labels
__a = [hypothesis_template.format(__lowercase ) for x in candidate_labels]
__a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase )
__a = [text_inputs]
return inputs
def UpperCamelCase_ ( self : Any , __lowercase : Any ):
'''simple docstring'''
__a = model_inputs.pop("""candidate_labels""" )
__a = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , __lowercase ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**__lowercase , **__lowercase )
__a = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = model_outputs.pop("""candidate_labels""" )
__a = model_outputs["""logits"""][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
__a = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] )
]
return result
| 302
| 0
|
'''simple docstring'''
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE :int = {
'''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''',
}
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Any = """align_text_model"""
def __init__( self : str , snake_case_ : Any=3_0_5_2_2 , snake_case_ : Dict=7_6_8 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Dict=1_2 , snake_case_ : Optional[int]=3_0_7_2 , snake_case_ : Optional[int]="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Dict=5_1_2 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.0_2 , snake_case_ : Dict=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : Optional[Any]="absolute" , snake_case_ : Dict=True , **snake_case_ : Dict , ):
super().__init__(**snake_case_ )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = use_cache
_UpperCAmelCase = pad_token_id
@classmethod
def lowercase ( cls : Optional[int] , snake_case_ : Union[str, os.PathLike] , **snake_case_ : Optional[int] ):
cls._set_token_in_kwargs(snake_case_ )
_UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(snake_case_ , **snake_case_ )
# get the text config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
_UpperCAmelCase = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case_ , **snake_case_ )
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Optional[int] = """align_vision_model"""
def __init__( self : int , snake_case_ : int = 3 , snake_case_ : int = 6_0_0 , snake_case_ : float = 2.0 , snake_case_ : float = 3.1 , snake_case_ : int = 8 , snake_case_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , snake_case_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , snake_case_ : List[int] = [] , snake_case_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case_ : float = 0.2_5 , snake_case_ : str = "swish" , snake_case_ : int = 2_5_6_0 , snake_case_ : str = "mean" , snake_case_ : float = 0.0_2 , snake_case_ : float = 0.0_0_1 , snake_case_ : float = 0.9_9 , snake_case_ : float = 0.2 , **snake_case_ : Dict , ):
super().__init__(**snake_case_ )
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = width_coefficient
_UpperCAmelCase = depth_coefficient
_UpperCAmelCase = depth_divisor
_UpperCAmelCase = kernel_sizes
_UpperCAmelCase = in_channels
_UpperCAmelCase = out_channels
_UpperCAmelCase = depthwise_padding
_UpperCAmelCase = strides
_UpperCAmelCase = num_block_repeats
_UpperCAmelCase = expand_ratios
_UpperCAmelCase = squeeze_expansion_ratio
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dim
_UpperCAmelCase = pooling_type
_UpperCAmelCase = initializer_range
_UpperCAmelCase = batch_norm_eps
_UpperCAmelCase = batch_norm_momentum
_UpperCAmelCase = drop_connect_rate
_UpperCAmelCase = sum(snake_case_ ) * 4
@classmethod
def lowercase ( cls : int , snake_case_ : Union[str, os.PathLike] , **snake_case_ : Tuple ):
cls._set_token_in_kwargs(snake_case_ )
_UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(snake_case_ , **snake_case_ )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
_UpperCAmelCase = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case_ , **snake_case_ )
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : Optional[int] = """align"""
_lowerCamelCase : Any = True
def __init__( self : Tuple , snake_case_ : Dict=None , snake_case_ : Dict=None , snake_case_ : Tuple=6_4_0 , snake_case_ : List[str]=1.0 , snake_case_ : Dict=0.0_2 , **snake_case_ : Optional[int] , ):
super().__init__(**snake_case_ )
if text_config is None:
_UpperCAmelCase = {}
logger.info("text_config is None. Initializing the AlignTextConfig with default values." )
if vision_config is None:
_UpperCAmelCase = {}
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." )
_UpperCAmelCase = AlignTextConfig(**snake_case_ )
_UpperCAmelCase = AlignVisionConfig(**snake_case_ )
_UpperCAmelCase = projection_dim
_UpperCAmelCase = temperature_init_value
_UpperCAmelCase = initializer_range
@classmethod
def lowercase ( cls : Optional[Any] , snake_case_ : AlignTextConfig , snake_case_ : AlignVisionConfig , **snake_case_ : Union[str, Any] ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ )
def lowercase ( self : List[Any] ):
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.text_config.to_dict()
_UpperCAmelCase = self.vision_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output
| 22
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCamelCase__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Dict =['pixel_values']
def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ):
'''simple docstring'''
super().__init__(**__lowercase )
__a = size if size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" )
__a = do_resize
__a = do_rescale
__a = do_normalize
__a = do_center_crop
__a = crop_size
__a = size
__a = resample
__a = rescale_factor
__a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "shortest_edge" in size:
__a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__a = (size["""height"""], size["""width"""])
else:
raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" )
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ):
'''simple docstring'''
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ):
'''simple docstring'''
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = do_resize if do_resize is not None else self.do_resize
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = do_center_crop if do_center_crop is not None else self.do_center_crop
__a = crop_size if crop_size is not None else self.crop_size
__a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase )
__a = resample if resample is not None else self.resample
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = size if size is not None else self.size
__a = get_size_dict(__lowercase )
if not is_batched(__lowercase ):
__a = [images]
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__a = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 302
| 0
|
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Optional[int]=13 , __snake_case : str=7 , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : Any=False , __snake_case : Union[str, Any]=True , __snake_case : Dict=99 , __snake_case : Optional[int]=32 , __snake_case : Any=5 , __snake_case : Any=4 , __snake_case : List[Any]=37 , __snake_case : Dict="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=16 , __snake_case : Any=2 , __snake_case : Optional[Any]=0.02 , __snake_case : List[str]=3 , __snake_case : str=4 , __snake_case : Optional[int]=None , ) -> Optional[int]:
UpperCAmelCase : Dict = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : Optional[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Any = use_token_type_ids
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Tuple = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Dict = type_vocab_size
UpperCAmelCase : Optional[int] = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = num_labels
UpperCAmelCase : Tuple = num_choices
UpperCAmelCase : List[str] = scope
def A ( self : Any ) -> str:
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Tuple = None
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : List[Any] = None
if self.use_labels:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : Optional[Any] ) -> Optional[int]:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , use_stable_embedding=__snake_case , )
def A ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any , __snake_case : int ) -> int:
UpperCAmelCase : Optional[Any] = OpenLlamaModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case )
UpperCAmelCase : Dict = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str , ) -> Tuple:
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : Optional[Any] = OpenLlamaModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Union[str, Any] = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Dict , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , ) -> Optional[int]:
UpperCAmelCase : int = OpenLlamaForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , ) -> List[Any]:
UpperCAmelCase : List[str] = True
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : Union[str, Any] = OpenLlamaForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
# first forward pass
UpperCAmelCase : Any = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , )
UpperCAmelCase : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : Dict = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0]
UpperCAmelCase : Union[str, Any] = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0]
# select random slice
UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
def A ( self : Dict ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowerCamelCase__ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ = (
{
"""feature-extraction""": OpenLlamaModel,
"""text-classification""": OpenLlamaForSequenceClassification,
"""text-generation""": OpenLlamaForCausalLM,
"""zero-shot""": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[int] = OpenLlamaModelTester(self )
UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : Dict ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def A ( self : Dict ) -> str:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : Union[str, Any] = type
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Dict ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[int] = input_dict['''input_ids''']
UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : List[str] ) -> str:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = 3
UpperCAmelCase : Dict = '''single_label_classification'''
UpperCAmelCase : int = input_dict['''input_ids''']
UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = 3
UpperCAmelCase : List[str] = '''multi_label_classification'''
UpperCAmelCase : Union[str, Any] = input_dict['''input_ids''']
UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : Union[str, Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Any = OpenLlamaForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' )
def A ( self : List[str] ) -> Optional[int]:
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)] )
def A ( self : Any , __snake_case : Any ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : List[str] = OpenLlamaModel(__snake_case )
original_model.to(__snake_case )
original_model.eval()
UpperCAmelCase : int = original_model(__snake_case ).last_hidden_state
UpperCAmelCase : Optional[int] = original_model(__snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : str = {'''type''': scaling_type, '''factor''': 10.0}
UpperCAmelCase : List[str] = OpenLlamaModel(__snake_case )
scaled_model.to(__snake_case )
scaled_model.eval()
UpperCAmelCase : List[str] = scaled_model(__snake_case ).last_hidden_state
UpperCAmelCase : List[str] = scaled_model(__snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
| 23
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoTokenizer.from_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = tokenizer("""This is me""" , return_tensors="""pt""" )
__a = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__a = model.generate(**__lowercase )
__a = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__a = model_reloaded.generate(**__lowercase )
self.assertTrue(torch.allclose(__lowercase , __lowercase ) )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowercase ):
model.save_pretrained(__lowercase )
__a = model.reverse_bettertransformer()
model.save_pretrained(__lowercase )
| 302
| 0
|
def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str ) -> bool:
__snake_case = len(snake_case_ ) + 1
__snake_case = len(snake_case_ ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
__snake_case = [[0 for i in range(snake_case_ )] for j in range(snake_case_ )]
# since string of zero length match pattern of zero length
__snake_case = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , snake_case_ ):
__snake_case = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , snake_case_ ):
__snake_case = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , snake_case_ ):
for j in range(1 , snake_case_ ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
__snake_case = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
__snake_case = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
__snake_case = dp[i - 1][j]
else:
__snake_case = 0
else:
__snake_case = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
snake_case_ = 'aab'
snake_case_ = 'c*a*b'
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'{input_string} matches the given pattern {pattern}')
else:
print(F'{input_string} does not match with the given pattern {pattern}')
| 24
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCamelCase__ = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] ='albert'
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_hidden_groups
__a = num_attention_heads
__a = inner_group_num
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = classifier_dropout_prob
__a = position_embedding_type
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 302
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase_ (a__ , unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@property
def __magic_name__ (self ) -> Optional[int]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ort.SessionOptions()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = False
return options
def __magic_name__ (self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
SCREAMING_SNAKE_CASE__ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
SCREAMING_SNAKE_CASE__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """A red cat sitting on a park bench"""
SCREAMING_SNAKE_CASE__ : int = np.random.RandomState(0 )
SCREAMING_SNAKE_CASE__ : Dict = pipe(
prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.images
SCREAMING_SNAKE_CASE__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
SCREAMING_SNAKE_CASE__ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
SCREAMING_SNAKE_CASE__ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = """A red cat sitting on a park bench"""
SCREAMING_SNAKE_CASE__ : Dict = np.random.RandomState(0 )
SCREAMING_SNAKE_CASE__ : str = pipe(
prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ : Any = output.images
SCREAMING_SNAKE_CASE__ : int = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 25
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
"configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"],
"tokenization_deberta": ["DebertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["DebertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
"DebertaForQuestionAnswering",
"DebertaForSequenceClassification",
"DebertaForTokenClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
"TFDebertaForQuestionAnswering",
"TFDebertaForSequenceClassification",
"TFDebertaForTokenClassification",
"TFDebertaModel",
"TFDebertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26
|
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302
| 0
|
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__lowercase : List[Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__lowercase : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__lowercase : int = 'zero2'
__lowercase : Dict = 'zero3'
__lowercase : List[Any] = [ZEROa, ZEROa]
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
__a : Dict = parameterized.to_safe_name('_'.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return F"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__lowercase : List[Any] = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __UpperCamelCase ( lowerCAmelCase_ ):
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
def __UpperCAmelCase ( self , __a ):
'''simple docstring'''
pass
def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ):
'''simple docstring'''
__a : Any = models[model]
__a : Union[str, Any] = self.run_trainer(
stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , )
self.do_checks(__a )
return output_dir
def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ):
'''simple docstring'''
__a : Tuple = self.get_auto_remove_tmp_dir('./xxx' , after=__a )
__a : Optional[Any] = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(__a )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__a : int = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
__a : Union[str, Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
__a : Dict = self.get_launcher(__a )
__a : Tuple = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__a , env=self.get_env() )
return output_dir
def __UpperCAmelCase ( self , __a=False ):
'''simple docstring'''
__a : int = min(2 , get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 27
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = MobileViTVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowerCamelCase : Any =(
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : int =False
__lowerCamelCase : Any =False
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(__lowercase ) , __lowercase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(__lowercase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __lowercase )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=__lowercase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __lowercase )
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __lowercase )
| 302
| 0
|
'''simple docstring'''
import torch
from torch import nn
class SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=1 , UpperCamelCase__ : int=False ):
"""simple docstring"""
super().__init__()
UpperCamelCase = n_token
UpperCamelCase = d_embed
UpperCamelCase = d_proj
UpperCamelCase = cutoffs + [n_token]
UpperCamelCase = [0] + self.cutoffs
UpperCamelCase = div_val
UpperCamelCase = self.cutoffs[0]
UpperCamelCase = len(self.cutoffs ) - 1
UpperCamelCase = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) )
UpperCamelCase = nn.ModuleList()
UpperCamelCase = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) )
else:
self.out_projs.append(UpperCamelCase__ )
self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) )
else:
for i in range(len(self.cutoffs ) ):
UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCamelCase = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) )
self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) )
UpperCamelCase = keep_order
def A ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
if proj is None:
UpperCamelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
UpperCamelCase = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() )
UpperCamelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def A ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : str=False ):
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
UpperCamelCase = hidden[..., :-1, :].contiguous()
UpperCamelCase = labels[..., 1:].contiguous()
UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) )
UpperCamelCase = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError('Input and labels should have the same size in the batch dimension.' )
else:
UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
UpperCamelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
UpperCamelCase = labels != -1_0_0
UpperCamelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device )
UpperCamelCase = (
-nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )
else:
# construct weights and biases
UpperCamelCase , UpperCamelCase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx]
UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx]
else:
UpperCamelCase = self.out_layers[i].weight
UpperCamelCase = self.out_layers[i].bias
if i == 0:
UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 )
UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCamelCase__ )
biases.append(UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0]
UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
if labels is None:
UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
UpperCamelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device )
UpperCamelCase = 0
UpperCamelCase = [0] + self.cutoffs
for i in range(len(UpperCamelCase__ ) - 1 ):
UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
UpperCamelCase = (labels >= l_idx) & (labels < r_idx)
UpperCamelCase = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
UpperCamelCase = labels.index_select(0 , UpperCamelCase__ ) - l_idx
UpperCamelCase = head_logprob.index_select(0 , UpperCamelCase__ )
UpperCamelCase = hidden.index_select(0 , UpperCamelCase__ )
else:
UpperCamelCase = hidden
if i == 0:
if labels is not None:
UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
UpperCamelCase = head_logprob[:, : self.cutoffs[0]]
else:
UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i]
UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
UpperCamelCase = logprob_i
if labels is not None:
if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCamelCase__ , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def A ( self : List[Any] , UpperCamelCase__ : str ):
"""simple docstring"""
if self.n_clusters == 0:
UpperCamelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )
else:
# construct weights and biases
UpperCamelCase , UpperCamelCase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx]
UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx]
else:
UpperCamelCase = self.out_layers[i].weight
UpperCamelCase = self.out_layers[i].bias
if i == 0:
UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 )
UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCamelCase__ )
biases.append(UpperCamelCase__ )
UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0]
UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
UpperCamelCase = [0] + self.cutoffs
for i in range(len(UpperCamelCase__ ) - 1 ):
UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
UpperCamelCase = head_logprob[:, : self.cutoffs[0]]
else:
UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i]
UpperCamelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCamelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 )
UpperCamelCase = head_logprob[:, -i] + tail_logprob_i
UpperCamelCase = logprob_i
return out
| 28
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 302
| 0
|
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
__UpperCAmelCase = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'
}
def lowercase__ ( __snake_case : str = "dhaka" , __snake_case : int = 5 ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = min(__snake_case , 50 ) # Prevent abuse!
UpperCAmelCase_ : Dict = {
'q': query,
'tbm': 'isch',
'hl': 'en',
'ijn': '0',
}
UpperCAmelCase_ : Any = requests.get('https://www.google.com/search' , params=__snake_case , headers=__snake_case )
UpperCAmelCase_ : Dict = BeautifulSoup(html.text , 'html.parser' )
UpperCAmelCase_ : Any = ''.join(
re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) )
UpperCAmelCase_ : int = json.dumps(__snake_case )
UpperCAmelCase_ : List[Any] = json.loads(__snake_case )
UpperCAmelCase_ : Union[str, Any] = re.findall(
R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , __snake_case , )
if not matched_google_image_data:
return 0
UpperCAmelCase_ : Union[str, Any] = re.sub(
R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(__snake_case ) , )
UpperCAmelCase_ : Optional[int] = re.findall(
R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , __snake_case , )
for index, fixed_full_res_image in enumerate(__snake_case ):
if index >= max_images:
return index
UpperCAmelCase_ : Optional[int] = bytes(__snake_case , 'ascii' ).decode(
'unicode-escape' )
UpperCAmelCase_ : Union[str, Any] = bytes(__snake_case , 'ascii' ).decode(
'unicode-escape' )
UpperCAmelCase_ : Union[str, Any] = urllib.request.build_opener()
UpperCAmelCase_ : Dict = [
(
'User-Agent',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582',
)
]
urllib.request.install_opener(__snake_case )
UpperCAmelCase_ : Union[str, Any] = F"query_{query.replace(' ' , '_' )}"
if not os.path.exists(__snake_case ):
os.makedirs(__snake_case )
urllib.request.urlretrieve( # noqa: S310
__snake_case , F"{path_name}/original_size_img_{index}.jpg" )
return index
if __name__ == "__main__":
try:
__UpperCAmelCase = download_images_from_google_query(sys.argv[1])
print(F'{image_count} images were downloaded to disk.')
except IndexError:
print('Please provide a search term.')
raise
| 29
|
import string
import numpy
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : List[str] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
__lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
__lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ )
def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ):
'''simple docstring'''
__a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__a = encrypt_key.shape[0]
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
return self.key_string.index(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : int ):
'''simple docstring'''
return self.key_string[round(__lowercase )]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = len(self.key_string )
if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1:
__a = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = [char for char in text.upper() if char in self.key_string]
__a = chars[-1]
while len(__lowercase ) % self.break_key != 0:
chars.append(__lowercase )
return "".join(__lowercase )
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[
0
]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__a = i
break
__a = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__lowercase ) )
def UpperCamelCase_ ( self : Any , __lowercase : str ):
'''simple docstring'''
__a = self.make_decrypt_key()
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = int(input("""Enter the order of the encryption key: """ ) )
__a = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(_SCREAMING_SNAKE_CASE ):
__a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
__a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__a = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__a = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
__a = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
import logging
from transformers.configuration_utils import PretrainedConfig
__a = logging.getLogger(__name__)
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
a :Optional[int] = 'masked_bert'
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE_ : List[str]=7_6_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : str=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Any=1e-12 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : Optional[int]="topK" , SCREAMING_SNAKE_CASE_ : Dict="constant" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[Any]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = hidden_act
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = pruning_method
lowercase_ = mask_init
lowercase_ = mask_scale
| 30
|
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] ='autoformer'
__lowerCamelCase : str ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ):
'''simple docstring'''
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowercase , **__lowercase )
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 302
| 0
|
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def __init__( self : List[Any] ):
_UpperCAmelCase : Union[str, Any] = []
def _A ( self : Any , A : Union[str, Any] , A : Optional[int] , A : List[str] , **A : Tuple ):
self.events.append("on_init_end" )
def _A ( self : Any , A : str , A : List[Any] , A : List[Any] , **A : Tuple ):
self.events.append("on_train_begin" )
def _A ( self : Tuple , A : List[str] , A : Tuple , A : int , **A : List[str] ):
self.events.append("on_train_end" )
def _A ( self : Optional[Any] , A : Dict , A : Any , A : Optional[Any] , **A : List[Any] ):
self.events.append("on_epoch_begin" )
def _A ( self : Optional[Any] , A : List[Any] , A : List[str] , A : Optional[int] , **A : Optional[int] ):
self.events.append("on_epoch_end" )
def _A ( self : List[str] , A : Optional[int] , A : List[Any] , A : Union[str, Any] , **A : Any ):
self.events.append("on_step_begin" )
def _A ( self : Tuple , A : Union[str, Any] , A : int , A : Optional[int] , **A : int ):
self.events.append("on_step_end" )
def _A ( self : Optional[int] , A : Optional[Any] , A : Union[str, Any] , A : str , **A : Union[str, Any] ):
self.events.append("on_evaluate" )
def _A ( self : Optional[Any] , A : Optional[int] , A : Dict , A : List[Any] , **A : Dict ):
self.events.append("on_predict" )
def _A ( self : Dict , A : Dict , A : List[Any] , A : Dict , **A : str ):
self.events.append("on_save" )
def _A ( self : Tuple , A : Optional[Any] , A : Union[str, Any] , A : Optional[int] , **A : Dict ):
self.events.append("on_log" )
def _A ( self : Optional[int] , A : Optional[Any] , A : Tuple , A : Tuple , **A : List[str] ):
self.events.append("on_prediction_step" )
@require_torch
class lowerCamelCase_ (unittest.TestCase ):
'''simple docstring'''
def _A ( self : Optional[int] ):
_UpperCAmelCase : Optional[Any] = tempfile.mkdtemp()
def _A ( self : List[Any] ):
shutil.rmtree(self.output_dir )
def _A ( self : Union[str, Any] , A : Optional[int]=0 , A : Optional[Any]=0 , A : Optional[Any]=64 , A : Dict=64 , A : Any=None , A : Tuple=False , **A : Optional[int] ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
_UpperCAmelCase : str = RegressionDataset(length=A )
_UpperCAmelCase : Union[str, Any] = RegressionDataset(length=A )
_UpperCAmelCase : Any = RegressionModelConfig(a=A , b=A )
_UpperCAmelCase : List[Any] = RegressionPreTrainedModel(A )
_UpperCAmelCase : Dict = TrainingArguments(self.output_dir , disable_tqdm=A , report_to=[] , **A )
return Trainer(
A , A , train_dataset=A , eval_dataset=A , callbacks=A , )
def _A ( self : str , A : List[str] , A : List[str] ):
self.assertEqual(len(A ) , len(A ) )
# Order doesn't matter
_UpperCAmelCase : Tuple = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ )
_UpperCAmelCase : Any = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ )
for cba, cba in zip(A , A ):
if isinstance(A , A ) and isinstance(A , A ):
self.assertEqual(A , A )
elif isinstance(A , A ) and not isinstance(A , A ):
self.assertEqual(A , cba.__class__ )
elif not isinstance(A , A ) and isinstance(A , A ):
self.assertEqual(cba.__class__ , A )
else:
self.assertEqual(A , A )
def _A ( self : int , A : List[str] ):
_UpperCAmelCase : List[str] = ["on_init_end", "on_train_begin"]
_UpperCAmelCase : str = 0
_UpperCAmelCase : Optional[Any] = len(trainer.get_eval_dataloader() )
_UpperCAmelCase : Optional[int] = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("on_epoch_begin" )
for _ in range(A ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("on_save" )
expected_events.append("on_epoch_end" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def _A ( self : str ):
_UpperCAmelCase : Any = self.get_trainer()
_UpperCAmelCase : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
# Callbacks passed at init are added to the default callbacks
_UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
_UpperCAmelCase : List[Any] = self.get_trainer(disable_tqdm=A )
_UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
def _A ( self : Optional[Any] ):
_UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
_UpperCAmelCase : Dict = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(A )
expected_callbacks.remove(A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
_UpperCAmelCase : Optional[Any] = self.get_trainer()
_UpperCAmelCase : Any = trainer.pop_callback(A )
self.assertEqual(cb.__class__ , A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
trainer.add_callback(A )
expected_callbacks.insert(0 , A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
# We can also add, pop, or remove by instance
_UpperCAmelCase : Union[str, Any] = self.get_trainer()
_UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(A )
expected_callbacks.remove(A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
_UpperCAmelCase : List[Any] = self.get_trainer()
_UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0]
_UpperCAmelCase : Union[str, Any] = trainer.pop_callback(A )
self.assertEqual(A , A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
trainer.add_callback(A )
expected_callbacks.insert(0 , A )
self.check_callbacks_equality(trainer.callback_handler.callbacks , A )
def _A ( self : Optional[Any] ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="ignore" , category=A )
_UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
_UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
# Independent log/save/eval
_UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
_UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
_UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
_UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
_UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" )
trainer.train()
_UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
_UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" )
trainer.train()
_UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
# A bit of everything
_UpperCAmelCase : int = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , )
trainer.train()
_UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(A , self.get_expected_events(A ) )
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning" ) as warn_mock:
_UpperCAmelCase : Optional[Any] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(A ) in warn_mock.call_args[0][0]
| 31
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase_ : List[Any] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ ):
snake_case__ : Optional[int] = '''bit'''
snake_case__ : Optional[Any] = ['''preactivation''', '''bottleneck''']
snake_case__ : Tuple = ['''SAME''', '''VALID''']
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=6_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , SCREAMING_SNAKE_CASE__ : Optional[Any]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE__ : Optional[Any]="preactivation" , SCREAMING_SNAKE_CASE__ : Tuple="relu" , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=3_2 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : str , ) -> str:
super().__init__(**SCREAMING_SNAKE_CASE__ )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
a_ : Any = global_padding.upper()
else:
raise ValueError(F"""Padding strategy {global_padding} not supported""" )
a_ : Optional[Any] = num_channels
a_ : List[Any] = embedding_size
a_ : Union[str, Any] = hidden_sizes
a_ : List[str] = depths
a_ : Any = layer_type
a_ : Optional[int] = hidden_act
a_ : Tuple = global_padding
a_ : List[Any] = num_groups
a_ : List[str] = drop_path_rate
a_ : List[Any] = embedding_dynamic_padding
a_ : int = output_stride
a_ : str = width_factor
a_ : Dict = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )]
a_ , a_ : List[Any] = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names )
| 32
|
from __future__ import annotations
lowerCamelCase__ = """#"""
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ):
'''simple docstring'''
__a = {}
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in text:
if char not in trie:
__a = {}
__a = trie[char]
__a = True
def UpperCamelCase_ ( self : Tuple , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in prefix:
if char in trie:
__a = trie[char]
else:
return []
return self._elements(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ):
'''simple docstring'''
__a = []
for c, v in d.items():
__a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )]
result.extend(__lowercase )
return tuple(__lowercase )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = trie.find_word(_SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def lowerCAmelCase__ ( ):
"""simple docstring"""
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__A : List[str] = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''')
@total_ordering
@dataclass
class _UpperCAmelCase :
SCREAMING_SNAKE_CASE_ : str
SCREAMING_SNAKE_CASE_ : Optional[str] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
def A ( self : Optional[int] ) -> Union[str, Any]:
lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = _str_to_version_tuple(self.version_str )
def __repr__( self : int ) -> List[Any]:
return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def A ( self : Any ) -> Union[str, Any]:
return self.major, self.minor, self.patch
def A ( self : Dict , A : List[Any] ) -> Tuple:
if isinstance(A , A ):
return Version(A )
elif isinstance(A , A ):
return other
raise TypeError(F'''{other} (type {type(A )}) cannot be compared to version.''' )
def __eq__( self : Union[str, Any] , A : str ) -> List[str]:
try:
lowercase_ : Optional[int] = self._validate_operand(A )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : int , A : str ) -> Union[str, Any]:
lowercase_ : Optional[Any] = self._validate_operand(A )
return self.tuple < other.tuple
def __hash__( self : Dict ) -> Optional[Any]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def A ( cls : int , A : List[Any] ) -> List[str]:
lowercase_ : Dict = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def A ( self : Optional[int] ) -> str:
return self.version_str
def lowercase ( __snake_case : Any ):
lowercase_ : int = _VERSION_REG.match(__snake_case )
if not res:
raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(__snake_case ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] )
def lowercase ( __snake_case : int ):
return ".".join(str(__snake_case ) for v in version_tuple )
| 33
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__lowercase , __lowercase , 0 )
__a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__lowercase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
__a = nn.Linear(__lowercase , __lowercase )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__lowercase , __lowercase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , )
for d in range(__lowercase )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__lowercase )
elif norm_in_type is None:
__a = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
__a = nn.LayerNorm(__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = {}
def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ):
if hasattr(__lowercase , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__lowercase , __lowercase , __lowercase )
return processors
def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__a = len(self.attn_processors.keys() )
if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ):
if hasattr(__lowercase , """set_processor""" ):
if not isinstance(__lowercase , __lowercase ):
module.set_processor(__lowercase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ):
'''simple docstring'''
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__lowercase ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__lowercase )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__lowercase )
__a = self.embedding_proj(__lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__lowercase )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 )
additional_embeds.append(__lowercase )
__a = torch.cat(
__lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__lowercase )
for block in self.transformer_blocks:
__a = block(__lowercase , attention_mask=__lowercase )
__a = self.norm_out(__lowercase )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple ):
'''simple docstring'''
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 302
| 0
|
'''simple docstring'''
import numpy as np
from transformers import Pipeline
def snake_case_ (_a : str ):
UpperCAmelCase = np.max(_a , axis=-1 , keepdims=_a )
UpperCAmelCase = np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_a )
class _a ( __a ):
def A ( self : Tuple , **lowercase : Any ):
'''simple docstring'''
UpperCAmelCase = {}
if "second_text" in kwargs:
UpperCAmelCase = kwargs['''second_text''']
return preprocess_kwargs, {}, {}
def A ( self : Union[str, Any] , lowercase : Any , lowercase : Dict=None ):
'''simple docstring'''
return self.tokenizer(lowercase , text_pair=lowercase , return_tensors=self.framework )
def A ( self : str , lowercase : List[Any] ):
'''simple docstring'''
return self.model(**lowercase )
def A ( self : Union[str, Any] , lowercase : Tuple ):
'''simple docstring'''
UpperCAmelCase = model_outputs.logits[0].numpy()
UpperCAmelCase = softmax(lowercase )
UpperCAmelCase = np.argmax(lowercase )
UpperCAmelCase = self.model.config.idalabel[best_class]
UpperCAmelCase = probabilities[best_class].item()
UpperCAmelCase = logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 34
|
from functools import lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
__a = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
while True:
# Increment each value of a generated range
__a = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ):
"""simple docstring"""
__a = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 302
| 0
|
'''simple docstring'''
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__a = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__a = direct_transformers_import(PATH_TO_TRANSFORMERS)
__a = transformers.models.auto.configuration_auto.CONFIG_MAPPING
__a = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
}
)
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
snake_case__ : List[str] = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
f"config.{attribute}" in modeling_source
or f"getattr(config, \"{attribute}\"" in modeling_source
or f"getattr(self.config, \"{attribute}\"" in modeling_source
):
snake_case__ : str = True
# Deal with multi-line cases
elif (
re.search(
rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , _lowerCAmelCase , )
is not None
):
snake_case__ : Optional[Any] = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
snake_case__ : Union[str, Any] = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
snake_case__ : List[Any] = [
"""bos_index""",
"""eos_index""",
"""pad_index""",
"""unk_index""",
"""mask_index""",
"""image_size""",
"""use_cache""",
"""out_features""",
"""out_indices""",
]
snake_case__ : Union[str, Any] = ["""encoder_no_repeat_ngram_size"""]
# Special cases to be allowed
snake_case__ : Union[str, Any] = True
if not attribute_used:
snake_case__ : Any = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
snake_case__ : Dict = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
snake_case__ : Any = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
snake_case__ : Union[str, Any] = True
elif attribute.endswith("""_token_id""" ):
snake_case__ : Union[str, Any] = True
# configuration class specific cases
if not case_allowed:
snake_case__ : str = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
snake_case__ : Tuple = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def __snake_case( _lowerCAmelCase ) -> str:
snake_case__ : List[str] = dict(inspect.signature(config_class.__init__ ).parameters )
snake_case__ : Tuple = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]]
snake_case__ : List[str] = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
snake_case__ : str = {}
if len(config_class.attribute_map ) > 0:
snake_case__ : Dict = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
snake_case__ : int = inspect.getsourcefile(_lowerCAmelCase )
snake_case__ : int = os.path.dirname(_lowerCAmelCase )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
snake_case__ : List[str] = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for fn in os.listdir(_lowerCAmelCase ) if fn.startswith("""modeling_""" )]
# Get the source code strings
snake_case__ : Dict = []
for path in modeling_paths:
if os.path.isfile(_lowerCAmelCase ):
with open(_lowerCAmelCase ) as fp:
modeling_sources.append(fp.read() )
snake_case__ : List[str] = []
for config_param, default_value in zip(_lowerCAmelCase , _lowerCAmelCase ):
# `attributes` here is all the variant names for `config_param`
snake_case__ : Tuple = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
unused_attributes.append(attributes[0] )
return sorted(_lowerCAmelCase )
def __snake_case( ) -> List[str]:
snake_case__ : str = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
snake_case__ : List[Any] = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda _lowerCAmelCase : inspect.isclass(_lowerCAmelCase )
and issubclass(_lowerCAmelCase , _lowerCAmelCase )
and inspect.getmodule(_lowerCAmelCase ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
snake_case__ : Union[str, Any] = check_config_attributes_being_used(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
snake_case__ : Union[str, Any] = unused_attributes
if len(_lowerCAmelCase ) > 0:
snake_case__ : str = """The following configuration classes contain unused attributes in the corresponding modeling files:\n"""
for name, attributes in configs_with_unused_attributes.items():
error += f"{name}: {attributes}\n"
raise ValueError(_lowerCAmelCase )
if __name__ == "__main__":
check_config_attributes()
| 35
|
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
__a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__a = 128
elif "12-12" in model_name:
__a = 12
__a = 12
elif "14-14" in model_name:
__a = 14
__a = 14
elif "16-16" in model_name:
__a = 16
__a = 16
else:
raise ValueError("""Model not supported""" )
__a = """huggingface/label-files"""
if "speech-commands" in model_name:
__a = 35
__a = """speech-commands-v2-id2label.json"""
else:
__a = 527
__a = """audioset-id2label.json"""
__a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
if "module.v" in name:
__a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
__a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
__a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
__a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
__a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
__a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
__a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
__a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
__a = key.split(""".""" )
__a = int(key_split[3] )
__a = config.hidden_size
if "weight" in key:
__a = val[:dim, :]
__a = val[dim : dim * 2, :]
__a = val[-dim:, :]
else:
__a = val[:dim]
__a = val[dim : dim * 2]
__a = val[-dim:]
else:
__a = val
return orig_state_dict
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ):
"""simple docstring"""
__a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
__a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__a = model_name_to_url[model_name]
__a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
__a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
__a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
__a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
__a = 1024 if """speech-commands""" not in model_name else 128
__a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
__a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
__a = dataset[0]["""audio"""]["""array"""]
else:
__a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
__a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE )
__a = waveform.squeeze().numpy()
__a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
__a = model(**_SCREAMING_SNAKE_CASE )
__a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"MIT/{model_name}" )
feature_extractor.push_to_hub(f"MIT/{model_name}" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""ast-finetuned-audioset-10-10-0.4593""",
type=str,
help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase__ = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 36
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCamelCase__ = None
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
lowerCamelCase__ = """▁"""
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] =VOCAB_FILES_NAMES
__lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Any =AlbertTokenizer
def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ):
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__a = (
AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase )
if isinstance(__lowercase , __lowercase )
else mask_token
)
super().__init__(
__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , )
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = False if not self.vocab_file else True
def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__lowercase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
__a = os.path.join(
__lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ):
copyfile(self.vocab_file , __lowercase )
return (out_vocab_file,)
| 302
| 0
|
'''simple docstring'''
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = ProphetNetTokenizer
__lowercase : List[Any] = False
def UpperCAmelCase_ ( self ) -> str:
super().setUp()
lowerCAmelCase__ : str = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any:
lowerCAmelCase__ : List[str] = """UNwant\u00E9d,running"""
lowerCAmelCase__ : int = """unwanted, running"""
return input_text, output_text
def UpperCAmelCase_ ( self ) -> Optional[Any]:
lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file )
lowerCAmelCase__ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCAmelCase ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,[9, 6, 7, 12, 10, 11] )
def UpperCAmelCase_ ( self ) -> Any:
lowerCAmelCase__ : Union[str, Any] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def UpperCAmelCase_ ( self ) -> List[Any]:
lowerCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCAmelCase_ ( self ) -> Tuple:
lowerCAmelCase__ : Dict = BasicTokenizer(do_lower_case=__UpperCAmelCase ,strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
lowerCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=__UpperCAmelCase ,strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCAmelCase_ ( self ) -> Dict:
lowerCAmelCase__ : str = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def UpperCAmelCase_ ( self ) -> List[str]:
lowerCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCAmelCase_ ( self ) -> Dict:
lowerCAmelCase__ : Optional[Any] = BasicTokenizer(do_lower_case=__UpperCAmelCase ,strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
lowerCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=__UpperCAmelCase ,strip_accents=__UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def UpperCAmelCase_ ( self ) -> List[Any]:
lowerCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=__UpperCAmelCase ,never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def UpperCAmelCase_ ( self ) -> Optional[int]:
lowerCAmelCase__ : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowerCAmelCase__ : List[Any] = {}
for i, token in enumerate(__UpperCAmelCase ):
lowerCAmelCase__ : int = i
lowerCAmelCase__ : Dict = WordpieceTokenizer(vocab=__UpperCAmelCase ,unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) ,[] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def UpperCAmelCase_ ( self ) -> str:
lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowerCAmelCase__ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowerCAmelCase__ : Optional[int] = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102]
lowerCAmelCase__ : Any = tokenizer(__UpperCAmelCase ,padding=__UpperCAmelCase ,return_tensors="""pt""" )
self.assertIsInstance(__UpperCAmelCase ,__UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase )
self.assertEqual((2, 9) ,batch.input_ids.shape )
self.assertEqual((2, 9) ,batch.attention_mask.shape )
def UpperCAmelCase_ ( self ) -> int:
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def UpperCAmelCase_ ( self ) -> Optional[int]:
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def UpperCAmelCase_ ( self ) -> List[Any]:
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
lowerCAmelCase__ : Tuple = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowerCAmelCase__ : Any = tokenizer.encode("""sequence builders""" ,add_special_tokens=__UpperCAmelCase )
lowerCAmelCase__ : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=__UpperCAmelCase )
lowerCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ,__UpperCAmelCase )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 37
|
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] =(IPNDMScheduler,)
__lowerCamelCase : int =(('num_inference_steps', 50),)
def UpperCamelCase_ ( self : str , **__lowercase : Dict ):
'''simple docstring'''
__a = {"""num_train_timesteps""": 1000}
config.update(**__lowercase )
return config
def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ):
'''simple docstring'''
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__lowercase )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
return sample
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ):
scheduler.set_timesteps(__lowercase )
elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ):
__a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__a = dummy_past_residuals[:]
__a = scheduler.timesteps[5]
__a = scheduler.timesteps[6]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.full_loop()
__a = torch.mean(torch.abs(__lowercase ) )
assert abs(result_mean.item() - 2540529 ) < 10
| 302
| 0
|
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase :Union[str, Any] = R"""\w+[.]\d+"""
UpperCamelCase :int = re.findall(__magic_name__ , __magic_name__ )
for pat in pats:
UpperCamelCase :List[str] = key.replace(__magic_name__ , """_""".join(pat.split(""".""" ) ) )
return key
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
UpperCamelCase :List[str] = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
UpperCamelCase :Any = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
UpperCamelCase :Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCamelCase :str = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCamelCase :Optional[int] = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=42 ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase :Any = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
UpperCamelCase :Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) )
UpperCamelCase :Any = flatten_dict(__magic_name__ )
UpperCamelCase :Optional[int] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCamelCase :Union[str, Any] = rename_key(__magic_name__ )
UpperCamelCase :Optional[Any] = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
UpperCamelCase , UpperCamelCase :Tuple = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# also add unexpected weight so that warning is thrown
UpperCamelCase :List[Any] = jnp.asarray(__magic_name__ )
return unflatten_dict(__magic_name__ )
| 38
|
from __future__ import annotations
lowerCamelCase__ = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ):
'''simple docstring'''
__a = graph
# mapping node to its parent in resulting breadth first tree
__a = {}
__a = source_vertex
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = {self.source_vertex}
__a = None
__a = [self.source_vertex] # first in first out queue
while queue:
__a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowercase )
__a = vertex
queue.append(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
__a = self.parent.get(__lowercase )
if target_vertex_parent is None:
__a = (
F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowercase )
return self.shortest_path(__lowercase ) + F"->{target_vertex}"
if __name__ == "__main__":
lowerCamelCase__ = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 302
| 0
|
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
_a = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 48000,
'''sample_size''': 65536,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 48000,
'''sample_size''': 65536,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 48000,
'''sample_size''': 131072,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 16000,
'''sample_size''': 65536,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 16000,
'''sample_size''': 65536,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 16000,
'''sample_size''': 65536,
},
}
def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int:
"""simple docstring"""
return torch.atana(__lowerCAmelCase , __lowerCAmelCase ) / math.pi * 2
def __A ( __lowerCAmelCase )-> int:
"""simple docstring"""
_UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2
_UpperCAmelCase = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(__lowerCAmelCase , __lowerCAmelCase )
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
pass
class __lowerCamelCase ( nn.Module):
"""simple docstring"""
def __init__( self , UpperCAmelCase ):
"""simple docstring"""
super().__init__()
_UpperCAmelCase = DiffusionAttnUnetaD(UpperCAmelCase , n_attn_layers=4 )
_UpperCAmelCase = deepcopy(self.diffusion )
_UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=UpperCAmelCase )
def __A ( __lowerCAmelCase )-> Any:
"""simple docstring"""
_UpperCAmelCase = MODELS_MAP[model_name]['url']
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
_a = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
_a = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
_a = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
_a = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
_a = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
_a = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __A ( __lowerCAmelCase )-> Any:
"""simple docstring"""
if name.startswith('skip' ):
return name.replace('skip' , RES_CONV_MAP['skip'] )
# name has to be of format main.{digit}
if not name.startswith('main.' ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __A ( __lowerCAmelCase )-> List[Any]:
"""simple docstring"""
for key, value in ATTN_MAP.items():
if name.startswith(__lowerCAmelCase ) and not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
return name.replace(__lowerCAmelCase , __lowerCAmelCase )
elif name.startswith(__lowerCAmelCase ):
return [name.replace(__lowerCAmelCase , __lowerCAmelCase ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def __A ( __lowerCAmelCase , __lowerCAmelCase=13 )-> List[str]:
"""simple docstring"""
_UpperCAmelCase = input_string
if string.split('.' )[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj' )
_UpperCAmelCase = 0
if string.startswith('net.3.' ):
depth += 1
_UpperCAmelCase = string[6:]
elif string.startswith('net.' ):
_UpperCAmelCase = string[4:]
while string.startswith('main.7.' ):
depth += 1
_UpperCAmelCase = string[7:]
if string.startswith('main.' ):
_UpperCAmelCase = string[5:]
# mid block
if string[:2].isdigit():
_UpperCAmelCase = string[:2]
_UpperCAmelCase = string[2:]
else:
_UpperCAmelCase = string[0]
_UpperCAmelCase = string[1:]
if depth == max_depth:
_UpperCAmelCase = MID_NUM_TO_LAYER[layer_num]
_UpperCAmelCase = 'mid_block'
elif depth > 0 and int(__lowerCAmelCase ) < 7:
_UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num]
_UpperCAmelCase = F"""down_blocks.{depth}"""
elif depth > 0 and int(__lowerCAmelCase ) > 7:
_UpperCAmelCase = UP_NUM_TO_LAYER[layer_num]
_UpperCAmelCase = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
_UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num]
_UpperCAmelCase = F"""up_blocks.{max_depth - 1}""" if int(__lowerCAmelCase ) > 3 else 'down_blocks.0'
if not string_left.startswith('.' ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
_UpperCAmelCase = string_left[1:]
if "resnets" in new_layer:
_UpperCAmelCase = convert_resconv_naming(__lowerCAmelCase )
elif "attentions" in new_layer:
_UpperCAmelCase = convert_attn_naming(__lowerCAmelCase )
_UpperCAmelCase = new_string_left
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase = prefix + '.' + new_layer + '.' + string_left
else:
_UpperCAmelCase = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def __A ( __lowerCAmelCase )-> List[Any]:
"""simple docstring"""
_UpperCAmelCase = {}
for k, v in state_dict.items():
if k.endswith('kernel' ):
# up- and downsample layers, don't have trainable weights
continue
_UpperCAmelCase = rename(__lowerCAmelCase )
# check if we need to transform from Conv => Linear for attention
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase = transform_conv_attns(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
_UpperCAmelCase = v
return new_state_dict
def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]:
"""simple docstring"""
if len(__lowerCAmelCase ) == 1:
if len(v.shape ) == 3:
# weight
_UpperCAmelCase = v[:, :, 0]
else:
# bias
_UpperCAmelCase = v
else:
# qkv matrices
_UpperCAmelCase = v.shape[0]
_UpperCAmelCase = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
_UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
_UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __A ( __lowerCAmelCase )-> Tuple:
"""simple docstring"""
_UpperCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
_UpperCAmelCase = args.model_path.split('/' )[-1].split('.' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
_UpperCAmelCase = download(__lowerCAmelCase )
_UpperCAmelCase = MODELS_MAP[model_name]['sample_rate']
_UpperCAmelCase = MODELS_MAP[model_name]['sample_size']
_UpperCAmelCase = Object()
_UpperCAmelCase = sample_size
_UpperCAmelCase = sample_rate
_UpperCAmelCase = 0
_UpperCAmelCase = UNetaDModel(sample_size=__lowerCAmelCase , sample_rate=__lowerCAmelCase )
_UpperCAmelCase = diffusers_model.state_dict()
_UpperCAmelCase = DiffusionUncond(__lowerCAmelCase )
orig_model.load_state_dict(torch.load(args.model_path , map_location=__lowerCAmelCase )['state_dict'] )
_UpperCAmelCase = orig_model.diffusion_ema.eval()
_UpperCAmelCase = orig_model.state_dict()
_UpperCAmelCase = rename_orig_weights(__lowerCAmelCase )
_UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
_UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(__lowerCAmelCase ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith('kernel' ) for k in list(__lowerCAmelCase ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
_UpperCAmelCase = value.squeeze()
_UpperCAmelCase = value
diffusers_model.load_state_dict(__lowerCAmelCase )
_UpperCAmelCase = 100
_UpperCAmelCase = 33
_UpperCAmelCase = IPNDMScheduler(num_train_timesteps=__lowerCAmelCase )
_UpperCAmelCase = torch.manual_seed(__lowerCAmelCase )
_UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=__lowerCAmelCase ).to(__lowerCAmelCase )
_UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=__lowerCAmelCase )[:-1]
_UpperCAmelCase = get_crash_schedule(__lowerCAmelCase )
_UpperCAmelCase = DanceDiffusionPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase )
_UpperCAmelCase = torch.manual_seed(33 )
_UpperCAmelCase = pipe(num_inference_steps=__lowerCAmelCase , generator=__lowerCAmelCase ).audios
_UpperCAmelCase = sampling.iplms_sample(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , {} )
_UpperCAmelCase = generated.clamp(-1 , 1 )
_UpperCAmelCase = (generated - audio).abs().sum()
_UpperCAmelCase = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('Diff sum' , __lowerCAmelCase )
print('Diff max' , __lowerCAmelCase )
assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
_a = parser.parse_args()
main(args)
| 39
|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple =KandinskyVaaPriorPipeline
__lowerCamelCase : Union[str, Any] =['prompt']
__lowerCamelCase : Any =['prompt', 'negative_prompt']
__lowerCamelCase : List[str] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
__lowerCamelCase : List[Any] =False
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__lowercase )
@property
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
__a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__a = PriorTransformer(**__lowercase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__a = CLIPVisionModelWithProjection(__lowercase )
return model
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.dummy_prior
__a = self.dummy_image_encoder
__a = self.dummy_text_encoder
__a = self.dummy_tokenizer
__a = self.dummy_image_processor
__a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , )
__a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ):
'''simple docstring'''
if str(__lowercase ).startswith("""mps""" ):
__a = torch.manual_seed(__lowercase )
else:
__a = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = """cpu"""
__a = self.get_dummy_components()
__a = self.pipeline_class(**__lowercase )
__a = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__a = pipe(**self.get_dummy_inputs(__lowercase ) )
__a = output.image_embeds
__a = pipe(
**self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0]
__a = image[0, -10:]
__a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = True
__a = False
self._test_inference_batch_single_identical(
test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
@skip_mps
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
| 302
| 0
|
"""simple docstring"""
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowercase ( A_=32 , A_=10 , A_=100 , A_=1_026 , A_=True , A_="data/tokenized_stories_train_wikitext103.jbl" , A_="igf_context_pairs.jbl" , )-> List[str]:
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
a , a : Dict = generate_datasets(
A_ , A_ , number=A_ , min_len=1_026 , trim=A_ )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
a : List[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
# load pretrained model
a : Union[str, Any] = load_gpta("gpt2" ).to(A_ )
print("computing perplexity on objective set" )
a : int = compute_perplexity(A_ , A_ , A_ ).item()
print("perplexity on objective set:" , A_ )
# collect igf pairs and save to file demo.jbl
collect_objective_set(A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowercase ( A_ , A_=15 , A_=128 , A_=100 , A_="igf_model.pt" , )-> Any:
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
a : int = GPTaLMHeadModel.from_pretrained("gpt2" )
# Initialize secondary learner to use embedding weights of model
a : int = SecondaryLearner(A_ )
# Train secondary learner
a : Optional[Any] = train_secondary_learner(
A_ , A_ , max_epochs=A_ , batch_size=A_ , eval_freq=100 , igf_model_path=A_ , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowercase ( A_ , A_ , A_ , A_=32 , A_=1_000 , A_=16 , A_=1.0 , A_=recopy_gpta , A_=None , A_=10 , A_="gpt2_finetuned.pt" , )-> Union[str, Any]:
'''simple docstring'''
a : Optional[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
a : List[str] = RandomSampler(A_ )
a : Tuple = DataLoader(A_ , sampler=A_ )
a : Union[str, Any] = max_steps // (len(A_ )) + 1
a : List[Any] = 0
a : str = torch.zeros((1, context_len) , dtype=torch.long , device=A_ )
a , a , a : Dict = recopy_model(A_ , A_ , A_ )
model.train()
if secondary_learner is not None:
secondary_learner.to(A_ )
secondary_learner.eval()
a : Tuple = []
a : List[Any] = 0
a : str = []
a : Optional[Any] = []
# Compute the performance of the transformer model at the beginning
a : Union[str, Any] = compute_perplexity(A_ , A_ , A_ )
test_perps.append(A_ )
print("Test perplexity, step" , A_ , ":" , A_ )
for epoch in range(int(A_ ) ):
for step, example in enumerate(A_ ):
torch.cuda.empty_cache()
a : str = random.randint(0 , example.size(2 ) - context_len - 1 )
a : List[Any] = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
a : List[str] = model(A_ , labels=A_ )
a : Optional[Any] = True
if secondary_learner is not None:
a : Tuple = secondary_learner.forward(
torch.tensor(A_ , dtype=torch.long , device=A_ ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(A_ ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
a : List[Any] = -1
if predicted_q < threshold:
a : Tuple = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
a : Union[str, Any] = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
a : Dict = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
a : Dict = compute_perplexity(A_ , A_ , A_ )
test_perps.append(A_ )
print("Test perplexity, step" , A_ , ":" , A_ )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , A_ )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowercase ( )-> Optional[int]:
'''simple docstring'''
a : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" )
# Required parameters
parser.add_argument(
"--data_dir" , default=A_ , type=A_ , required=A_ , help="The input data dir. Should contain data files for WikiText." , )
parser.add_argument(
"--model_name_or_path" , default=A_ , type=A_ , required=A_ , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--data_file" , type=A_ , default=A_ , help=(
"A jbl file containing tokenized data which can be split as objective dataset, "
"train_dataset and test_dataset."
) , )
parser.add_argument(
"--igf_data_file" , type=A_ , default=A_ , help="A jbl file containing the context and information gain pairs to train secondary learner." , )
parser.add_argument(
"--output_dir" , default=A_ , type=A_ , required=A_ , help="The output directory where the final fine-tuned model is stored." , )
parser.add_argument(
"--tokenizer_name" , default=A_ , type=A_ , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument("--seed" , type=A_ , default=A_ , help="A seed for reproducible training." )
parser.add_argument(
"--context_len" , default=32 , type=A_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--size_objective_set" , default=100 , type=A_ , help="number of articles that are long enough to be used as our objective set" , )
parser.add_argument(
"--eval_freq" , default=100 , type=A_ , help="secondary model evaluation is triggered at eval_freq" )
parser.add_argument("--max_steps" , default=1_000 , type=A_ , help="To calculate training epochs" )
parser.add_argument(
"--secondary_learner_batch_size" , default=128 , type=A_ , help="batch size of training data for secondary learner" , )
parser.add_argument(
"--batch_size" , default=16 , type=A_ , help="batch size of training data of language model(gpt2) " )
parser.add_argument(
"--eval_interval" , default=10 , type=A_ , help=(
"decay the selectivity of our secondary learner filter from"
"1 standard deviation above average to 1 below average after 10 batches"
) , )
parser.add_argument(
"--number" , default=100 , type=A_ , help="The number of examples split to be used as objective_set/test_data" )
parser.add_argument(
"--min_len" , default=1_026 , type=A_ , help="The minimum length of the article to be used as objective set" )
parser.add_argument(
"--secondary_learner_max_epochs" , default=15 , type=A_ , help="number of epochs to train secondary learner" )
parser.add_argument("--trim" , default=A_ , type=A_ , help="truncate the example if it exceeds context length" )
parser.add_argument(
"--threshold" , default=1.0 , type=A_ , help=(
"The threshold value used by secondary learner to filter the train_data and allow only"
" informative data as input to the model"
) , )
parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=A_ , help="finetuned_model_name" )
parser.add_argument(
"--recopy_model" , default=A_ , type=A_ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=A_ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , )
# Load train data for secondary learner
a : Union[str, Any] = joblib.load("data/IGF_values.jbl" )
# Train secondary learner
a : Optional[Any] = training_secondary_learner(
A_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , )
# load pretrained gpt2 model
a : List[str] = GPTaLMHeadModel.from_pretrained("gpt2" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
a , a : str = generate_datasets(
context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1_026 , trim=A_ )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
A_ , A_ , A_ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=A_ , secondary_learner=A_ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , )
if __name__ == "__main__":
main()
| 40
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = Dict[str, Any]
lowerCamelCase__ = List[Prediction]
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ):
'''simple docstring'''
super().__init__(*__lowercase , **__lowercase )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ):
'''simple docstring'''
__a = {}
if "threshold" in kwargs:
__a = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ):
'''simple docstring'''
return super().__call__(*__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : Tuple ):
'''simple docstring'''
__a = load_image(__lowercase )
__a = torch.IntTensor([[image.height, image.width]] )
__a = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
__a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
__a = target_size
return inputs
def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ):
'''simple docstring'''
__a = model_inputs.pop("""target_size""" )
__a = self.model(**__lowercase )
__a = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
__a = model_inputs["""bbox"""]
return model_outputs
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ):
'''simple docstring'''
__a = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__a , __a = target_size[0].tolist()
def unnormalize(__lowercase : Optional[Any] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
__a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
__a = ["""score""", """label""", """box"""]
__a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase )
__a = raw_annotations[0]
__a = raw_annotation["""scores"""]
__a = raw_annotation["""labels"""]
__a = raw_annotation["""boxes"""]
__a = scores.tolist()
__a = [self.model.config.idalabel[label.item()] for label in labels]
__a = [self._get_bounding_box(__lowercase ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__a = ["""score""", """label""", """box"""]
__a = [
dict(zip(__lowercase , __lowercase ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
__a , __a , __a , __a = box.int().tolist()
__a = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 302
| 0
|
'''simple docstring'''
import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , ) -> np.ndarray:
lowerCamelCase__ : Tuple = np.shape(UpperCamelCase )
lowerCamelCase__ : Optional[int] = np.shape(UpperCamelCase )
lowerCamelCase__ : List[Any] = np.shape(UpperCamelCase )
if shape_a[0] != shape_b[0]:
lowerCamelCase__ : List[str] = (
"""Expected the same number of rows for A and B. """
f'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCamelCase )
if shape_b[1] != shape_c[1]:
lowerCamelCase__ : Tuple = (
"""Expected the same number of columns for B and C. """
f'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCamelCase )
lowerCamelCase__ : Optional[Any] = pseudo_inv
if a_inv is None:
try:
lowerCamelCase__ : str = np.linalg.inv(UpperCamelCase )
except np.linalg.LinAlgError:
raise ValueError(
"""Input matrix A is not invertible. Cannot compute Schur complement.""" )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowercase ( unittest.TestCase ):
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : Optional[Any] = np.array([[2, 1], [6, 3]] )
lowerCamelCase__ : Dict = schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase__ : Any = np.block([[a, b], [b.T, c]] )
lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ )
lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = np.linalg.det(UpperCamelCase__ )
self.assertAlmostEqual(UpperCamelCase__ , det_a * det_s )
def lowerCamelCase_ ( self: Optional[Any] ):
lowerCamelCase__ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : str = np.array([[2, 1], [6, 3]] )
with self.assertRaises(UpperCamelCase__ ):
schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCamelCase__ : int = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCamelCase__ : List[str] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(UpperCamelCase__ ):
schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 41
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"""configuration_efficientnet""": [
"""EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientNetConfig""",
"""EfficientNetOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""EfficientNetImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientNetForImageClassification""",
"""EfficientNetModel""",
"""EfficientNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 302
| 0
|
'''simple docstring'''
import math
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float:
if (
not isinstance(__A , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float:
if (
not isinstance(__A , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42
|
import random
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
__a , __a , __a = [], [], []
for element in data:
if element < pivot:
less.append(_SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(_SCREAMING_SNAKE_CASE )
else:
equal.append(_SCREAMING_SNAKE_CASE )
return less, equal, greater
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0:
return None
__a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )]
__a = 0
__a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
| 302
| 0
|
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
__lowercase = Mapping[str, np.ndarray]
__lowercase = Mapping[str, Any] # Is a nested dict.
__lowercase = 0.0_1
@dataclasses.dataclass(frozen=UpperCAmelCase_ )
class lowerCamelCase_ :
'''simple docstring'''
a__ : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
a__ : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
a__ : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
a__ : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
a__ : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
a__ : Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
a__ : Optional[str] = None
# Templates used to generate this protein (prediction-only)
a__ : Optional[Sequence[str]] = None
# Chain corresponding to each parent
a__ : Optional[Sequence[int]] = None
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Optional[int] = R'''(\[[A-Z]+\]\n)'''
__UpperCamelCase :List[str] = [tag.strip() for tag in re.split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0]
__UpperCamelCase :Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
__UpperCamelCase :List[str] = ["N", "CA", "C"]
__UpperCamelCase :int = None
__UpperCamelCase :Optional[int] = None
__UpperCamelCase :Dict = None
for g in groups:
if "[PRIMARY]" == g[0]:
__UpperCamelCase :Any = g[1][0].strip()
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if seq[i] not in residue_constants.restypes:
__UpperCamelCase :List[Any] = '''X''' # FIXME: strings are immutable
__UpperCamelCase :Dict = np.array(
[residue_constants.restype_order.get(SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
__UpperCamelCase :List[List[float]] = []
for axis in range(3 ):
tertiary.append(list(map(SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) )
__UpperCamelCase :Optional[Any] = np.array(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Any = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :Union[str, Any] = np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
__UpperCamelCase :List[str] = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
__UpperCamelCase :Union[str, Any] = np.zeros(
(
len(SCREAMING_SNAKE_CASE ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :List[Any] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=SCREAMING_SNAKE_CASE , atom_mask=SCREAMING_SNAKE_CASE , aatype=SCREAMING_SNAKE_CASE , residue_index=np.arange(len(SCREAMING_SNAKE_CASE ) ) , b_factors=SCREAMING_SNAKE_CASE , )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 ):
'''simple docstring'''
__UpperCamelCase :List[str] = []
__UpperCamelCase :Optional[int] = prot.remark
if remark is not None:
pdb_headers.append(f"""REMARK {remark}""" )
__UpperCamelCase :Optional[int] = prot.parents
__UpperCamelCase :Union[str, Any] = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
__UpperCamelCase :List[Any] = [p for i, p in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if i == chain_id]
if parents is None or len(SCREAMING_SNAKE_CASE ) == 0:
__UpperCamelCase :Tuple = ['''N/A''']
pdb_headers.append(f"""PARENT {' '.join(SCREAMING_SNAKE_CASE )}""" )
return pdb_headers
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :List[str] = []
__UpperCamelCase :Dict = pdb_str.split('''\n''' )
__UpperCamelCase :int = prot.remark
if remark is not None:
out_pdb_lines.append(f"""REMARK {remark}""" )
__UpperCamelCase :List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
__UpperCamelCase :Dict = []
if prot.parents_chain_index is not None:
__UpperCamelCase :Dict[str, List[str]] = {}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(SCREAMING_SNAKE_CASE ) , [] )
parent_dict[str(SCREAMING_SNAKE_CASE )].append(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Union[str, Any] = max([int(SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
__UpperCamelCase :Union[str, Any] = parent_dict.get(str(SCREAMING_SNAKE_CASE ) , ['''N/A'''] )
parents_per_chain.append(SCREAMING_SNAKE_CASE )
else:
parents_per_chain.append(list(prot.parents ) )
else:
__UpperCamelCase :List[Any] = [['''N/A''']]
def make_parent_line(SCREAMING_SNAKE_CASE ) -> str:
return f"""PARENT {' '.join(SCREAMING_SNAKE_CASE )}"""
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
__UpperCamelCase :Optional[Any] = 0
for i, l in enumerate(SCREAMING_SNAKE_CASE ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(SCREAMING_SNAKE_CASE )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :List[str] = parents_per_chain[chain_counter]
else:
__UpperCamelCase :Optional[int] = ['''N/A''']
out_pdb_lines.append(make_parent_line(SCREAMING_SNAKE_CASE ) )
return "\n".join(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Tuple = residue_constants.restypes + ['''X''']
def res_atoa(SCREAMING_SNAKE_CASE ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
__UpperCamelCase :Optional[int] = residue_constants.atom_types
__UpperCamelCase :List[str] = []
__UpperCamelCase :List[Any] = prot.atom_mask
__UpperCamelCase :List[str] = prot.aatype
__UpperCamelCase :Union[str, Any] = prot.atom_positions
__UpperCamelCase :Any = prot.residue_index.astype(np.intaa )
__UpperCamelCase :List[str] = prot.b_factors
__UpperCamelCase :List[str] = prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
__UpperCamelCase :int = get_pdb_headers(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
pdb_lines.extend(SCREAMING_SNAKE_CASE )
__UpperCamelCase :str = aatype.shape[0]
__UpperCamelCase :Optional[Any] = 1
__UpperCamelCase :List[Any] = 0
__UpperCamelCase :Any = string.ascii_uppercase
__UpperCamelCase :Any = None
# Add all atom sites.
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :List[Any] = res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
__UpperCamelCase :str = '''ATOM'''
__UpperCamelCase :Tuple = atom_name if len(SCREAMING_SNAKE_CASE ) == 4 else f""" {atom_name}"""
__UpperCamelCase :Optional[Any] = ''''''
__UpperCamelCase :int = ''''''
__UpperCamelCase :int = 1.00
__UpperCamelCase :int = atom_name[0] # Protein supports only C, N, O, S, this works.
__UpperCamelCase :int = ''''''
__UpperCamelCase :Dict = '''A'''
if chain_index is not None:
__UpperCamelCase :Union[str, Any] = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
__UpperCamelCase :str = (
f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"""
f"""{res_name_a:>3} {chain_tag:>1}"""
f"""{residue_index[i]:>4}{insertion_code:>1} """
f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"""
f"""{occupancy:>6.2f}{b_factor:>6.2f} """
f"""{element:>2}{charge:>2}"""
)
pdb_lines.append(SCREAMING_SNAKE_CASE )
atom_index += 1
__UpperCamelCase :Dict = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
__UpperCamelCase :int = True
__UpperCamelCase :List[str] = chain_index[i + 1]
if should_terminate:
# Close the chain.
__UpperCamelCase :Optional[Any] = '''TER'''
__UpperCamelCase :Optional[int] = (
f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"""
)
pdb_lines.append(SCREAMING_SNAKE_CASE )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ):
'''simple docstring'''
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=SCREAMING_SNAKE_CASE , remark=SCREAMING_SNAKE_CASE , parents=SCREAMING_SNAKE_CASE , parents_chain_index=SCREAMING_SNAKE_CASE , )
| 43
|
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowerCamelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Optional[int] , **__lowercase : Dict ):
'''simple docstring'''
super().__init__(**__lowercase )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ):
'''simple docstring'''
return super().__call__(__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ):
'''simple docstring'''
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__a = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ):
'''simple docstring'''
if isinstance(__lowercase , __lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(__lowercase ).content
else:
with open(__lowercase , """rb""" ) as f:
__a = f.read()
if isinstance(__lowercase , __lowercase ):
__a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate )
if not isinstance(__lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
__a = candidate_labels
__a = [hypothesis_template.format(__lowercase ) for x in candidate_labels]
__a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase )
__a = [text_inputs]
return inputs
def UpperCamelCase_ ( self : Any , __lowercase : Any ):
'''simple docstring'''
__a = model_inputs.pop("""candidate_labels""" )
__a = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , __lowercase ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**__lowercase , **__lowercase )
__a = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = model_outputs.pop("""candidate_labels""" )
__a = model_outputs["""logits"""][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
__a = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] )
]
return result
| 302
| 0
|
"""simple docstring"""
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import MaMaaaTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from transformers.utils import is_sentencepiece_available
if is_sentencepiece_available():
from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
if is_sentencepiece_available():
_a : str = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
_a : str = 128_022
_a : Optional[Any] = 128_028
@require_sentencepiece
class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : Optional[Any] = MaMaaaTokenizer
_UpperCamelCase : int = False
_UpperCamelCase : int = False
_UpperCamelCase : int = True
def __A ( self ):
super().setUp()
_lowerCAmelCase : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""]
_lowerCAmelCase : Dict = dict(zip(a__ , range(len(a__ ) ) ) )
_lowerCAmelCase : List[Any] = Path(self.tmpdirname )
save_json(a__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(a__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] )
_lowerCAmelCase : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self , **a__ ):
return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a__ )
def __A ( self , a__ ):
return (
"This is a test",
"This is a test",
)
def __A ( self ):
_lowerCAmelCase : str = """</s>"""
_lowerCAmelCase : Optional[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ )
def __A ( self ):
_lowerCAmelCase : Any = self.get_tokenizer()
_lowerCAmelCase : Any = list(tokenizer.get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """</s>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """<s>""" )
self.assertEqual(len(a__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) )
@unittest.skip("""Skip this test while all models are still to be uploaded.""" )
def __A ( self ):
pass
def __A ( self ):
_lowerCAmelCase : Optional[int] = self.get_tokenizer()
_lowerCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [2, 3, 4, 5, 6] , )
_lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] )
self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
_lowerCAmelCase : int = tokenizer.convert_tokens_to_string(a__ )
self.assertEqual(a__ , """This is a test""" )
@slow
def __A ( self ):
# fmt: off
_lowerCAmelCase : Optional[int] = {"""input_ids""": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , )
@require_torch
@require_sentencepiece
@require_tokenizers
class __A ( unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = "facebook/m2m100_418M"
_UpperCamelCase : Optional[Any] = [
"In my opinion, there are two levels of response from the French government.",
"NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
]
_UpperCamelCase : Optional[int] = [
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
]
# fmt: off
_UpperCamelCase : List[str] = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2]
@classmethod
def __A ( cls ):
_lowerCAmelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" )
_lowerCAmelCase : Tuple = 1
return cls
def __A ( self ):
self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 128006 )
self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 128022 )
self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 128076 )
self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 128063 )
def __A ( self ):
_lowerCAmelCase : Tuple = self.tokenizer.get_vocab()
self.assertEqual(len(a__ ) , self.tokenizer.vocab_size )
self.assertEqual(vocab["""<unk>"""] , 3 )
self.assertIn(self.tokenizer.get_lang_token("""en""" ) , a__ )
def __A ( self ):
_lowerCAmelCase : List[str] = """en"""
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , a__ )
def __A ( self ):
self.assertIn(a__ , self.tokenizer.all_special_ids )
# fmt: off
_lowerCAmelCase : Union[str, Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
# fmt: on
_lowerCAmelCase : str = self.tokenizer.decode(a__ , skip_special_tokens=a__ )
_lowerCAmelCase : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ )
self.assertEqual(a__ , a__ )
self.assertNotIn(self.tokenizer.eos_token , a__ )
def __A ( self ):
_lowerCAmelCase : Dict = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = self.tokenizer.lang_token_to_id
self.tokenizer.save_pretrained(a__ )
_lowerCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained(a__ )
self.assertDictEqual(new_tok.lang_token_to_id , a__ )
@require_torch
def __A ( self ):
_lowerCAmelCase : str = """en"""
_lowerCAmelCase : int = """fr"""
_lowerCAmelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="""pt""" )
_lowerCAmelCase : int = shift_tokens_right(
batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id )
for k in batch:
_lowerCAmelCase : Any = batch[k].tolist()
# batch = {k: v.tolist() for k,v in batch.items()}
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
# batch.decoder_inputs_ids[0][0] ==
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == FR_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]
@require_torch
def __A ( self ):
_lowerCAmelCase : Union[str, Any] = """mr"""
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
_lowerCAmelCase : List[Any] = """zh"""
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
@require_torch
def __A ( self ):
_lowerCAmelCase : Union[str, Any] = """mr"""
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
_lowerCAmelCase : Union[str, Any] = """zh"""
self.tokenizer._switch_to_target_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] )
self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
self.tokenizer._switch_to_input_mode()
self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] )
@require_torch
def __A ( self ):
_lowerCAmelCase : Tuple = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" )
self.assertEqual(
nested_simplify(a__ ) , {
# en_XX, A, test, EOS
"""input_ids""": [[128022, 58, 4183, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 128006,
} , )
| 44
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCamelCase__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Dict =['pixel_values']
def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ):
'''simple docstring'''
super().__init__(**__lowercase )
__a = size if size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" )
__a = do_resize
__a = do_rescale
__a = do_normalize
__a = do_center_crop
__a = crop_size
__a = size
__a = resample
__a = rescale_factor
__a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "shortest_edge" in size:
__a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__a = (size["""height"""], size["""width"""])
else:
raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" )
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ):
'''simple docstring'''
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ):
'''simple docstring'''
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = do_resize if do_resize is not None else self.do_resize
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = do_center_crop if do_center_crop is not None else self.do_center_crop
__a = crop_size if crop_size is not None else self.crop_size
__a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase )
__a = resample if resample is not None else self.resample
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = size if size is not None else self.size
__a = get_size_dict(__lowercase )
if not is_batched(__lowercase ):
__a = [images]
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__a = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 302
| 0
|
"""simple docstring"""
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowercase_ = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
__UpperCAmelCase : Optional[datasets.Features] = None
__UpperCAmelCase : str = "utf-8"
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : Optional[str] = None
__UpperCAmelCase : bool = True # deprecated
__UpperCAmelCase : Optional[int] = None # deprecated
__UpperCAmelCase : int = 1_0 << 2_0 # 10MB
__UpperCAmelCase : Optional[bool] = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = JsonConfig
def __UpperCAmelCase ( self ):
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' )
__a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' )
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' )
return datasets.DatasetInfo(features=self.config.features )
def __UpperCAmelCase ( self , _a ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
__a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
__a = data_files
if isinstance(_a , _a ):
__a = [files]
__a = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__a = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
__a = [files]
__a = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) )
return splits
def __UpperCAmelCase ( self , _a ):
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
__a = self.config.features.arrow_schema.field(_a ).type
__a = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
__a = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def __UpperCAmelCase ( self , _a ):
for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
__a = json.load(_a )
# We keep only the field we are interested in
__a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_a , (list, tuple) ):
__a = set().union(*[row.keys() for row in dataset] )
__a = {col: [row.get(_a ) for row in dataset] for col in keys}
else:
__a = dataset
__a = pa.Table.from_pydict(_a )
yield file_idx, self._cast_table(_a )
# If the file has one json object per line
else:
with open(_a , '''rb''' ) as f:
__a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
__a = max(self.config.chunksize // 32 , 16 << 10 )
__a = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
__a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_a )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
__a = batch.decode(self.config.encoding , errors=_a ).encode('''utf-8''' )
try:
while True:
try:
__a = paj.read_json(
io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_a , pa.ArrowInvalid )
and "straddling" not in str(_a )
or block_size > len(_a )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
__a = json.load(_a )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_a , _a ): # list is the only sequence type supported in JSON
try:
__a = set().union(*[row.keys() for row in dataset] )
__a = {col: [row.get(_a ) for row in dataset] for col in keys}
__a = pa.Table.from_pydict(_a )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(_a )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_a )
batch_idx += 1
| 45
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoTokenizer.from_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = tokenizer("""This is me""" , return_tensors="""pt""" )
__a = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__a = model.generate(**__lowercase )
__a = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__a = model_reloaded.generate(**__lowercase )
self.assertTrue(torch.allclose(__lowercase , __lowercase ) )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowercase ):
model.save_pretrained(__lowercase )
__a = model.reverse_bettertransformer()
model.save_pretrained(__lowercase )
| 302
| 0
|
"""simple docstring"""
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
class lowercase ( _UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = 'summarization'
_SCREAMING_SNAKE_CASE = ['loss']
_SCREAMING_SNAKE_CASE = ROUGE_KEYS
_SCREAMING_SNAKE_CASE = 'rouge2'
def __init__( self , lowercase , **lowercase ) -> str:
if hparams.sortish_sampler and hparams.gpus > 1:
lowerCAmelCase = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" )
if hparams.sortish_sampler:
raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" )
super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase )
use_task_specific_params(self.model , """summarization""" )
save_git_info(self.hparams.output_dir )
lowerCAmelCase = Path(self.output_dir ) / """metrics.json"""
lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl"""
pickle_save(self.hparams , self.hparams_save_path )
lowerCAmelCase = 0
lowerCAmelCase = defaultdict(lowercase )
lowerCAmelCase = self.config.model_type
lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size
lowerCAmelCase = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
lowerCAmelCase = {
"""train""": self.hparams.n_train,
"""val""": self.hparams.n_val,
"""test""": self.hparams.n_test,
}
lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
lowerCAmelCase = {
"""train""": self.hparams.max_target_length,
"""val""": self.hparams.val_max_target_length,
"""test""": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}'
assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}'
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
lowerCAmelCase = get_git_info()["""repo_sha"""]
lowerCAmelCase = hparams.num_workers
lowerCAmelCase = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ):
lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
lowerCAmelCase = self.decoder_start_token_id
lowerCAmelCase = (
SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset
)
lowerCAmelCase = False
lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
lowerCAmelCase = self.hparams.eval_max_gen_length
else:
lowerCAmelCase = self.model.config.max_length
lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def _snake_case ( self , lowercase ) -> Dict[str, List[str]]:
lowerCAmelCase = {
k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items()
}
save_json(lowercase , Path(self.output_dir ) / """text_batch.json""" )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" )
lowerCAmelCase = True
return readable_batch
def _snake_case ( self , lowercase , **lowercase ) -> Union[str, Any]:
return self.model(lowercase , **lowercase )
def _snake_case ( self , lowercase ) -> Union[str, Any]:
lowerCAmelCase = self.tokenizer.batch_decode(
lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
return lmap(str.strip , lowercase )
def _snake_case ( self , lowercase ) -> Tuple:
lowerCAmelCase = self.tokenizer.pad_token_id
lowerCAmelCase , lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""]
lowerCAmelCase = batch["""labels"""]
if isinstance(self.model , lowercase ):
lowerCAmelCase = self.model._shift_right(lowercase )
else:
lowerCAmelCase = shift_tokens_right(lowercase , lowercase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
lowerCAmelCase = decoder_input_ids
self.save_readable_batch(lowercase )
lowerCAmelCase = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase )
lowerCAmelCase = outputs["""logits"""]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=lowercase )
assert lm_logits.shape[-1] == self.vocab_size
lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
lowerCAmelCase = nn.functional.log_softmax(lowercase , dim=-1 )
lowerCAmelCase , lowerCAmelCase = label_smoothed_nll_loss(
lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase )
return (loss,)
@property
def _snake_case ( self ) -> int:
return self.tokenizer.pad_token_id
def _snake_case ( self , lowercase , lowercase ) -> Dict:
lowerCAmelCase = self._step(lowercase )
lowerCAmelCase = dict(zip(self.loss_names , lowercase ) )
# tokens per batch
lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum()
lowerCAmelCase = batch["""input_ids"""].shape[0]
lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum()
lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def _snake_case ( self , lowercase , lowercase ) -> Dict:
return self._generative_step(lowercase )
def _snake_case ( self , lowercase , lowercase="val" ) -> Dict:
self.step_count += 1
lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
lowerCAmelCase = losses["""loss"""]
lowerCAmelCase = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""]
}
lowerCAmelCase = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
lowerCAmelCase = torch.tensor(lowercase ).type_as(lowercase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(lowercase )
lowerCAmelCase = {f'{prefix}_avg_{k}': x for k, x in losses.items()}
lowerCAmelCase = self.step_count
self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path
lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
f'{prefix}_loss': loss,
f'{prefix}_{self.val_metric}': metric_tensor,
}
def _snake_case ( self , lowercase , lowercase ) -> Dict:
return calculate_rouge(lowercase , lowercase )
def _snake_case ( self , lowercase ) -> dict:
lowerCAmelCase = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
lowerCAmelCase = self.model.generate(
batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0]
lowerCAmelCase = self.ids_to_clean_text(lowercase )
lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] )
lowerCAmelCase = self._step(lowercase )
lowerCAmelCase = dict(zip(self.loss_names , lowercase ) )
lowerCAmelCase = self.calc_generative_metrics(lowercase , lowercase )
lowerCAmelCase = np.mean(lmap(lowercase , lowercase ) )
base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase )
return base_metrics
def _snake_case ( self , lowercase , lowercase ) -> Dict:
return self._generative_step(lowercase )
def _snake_case ( self , lowercase ) -> int:
return self.validation_epoch_end(lowercase , prefix="""test""" )
def _snake_case ( self , lowercase ) -> SeqaSeqDataset:
lowerCAmelCase = self.n_obs[type_path]
lowerCAmelCase = self.target_lens[type_path]
lowerCAmelCase = self.dataset_class(
self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , )
return dataset
def _snake_case ( self , lowercase , lowercase , lowercase = False ) -> DataLoader:
lowerCAmelCase = self.get_dataset(lowercase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
lowerCAmelCase = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 )
return DataLoader(
lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
lowerCAmelCase = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , )
def _snake_case ( self ) -> DataLoader:
lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowercase )
return dataloader
def _snake_case ( self ) -> DataLoader:
return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size )
def _snake_case ( self ) -> DataLoader:
return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size )
@staticmethod
def _snake_case ( lowercase , lowercase ) -> Optional[int]:
BaseTransformer.add_model_specific_args(lowercase , lowercase )
add_generic_args(lowercase , lowercase )
parser.add_argument(
"""--max_source_length""" , default=1_024 , type=lowercase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--max_target_length""" , default=56 , type=lowercase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--val_max_target_length""" , default=142 , type=lowercase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--test_max_target_length""" , default=142 , type=lowercase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument("""--freeze_encoder""" , action="""store_true""" )
parser.add_argument("""--freeze_embeds""" , action="""store_true""" )
parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowercase )
parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowercase )
parser.add_argument("""--max_tokens_per_batch""" , type=lowercase , default=lowercase )
parser.add_argument("""--logger_name""" , type=lowercase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" )
parser.add_argument("""--n_train""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_val""" , type=lowercase , default=500 , required=lowercase , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_test""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" )
parser.add_argument(
"""--task""" , type=lowercase , default="""summarization""" , required=lowercase , help="""# examples. -1 means use all.""" )
parser.add_argument("""--label_smoothing""" , type=lowercase , default=0.0 , required=lowercase )
parser.add_argument("""--src_lang""" , type=lowercase , default="""""" , required=lowercase )
parser.add_argument("""--tgt_lang""" , type=lowercase , default="""""" , required=lowercase )
parser.add_argument("""--eval_beams""" , type=lowercase , default=lowercase , required=lowercase )
parser.add_argument(
"""--val_metric""" , type=lowercase , default=lowercase , required=lowercase , choices=["""bleu""", """rouge2""", """loss""", None] )
parser.add_argument("""--eval_max_gen_length""" , type=lowercase , default=lowercase , help="""never generate more than n tokens""" )
parser.add_argument("""--save_top_k""" , type=lowercase , default=1 , required=lowercase , help="""How many checkpoints to save""" )
parser.add_argument(
"""--early_stopping_patience""" , type=lowercase , default=-1 , required=lowercase , help=(
"""-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"""
""" val_check_interval will effect it."""
) , )
return parser
class lowercase ( _UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = 'translation'
_SCREAMING_SNAKE_CASE = ['loss']
_SCREAMING_SNAKE_CASE = ['bleu']
_SCREAMING_SNAKE_CASE = 'bleu'
def __init__( self , lowercase , **lowercase ) -> Union[str, Any]:
super().__init__(lowercase , **lowercase )
lowerCAmelCase = hparams.src_lang
lowerCAmelCase = hparams.tgt_lang
def _snake_case ( self , lowercase , lowercase ) -> dict:
return calculate_bleu(lowercase , lowercase )
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=None ):
'''simple docstring'''
Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
check_output_dir(SCREAMING_SNAKE_CASE , expected_items=3 )
if model is None:
if "summarization" in args.task:
lowerCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE )
lowerCAmelCase = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith("""/tmp""" )
or str(args.output_dir ).startswith("""/var""" )
):
lowerCAmelCase = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , SCREAMING_SNAKE_CASE )
lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' )
if args.early_stopping_patience >= 0:
lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
lowerCAmelCase = False
lowerCAmelCase = args.val_metric == """loss"""
lowerCAmelCase = generic_train(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE ) , early_stopping_callback=SCREAMING_SNAKE_CASE , logger=SCREAMING_SNAKE_CASE , )
pickle_save(model.hparams , model.output_dir / """hparams.pkl""" )
if not args.do_predict:
return model
lowerCAmelCase = """"""
lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=SCREAMING_SNAKE_CASE ) )
if checkpoints:
lowerCAmelCase = checkpoints[-1]
lowerCAmelCase = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
SCREAMING_SNAKE_CASE__ = pl.Trainer.add_argparse_args(parser)
SCREAMING_SNAKE_CASE__ = SummarizationModule.add_model_specific_args(parser, os.getcwd())
SCREAMING_SNAKE_CASE__ = parser.parse_args()
main(args)
| 46
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCamelCase__ = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] ='albert'
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_hidden_groups
__a = num_attention_heads
__a = inner_group_num
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = classifier_dropout_prob
__a = position_embedding_type
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 302
| 0
|
'''simple docstring'''
def _lowerCAmelCase ( _UpperCamelCase : int ) -> int:
"""simple docstring"""
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
SCREAMING_SNAKE_CASE__ : Any = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
SCREAMING_SNAKE_CASE__ : str = {
'facebook/blenderbot_small-90M': 512,
}
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES
lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ : Optional[Any] = BlenderbotSmallTokenizer
def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=UpperCamelCase__ , merges=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , ) , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , **UpperCamelCase__ , )
lowerCamelCase : List[str] = add_prefix_space
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Any:
lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
lowerCamelCase : Tuple = [self.sep_token_id]
lowerCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 48
|
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302
| 0
|
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
__snake_case :List[str] = '''src/transformers'''
__snake_case :Tuple = '''docs/source/en'''
__snake_case :Dict = '''.'''
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__a = f.readlines()
# Find the start prompt.
__a = 0
while not lines[start_index].startswith(_UpperCAmelCase ):
start_index += 1
start_index += 1
__a = start_index
while not lines[end_index].startswith(_UpperCAmelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
__snake_case :Union[str, Any] = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
__snake_case :Union[str, Any] = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
__snake_case :int = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__snake_case :Tuple = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
__snake_case :str = direct_transformers_import(TRANSFORMERS_PATH)
def __snake_case ( _UpperCAmelCase ):
__a = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _UpperCAmelCase )
return [m.group(0 ) for m in matches]
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ):
__a = 2 if text == '''✅''' or text == '''❌''' else len(_UpperCAmelCase )
__a = (width - text_length) // 2
__a = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def __snake_case ( ):
__a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__a = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
__a = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
__a = collections.defaultdict(_UpperCAmelCase )
__a = collections.defaultdict(_UpperCAmelCase )
__a = collections.defaultdict(_UpperCAmelCase )
__a = collections.defaultdict(_UpperCAmelCase )
__a = collections.defaultdict(_UpperCAmelCase )
# Let's lookup through all transformers object (once).
for attr_name in dir(_UpperCAmelCase ):
__a = None
if attr_name.endswith('''Tokenizer''' ):
__a = slow_tokenizers
__a = attr_name[:-9]
elif attr_name.endswith('''TokenizerFast''' ):
__a = fast_tokenizers
__a = attr_name[:-13]
elif _re_tf_models.match(_UpperCAmelCase ) is not None:
__a = tf_models
__a = _re_tf_models.match(_UpperCAmelCase ).groups()[0]
elif _re_flax_models.match(_UpperCAmelCase ) is not None:
__a = flax_models
__a = _re_flax_models.match(_UpperCAmelCase ).groups()[0]
elif _re_pt_models.match(_UpperCAmelCase ) is not None:
__a = pt_models
__a = _re_pt_models.match(_UpperCAmelCase ).groups()[0]
if lookup_dict is not None:
while len(_UpperCAmelCase ) > 0:
if attr_name in model_name_to_prefix.values():
__a = True
break
# Try again after removing the last word in the name
__a = ''''''.join(camel_case_split(_UpperCAmelCase )[:-1] )
# Let's build that table!
__a = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
__a = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support''']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
__a = [len(_UpperCAmelCase ) + 2 for c in columns]
__a = max([len(_UpperCAmelCase ) for name in model_names] ) + 2
# Build the table per se
__a = '''|''' + '''|'''.join([_center_text(_UpperCAmelCase , _UpperCAmelCase ) for c, w in zip(_UpperCAmelCase , _UpperCAmelCase )] ) + '''|\n'''
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n"
__a = {True: '''✅''', False: '''❌'''}
for name in model_names:
__a = model_name_to_prefix[name]
__a = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_UpperCAmelCase , _UpperCAmelCase ) for l, w in zip(_UpperCAmelCase , _UpperCAmelCase )] ) + "|\n"
return table
def __snake_case ( _UpperCAmelCase=False ):
__a , __a , __a , __a = _find_text_in_file(
filename=os.path.join(_UpperCAmelCase , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , )
__a = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_UpperCAmelCase , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' )
if __name__ == "__main__":
__snake_case :str = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case :List[str] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 49
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = MobileViTVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowerCamelCase : Any =(
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : int =False
__lowerCamelCase : Any =False
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(__lowercase ) , __lowercase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(__lowercase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __lowercase )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=__lowercase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __lowercase )
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __lowercase )
| 302
| 0
|
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = BertJapaneseTokenizer
UpperCAmelCase__ = False
UpperCAmelCase__ = True
def A_ ( self : Optional[int] ) -> Dict:
super().setUp()
lowerCamelCase__ : str = [
'[UNK]',
'[CLS]',
'[SEP]',
'こんにちは',
'こん',
'にちは',
'ばんは',
'##こん',
'##にちは',
'##ばんは',
'世界',
'##世界',
'、',
'##、',
'。',
'##。',
]
lowerCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> Optional[int]:
lowerCamelCase__ : Tuple = 'こんにちは、世界。 \nこんばんは、世界。'
lowerCamelCase__ : Union[str, Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。'
return input_text, output_text
def A_ ( self : List[str] , UpperCAmelCase : List[Any] ) -> str:
lowerCamelCase__ , lowerCamelCase__ : str = self.get_input_output_texts(UpperCAmelCase )
lowerCamelCase__ : int = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
return text, ids
def A_ ( self : Dict ) -> List[str]:
pass # TODO add if relevant
def A_ ( self : List[Any] ) -> Dict:
pass # TODO add if relevant
def A_ ( self : Any ) -> Dict:
pass # TODO add if relevant
def A_ ( self : Any ) -> Optional[int]:
lowerCamelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file )
lowerCamelCase__ : str = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' )
self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def A_ ( self : Any ) -> Tuple:
lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' )
self.assertIsNotNone(UpperCAmelCase )
lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。'
lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(UpperCAmelCase , 'wb' ) as handle:
pickle.dump(UpperCAmelCase , UpperCAmelCase )
with open(UpperCAmelCase , 'rb' ) as handle:
lowerCamelCase__ : Tuple = pickle.load(UpperCAmelCase )
lowerCamelCase__ : List[str] = tokenizer_new.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def A_ ( self : List[Any] ) -> List[Any]:
lowerCamelCase__ : Union[str, Any] = MecabTokenizer(mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def A_ ( self : Union[str, Any] ) -> Any:
try:
lowerCamelCase__ : Optional[int] = MecabTokenizer(mecab_dic='unidic_lite' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def A_ ( self : int ) -> Union[str, Any]:
try:
lowerCamelCase__ : Optional[Any] = MecabTokenizer(mecab_dic='unidic' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def A_ ( self : str ) -> Optional[int]:
lowerCamelCase__ : Union[str, Any] = MecabTokenizer(do_lower_case=UpperCAmelCase , mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def A_ ( self : int ) -> List[str]:
try:
lowerCamelCase__ : Optional[int] = MecabTokenizer(
do_lower_case=UpperCAmelCase , normalize_text=UpperCAmelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , )
def A_ ( self : Dict ) -> Tuple:
lowerCamelCase__ : Any = MecabTokenizer(normalize_text=UpperCAmelCase , mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , )
@require_sudachi
def A_ ( self : List[Any] ) -> Optional[Any]:
lowerCamelCase__ : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' )
self.assertIsNotNone(UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。'
lowerCamelCase__ : List[Any] = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(UpperCAmelCase , 'wb' ) as handle:
pickle.dump(UpperCAmelCase , UpperCAmelCase )
with open(UpperCAmelCase , 'rb' ) as handle:
lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase )
lowerCamelCase__ : Optional[int] = tokenizer_new.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@require_sudachi
def A_ ( self : Dict ) -> int:
lowerCamelCase__ : Any = SudachiTokenizer(sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , )
@require_sudachi
def A_ ( self : Dict ) -> Optional[Any]:
lowerCamelCase__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] )
@require_sudachi
def A_ ( self : Any ) -> int:
lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] )
@require_sudachi
def A_ ( self : Any ) -> Union[str, Any]:
lowerCamelCase__ : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] )
@require_sudachi
def A_ ( self : str ) -> Optional[int]:
lowerCamelCase__ : List[str] = SudachiTokenizer(do_lower_case=UpperCAmelCase , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , )
@require_sudachi
def A_ ( self : Union[str, Any] ) -> Tuple:
lowerCamelCase__ : int = SudachiTokenizer(normalize_text=UpperCAmelCase , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , )
@require_sudachi
def A_ ( self : List[Any] ) -> Tuple:
lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(trim_whitespace=UpperCAmelCase , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
@require_jumanpp
def A_ ( self : str ) -> List[str]:
lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' )
self.assertIsNotNone(UpperCAmelCase )
lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。'
lowerCamelCase__ : Any = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(UpperCAmelCase , 'wb' ) as handle:
pickle.dump(UpperCAmelCase , UpperCAmelCase )
with open(UpperCAmelCase , 'rb' ) as handle:
lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = tokenizer_new.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@require_jumanpp
def A_ ( self : Tuple ) -> Tuple:
lowerCamelCase__ : List[str] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def A_ ( self : str ) -> Optional[Any]:
lowerCamelCase__ : List[str] = JumanppTokenizer(do_lower_case=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def A_ ( self : Tuple ) -> List[str]:
lowerCamelCase__ : int = JumanppTokenizer(normalize_text=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def A_ ( self : str ) -> Dict:
lowerCamelCase__ : Optional[Any] = JumanppTokenizer(trim_whitespace=UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , )
@require_jumanpp
def A_ ( self : Any ) -> Any:
lowerCamelCase__ : Union[str, Any] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , )
def A_ ( self : List[Any] ) -> int:
lowerCamelCase__ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは']
lowerCamelCase__ : int = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase__ : List[Any] = i
lowerCamelCase__ : int = WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] )
self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] )
self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] )
def A_ ( self : Tuple ) -> str:
lowerCamelCase__ : int = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' )
lowerCamelCase__ : List[str] = tokenizer.subword_tokenizer
lowerCamelCase__ : Any = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' )
self.assertListEqual(UpperCAmelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] )
lowerCamelCase__ : Optional[int] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' )
self.assertListEqual(UpperCAmelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] )
def A_ ( self : Dict ) -> List[Any]:
lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' )
lowerCamelCase__ : int = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase )
lowerCamelCase__ : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase )
lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = BertJapaneseTokenizer
UpperCAmelCase__ = False
def A_ ( self : Dict ) -> Any:
super().setUp()
lowerCamelCase__ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def A_ ( self : List[Any] , **UpperCAmelCase : str ) -> List[str]:
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **UpperCAmelCase )
def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] ) -> List[Any]:
lowerCamelCase__ : str = 'こんにちは、世界。 \nこんばんは、世界。'
lowerCamelCase__ : List[str] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'
return input_text, output_text
def A_ ( self : Optional[Any] ) -> List[Any]:
pass # TODO add if relevant
def A_ ( self : Tuple ) -> Union[str, Any]:
pass # TODO add if relevant
def A_ ( self : Optional[Any] ) -> Optional[int]:
pass # TODO add if relevant
def A_ ( self : Tuple ) -> Tuple:
lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' )
lowerCamelCase__ : List[str] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' )
self.assertListEqual(
UpperCAmelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def A_ ( self : Dict ) -> Any:
lowerCamelCase__ : Any = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
lowerCamelCase__ : Optional[int] = {}
for i, token in enumerate(UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = i
lowerCamelCase__ : Optional[int] = CharacterTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] )
self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] )
def A_ ( self : Any ) -> str:
lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' )
lowerCamelCase__ : List[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase )
lowerCamelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase ( unittest.TestCase ):
def A_ ( self : List[str] ) -> Dict:
lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese'
lowerCamelCase__ : int = AutoTokenizer.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
class lowerCAmelCase ( unittest.TestCase ):
def A_ ( self : Tuple ) -> Optional[int]:
lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese'
with self.assertLogs('transformers' , level='WARNING' ) as cm:
BertTokenizer.from_pretrained(UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.' ) )
lowerCamelCase__ : Optional[Any] = 'bert-base-cased'
with self.assertLogs('transformers' , level='WARNING' ) as cm:
BertJapaneseTokenizer.from_pretrained(UpperCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.' ) )
| 50
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 302
| 0
|
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __snake_case ( unittest.TestCase ):
@parameterized.expand([(None,), ('''foo.json''',)])
def lowerCamelCase ( self : Optional[int] , _snake_case : Dict):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig(
do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case , config_name=_snake_case)
UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case , config_name=_snake_case)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , _snake_case)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50)
self.assertEqual(loaded_config.max_length , 20)
self.assertEqual(loaded_config.max_time , _snake_case)
def lowerCamelCase ( self : Any):
"""simple docstring"""
UpperCAmelCase_ = AutoConfig.from_pretrained('''gpt2''')
UpperCAmelCase_ = GenerationConfig.from_model_config(_snake_case)
UpperCAmelCase_ = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(_snake_case , _snake_case)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def lowerCamelCase ( self : Tuple):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig()
UpperCAmelCase_ = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
UpperCAmelCase_ = copy.deepcopy(_snake_case)
UpperCAmelCase_ = generation_config.update(**_snake_case)
# update_kwargs was not modified (no side effects)
self.assertEqual(_snake_case , _snake_case)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(_snake_case , {'''foo''': '''bar'''})
def lowerCamelCase ( self : Optional[Any]):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig()
UpperCAmelCase_ = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir:
generation_config.save_pretrained(_snake_case)
UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''')
UpperCAmelCase_ = GenerationConfig.from_model_config(_snake_case)
assert not hasattr(_snake_case , '''foo''') # no new kwargs should be initialized if from config
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , _snake_case)
self.assertEqual(default_config.num_beams , 1)
UpperCAmelCase_ = GenerationConfig(
do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , _snake_case)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_snake_case)
UpperCAmelCase_ = GenerationConfig.from_pretrained(_snake_case , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , _snake_case)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class __snake_case ( unittest.TestCase ):
@classmethod
def lowerCamelCase ( cls : Tuple):
"""simple docstring"""
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_snake_case)
@classmethod
def lowerCamelCase ( cls : Tuple):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''')
except HTTPError:
pass
def lowerCamelCase ( self : List[Any]):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig(
do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token)
UpperCAmelCase_ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''test-generation-config''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
def lowerCamelCase ( self : Union[str, Any]):
"""simple docstring"""
UpperCAmelCase_ = GenerationConfig(
do_sample=_snake_case , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token)
UpperCAmelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_snake_case , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token)
UpperCAmelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_snake_case , getattr(_snake_case , _snake_case))
| 51
|
import string
import numpy
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : List[str] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
__lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
__lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ )
def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ):
'''simple docstring'''
__a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__a = encrypt_key.shape[0]
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
return self.key_string.index(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : int ):
'''simple docstring'''
return self.key_string[round(__lowercase )]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = len(self.key_string )
if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1:
__a = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = [char for char in text.upper() if char in self.key_string]
__a = chars[-1]
while len(__lowercase ) % self.break_key != 0:
chars.append(__lowercase )
return "".join(__lowercase )
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[
0
]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__a = i
break
__a = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__lowercase ) )
def UpperCamelCase_ ( self : Any , __lowercase : str ):
'''simple docstring'''
__a = self.make_decrypt_key()
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = int(input("""Enter the order of the encryption key: """ ) )
__a = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(_SCREAMING_SNAKE_CASE ):
__a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
__a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__a = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__a = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
__a = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ):
'''simple docstring'''
UpperCamelCase : Dict = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
UpperCamelCase : List[str] = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : str = num_channels
UpperCamelCase : Optional[Any] = min_resolution
UpperCamelCase : Dict = max_resolution
UpperCamelCase : int = do_resize
UpperCamelCase : Any = size
UpperCamelCase : Tuple = do_normalize
UpperCamelCase : Optional[int] = image_mean
UpperCamelCase : Union[str, Any] = image_std
UpperCamelCase : Optional[int] = do_rescale
UpperCamelCase : str = rescale_factor
UpperCamelCase : int = do_pad
def __UpperCamelCase( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __UpperCamelCase( self , A_ , A_=False ):
'''simple docstring'''
if not batched:
UpperCamelCase : Optional[int] = image_inputs[0]
if isinstance(A_ , Image.Image ):
UpperCamelCase , UpperCamelCase : List[str] = image.size
else:
UpperCamelCase , UpperCamelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
UpperCamelCase : Dict = int(self.size["shortest_edge"] * h / w )
UpperCamelCase : Dict = self.size["shortest_edge"]
elif w > h:
UpperCamelCase : Optional[int] = self.size["shortest_edge"]
UpperCamelCase : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
UpperCamelCase : List[str] = self.size["shortest_edge"]
UpperCamelCase : Optional[int] = self.size["shortest_edge"]
else:
UpperCamelCase : List[Any] = []
for image in image_inputs:
UpperCamelCase , UpperCamelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCamelCase : List[Any] = max(A_ , key=lambda A_ : item[0] )[0]
UpperCamelCase : int = max(A_ , key=lambda A_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :int = DeformableDetrImageProcessor if is_vision_available() else None
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = DeformableDetrImageProcessingTester(self )
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , "image_mean" ) )
self.assertTrue(hasattr(A_ , "image_std" ) )
self.assertTrue(hasattr(A_ , "do_normalize" ) )
self.assertTrue(hasattr(A_ , "do_resize" ) )
self.assertTrue(hasattr(A_ , "do_rescale" ) )
self.assertTrue(hasattr(A_ , "do_pad" ) )
self.assertTrue(hasattr(A_ , "size" ) )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , A_ )
UpperCamelCase : str = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
pass
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCamelCase , UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
UpperCamelCase : Any = image_processing(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCamelCase , UpperCamelCase : int = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase : Optional[int] = image_processing(A_ , return_tensors="pt" ).pixel_values
UpperCamelCase , UpperCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCamelCase , UpperCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase : Union[str, Any] = image_processing(A_ , return_tensors="pt" ).pixel_values
UpperCamelCase , UpperCamelCase : Dict = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
UpperCamelCase : str = json.loads(f.read() )
UpperCamelCase : Dict = {"image_id": 3_9769, "annotations": target}
# encode them
UpperCamelCase : str = DeformableDetrImageProcessor()
UpperCamelCase : Optional[Any] = image_processing(images=A_ , annotations=A_ , return_tensors="pt" )
# verify pixel values
UpperCamelCase : Optional[int] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , A_ )
UpperCamelCase : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1e-4 ) )
# verify area
UpperCamelCase : Union[str, Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) )
# verify boxes
UpperCamelCase : List[str] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ )
UpperCamelCase : List[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1e-3 ) )
# verify image_id
UpperCamelCase : Optional[Any] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) )
# verify is_crowd
UpperCamelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) )
# verify class_labels
UpperCamelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) )
# verify orig_size
UpperCamelCase : Dict = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) )
# verify size
UpperCamelCase : Any = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) )
@slow
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
UpperCamelCase : Optional[int] = json.loads(f.read() )
UpperCamelCase : Any = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target}
UpperCamelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
UpperCamelCase : List[Any] = DeformableDetrImageProcessor(format="coco_panoptic" )
UpperCamelCase : Dict = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors="pt" )
# verify pixel values
UpperCamelCase : Any = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , A_ )
UpperCamelCase : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A_ , atol=1e-4 ) )
# verify area
UpperCamelCase : Union[str, Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A_ ) )
# verify boxes
UpperCamelCase : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , A_ )
UpperCamelCase : Any = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A_ , atol=1e-3 ) )
# verify image_id
UpperCamelCase : Union[str, Any] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A_ ) )
# verify is_crowd
UpperCamelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A_ ) )
# verify class_labels
UpperCamelCase : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A_ ) )
# verify masks
UpperCamelCase : Dict = 82_2873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A_ )
# verify orig_size
UpperCamelCase : List[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A_ ) )
# verify size
UpperCamelCase : List[Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A_ ) )
| 52
|
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] ='autoformer'
__lowerCamelCase : str ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ):
'''simple docstring'''
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowercase , **__lowercase )
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 302
| 0
|
'''simple docstring'''
import os
def lowercase__ ( __lowercase : str = "matrix.txt" ) -> int:
"""simple docstring"""
with open(os.path.join(os.path.dirname(__lowercase ) , __lowercase ) ) as in_file:
__UpperCamelCase = in_file.read()
__UpperCamelCase = [[int(__lowercase ) for cell in row.split(',' )] for row in data.strip().splitlines()]
__UpperCamelCase = [[0 for cell in row] for row in grid]
__UpperCamelCase = len(grid[0] )
__UpperCamelCase = [[0 for i in range(__lowercase )] for j in range(__lowercase )]
__UpperCamelCase = grid[0][0]
for i in range(1 , __lowercase ):
__UpperCamelCase = grid[0][i] + dp[0][i - 1]
for i in range(1 , __lowercase ):
__UpperCamelCase = grid[i][0] + dp[i - 1][0]
for i in range(1 , __lowercase ):
for j in range(1 , __lowercase ):
__UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(f'{solution() = }')
| 53
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : int = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Any = "gpt_bigcode"
snake_case__ : str = ["past_key_values"]
snake_case__ : Optional[Any] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[Any] , UpperCAmelCase__ : Any=5_0_2_5_7 , UpperCAmelCase__ : Optional[int]=1_0_2_4 , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Any=1_2 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : str="gelu_pytorch_tanh" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=5_0_2_5_6 , UpperCAmelCase__ : Union[str, Any]=5_0_2_5_6 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : List[str] , ) -> Dict:
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = n_positions
__SCREAMING_SNAKE_CASE = n_embd
__SCREAMING_SNAKE_CASE = n_layer
__SCREAMING_SNAKE_CASE = n_head
__SCREAMING_SNAKE_CASE = n_inner
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = resid_pdrop
__SCREAMING_SNAKE_CASE = embd_pdrop
__SCREAMING_SNAKE_CASE = attn_pdrop
__SCREAMING_SNAKE_CASE = layer_norm_epsilon
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = scale_attn_weights
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = attention_softmax_in_fpaa
__SCREAMING_SNAKE_CASE = scale_attention_softmax_in_fpaa
__SCREAMING_SNAKE_CASE = multi_query
__SCREAMING_SNAKE_CASE = bos_token_id
__SCREAMING_SNAKE_CASE = eos_token_id
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
| 54
|
from __future__ import annotations
lowerCamelCase__ = """#"""
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ):
'''simple docstring'''
__a = {}
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in text:
if char not in trie:
__a = {}
__a = trie[char]
__a = True
def UpperCamelCase_ ( self : Tuple , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in prefix:
if char in trie:
__a = trie[char]
else:
return []
return self._elements(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ):
'''simple docstring'''
__a = []
for c, v in d.items():
__a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )]
result.extend(__lowercase )
return tuple(__lowercase )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = trie.find_word(_SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def lowerCAmelCase__ ( ):
"""simple docstring"""
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
'''simple docstring'''
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Optional[int] = logging.get_logger(__name__)
a_ : int = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "autoformer"
_lowerCamelCase = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = "student_t" , UpperCamelCase = "nll" , UpperCamelCase = 1 , UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase = True , UpperCamelCase = 0 , UpperCamelCase = 0 , UpperCamelCase = 0 , UpperCamelCase = 0 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 2 , UpperCamelCase = 2 , UpperCamelCase = 2 , UpperCamelCase = 32 , UpperCamelCase = 32 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 100 , UpperCamelCase = 0.02 , UpperCamelCase = True , UpperCamelCase=True , UpperCamelCase = 10 , UpperCamelCase = 25 , UpperCamelCase = 3 , **UpperCamelCase , ):
"""simple docstring"""
# time series specific configuration
lowerCamelCase_ = prediction_length
lowerCamelCase_ = context_length if context_length is not None else prediction_length
lowerCamelCase_ = distribution_output
lowerCamelCase_ = loss
lowerCamelCase_ = input_size
lowerCamelCase_ = num_time_features
lowerCamelCase_ = lags_sequence
lowerCamelCase_ = scaling
lowerCamelCase_ = num_dynamic_real_features
lowerCamelCase_ = num_static_real_features
lowerCamelCase_ = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
lowerCamelCase_ = cardinality
else:
lowerCamelCase_ = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
lowerCamelCase_ = embedding_dimension
else:
lowerCamelCase_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowerCamelCase_ = num_parallel_samples
# Transformer architecture configuration
lowerCamelCase_ = input_size * len(self.lags_sequence ) + self._number_of_features
lowerCamelCase_ = d_model
lowerCamelCase_ = encoder_attention_heads
lowerCamelCase_ = decoder_attention_heads
lowerCamelCase_ = encoder_ffn_dim
lowerCamelCase_ = decoder_ffn_dim
lowerCamelCase_ = encoder_layers
lowerCamelCase_ = decoder_layers
lowerCamelCase_ = dropout
lowerCamelCase_ = attention_dropout
lowerCamelCase_ = activation_dropout
lowerCamelCase_ = encoder_layerdrop
lowerCamelCase_ = decoder_layerdrop
lowerCamelCase_ = activation_function
lowerCamelCase_ = init_std
lowerCamelCase_ = use_cache
# Autoformer
lowerCamelCase_ = label_length
lowerCamelCase_ = moving_average
lowerCamelCase_ = autocorrelation_factor
super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase )
@property
def snake_case ( self ):
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 55
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__lowercase , __lowercase , 0 )
__a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__lowercase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
__a = nn.Linear(__lowercase , __lowercase )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__lowercase , __lowercase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , )
for d in range(__lowercase )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__lowercase )
elif norm_in_type is None:
__a = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
__a = nn.LayerNorm(__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = {}
def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ):
if hasattr(__lowercase , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__lowercase , __lowercase , __lowercase )
return processors
def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__a = len(self.attn_processors.keys() )
if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ):
if hasattr(__lowercase , """set_processor""" ):
if not isinstance(__lowercase , __lowercase ):
module.set_processor(__lowercase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ):
'''simple docstring'''
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__lowercase ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__lowercase )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__lowercase )
__a = self.embedding_proj(__lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__lowercase )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 )
additional_embeds.append(__lowercase )
__a = torch.cat(
__lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__lowercase )
for block in self.transformer_blocks:
__a = block(__lowercase , attention_mask=__lowercase )
__a = self.norm_out(__lowercase )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple ):
'''simple docstring'''
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 302
| 0
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class a :
snake_case_ = field(
metadata={"help": "The output directory where the model will be written."} , )
snake_case_ = field(
metadata={
"help": (
"The encoder model checkpoint for weights initialization."
"Don't set if you want to train an encoder model from scratch."
)
} , )
snake_case_ = field(
metadata={
"help": (
"The decoder model checkpoint for weights initialization."
"Don't set if you want to train a decoder model from scratch."
)
} , )
snake_case_ = field(
default=_lowerCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} )
snake_case_ = field(
default=_lowerCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} )
def __magic_name__ ( ) -> List[str]:
'''simple docstring'''
snake_case_ = HfArgumentParser((ModelArguments,) )
((snake_case_) ,) = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
snake_case_ = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
snake_case_ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
snake_case_ = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
snake_case_ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
snake_case_ = True
snake_case_ = True
snake_case_ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=__UpperCAmelCase, decoder_config=__UpperCAmelCase, )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
snake_case_ = decoder_config.decoder_start_token_id
snake_case_ = decoder_config.pad_token_id
if decoder_start_token_id is None:
snake_case_ = decoder_config.bos_token_id
if pad_token_id is None:
snake_case_ = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
snake_case_ = decoder_config.eos_token_id
snake_case_ = decoder_start_token_id
snake_case_ = pad_token_id
snake_case_ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
snake_case_ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
snake_case_ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 56
|
from functools import lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
__a = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
while True:
# Increment each value of a generated range
__a = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ):
"""simple docstring"""
__a = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 302
| 0
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
A : Union[str, Any] = imread(R"digital_image_processing/image_data/lena_small.jpg")
A : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = cn.convert_to_negative(_UpperCamelCase )
# assert negative_img array for at least one True
assert negative_img.any()
def _lowerCamelCase ( ):
'''simple docstring'''
with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img:
# Work around assertion for response
assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at" )
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
__lowerCAmelCase = canny.canny(_UpperCamelCase )
# assert canny array for at least one True
assert canny_array.any()
def _lowerCamelCase ( ):
'''simple docstring'''
assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
__lowerCAmelCase = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase )
assert res.any()
def _lowerCamelCase ( ):
'''simple docstring'''
assert med.median_filter(_UpperCamelCase , 3 ).any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(_UpperCamelCase )
assert grad.any() and theta.any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = sp.make_sepia(_UpperCamelCase , 20 )
assert sepia.all()
def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ):
'''simple docstring'''
__lowerCAmelCase = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ):
'''simple docstring'''
__lowerCAmelCase = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
__lowerCAmelCase = imread(_UpperCamelCase , 0 )
# Test for get_neighbors_pixel function() return not None
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = image[x_coordinate][y_coordinate]
__lowerCAmelCase = lbp.get_neighbors_pixel(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
__lowerCAmelCase = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
assert lbp_image.any()
| 57
|
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
__a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__a = 128
elif "12-12" in model_name:
__a = 12
__a = 12
elif "14-14" in model_name:
__a = 14
__a = 14
elif "16-16" in model_name:
__a = 16
__a = 16
else:
raise ValueError("""Model not supported""" )
__a = """huggingface/label-files"""
if "speech-commands" in model_name:
__a = 35
__a = """speech-commands-v2-id2label.json"""
else:
__a = 527
__a = """audioset-id2label.json"""
__a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
if "module.v" in name:
__a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
__a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
__a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
__a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
__a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
__a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
__a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
__a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
__a = key.split(""".""" )
__a = int(key_split[3] )
__a = config.hidden_size
if "weight" in key:
__a = val[:dim, :]
__a = val[dim : dim * 2, :]
__a = val[-dim:, :]
else:
__a = val[:dim]
__a = val[dim : dim * 2]
__a = val[-dim:]
else:
__a = val
return orig_state_dict
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ):
"""simple docstring"""
__a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
__a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__a = model_name_to_url[model_name]
__a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
__a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
__a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
__a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
__a = 1024 if """speech-commands""" not in model_name else 128
__a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
__a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
__a = dataset[0]["""audio"""]["""array"""]
else:
__a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
__a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE )
__a = waveform.squeeze().numpy()
__a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
__a = model(**_SCREAMING_SNAKE_CASE )
__a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"MIT/{model_name}" )
feature_extractor.push_to_hub(f"MIT/{model_name}" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""ast-finetuned-audioset-10-10-0.4593""",
type=str,
help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase__ = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
lowercase_ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""}
@is_pipeline_test
class a_ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
UpperCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
UpperCamelCase = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def snake_case_( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] )
_SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(A ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
# Legacy behavior
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , return_all_scores=A )
self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" , return_all_scores=A )
self.assertEqual(
nested_simplify(A ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] )
_SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=A )
self.assertEqual(
nested_simplify(A ) , [
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}],
] , )
_SCREAMING_SNAKE_CASE = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=A )
self.assertEqual(
nested_simplify(A ) , [
{"""label""": """LABEL_0""", """score""": 0.504},
{"""label""": """LABEL_0""", """score""": 0.504},
] , )
@require_torch
def snake_case_( self ) -> int:
import torch
_SCREAMING_SNAKE_CASE = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@require_tf
def snake_case_( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """LABEL_0""", """score""": 0.504}] )
@slow
@require_torch
def snake_case_( self ) -> Any:
_SCREAMING_SNAKE_CASE = pipeline("""text-classification""" )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
_SCREAMING_SNAKE_CASE = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
_SCREAMING_SNAKE_CASE = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
@slow
@require_tf
def snake_case_( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE = pipeline("""text-classification""" , framework="""tf""" )
_SCREAMING_SNAKE_CASE = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
_SCREAMING_SNAKE_CASE = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
_SCREAMING_SNAKE_CASE = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(A ) , [{"""label""": """POSITIVE""", """score""": 0.988}] )
def snake_case_( self , A , A , A ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=A , tokenizer=A )
return text_classifier, ["HuggingFace is in", "This is another test"]
def snake_case_( self , A , A ) -> int:
_SCREAMING_SNAKE_CASE = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
_SCREAMING_SNAKE_CASE = """HuggingFace is in"""
_SCREAMING_SNAKE_CASE = text_classifier(A )
self.assertEqual(nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
_SCREAMING_SNAKE_CASE = ["""HuggingFace is in """, """Paris is in France"""]
_SCREAMING_SNAKE_CASE = text_classifier(A )
self.assertEqual(
nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}, {"""label""": ANY(A ), """score""": ANY(A )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
_SCREAMING_SNAKE_CASE = text_classifier(A , top_k=A )
_SCREAMING_SNAKE_CASE = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(A ) , [[{"""label""": ANY(A ), """score""": ANY(A )}] * N, [{"""label""": ANY(A ), """score""": ANY(A )}] * N] , )
_SCREAMING_SNAKE_CASE = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
_SCREAMING_SNAKE_CASE = text_classifier(A )
self.assertEqual(
nested_simplify(A ) , {"""label""": ANY(A ), """score""": ANY(A )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
_SCREAMING_SNAKE_CASE = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(A ):
text_classifier(A )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
_SCREAMING_SNAKE_CASE = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(A ) , [{"""label""": ANY(A ), """score""": ANY(A )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 58
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCamelCase__ = None
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
lowerCamelCase__ = """▁"""
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] =VOCAB_FILES_NAMES
__lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Any =AlbertTokenizer
def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ):
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__a = (
AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase )
if isinstance(__lowercase , __lowercase )
else mask_token
)
super().__init__(
__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , )
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = False if not self.vocab_file else True
def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__lowercase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
__a = os.path.join(
__lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ):
copyfile(self.vocab_file , __lowercase )
return (out_vocab_file,)
| 302
| 0
|
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class UpperCAmelCase ( A_ ):
A__ : jnp.ndarray
@flax_register_to_config
class UpperCAmelCase ( nn.Module ,A_ ,A_ ):
A__ : int = 32
A__ : int = 4
A__ : int = 4
A__ : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
A__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
A__ : Union[bool, Tuple[bool]] = False
A__ : Tuple[int] = (3_20, 6_40, 12_80, 12_80)
A__ : int = 2
A__ : Union[int, Tuple[int]] = 8
A__ : Optional[Union[int, Tuple[int]]] = None
A__ : int = 12_80
A__ : float = 0.0
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
A__ : bool = True
A__ : int = 0
A__ : bool = False
def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
snake_case : Dict = (1, self.in_channels, self.sample_size, self.sample_size)
snake_case : Any = jnp.zeros(snake_case__ , dtype=jnp.floataa )
snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa )
snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
snake_case , snake_case : Optional[int] = jax.random.split(snake_case__ )
snake_case : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng}
return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"]
def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple:
'''simple docstring'''
snake_case : str = self.block_out_channels
snake_case : Optional[Any] = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
snake_case : Tuple = self.num_attention_heads or self.attention_head_dim
# input
snake_case : Tuple = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
snake_case : Union[str, Any] = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
snake_case : Dict = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype )
snake_case : List[str] = self.only_cross_attention
if isinstance(snake_case__ , snake_case__ ):
snake_case : List[Any] = (only_cross_attention,) * len(self.down_block_types )
if isinstance(snake_case__ , snake_case__ ):
snake_case : List[Any] = (num_attention_heads,) * len(self.down_block_types )
# down
snake_case : List[Any] = []
snake_case : Optional[int] = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
snake_case : List[Any] = output_channel
snake_case : Dict = block_out_channels[i]
snake_case : Optional[Any] = i == len(snake_case__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
snake_case : List[Any] = FlaxCrossAttnDownBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
snake_case : Union[str, Any] = FlaxDownBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(snake_case__ )
snake_case : Dict = down_blocks
# mid
snake_case : Optional[int] = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
snake_case : Optional[Any] = []
snake_case : Optional[int] = list(reversed(snake_case__ ) )
snake_case : Dict = list(reversed(snake_case__ ) )
snake_case : Tuple = list(reversed(snake_case__ ) )
snake_case : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
snake_case : Optional[int] = output_channel
snake_case : List[Any] = reversed_block_out_channels[i]
snake_case : Union[str, Any] = reversed_block_out_channels[min(i + 1 , len(snake_case__ ) - 1 )]
snake_case : int = i == len(snake_case__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
snake_case : Any = FlaxCrossAttnUpBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
snake_case : Optional[int] = FlaxUpBlockaD(
in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(snake_case__ )
snake_case : Optional[int] = output_channel
snake_case : Tuple = up_blocks
# out
snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
snake_case : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__(self : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : bool = True , snake_case__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(snake_case__ , jnp.ndarray ):
snake_case : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
snake_case : Any = timesteps.astype(dtype=jnp.floataa )
snake_case : int = jnp.expand_dims(snake_case__ , 0 )
snake_case : str = self.time_proj(snake_case__ )
snake_case : str = self.time_embedding(snake_case__ )
# 2. pre-process
snake_case : int = jnp.transpose(snake_case__ , (0, 2, 3, 1) )
snake_case : List[Any] = self.conv_in(snake_case__ )
# 3. down
snake_case : Optional[int] = (sample,)
for down_block in self.down_blocks:
if isinstance(snake_case__ , snake_case__ ):
snake_case , snake_case : List[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train )
else:
snake_case , snake_case : str = down_block(snake_case__ , snake_case__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
snake_case : Tuple = ()
for down_block_res_sample, down_block_additional_residual in zip(
snake_case__ , snake_case__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
snake_case : Optional[int] = new_down_block_res_samples
# 4. mid
snake_case : Optional[int] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
snake_case : int = down_block_res_samples[-(self.layers_per_block + 1) :]
snake_case : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(snake_case__ , snake_case__ ):
snake_case : Optional[Any] = up_block(
snake_case__ , temb=snake_case__ , encoder_hidden_states=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train , )
else:
snake_case : Dict = up_block(snake_case__ , temb=snake_case__ , res_hidden_states_tuple=snake_case__ , deterministic=not train )
# 6. post-process
snake_case : List[str] = self.conv_norm_out(snake_case__ )
snake_case : Any = nn.silu(snake_case__ )
snake_case : Optional[int] = self.conv_out(snake_case__ )
snake_case : Union[str, Any] = jnp.transpose(snake_case__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=snake_case__ )
| 59
|
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] =(IPNDMScheduler,)
__lowerCamelCase : int =(('num_inference_steps', 50),)
def UpperCamelCase_ ( self : str , **__lowercase : Dict ):
'''simple docstring'''
__a = {"""num_train_timesteps""": 1000}
config.update(**__lowercase )
return config
def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ):
'''simple docstring'''
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__lowercase )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
return sample
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ):
scheduler.set_timesteps(__lowercase )
elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ):
__a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__a = dummy_past_residuals[:]
__a = scheduler.timesteps[5]
__a = scheduler.timesteps[6]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.full_loop()
__a = torch.mean(torch.abs(__lowercase ) )
assert abs(result_mean.item() - 2540529 ) < 10
| 302
| 0
|
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=7 , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=1_8 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : Union[str, Any]=4_0_0 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=True , ):
lowerCAmelCase : Dict = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
lowerCAmelCase : List[Any] = parent
lowerCAmelCase : List[str] = batch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Any = image_size
lowerCAmelCase : List[str] = min_resolution
lowerCAmelCase : Dict = max_resolution
lowerCAmelCase : List[str] = do_resize
lowerCAmelCase : Union[str, Any] = size
lowerCAmelCase : str = do_normalize
def lowerCamelCase__ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = ImageGPTImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[str] = ImageGPTImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''clusters''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} )
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
lowerCAmelCase : List[Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCamelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase : List[str] = os.path.join(UpperCamelCase_ , '''image_processor.json''' )
image_processor_first.to_json_file(UpperCamelCase_ )
lowerCAmelCase : Tuple = self.image_processing_class.from_json_file(UpperCamelCase_ ).to_dict()
lowerCAmelCase : Tuple = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Any = self.image_processing_class.from_pretrained(UpperCamelCase_ ).to_dict()
lowerCAmelCase : Optional[int] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCamelCase_ )
@unittest.skip('''ImageGPT requires clusters at initialization''' )
def lowerCamelCase__ ( self : Dict ):
pass
def _snake_case ( ):
lowerCAmelCase : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
lowerCAmelCase : Tuple = Image.open(dataset[4]['''file'''] )
lowerCAmelCase : str = Image.open(dataset[5]['''file'''] )
lowerCAmelCase : Dict = [imagea, imagea]
return images
@require_vision
@require_torch
class snake_case_( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Any = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' )
lowerCAmelCase : Union[str, Any] = prepare_images()
# test non-batched
lowerCAmelCase : Optional[Any] = image_processing(images[0] , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
lowerCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCamelCase_ )
# test batched
lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
lowerCAmelCase : Union[str, Any] = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCamelCase_ )
| 60
|
from __future__ import annotations
lowerCamelCase__ = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ):
'''simple docstring'''
__a = graph
# mapping node to its parent in resulting breadth first tree
__a = {}
__a = source_vertex
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = {self.source_vertex}
__a = None
__a = [self.source_vertex] # first in first out queue
while queue:
__a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowercase )
__a = vertex
queue.append(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
__a = self.parent.get(__lowercase )
if target_vertex_parent is None:
__a = (
F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowercase )
return self.shortest_path(__lowercase ) + F"->{target_vertex}"
if __name__ == "__main__":
lowerCamelCase__ = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 302
| 0
|
"""simple docstring"""
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ):
if attention_mask is None:
UpperCAmelCase_ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCAmelCase_ : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCAmelCase_ : Dict = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=__lowerCamelCase )
if decoder_head_mask is None:
UpperCAmelCase_ : Dict = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=__lowerCamelCase )
if cross_attn_head_mask is None:
UpperCAmelCase_ : Optional[Any] = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=__lowerCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class A_ :
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="relu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = parent
UpperCAmelCase_ : Any = batch_size
UpperCAmelCase_ : Dict = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : int = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Optional[int] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : List[str] = hidden_dropout_prob
UpperCAmelCase_ : Any = attention_probs_dropout_prob
UpperCAmelCase_ : List[Any] = encoder_layerdrop
UpperCAmelCase_ : Dict = decoder_layerdrop
UpperCAmelCase_ : List[Any] = max_position_embeddings
UpperCAmelCase_ : Any = eos_token_id
UpperCAmelCase_ : Optional[int] = pad_token_id
UpperCAmelCase_ : Union[str, Any] = bos_token_id
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Optional[int] = self.eos_token_id # Eos Token
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCAmelCase_ : Optional[Any] = input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase_ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase_ : Any = self.get_config()
UpperCAmelCase_ : List[Any] = prepare_mam_aaa_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = MaMaaaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval()
UpperCAmelCase_ : int = inputs_dict["input_ids"]
UpperCAmelCase_ : Optional[Any] = inputs_dict["attention_mask"]
UpperCAmelCase_ : Optional[int] = inputs_dict["head_mask"]
# first forward pass
UpperCAmelCase_ : Any = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : int = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(lowercase_ , attention_mask=lowercase_ )["last_hidden_state"]
UpperCAmelCase_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[
"last_hidden_state"
]
# select random slice
UpperCAmelCase_ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = MaMaaaModel(config=lowercase_ ).to(lowercase_ ).eval()
UpperCAmelCase_ : Tuple = model(**lowercase_ )
UpperCAmelCase_ : int = outputs.encoder_last_hidden_state
UpperCAmelCase_ : Any = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ : List[Any] = model.get_encoder()
encoder.save_pretrained(lowercase_ )
UpperCAmelCase_ : Tuple = MaMaaaEncoder.from_pretrained(lowercase_ ).to(lowercase_ )
UpperCAmelCase_ : List[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ : Optional[Any] = model.get_decoder()
decoder.save_pretrained(lowercase_ )
UpperCAmelCase_ : List[Any] = MaMaaaDecoder.from_pretrained(lowercase_ ).to(lowercase_ )
UpperCAmelCase_ : str = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=lowercase_ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class A_ (lowercase__ ,lowercase__ ,lowercase__ ,unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : Tuple = (
{
"""conversational""": MaMaaaForConditionalGeneration,
"""feature-extraction""": MaMaaaModel,
"""summarization""": MaMaaaForConditionalGeneration,
"""text2text-generation""": MaMaaaForConditionalGeneration,
"""translation""": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
SCREAMING_SNAKE_CASE__ : int = True
SCREAMING_SNAKE_CASE__ : Any = False
SCREAMING_SNAKE_CASE__ : Tuple = False
def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : str = MaMaaaModelTester(self )
UpperCAmelCase_ : Any = ConfigTester(self , config_class=lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = model_class(lowercase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Any = model_class.from_pretrained(lowercase_ , output_loading_info=lowercase_ )
self.assertEqual(info["missing_keys"] , [] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
UpperCAmelCase_ : Any = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_ ) )
if not self.is_encoder_decoder:
UpperCAmelCase_ : Tuple = inputs["input_ids"]
del inputs["input_ids"]
else:
UpperCAmelCase_ : Optional[Any] = inputs["input_ids"]
UpperCAmelCase_ : List[str] = inputs.get("decoder_input_ids" , lowercase_ )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , lowercase_ )
UpperCAmelCase_ : List[str] = model.get_input_embeddings()
if not self.is_encoder_decoder:
UpperCAmelCase_ : Dict = wte(lowercase_ )
else:
UpperCAmelCase_ : Dict = wte(lowercase_ )
UpperCAmelCase_ : Optional[int] = wte(lowercase_ )
with torch.no_grad():
model(**lowercase_ )[0]
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase_ : Union[str, Any] = input_dict["input_ids"]
UpperCAmelCase_ : List[str] = input_ids.ne(1 ).to(lowercase_ )
UpperCAmelCase_ : Tuple = MaMaaaForConditionalGeneration(lowercase_ ).eval().to(lowercase_ )
if torch_device == "cuda":
model.half()
model.generate(lowercase_ , attention_mask=lowercase_ )
model.generate(num_beams=4 , do_sample=lowercase_ , early_stopping=lowercase_ , num_return_sequences=3 )
def __a ( __lowerCamelCase ):
return torch.tensor(__lowerCamelCase, dtype=torch.long, device=__lowerCamelCase )
_a = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class A_ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ )
UpperCAmelCase_ : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
UpperCAmelCase_ : str = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
UpperCAmelCase_ : str = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ )
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**lowercase_ )[0]
UpperCAmelCase_ : Optional[int] = torch.Size((1, 11, 1024) )
self.assertEqual(output.shape , lowercase_ )
# change to expected output here
UpperCAmelCase_ : List[Any] = torch.tensor(
[[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=lowercase_ )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ )
# change to intended input
UpperCAmelCase_ : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
UpperCAmelCase_ : Optional[int] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
UpperCAmelCase_ : str = prepare_mam_aaa_inputs_dict(model.config , lowercase_ , lowercase_ )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**lowercase_ )[0]
UpperCAmelCase_ : str = torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , lowercase_ )
# change to expected output here
UpperCAmelCase_ : Any = torch.tensor(
[[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=lowercase_ )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=lowercase_ ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : Dict = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(lowercase_ )
UpperCAmelCase_ : Tuple = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
UpperCAmelCase_ : str = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
UpperCAmelCase_ : List[Any] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" )
UpperCAmelCase_ : Optional[int] = model.generate(
input_ids=dct["input_ids"].to(lowercase_ ) , attention_mask=dct["attention_mask"].to(lowercase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
UpperCAmelCase_ : List[Any] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
UpperCAmelCase_ : List[str] = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowercase_ , skip_special_tokens=lowercase_ )
assert generated == expected_en
| 61
|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple =KandinskyVaaPriorPipeline
__lowerCamelCase : Union[str, Any] =['prompt']
__lowerCamelCase : Any =['prompt', 'negative_prompt']
__lowerCamelCase : List[str] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
__lowerCamelCase : List[Any] =False
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__lowercase )
@property
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
__a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__a = PriorTransformer(**__lowercase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__a = CLIPVisionModelWithProjection(__lowercase )
return model
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.dummy_prior
__a = self.dummy_image_encoder
__a = self.dummy_text_encoder
__a = self.dummy_tokenizer
__a = self.dummy_image_processor
__a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , )
__a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ):
'''simple docstring'''
if str(__lowercase ).startswith("""mps""" ):
__a = torch.manual_seed(__lowercase )
else:
__a = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = """cpu"""
__a = self.get_dummy_components()
__a = self.pipeline_class(**__lowercase )
__a = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__a = pipe(**self.get_dummy_inputs(__lowercase ) )
__a = output.image_embeds
__a = pipe(
**self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0]
__a = image[0, -10:]
__a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = True
__a = False
self._test_inference_batch_single_identical(
test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
@skip_mps
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
| 302
| 0
|
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> int:
__UpperCamelCase =parent
__UpperCamelCase =batch_size
__UpperCamelCase =seq_length
__UpperCamelCase =is_training
__UpperCamelCase =use_input_mask
__UpperCamelCase =use_token_type_ids
__UpperCamelCase =use_labels
__UpperCamelCase =vocab_size
__UpperCamelCase =hidden_size
__UpperCamelCase =num_hidden_layers
__UpperCamelCase =num_attention_heads
__UpperCamelCase =intermediate_size
__UpperCamelCase =hidden_act
__UpperCamelCase =hidden_dropout_prob
__UpperCamelCase =attention_probs_dropout_prob
__UpperCamelCase =max_position_embeddings
__UpperCamelCase =type_vocab_size
__UpperCamelCase =type_sequence_label_size
__UpperCamelCase =initializer_range
__UpperCamelCase =num_labels
__UpperCamelCase =num_choices
__UpperCamelCase =scope
def _a ( self ) -> Dict:
__UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase =None
if self.use_input_mask:
__UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase =None
if self.use_token_type_ids:
__UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCamelCase =None
__UpperCamelCase =None
__UpperCamelCase =None
if self.use_labels:
__UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self ) -> int:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , use_stable_embedding=A_ , )
def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict:
__UpperCamelCase =OpenLlamaModel(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(A_ , attention_mask=A_ )
__UpperCamelCase =model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]:
__UpperCamelCase =True
__UpperCamelCase =OpenLlamaModel(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , )
__UpperCamelCase =model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , )
__UpperCamelCase =model(A_ , attention_mask=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]:
__UpperCamelCase =OpenLlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]:
__UpperCamelCase =True
__UpperCamelCase =True
__UpperCamelCase =OpenLlamaForCausalLM(config=A_ )
model.to(A_ )
model.eval()
# first forward pass
__UpperCamelCase =model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , )
__UpperCamelCase =outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase =ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase =torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCamelCase =model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0]
__UpperCamelCase =model(
A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0]
# select random slice
__UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) )
def _a ( self ) -> List[str]:
__UpperCamelCase =self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) =config_and_inputs
__UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
UpperCAmelCase__ : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else ()
UpperCAmelCase__ : str = (
{
"feature-extraction": OpenLlamaModel,
"text-classification": OpenLlamaForSequenceClassification,
"text-generation": OpenLlamaForCausalLM,
"zero-shot": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[int] = False
def _a ( self ) -> List[str]:
__UpperCamelCase =OpenLlamaModelTester(self )
__UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 )
def _a ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _a ( self ) -> Any:
__UpperCamelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def _a ( self ) -> str:
__UpperCamelCase =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCamelCase =type
self.model_tester.create_and_check_model(*A_ )
def _a ( self ) -> Dict:
__UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase =3
__UpperCamelCase =input_dict['input_ids']
__UpperCamelCase =input_ids.ne(1 ).to(A_ )
__UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase =OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _a ( self ) -> Tuple:
__UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase =3
__UpperCamelCase ='single_label_classification'
__UpperCamelCase =input_dict['input_ids']
__UpperCamelCase =input_ids.ne(1 ).to(A_ )
__UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase =OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _a ( self ) -> Tuple:
__UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase =3
__UpperCamelCase ='multi_label_classification'
__UpperCamelCase =input_dict['input_ids']
__UpperCamelCase =input_ids.ne(1 ).to(A_ )
__UpperCamelCase =ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCamelCase =OpenLlamaForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def _a ( self ) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def _a ( self , A_ ) -> Tuple:
__UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase =ids_tensor([1, 10] , config.vocab_size )
__UpperCamelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase =OpenLlamaModel(A_ )
original_model.to(A_ )
original_model.eval()
__UpperCamelCase =original_model(A_ ).last_hidden_state
__UpperCamelCase =original_model(A_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase ={'type': scaling_type, 'factor': 10.0}
__UpperCamelCase =OpenLlamaModel(A_ )
scaled_model.to(A_ )
scaled_model.eval()
__UpperCamelCase =scaled_model(A_ ).last_hidden_state
__UpperCamelCase =scaled_model(A_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) )
| 62
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = Dict[str, Any]
lowerCamelCase__ = List[Prediction]
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ):
'''simple docstring'''
super().__init__(*__lowercase , **__lowercase )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ):
'''simple docstring'''
__a = {}
if "threshold" in kwargs:
__a = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ):
'''simple docstring'''
return super().__call__(*__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : Tuple ):
'''simple docstring'''
__a = load_image(__lowercase )
__a = torch.IntTensor([[image.height, image.width]] )
__a = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
__a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
__a = target_size
return inputs
def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ):
'''simple docstring'''
__a = model_inputs.pop("""target_size""" )
__a = self.model(**__lowercase )
__a = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
__a = model_inputs["""bbox"""]
return model_outputs
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ):
'''simple docstring'''
__a = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__a , __a = target_size[0].tolist()
def unnormalize(__lowercase : Optional[Any] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
__a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
__a = ["""score""", """label""", """box"""]
__a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase )
__a = raw_annotations[0]
__a = raw_annotation["""scores"""]
__a = raw_annotation["""labels"""]
__a = raw_annotation["""boxes"""]
__a = scores.tolist()
__a = [self.model.config.idalabel[label.item()] for label in labels]
__a = [self._get_bounding_box(__lowercase ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__a = ["""score""", """label""", """box"""]
__a = [
dict(zip(__lowercase , __lowercase ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
__a , __a , __a , __a = box.int().tolist()
__a = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 302
| 0
|
'''simple docstring'''
def _lowerCamelCase ( lowercase : list[int] , lowercase : list[int] ) -> None:
_a = len(lowercase )
print("The following activities are selected:" )
# The first activity is always selected
_a = 0
print(lowercase , end="," )
# Consider rest of the activities
for j in range(lowercase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowercase , end="," )
_a = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ : Any = [1, 3, 0, 5, 8, 5]
lowerCAmelCase_ : Optional[int] = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 63
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"""configuration_efficientnet""": [
"""EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientNetConfig""",
"""EfficientNetOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""EfficientNetImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientNetForImageClassification""",
"""EfficientNetModel""",
"""EfficientNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ (snake_case__ : list[float] ):
"""simple docstring"""
_snake_case : int = 0.00
_snake_case : int = 0
for resistor in resistors:
if resistor <= 0:
_snake_case : Dict = F"Resistor at index {index} has a negative or zero value!"
raise ValueError(snake_case__ )
first_sum += 1 / float(snake_case__ )
index += 1
return 1 / first_sum
def UpperCAmelCase__ (snake_case__ : list[float] ):
"""simple docstring"""
_snake_case : Union[str, Any] = 0.00
_snake_case : Any = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
_snake_case : Any = F"Resistor at index {index} has a negative value!"
raise ValueError(snake_case__ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 64
|
import random
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
__a , __a , __a = [], [], []
for element in data:
if element < pivot:
less.append(_SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(_SCREAMING_SNAKE_CASE )
else:
equal.append(_SCREAMING_SNAKE_CASE )
return less, equal, greater
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0:
return None
__a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )]
__a = 0
__a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
| 302
| 0
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def lowerCAmelCase_ ( __A ) -> Optional[int]:
'''simple docstring'''
if is_torch_version("<", "2.0.0" ) or not hasattr(__A, "_dynamo" ):
return False
return isinstance(__A, torch._dynamo.eval_frame.OptimizedModule )
def lowerCAmelCase_ ( __A, __A = True ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCAmelCase__ = is_compiled_module(__A )
if is_compiled:
UpperCAmelCase__ = model
UpperCAmelCase__ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__A, __A ):
UpperCAmelCase__ = model.module
if not keep_fpaa_wrapper:
UpperCAmelCase__ = getattr(__A, "forward" )
UpperCAmelCase__ = model.__dict__.pop("_original_forward", __A )
if original_forward is not None:
while hasattr(__A, "__wrapped__" ):
UpperCAmelCase__ = forward.__wrapped__
if forward == original_forward:
break
UpperCAmelCase__ = forward
if getattr(__A, "_converted_to_transformer_engine", __A ):
convert_model(__A, to_transformer_engine=__A )
if is_compiled:
UpperCAmelCase__ = model
UpperCAmelCase__ = compiled_model
return model
def lowerCAmelCase_ ( ) -> Dict:
'''simple docstring'''
PartialState().wait_for_everyone()
def lowerCAmelCase_ ( __A, __A ) -> int:
'''simple docstring'''
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__A, __A )
elif PartialState().local_process_index == 0:
torch.save(__A, __A )
@contextmanager
def lowerCAmelCase_ ( **__A ) -> Optional[int]:
'''simple docstring'''
for key, value in kwargs.items():
UpperCAmelCase__ = str(__A )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def lowerCAmelCase_ ( __A ) -> Tuple:
'''simple docstring'''
if not hasattr(__A, "__qualname__" ) and not hasattr(__A, "__name__" ):
UpperCAmelCase__ = getattr(__A, "__class__", __A )
if hasattr(__A, "__qualname__" ):
return obj.__qualname__
if hasattr(__A, "__name__" ):
return obj.__name__
return str(__A )
def lowerCAmelCase_ ( __A, __A ) -> Tuple:
'''simple docstring'''
for key, value in source.items():
if isinstance(__A, __A ):
UpperCAmelCase__ = destination.setdefault(__A, {} )
merge_dicts(__A, __A )
else:
UpperCAmelCase__ = value
return destination
def lowerCAmelCase_ ( __A = None ) -> bool:
'''simple docstring'''
if port is None:
UpperCAmelCase__ = 29_500
with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 65
|
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowerCamelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Optional[int] , **__lowercase : Dict ):
'''simple docstring'''
super().__init__(**__lowercase )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ):
'''simple docstring'''
return super().__call__(__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ):
'''simple docstring'''
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__a = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ):
'''simple docstring'''
if isinstance(__lowercase , __lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(__lowercase ).content
else:
with open(__lowercase , """rb""" ) as f:
__a = f.read()
if isinstance(__lowercase , __lowercase ):
__a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate )
if not isinstance(__lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
__a = candidate_labels
__a = [hypothesis_template.format(__lowercase ) for x in candidate_labels]
__a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase )
__a = [text_inputs]
return inputs
def UpperCamelCase_ ( self : Any , __lowercase : Any ):
'''simple docstring'''
__a = model_inputs.pop("""candidate_labels""" )
__a = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , __lowercase ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**__lowercase , **__lowercase )
__a = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = model_outputs.pop("""candidate_labels""" )
__a = model_outputs["""logits"""][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
__a = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] )
]
return result
| 302
| 0
|
"""simple docstring"""
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
__a = logging.get_logger(__name__)
__a = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
"constant": get_constant_schedule,
"constant_w_warmup": get_constant_schedule_with_warmup,
}
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
def __init__( self: List[str] , snake_case: int=None , snake_case: str=None , *snake_case: Any , **snake_case: List[Any] ) -> Optional[int]:
super().__init__(*snake_case , **snake_case )
if config is None:
assert isinstance(self.model , snake_case ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f""" {self.model.__class__}"""
)
snake_case_ :Optional[Any] = self.model.config
else:
snake_case_ :int = config
snake_case_ :List[Any] = data_args
snake_case_ :str = self.config.tgt_vocab_size if isinstance(self.config , snake_case ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for"""
""" padding..""" )
if self.args.label_smoothing == 0:
snake_case_ :Any = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
snake_case_ :Tuple = label_smoothed_nll_loss
def lowerCAmelCase_ ( self: Optional[Any] , snake_case: int ) -> str:
if self.optimizer is None:
snake_case_ :List[Any] = ["""bias""", """LayerNorm.weight"""]
snake_case_ :Union[str, Any] = [
{
"""params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
"""weight_decay""": self.args.weight_decay,
},
{
"""params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
snake_case_ :str = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
snake_case_ :Optional[int] = Adafactor
snake_case_ :Dict = {"""scale_parameter""": False, """relative_step""": False}
else:
snake_case_ :Optional[Any] = AdamW
snake_case_ :Optional[Any] = {
"""betas""": (self.args.adam_betaa, self.args.adam_betaa),
"""eps""": self.args.adam_epsilon,
}
snake_case_ :Any = self.args.learning_rate
if self.sharded_ddp:
snake_case_ :List[str] = OSS(
params=snake_case , optim=snake_case , **snake_case , )
else:
snake_case_ :Optional[int] = optimizer_cls(snake_case , **snake_case )
if self.lr_scheduler is None:
snake_case_ :List[Any] = self._get_lr_scheduler(snake_case )
else: # ignoring --lr_scheduler
logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" )
def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[Any] ) -> str:
snake_case_ :int = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
snake_case_ :List[str] = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
snake_case_ :Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
snake_case_ :int = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case )
return scheduler
def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[torch.utils.data.Sampler]:
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: Optional[int] , snake_case: Union[str, Any] ) -> Optional[Any]:
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
snake_case_ :Union[str, Any] = model(**snake_case , use_cache=snake_case )[0]
snake_case_ :Tuple = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
snake_case_, snake_case_ :Any = model(**snake_case , labels=snake_case , use_cache=snake_case )[:2]
else:
# compute label smoothed loss
snake_case_ :List[Any] = model(**snake_case , use_cache=snake_case )[0]
snake_case_ :Any = torch.nn.functional.log_softmax(snake_case , dim=-1 )
snake_case_, snake_case_ :List[str] = self.loss_fn(snake_case , snake_case , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def lowerCAmelCase_ ( self: str , snake_case: List[Any] , snake_case: List[Any] ) -> List[Any]:
snake_case_ :int = inputs.pop("""labels""" )
snake_case_, snake_case_ :Any = self._compute_loss(snake_case , snake_case , snake_case )
return loss
def lowerCAmelCase_ ( self: List[Any] , snake_case: nn.Module , snake_case: Dict[str, Union[torch.Tensor, Any]] , snake_case: bool , snake_case: Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
snake_case_ :Optional[int] = self._prepare_inputs(snake_case )
snake_case_ :Optional[int] = {
"""max_length""": self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
"""num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
snake_case_ :Union[str, Any] = self.model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **snake_case , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
snake_case_ :Optional[int] = self._pad_tensors_to_max_len(snake_case , gen_kwargs["""max_length"""] )
snake_case_ :str = inputs.pop("""labels""" )
with torch.no_grad():
# compute loss on predict data
snake_case_, snake_case_ :str = self._compute_loss(snake_case , snake_case , snake_case )
snake_case_ :Optional[int] = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
snake_case_ :Optional[int] = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
snake_case_ :List[Any] = self._pad_tensors_to_max_len(snake_case , gen_kwargs["""max_length"""] )
return (loss, logits, labels)
def lowerCAmelCase_ ( self: str , snake_case: List[Any] , snake_case: Optional[int] ) -> int:
# If PAD token is not defined at least EOS token has to be defined
snake_case_ :List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
"""Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"""
f""" padded to `max_length`={max_length}""" )
snake_case_ :List[str] = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
snake_case_ :str = tensor
return padded_tensor
| 66
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCamelCase__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Dict =['pixel_values']
def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ):
'''simple docstring'''
super().__init__(**__lowercase )
__a = size if size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" )
__a = do_resize
__a = do_rescale
__a = do_normalize
__a = do_center_crop
__a = crop_size
__a = size
__a = resample
__a = rescale_factor
__a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "shortest_edge" in size:
__a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__a = (size["""height"""], size["""width"""])
else:
raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" )
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ):
'''simple docstring'''
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ):
'''simple docstring'''
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = do_resize if do_resize is not None else self.do_resize
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = do_center_crop if do_center_crop is not None else self.do_center_crop
__a = crop_size if crop_size is not None else self.crop_size
__a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase )
__a = resample if resample is not None else self.resample
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = size if size is not None else self.size
__a = get_size_dict(__lowercase )
if not is_batched(__lowercase ):
__a = [images]
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__a = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 302
| 0
|
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
__UpperCAmelCase =logging.get_logger(__name__)
def __lowerCAmelCase ( UpperCamelCase__=None , UpperCamelCase__=None ) -> int:
return field(default_factory=lambda: default , metadata=UpperCamelCase__ )
@dataclass
class a__ :
lowerCamelCase : List[str] =list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
lowerCamelCase : List[int] =list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
lowerCamelCase : List[int] =list_field(
default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
lowerCamelCase : bool =field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
lowerCamelCase : str =field(
default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
lowerCamelCase : str =field(
default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
lowerCamelCase : str =field(
default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
lowerCamelCase : str =field(
default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
lowerCamelCase : str =field(
default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
lowerCamelCase : str =field(
default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
lowerCamelCase : int =field(default=3 , metadata={"help": "Times an experiment will be run."} )
lowerCamelCase : bool =field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
warnings.warn(
f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , a , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 67
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoTokenizer.from_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = tokenizer("""This is me""" , return_tensors="""pt""" )
__a = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__a = model.generate(**__lowercase )
__a = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__a = model_reloaded.generate(**__lowercase )
self.assertTrue(torch.allclose(__lowercase , __lowercase ) )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowercase ):
model.save_pretrained(__lowercase )
__a = model.reverse_bettertransformer()
model.save_pretrained(__lowercase )
| 302
| 0
|
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( snake_case ):
"""simple docstring"""
__lowerCamelCase = (PNDMScheduler,)
__lowerCamelCase = (('num_inference_steps', 50),)
def UpperCamelCase ( self , **lowercase ) -> Tuple:
'''simple docstring'''
A__ = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowercase )
return config
def UpperCamelCase ( self , lowercase=0 , **lowercase ) -> Any:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop("num_inference_steps" , lowercase )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config(**lowercase )
A__ = scheduler_class(**lowercase )
scheduler.set_timesteps(lowercase )
# copy over dummy past residuals
A__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase )
A__ = scheduler_class.from_pretrained(lowercase )
new_scheduler.set_timesteps(lowercase )
# copy over dummy past residuals
A__ = dummy_past_residuals[:]
A__ = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample
A__ = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A__ = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample
A__ = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def UpperCamelCase ( self , lowercase=0 , **lowercase ) -> Tuple:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop("num_inference_steps" , lowercase )
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase )
scheduler.set_timesteps(lowercase )
# copy over dummy past residuals (must be after setting timesteps)
A__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase )
A__ = scheduler_class.from_pretrained(lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase )
# copy over dummy past residual (must be after setting timesteps)
A__ = dummy_past_residuals[:]
A__ = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample
A__ = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A__ = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample
A__ = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def UpperCamelCase ( self , **lowercase ) -> Dict:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**lowercase )
A__ = scheduler_class(**lowercase )
A__ = 10
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(lowercase )
for i, t in enumerate(scheduler.prk_timesteps ):
A__ = model(lowercase , lowercase )
A__ = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
A__ = model(lowercase , lowercase )
A__ = scheduler.step_plms(lowercase , lowercase , lowercase ).prev_sample
return sample
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = dict(self.forward_default_kwargs )
A__ = kwargs.pop("num_inference_steps" , lowercase )
for scheduler_class in self.scheduler_classes:
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase )
A__ = self.dummy_sample
A__ = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase , "set_timesteps" ):
scheduler.set_timesteps(lowercase )
elif num_inference_steps is not None and not hasattr(lowercase , "set_timesteps" ):
A__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
A__ = dummy_past_residuals[:]
A__ = scheduler.step_prk(lowercase , 0 , lowercase , **lowercase ).prev_sample
A__ = scheduler.step_prk(lowercase , 1 , lowercase , **lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
A__ = scheduler.step_plms(lowercase , 0 , lowercase , **lowercase ).prev_sample
A__ = scheduler.step_plms(lowercase , 1 , lowercase , **lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase )
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(steps_offset=1 )
A__ = scheduler_class(**lowercase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=lowercase , beta_end=lowercase )
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowercase )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=lowercase )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = 27
for scheduler_class in self.scheduler_classes:
A__ = self.dummy_sample
A__ = 0.1 * sample
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase )
scheduler.set_timesteps(lowercase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
A__ = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowercase ):
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**lowercase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.sum(torch.abs(lowercase ) )
A__ = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ = self.full_loop(prediction_type="v_prediction" )
A__ = torch.sum(torch.abs(lowercase ) )
A__ = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 )
A__ = torch.sum(torch.abs(lowercase ) )
A__ = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 )
A__ = torch.sum(torch.abs(lowercase ) )
A__ = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3
| 68
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCamelCase__ = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] ='albert'
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_hidden_groups
__a = num_attention_heads
__a = inner_group_num
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = classifier_dropout_prob
__a = position_embedding_type
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 302
| 0
|
"""simple docstring"""
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class UpperCamelCase :
pass
| 69
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" )
_lowerCAmelCase = parser.add_subparsers(help="""transformers-cli command helpers""" )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase )
DownloadCommand.register_subcommand(lowerCAmelCase )
EnvironmentCommand.register_subcommand(lowerCAmelCase )
RunCommand.register_subcommand(lowerCAmelCase )
ServeCommand.register_subcommand(lowerCAmelCase )
UserCommands.register_subcommand(lowerCAmelCase )
AddNewModelCommand.register_subcommand(lowerCAmelCase )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase )
LfsCommands.register_subcommand(lowerCAmelCase )
PTtoTFCommand.register_subcommand(lowerCAmelCase )
# Let's go
_lowerCAmelCase = parser.parse_args()
if not hasattr(lowerCAmelCase , """func""" ):
parser.print_help()
exit(1 )
# Run
_lowerCAmelCase = args.func(lowerCAmelCase )
service.run()
if __name__ == "__main__":
main()
| 70
|
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302
| 0
|
from __future__ import annotations
import typing
from collections import Counter
def A ( a_ ) -> typing.Counter[int]:
__UpperCamelCase : typing.Counter[int] =Counter()
for base in range(1 ,max_perimeter + 1 ):
for perpendicular in range(a_ ,max_perimeter + 1 ):
__UpperCamelCase : List[Any] =(base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(a_ ):
__UpperCamelCase : Tuple =int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def A ( a_ = 1_000 ) -> int:
__UpperCamelCase : Dict =pythagorean_triple(a_ )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f"Perimeter {solution()} has maximum solutions")
| 71
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = MobileViTVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowerCamelCase : Any =(
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : int =False
__lowerCamelCase : Any =False
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(__lowercase ) , __lowercase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(__lowercase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __lowercase )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=__lowercase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __lowercase )
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __lowercase )
| 302
| 0
|
"""simple docstring"""
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''T''')
class __snake_case ( Generic[T]):
def __init__( self : Tuple , __lowerCAmelCase : bool = True ):
"""simple docstring"""
_lowerCamelCase : dict[T, list[T]] = {} # dictionary of lists
_lowerCamelCase : Any = directed
def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : T , __lowerCAmelCase : T ):
"""simple docstring"""
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCAmelCase )
self.adj_list[destination_vertex].append(__lowerCAmelCase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCAmelCase )
_lowerCamelCase : List[Any] = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
_lowerCamelCase : Any = [destination_vertex]
_lowerCamelCase : Optional[int] = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCAmelCase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
_lowerCamelCase : List[Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
_lowerCamelCase : Any = [destination_vertex]
_lowerCamelCase : List[str] = []
return self
def __repr__( self : Dict ):
"""simple docstring"""
return pformat(self.adj_list )
| 72
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 302
| 0
|
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]:
try:
__lowerCamelCase : int = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__lowerCamelCase : List[Any] = default
else:
# KEY is set, convert it to True or False.
try:
__lowerCamelCase : Any = strtobool(lowerCamelCase__ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"If set, {key} must be yes or no." )
return _value
a =parse_flag_from_env("""RUN_SLOW""", default=False)
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skip('Test was skipped' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]:
return unittest.skipUnless(_run_slow_tests , 'test is slow' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any:
return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]:
return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]:
return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]:
return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]:
return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]:
return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]:
return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str:
return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any:
return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]:
return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str:
return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Any:
if test_case is None:
return partial(lowerCamelCase__ , version=lowerCamelCase__ )
return unittest.skipUnless(is_torch_version('>=' , lowerCamelCase__ ) , F"test requires torch version >= {version}" )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]:
return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(lowerCamelCase__ )
a =(
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
return unittest.skipUnless(
_atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(lowerCamelCase__ )
class A_ ( unittest.TestCase ):
_UpperCAmelCase : Union[str, Any] = True
@classmethod
def lowerCAmelCase ( cls : int):
__lowerCamelCase : List[Any] = tempfile.mkdtemp()
@classmethod
def lowerCAmelCase ( cls : int):
if os.path.exists(cls.tmpdir):
shutil.rmtree(cls.tmpdir)
def lowerCAmelCase ( self : Any):
if self.clear_on_setup:
for path in Path(self.tmpdir).glob('**/*'):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(SCREAMING_SNAKE_CASE__)
class A_ ( unittest.TestCase ):
def lowerCAmelCase ( self : List[Any]):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class A_ ( unittest.TestCase ):
def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]]):
__lowerCamelCase : Tuple = mocks if isinstance(SCREAMING_SNAKE_CASE__ ,(tuple, list)) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop)
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict:
__lowerCamelCase : int = AcceleratorState()
__lowerCamelCase : Optional[int] = tensor[None].clone().to(state.device )
__lowerCamelCase : Dict = gather(lowerCamelCase__ ).cpu()
__lowerCamelCase : Union[str, Any] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , lowerCamelCase__ ):
return False
return True
class A_ :
def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]):
__lowerCamelCase : Union[str, Any] = returncode
__lowerCamelCase : List[str] = stdout
__lowerCamelCase : Tuple = stderr
async def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
while True:
__lowerCamelCase : str = await stream.readline()
if line:
callback(lowerCamelCase__ )
else:
break
async def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False ) -> _RunOutput:
if echo:
print('\nRunning: ' , ' '.join(lowerCamelCase__ ) )
__lowerCamelCase : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__lowerCamelCase : int = []
__lowerCamelCase : str = []
def tee(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ):
__lowerCamelCase : Any = line.decode('utf-8' ).rstrip()
sink.append(lowerCamelCase__ )
if not quiet:
print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label='stdout:' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label='stderr:' ) ) ),
] , timeout=lowerCamelCase__ , )
return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=1_8_0 , lowerCamelCase__=False , lowerCamelCase__=True ) -> _RunOutput:
__lowerCamelCase : Union[str, Any] = asyncio.get_event_loop()
__lowerCamelCase : str = loop.run_until_complete(
_stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) )
__lowerCamelCase : Union[str, Any] = ' '.join(lowerCamelCase__ )
if result.returncode > 0:
__lowerCamelCase : Optional[int] = '\n'.join(result.stderr )
raise RuntimeError(
F"'{cmd_str}' failed with returncode {result.returncode}\n\n"
F"The combined stderr from workers follows:\n{stderr}" )
return result
class A_ ( SCREAMING_SNAKE_CASE ):
pass
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> int:
try:
__lowerCamelCase : List[str] = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(lowerCamelCase__ , 'decode' ):
__lowerCamelCase : str = output.decode('utf-8' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F"Command `{' '.join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}" ) from e
| 73
|
import string
import numpy
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : List[str] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
__lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
__lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ )
def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ):
'''simple docstring'''
__a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__a = encrypt_key.shape[0]
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
return self.key_string.index(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : int ):
'''simple docstring'''
return self.key_string[round(__lowercase )]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = len(self.key_string )
if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1:
__a = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = [char for char in text.upper() if char in self.key_string]
__a = chars[-1]
while len(__lowercase ) % self.break_key != 0:
chars.append(__lowercase )
return "".join(__lowercase )
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[
0
]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__a = i
break
__a = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__lowercase ) )
def UpperCamelCase_ ( self : Any , __lowercase : str ):
'''simple docstring'''
__a = self.make_decrypt_key()
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = int(input("""Enter the order of the encryption key: """ ) )
__a = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(_SCREAMING_SNAKE_CASE ):
__a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
__a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__a = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__a = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
__a = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
def _snake_case ( snake_case__ : List[str] ):
A = 1
A = 2
while i * i <= n:
A = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def _snake_case ( ):
A = 1
A = 1
while True:
i += 1
t_num += i
if count_divisors(snake_case__ ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 74
|
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] ='autoformer'
__lowerCamelCase : str ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ):
'''simple docstring'''
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowercase , **__lowercase )
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 302
| 0
|
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __UpperCamelCase :
def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =13
lowerCamelCase_ =7
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =99
lowerCamelCase_ =384
lowerCamelCase_ =2
lowerCamelCase_ =4
lowerCamelCase_ =37
lowerCamelCase_ ='''gelu'''
lowerCamelCase_ =0.1
lowerCamelCase_ =0.1
lowerCamelCase_ =512
lowerCamelCase_ =16
lowerCamelCase_ =2
lowerCamelCase_ =0.0_2
lowerCamelCase_ =3
lowerCamelCase_ =4
lowerCamelCase_ =128
lowerCamelCase_ =2
lowerCamelCase_ =9
lowerCamelCase_ =1
lowerCamelCase_ =None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowerCamelCase_ =None
if self.use_input_mask:
lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ =None
if self.use_token_type_ids:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =None
if self.use_labels:
lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels )
lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices )
lowerCamelCase_ =ConvBertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCAmelCase, )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel(config=lowerCAmelCase )
lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowerCamelCase_ =[input_ids, input_mask]
lowerCamelCase_ =model(lowerCAmelCase )
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertForMaskedLM(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =TFConvBertForSequenceClassification(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_choices
lowerCamelCase_ =TFConvBertForMultipleChoice(config=lowerCAmelCase )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) )
lowerCamelCase_ ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.num_labels
lowerCamelCase_ =TFConvBertForTokenClassification(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertForQuestionAnswering(config=lowerCAmelCase )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
(
(
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
), (
lowerCamelCase_
),
) =config_and_inputs
lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase : List[str] =(
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase : int =False
lowercase : List[Any] =False
lowercase : Dict =False
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModelTester(self )
lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 )
def lowercase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ =True
lowerCamelCase_ =True
if hasattr(lowerCAmelCase, '''use_cache''' ):
lowerCamelCase_ =True
lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =len(model(lowerCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase, saved_model=lowerCAmelCase )
lowerCamelCase_ =os.path.join(lowerCAmelCase, '''saved_model''', '''1''' )
lowerCamelCase_ =tf.keras.models.load_model(lowerCAmelCase )
lowerCamelCase_ =model(lowerCAmelCase )
if self.is_encoder_decoder:
lowerCamelCase_ =outputs['''encoder_hidden_states''']
lowerCamelCase_ =outputs['''encoder_attentions''']
else:
lowerCamelCase_ =outputs['''hidden_states''']
lowerCamelCase_ =outputs['''attentions''']
self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase )
lowerCamelCase_ =getattr(
self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], )
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
self.assertIsNotNone(lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ =True
lowerCamelCase_ =getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase )
def check_decoder_attentions_output(lowerCAmelCase ):
lowerCamelCase_ =len(lowerCAmelCase )
self.assertEqual(out_len % 2, 0 )
lowerCamelCase_ =outputs.decoder_attentions
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], )
def check_encoder_attentions_output(lowerCAmelCase ):
lowerCamelCase_ =[
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
for model_class in self.all_model_classes:
lowerCamelCase_ =True
lowerCamelCase_ =False
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
lowerCamelCase_ =len(lowerCAmelCase )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
if self.is_encoder_decoder:
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_decoder_attentions_output(lowerCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowerCamelCase_ =True
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase_ =True
lowerCamelCase_ =True
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase ) )
self.assertEqual(model.config.output_hidden_states, lowerCAmelCase )
check_encoder_attentions_output(lowerCAmelCase )
@require_tf
class __UpperCamelCase ( unittest.TestCase ):
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
lowerCamelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ =model(lowerCAmelCase )[0]
lowerCamelCase_ =[1, 6, 768]
self.assertEqual(output.shape, lowerCAmelCase )
lowerCamelCase_ =tf.constant(
[
[
[-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2],
[0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4],
[0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase, atol=1e-4 )
| 75
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
a_ = logging.getLogger(__name__)
class _UpperCamelCase ( __A ):
'''simple docstring'''
def __init__( self : int , a : Optional[Any]=-1 ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = label_idx
def __UpperCamelCase ( self : List[str] , a : Union[str, Any] , a : Union[Split, str] ) -> List[InputExample]:
"""simple docstring"""
if isinstance(a , a ):
SCREAMING_SNAKE_CASE : Any = mode.value
SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(a , F"{mode}.txt" )
SCREAMING_SNAKE_CASE : List[str] = 1
SCREAMING_SNAKE_CASE : int = []
with open(a , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
SCREAMING_SNAKE_CASE : int = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a , labels=a ) )
guid_index += 1
SCREAMING_SNAKE_CASE : str = []
SCREAMING_SNAKE_CASE : Optional[int] = []
else:
SCREAMING_SNAKE_CASE : Optional[Any] = line.split(" " )
words.append(splits[0] )
if len(a ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a , labels=a ) )
return examples
def __UpperCamelCase ( self : Optional[Any] , a : TextIO , a : TextIO , a : List ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(a )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
SCREAMING_SNAKE_CASE : str = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(a )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def __UpperCamelCase ( self : Dict , a : str ) -> List[str]:
"""simple docstring"""
if path:
with open(a , "r" ) as f:
SCREAMING_SNAKE_CASE : List[str] = f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE : Dict = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class _UpperCamelCase ( __A ):
'''simple docstring'''
def __init__( self : List[Any] ) -> Dict:
"""simple docstring"""
super().__init__(label_idx=-2 )
def __UpperCamelCase ( self : Optional[Any] , a : str ) -> List[str]:
"""simple docstring"""
if path:
with open(a , "r" ) as f:
SCREAMING_SNAKE_CASE : Optional[Any] = f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE : List[Any] = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class _UpperCamelCase ( __A ):
'''simple docstring'''
def __UpperCamelCase ( self : str , a : str , a : Union[Split, str] ) -> List[InputExample]:
"""simple docstring"""
if isinstance(a , a ):
SCREAMING_SNAKE_CASE : Dict = mode.value
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a , F"{mode}.txt" )
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE : List[str] = []
with open(a , encoding="utf-8" ) as f:
for sentence in parse_incr(a ):
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : Tuple = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(a ) == len(a )
if words:
examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a , labels=a ) )
guid_index += 1
return examples
def __UpperCamelCase ( self : int , a : TextIO , a : TextIO , a : List ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = 0
for sentence in parse_incr(a ):
SCREAMING_SNAKE_CASE : Optional[Any] = preds_list[example_id]
SCREAMING_SNAKE_CASE : Optional[int] = ""
for token in sentence:
out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(a )
example_id += 1
def __UpperCamelCase ( self : List[Any] , a : str ) -> List[str]:
"""simple docstring"""
if path:
with open(a , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 76
|
from __future__ import annotations
lowerCamelCase__ = """#"""
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ):
'''simple docstring'''
__a = {}
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in text:
if char not in trie:
__a = {}
__a = trie[char]
__a = True
def UpperCamelCase_ ( self : Tuple , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in prefix:
if char in trie:
__a = trie[char]
else:
return []
return self._elements(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ):
'''simple docstring'''
__a = []
for c, v in d.items():
__a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )]
result.extend(__lowercase )
return tuple(__lowercase )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = trie.find_word(_SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def lowerCAmelCase__ ( ):
"""simple docstring"""
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
import math
def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : list[int] , _lowerCAmelCase : float ):
'''simple docstring'''
if depth < 0:
raise ValueError('Depth cannot be less than 0' )
if not scores:
raise ValueError('Scores cannot be empty' )
if depth == height:
return scores[node_index]
return (
max(
minimax(depth + 1 , node_index * 2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , )
if is_max
else min(
minimax(depth + 1 , node_index * 2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , )
)
def a_ ( ):
'''simple docstring'''
lowercase__ : str = [90, 23, 6, 33, 21, 65, 123, 3_4423]
lowercase__ : Tuple = math.log(len(_lowerCAmelCase ) , 2 )
print(f"""Optimal value : {minimax(0 , 0 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 77
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__lowercase , __lowercase , 0 )
__a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__lowercase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
__a = nn.Linear(__lowercase , __lowercase )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__lowercase , __lowercase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , )
for d in range(__lowercase )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__lowercase )
elif norm_in_type is None:
__a = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
__a = nn.LayerNorm(__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = {}
def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ):
if hasattr(__lowercase , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__lowercase , __lowercase , __lowercase )
return processors
def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__a = len(self.attn_processors.keys() )
if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ):
if hasattr(__lowercase , """set_processor""" ):
if not isinstance(__lowercase , __lowercase ):
module.set_processor(__lowercase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ):
'''simple docstring'''
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__lowercase ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__lowercase )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__lowercase )
__a = self.embedding_proj(__lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__lowercase )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 )
additional_embeds.append(__lowercase )
__a = torch.cat(
__lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__lowercase )
for block in self.transformer_blocks:
__a = block(__lowercase , attention_mask=__lowercase )
__a = self.norm_out(__lowercase )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple ):
'''simple docstring'''
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 302
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ = {
"""configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""],
"""tokenization_biogpt""": ["""BioGptTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
"""BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BioGptForCausalLM""",
"""BioGptForTokenClassification""",
"""BioGptForSequenceClassification""",
"""BioGptModel""",
"""BioGptPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 78
|
from functools import lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
__a = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
while True:
# Increment each value of a generated range
__a = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ):
"""simple docstring"""
__a = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 302
| 0
|
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : int=30 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=32 , __UpperCAmelCase : int=5 , __UpperCAmelCase : int=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Any=10 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Union[str, Any]=0.6 , __UpperCAmelCase : Any=None , ):
'''simple docstring'''
_A = parent
_A = batch_size
_A = image_size
_A = patch_size
_A = num_channels
_A = is_training
_A = use_labels
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = type_sequence_label_size
_A = initializer_range
_A = mask_ratio
_A = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_A = (image_size // patch_size) ** 2
_A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ):
'''simple docstring'''
_A = ViTMAEModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_A = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ):
'''simple docstring'''
_A = ViTMAEForPreTraining(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_A = model(__UpperCAmelCase )
_A = (self.image_size // self.patch_size) ** 2
_A = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_A = 1
_A = ViTMAEForPreTraining(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A = model(__UpperCAmelCase )
_A = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
_A = self.prepare_config_and_inputs()
_A , _A , _A = config_and_inputs
_A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
snake_case = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
snake_case = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
snake_case = False
snake_case = False
snake_case = False
snake_case = False
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
_A = ViTMAEModelTester(self )
_A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : int ):
'''simple docstring'''
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__UpperCAmelCase )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase )
def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ):
'''simple docstring'''
np.random.seed(2 )
_A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_A = torch.from_numpy(__UpperCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_A = pt_noise
super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_A = outputs[0].cpu().numpy()
_A = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
_A = model_class.from_pretrained(__UpperCAmelCase )
model.to(__UpperCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
# Make sure we don't have nans
_A = after_outputs[0].cpu().numpy()
_A = 0
_A = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1E-5 )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
pass
@slow
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = ViTMAEModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def __lowercase ( ) -> Optional[int]:
'''simple docstring'''
_A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
np.random.seed(2 )
_A = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_A = ViTMAEConfig()
_A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_A = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_A = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) )
# verify the logits
_A = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_A = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1E-4 ) )
| 79
|
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
__a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__a = 128
elif "12-12" in model_name:
__a = 12
__a = 12
elif "14-14" in model_name:
__a = 14
__a = 14
elif "16-16" in model_name:
__a = 16
__a = 16
else:
raise ValueError("""Model not supported""" )
__a = """huggingface/label-files"""
if "speech-commands" in model_name:
__a = 35
__a = """speech-commands-v2-id2label.json"""
else:
__a = 527
__a = """audioset-id2label.json"""
__a = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
__a = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
if "module.v" in name:
__a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
__a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
__a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
__a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
__a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
__a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
__a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
__a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__a = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
__a = key.split(""".""" )
__a = int(key_split[3] )
__a = config.hidden_size
if "weight" in key:
__a = val[:dim, :]
__a = val[dim : dim * 2, :]
__a = val[-dim:, :]
else:
__a = val[:dim]
__a = val[dim : dim * 2]
__a = val[-dim:]
else:
__a = val
return orig_state_dict
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=False ):
"""simple docstring"""
__a = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
__a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__a = model_name_to_url[model_name]
__a = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
__a = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
__a = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__a = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
__a = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
__a = 1024 if """speech-commands""" not in model_name else 128
__a = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
__a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
__a = dataset[0]["""audio"""]["""array"""]
else:
__a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
__a , __a = torchaudio.load(_SCREAMING_SNAKE_CASE )
__a = waveform.squeeze().numpy()
__a = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
__a = model(**_SCREAMING_SNAKE_CASE )
__a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"MIT/{model_name}" )
feature_extractor.push_to_hub(f"MIT/{model_name}" )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""ast-finetuned-audioset-10-10-0.4593""",
type=str,
help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase__ = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 302
| 0
|
'''simple docstring'''
def _UpperCamelCase ( __A , __A ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCamelCase ( __A , __A , __A ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ = 0
while b > 0:
if b & 1:
UpperCamelCase__ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 80
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
lowerCamelCase__ = None
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
lowerCamelCase__ = """▁"""
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] =VOCAB_FILES_NAMES
__lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Any =AlbertTokenizer
def __init__( self : Tuple , __lowercase : Union[str, Any]=None , __lowercase : Optional[int]=None , __lowercase : int=True , __lowercase : Dict=True , __lowercase : str=False , __lowercase : str="[CLS]" , __lowercase : List[Any]="[SEP]" , __lowercase : Any="<unk>" , __lowercase : List[Any]="[SEP]" , __lowercase : List[Any]="<pad>" , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[str]="[MASK]" , **__lowercase : str , ):
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__a = (
AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase , normalized=__lowercase )
if isinstance(__lowercase , __lowercase )
else mask_token
)
super().__init__(
__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , )
__a = do_lower_case
__a = remove_space
__a = keep_accents
__a = vocab_file
__a = False if not self.vocab_file else True
def UpperCamelCase_ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase_ ( self : str , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ):
'''simple docstring'''
__a = [self.sep_token_id]
__a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__lowercase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
__a = os.path.join(
__lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ):
copyfile(self.vocab_file , __lowercase )
return (out_vocab_file,)
| 302
| 0
|
"""simple docstring"""
def _A ( lowercase = 50 ):
"""simple docstring"""
a =[1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F'{solution() = }')
| 81
|
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] =(IPNDMScheduler,)
__lowerCamelCase : int =(('num_inference_steps', 50),)
def UpperCamelCase_ ( self : str , **__lowercase : Dict ):
'''simple docstring'''
__a = {"""num_train_timesteps""": 1000}
config.update(**__lowercase )
return config
def UpperCamelCase_ ( self : Any , __lowercase : Tuple=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : str , __lowercase : int=0 , **__lowercase : Dict ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
scheduler.set_timesteps(__lowercase )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[:]
if time_step is None:
__a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowercase )
__a = scheduler_class.from_pretrained(__lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowercase )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[:]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = new_scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : List[str] , **__lowercase : Dict ):
'''simple docstring'''
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__lowercase )
__a = scheduler_class(**__lowercase )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__lowercase )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__a = model(__lowercase , __lowercase )
__a = scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample
return sample
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __lowercase )
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__lowercase )
__a = self.dummy_sample
__a = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowercase , """set_timesteps""" ):
scheduler.set_timesteps(__lowercase )
elif num_inference_steps is not None and not hasattr(__lowercase , """set_timesteps""" ):
__a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__a = dummy_past_residuals[:]
__a = scheduler.timesteps[5]
__a = scheduler.timesteps[6]
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
__a = scheduler.step(__lowercase , __lowercase , __lowercase , **__lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__lowercase , time_step=__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.full_loop()
__a = torch.mean(torch.abs(__lowercase ) )
assert abs(result_mean.item() - 2540529 ) < 10
| 302
| 0
|
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class __lowerCAmelCase ( lowerCamelCase__ ):
def __init__( self , _snake_case , _snake_case , _snake_case=1024 , _snake_case=1024 , _snake_case=3.6 ):
"""simple docstring"""
_lowerCAmelCase = tokenizer
_lowerCAmelCase = tokenizer.bos_token_id
_lowerCAmelCase = dataset
_lowerCAmelCase = seq_length
_lowerCAmelCase = seq_length * chars_per_token * num_of_sequences
def __iter__( self ):
"""simple docstring"""
_lowerCAmelCase = iter(self.dataset )
_lowerCAmelCase = True
while more_examples:
_lowerCAmelCase , _lowerCAmelCase = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(_snake_case )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
_lowerCAmelCase = False
break
_lowerCAmelCase = tokenizer(_snake_case , truncation=_snake_case )["""input_ids"""]
_lowerCAmelCase = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(_snake_case ) , self.seq_length ):
_lowerCAmelCase = all_token_ids[i : i + self.seq_length]
if len(_snake_case ) == self.seq_length:
yield torch.tensor(_snake_case )
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
_lowerCAmelCase = {"""streaming""": True}
_lowerCAmelCase = load_dataset(args.dataset_name , split="""train""" , **snake_case )
_lowerCAmelCase = ConstantLengthDataset(snake_case , snake_case , seq_length=args.seq_length )
_lowerCAmelCase = DataLoader(snake_case , batch_size=args.batch_size )
return eval_dataloader
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
model.eval()
_lowerCAmelCase = []
for step, batch in enumerate(snake_case ):
with torch.no_grad():
_lowerCAmelCase = model(snake_case , labels=snake_case )
_lowerCAmelCase = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(snake_case ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
_lowerCAmelCase = torch.mean(torch.cat(snake_case ) )
try:
_lowerCAmelCase = torch.exp(snake_case )
except OverflowError:
_lowerCAmelCase = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
A__ = Accelerator()
# Parse configuration
A__ = HfArgumentParser(EvaluationArguments)
A__ = parser.parse_args()
set_seed(args.seed)
# Logging
A__ = logging.getLogger(__name__)
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
# Load model and tokenizer
A__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
A__ = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
A__ = create_dataloader(args)
# Prepare everything with our `accelerator`.
A__ , A__ = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("""Evaluating and saving model after training""")
A__ , A__ = evaluate(args)
logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
| 82
|
from __future__ import annotations
lowerCamelCase__ = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ):
'''simple docstring'''
__a = graph
# mapping node to its parent in resulting breadth first tree
__a = {}
__a = source_vertex
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = {self.source_vertex}
__a = None
__a = [self.source_vertex] # first in first out queue
while queue:
__a = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__lowercase )
__a = vertex
queue.append(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ):
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
__a = self.parent.get(__lowercase )
if target_vertex_parent is None:
__a = (
F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__lowercase )
return self.shortest_path(__lowercase ) + F"->{target_vertex}"
if __name__ == "__main__":
lowerCamelCase__ = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 302
| 0
|
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
snake_case_ : Dict = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def A__ ( UpperCAmelCase_ ):
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
return max(metric_fn(UpperCAmelCase_ , UpperCAmelCase_ ) for gt in ground_truths )
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : int = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()]
_UpperCamelCase : Union[str, Any] = []
if args.gold_data_mode == "qa":
_UpperCamelCase : List[str] = pd.read_csv(UpperCAmelCase_ , sep='\t' , header=UpperCAmelCase_ )
for answer_list in data[1]:
_UpperCamelCase : Any = ast.literal_eval(UpperCAmelCase_ )
answers.append(UpperCAmelCase_ )
else:
_UpperCamelCase : Optional[int] = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()]
_UpperCamelCase : Union[str, Any] = [[reference] for reference in references]
_UpperCamelCase : List[str] = 0
for prediction, ground_truths in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
total += 1
em += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
fa += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
_UpperCamelCase : Dict = 100.0 * em / total
_UpperCamelCase : int = 100.0 * fa / total
logger.info(f'F1: {fa:.2f}' )
logger.info(f'EM: {em:.2f}' )
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : Optional[int] = args.k
_UpperCamelCase : Dict = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()]
_UpperCamelCase : str = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()]
_UpperCamelCase : Union[str, Any] = 0
for hypo, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : List[Any] = set(hypo.split('\t' )[:k] )
_UpperCamelCase : List[Any] = set(reference.split('\t' ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
_UpperCamelCase : Any = 100.0 * em / total
logger.info(f'Precision@{k}: {em: .2f}' )
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
def strip_title(UpperCAmelCase_ ):
if title.startswith('"' ):
_UpperCamelCase : List[str] = title[1:]
if title.endswith('"' ):
_UpperCamelCase : Any = title[:-1]
return title
_UpperCamelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , )['input_ids'].to(args.device )
_UpperCamelCase : List[str] = rag_model.rag.question_encoder(UpperCAmelCase_ )
_UpperCamelCase : Optional[Any] = question_enc_outputs[0]
_UpperCamelCase : str = rag_model.retriever(
UpperCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , )
_UpperCamelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
_UpperCamelCase : Optional[Any] = []
for docs in all_docs:
_UpperCamelCase : Any = [strip_title(UpperCAmelCase_ ) for title in docs['title']]
provenance_strings.append('\t'.join(UpperCAmelCase_ ) )
return provenance_strings
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
with torch.no_grad():
_UpperCamelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )
_UpperCamelCase : Union[str, Any] = inputs_dict.input_ids.to(args.device )
_UpperCamelCase : Optional[int] = inputs_dict.attention_mask.to(args.device )
_UpperCamelCase : str = rag_model.generate( # rag_model overwrites generate
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
_UpperCamelCase : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
if args.print_predictions:
for q, a in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
logger.info('Q: {} - A: {}'.format(UpperCAmelCase_ , UpperCAmelCase_ ) )
return answers
def A__ ( ):
_UpperCamelCase : str = argparse.ArgumentParser()
parser.add_argument(
'--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=UpperCAmelCase_ , help=(
'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the'
' model_name_or_path'
) , )
parser.add_argument(
'--index_name' , default=UpperCAmelCase_ , choices=['exact', 'compressed', 'legacy'] , type=UpperCAmelCase_ , help='RAG model retriever type' , )
parser.add_argument(
'--index_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='Path to the retrieval index' , )
parser.add_argument('--n_docs' , default=5 , type=UpperCAmelCase_ , help='Number of retrieved docs' )
parser.add_argument(
'--model_name_or_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , )
parser.add_argument(
'--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=UpperCAmelCase_ , help=(
'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates'
' precision@k.'
) , )
parser.add_argument('--k' , default=1 , type=UpperCAmelCase_ , help='k for the precision@k calculation' )
parser.add_argument(
'--evaluation_set' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a file containing evaluation samples' , )
parser.add_argument(
'--gold_data_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a tab-separated file with gold samples' , )
parser.add_argument(
'--gold_data_mode' , default='qa' , type=UpperCAmelCase_ , choices=['qa', 'ans'] , help=(
'Format of the gold data file'
'qa - a single line in the following format: question [tab] answer_list'
'ans - a single line of the gold file contains the expected answer string'
) , )
parser.add_argument(
'--predictions_path' , type=UpperCAmelCase_ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , )
parser.add_argument(
'--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , )
parser.add_argument(
'--eval_batch_size' , default=8 , type=UpperCAmelCase_ , help='Batch size per GPU/CPU for evaluation.' , )
parser.add_argument(
'--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , )
parser.add_argument(
'--num_beams' , default=4 , type=UpperCAmelCase_ , help='Number of beams to be used when generating answers' , )
parser.add_argument('--min_length' , default=1 , type=UpperCAmelCase_ , help='Min length of the generated answers' )
parser.add_argument('--max_length' , default=5_0 , type=UpperCAmelCase_ , help='Max length of the generated answers' )
parser.add_argument(
'--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , )
parser.add_argument(
'--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , )
_UpperCamelCase : Optional[Any] = parser.parse_args()
_UpperCamelCase : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
return args
def A__ ( UpperCAmelCase_ ):
_UpperCamelCase : Optional[int] = {}
if args.model_type is None:
_UpperCamelCase : Tuple = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith('rag' ):
_UpperCamelCase : str = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration
_UpperCamelCase : Dict = args.n_docs
if args.index_name is not None:
_UpperCamelCase : int = args.index_name
if args.index_path is not None:
_UpperCamelCase : int = args.index_path
else:
_UpperCamelCase : Any = BartForConditionalGeneration
_UpperCamelCase : int = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info('Evaluate the following checkpoints: %s' , UpperCAmelCase_ )
_UpperCamelCase : Tuple = get_scores if args.eval_mode == 'e2e' else get_precision_at_k
_UpperCamelCase : Dict = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) )
score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path )
continue
logger.info('***** Running evaluation for {} *****'.format(UpperCAmelCase_ ) )
logger.info(' Batch size = %d' , args.eval_batch_size )
logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) )
if args.model_type.startswith('rag' ):
_UpperCamelCase : Dict = RagRetriever.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
_UpperCamelCase : Optional[Any] = model_class.from_pretrained(UpperCAmelCase_ , retriever=UpperCAmelCase_ , **UpperCAmelCase_ )
model.retriever.init_retrieval()
else:
_UpperCamelCase : int = model_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
model.to(args.device )
with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file:
_UpperCamelCase : str = []
for line in tqdm(UpperCAmelCase_ ):
questions.append(line.strip() )
if len(UpperCAmelCase_ ) == args.eval_batch_size:
_UpperCamelCase : List[str] = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
preds_file.write('\n'.join(UpperCAmelCase_ ) + '\n' )
preds_file.flush()
_UpperCamelCase : Optional[Any] = []
if len(UpperCAmelCase_ ) > 0:
_UpperCamelCase : Optional[Any] = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
preds_file.write('\n'.join(UpperCAmelCase_ ) )
preds_file.flush()
score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
snake_case_ : int = get_args()
main(args)
| 83
|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple =KandinskyVaaPriorPipeline
__lowerCamelCase : Union[str, Any] =['prompt']
__lowerCamelCase : Any =['prompt', 'negative_prompt']
__lowerCamelCase : List[str] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
__lowerCamelCase : List[Any] =False
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__lowercase )
@property
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
__a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__a = PriorTransformer(**__lowercase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__a = CLIPVisionModelWithProjection(__lowercase )
return model
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.dummy_prior
__a = self.dummy_image_encoder
__a = self.dummy_text_encoder
__a = self.dummy_tokenizer
__a = self.dummy_image_processor
__a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , )
__a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ):
'''simple docstring'''
if str(__lowercase ).startswith("""mps""" ):
__a = torch.manual_seed(__lowercase )
else:
__a = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = """cpu"""
__a = self.get_dummy_components()
__a = self.pipeline_class(**__lowercase )
__a = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__a = pipe(**self.get_dummy_inputs(__lowercase ) )
__a = output.image_embeds
__a = pipe(
**self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0]
__a = image[0, -10:]
__a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = True
__a = False
self._test_inference_batch_single_identical(
test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
@skip_mps
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
| 302
| 0
|
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class _SCREAMING_SNAKE_CASE :
def __init__( self , __A=None , **__A ) -> Optional[int]:
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
lowerCAmelCase_ :Dict = model
lowerCAmelCase_ :List[Any] = kwargs.get("""model_save_dir""" , __A )
lowerCAmelCase_ :Dict = kwargs.get("""latest_model_name""" , __A )
def __call__( self , **__A ) -> Any:
lowerCAmelCase_ :List[Any] = {k: np.array(__A ) for k, v in kwargs.items()}
return self.model.run(__A , __A )
@staticmethod
def __lowerCAmelCase ( __A , __A=None , __A=None ) -> str:
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
lowerCAmelCase_ :Optional[Any] = """CPUExecutionProvider"""
return ort.InferenceSession(__A , providers=[provider] , sess_options=__A )
def __lowerCAmelCase ( self , __A , __A = None , **__A ) -> Union[str, Any]:
lowerCAmelCase_ :Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
lowerCAmelCase_ :Any = self.model_save_dir.joinpath(self.latest_model_name )
lowerCAmelCase_ :str = Path(__A ).joinpath(__A )
try:
shutil.copyfile(__A , __A )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
lowerCAmelCase_ :Union[str, Any] = self.model_save_dir.joinpath(__A )
if src_path.exists():
lowerCAmelCase_ :List[str] = Path(__A ).joinpath(__A )
try:
shutil.copyfile(__A , __A )
except shutil.SameFileError:
pass
def __lowerCAmelCase ( self , __A , **__A , ) -> Union[str, Any]:
if os.path.isfile(__A ):
logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" )
return
os.makedirs(__A , exist_ok=__A )
# saving model weights/files
self._save_pretrained(__A , **__A )
@classmethod
def __lowerCAmelCase ( cls , __A , __A = None , __A = None , __A = False , __A = None , __A = None , __A = None , __A = None , **__A , ) -> int:
lowerCAmelCase_ :List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(__A ):
lowerCAmelCase_ :Optional[int] = OnnxRuntimeModel.load_model(
os.path.join(__A , __A ) , provider=__A , sess_options=__A )
lowerCAmelCase_ :int = Path(__A )
# load model from hub
else:
# download model
lowerCAmelCase_ :Optional[int] = hf_hub_download(
repo_id=__A , filename=__A , use_auth_token=__A , revision=__A , cache_dir=__A , force_download=__A , )
lowerCAmelCase_ :Optional[int] = Path(__A ).parent
lowerCAmelCase_ :Optional[Any] = Path(__A ).name
lowerCAmelCase_ :str = OnnxRuntimeModel.load_model(__A , provider=__A , sess_options=__A )
return cls(model=__A , **__A )
@classmethod
def __lowerCAmelCase ( cls , __A , __A = True , __A = None , __A = None , **__A , ) -> Union[str, Any]:
lowerCAmelCase_ :str = None
if len(str(__A ).split("""@""" ) ) == 2:
lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = model_id.split("""@""" )
return cls._from_pretrained(
model_id=__A , revision=__A , cache_dir=__A , force_download=__A , use_auth_token=__A , **__A , )
| 84
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = Dict[str, Any]
lowerCamelCase__ = List[Prediction]
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ):
'''simple docstring'''
super().__init__(*__lowercase , **__lowercase )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ):
'''simple docstring'''
__a = {}
if "threshold" in kwargs:
__a = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ):
'''simple docstring'''
return super().__call__(*__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : Tuple ):
'''simple docstring'''
__a = load_image(__lowercase )
__a = torch.IntTensor([[image.height, image.width]] )
__a = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
__a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
__a = target_size
return inputs
def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ):
'''simple docstring'''
__a = model_inputs.pop("""target_size""" )
__a = self.model(**__lowercase )
__a = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
__a = model_inputs["""bbox"""]
return model_outputs
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ):
'''simple docstring'''
__a = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
__a , __a = target_size[0].tolist()
def unnormalize(__lowercase : Optional[Any] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
__a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
__a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
__a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
__a = ["""score""", """label""", """box"""]
__a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
__a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase )
__a = raw_annotations[0]
__a = raw_annotation["""scores"""]
__a = raw_annotation["""labels"""]
__a = raw_annotation["""boxes"""]
__a = scores.tolist()
__a = [self.model.config.idalabel[label.item()] for label in labels]
__a = [self._get_bounding_box(__lowercase ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
__a = ["""score""", """label""", """box"""]
__a = [
dict(zip(__lowercase , __lowercase ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
__a , __a , __a , __a = box.int().tolist()
__a = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 302
| 0
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _snake_case ( unittest.TestCase ):
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return model
@property
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , )
return model
@property
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , )
snake_case_ = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return vqvae, unet
@slow
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case_ = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
snake_case_ = DDPMScheduler()
snake_case_ = AudioDiffusionPipeline(vqvae=a__ , unet=self.dummy_unet , mel=a__ , scheduler=a__ )
snake_case_ = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
snake_case_ = torch.Generator(device=a__ ).manual_seed(42 )
snake_case_ = pipe(generator=a__ , steps=4 )
snake_case_ = output.audios[0]
snake_case_ = output.images[0]
snake_case_ = torch.Generator(device=a__ ).manual_seed(42 )
snake_case_ = pipe(generator=a__ , steps=4 , return_dict=a__ )
snake_case_ = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
snake_case_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10]
snake_case_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
snake_case_ = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
snake_case_ = DDIMScheduler()
snake_case_ = self.dummy_vqvae_and_unet
snake_case_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a__ , scheduler=a__ )
snake_case_ = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
np.random.seed(0 )
snake_case_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
snake_case_ = torch.Generator(device=a__ ).manual_seed(42 )
snake_case_ = pipe(raw_audio=a__ , generator=a__ , start_step=5 , steps=10 )
snake_case_ = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
snake_case_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
snake_case_ = self.dummy_unet_condition
snake_case_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=a__ , mel=a__ , scheduler=a__ )
snake_case_ = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
np.random.seed(0 )
snake_case_ = torch.rand((1, 1, 10) )
snake_case_ = pipe(generator=a__ , encoding=a__ )
snake_case_ = output.images[0]
snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
snake_case_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
snake_case_ = torch_device
snake_case_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" )
snake_case_ = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
snake_case_ = torch.Generator(device=a__ ).manual_seed(42 )
snake_case_ = pipe(generator=a__ )
snake_case_ = output.audios[0]
snake_case_ = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
snake_case_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 85
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase__ = {
"""configuration_efficientnet""": [
"""EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""EfficientNetConfig""",
"""EfficientNetOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""EfficientNetImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""EfficientNetForImageClassification""",
"""EfficientNetModel""",
"""EfficientNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 302
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class A__ ( metaclass=_lowerCamelCase):
A_ : Tuple = ['transformers', 'torch', 'note_seq']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
requires_backends(self , ['transformers', 'torch', 'note_seq'] )
@classmethod
def __lowerCamelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
@classmethod
def __lowerCamelCase ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
| 86
|
import random
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : List[Any] ):
"""simple docstring"""
__a , __a , __a = [], [], []
for element in data:
if element < pivot:
less.append(_SCREAMING_SNAKE_CASE )
elif element > pivot:
greater.append(_SCREAMING_SNAKE_CASE )
else:
equal.append(_SCREAMING_SNAKE_CASE )
return less, equal, greater
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0:
return None
__a = items[random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 )]
__a = 0
__a , __a , __a = _partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
__a = len(_SCREAMING_SNAKE_CASE )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# must be in larger
else:
return quick_select(_SCREAMING_SNAKE_CASE , index - (m + count) )
| 302
| 0
|
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class snake_case_ ( __A ):
__A : Dict = "sew"
def __init__( self : int , lowercase_ : int=32 , lowercase_ : Dict=7_68 , lowercase_ : List[Any]=12 , lowercase_ : Any=12 , lowercase_ : int=30_72 , lowercase_ : Any=2 , lowercase_ : Tuple="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Tuple=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Dict="group" , lowercase_ : Dict="gelu" , lowercase_ : Dict=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowercase_ : int=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : int=True , lowercase_ : int=0.05 , lowercase_ : Tuple=10 , lowercase_ : str=2 , lowercase_ : Dict=0.0 , lowercase_ : List[Any]=10 , lowercase_ : List[str]=0 , lowercase_ : Any="mean" , lowercase_ : Optional[int]=False , lowercase_ : Dict=False , lowercase_ : List[Any]=2_56 , lowercase_ : List[Any]=0 , lowercase_ : List[Any]=1 , lowercase_ : Optional[Any]=2 , **lowercase_ : List[str] , ) -> List[str]:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : Dict = hidden_size
lowercase__ : Union[str, Any] = feat_extract_norm
lowercase__ : List[str] = feat_extract_activation
lowercase__ : Optional[Any] = list(lowercase_ )
lowercase__ : Optional[Any] = list(lowercase_ )
lowercase__ : str = list(lowercase_ )
lowercase__ : Any = conv_bias
lowercase__ : Optional[Any] = num_conv_pos_embeddings
lowercase__ : str = num_conv_pos_embedding_groups
lowercase__ : Tuple = len(self.conv_dim )
lowercase__ : Any = num_hidden_layers
lowercase__ : Optional[int] = intermediate_size
lowercase__ : List[Any] = squeeze_factor
lowercase__ : Tuple = hidden_act
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = hidden_dropout
lowercase__ : List[Any] = attention_dropout
lowercase__ : Optional[int] = activation_dropout
lowercase__ : int = feat_proj_dropout
lowercase__ : int = final_dropout
lowercase__ : Optional[int] = layerdrop
lowercase__ : List[Any] = layer_norm_eps
lowercase__ : str = initializer_range
lowercase__ : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : int = apply_spec_augment
lowercase__ : List[str] = mask_time_prob
lowercase__ : str = mask_time_length
lowercase__ : int = mask_time_min_masks
lowercase__ : str = mask_feature_prob
lowercase__ : Any = mask_feature_length
lowercase__ : Optional[Any] = mask_feature_min_masks
# ctc loss
lowercase__ : int = ctc_loss_reduction
lowercase__ : Union[str, Any] = ctc_zero_infinity
# sequence classification
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
@property
def __UpperCamelCase ( self : Optional[int] ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 87
|
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowerCamelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Optional[int] , **__lowercase : Dict ):
'''simple docstring'''
super().__init__(**__lowercase )
if self.framework != "pt":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__( self : str , __lowercase : Union[np.ndarray, bytes, str] , **__lowercase : int ):
'''simple docstring'''
return super().__call__(__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , **__lowercase : Union[str, Any] ):
'''simple docstring'''
__a = {}
if "candidate_labels" in kwargs:
__a = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__a = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCamelCase_ ( self : int , __lowercase : Dict , __lowercase : Dict=None , __lowercase : str="This is a sound of {}." ):
'''simple docstring'''
if isinstance(__lowercase , __lowercase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
__a = requests.get(__lowercase ).content
else:
with open(__lowercase , """rb""" ) as f:
__a = f.read()
if isinstance(__lowercase , __lowercase ):
__a = ffmpeg_read(__lowercase , self.feature_extractor.sampling_rate )
if not isinstance(__lowercase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
__a = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
__a = candidate_labels
__a = [hypothesis_template.format(__lowercase ) for x in candidate_labels]
__a = self.tokenizer(__lowercase , return_tensors=self.framework , padding=__lowercase )
__a = [text_inputs]
return inputs
def UpperCamelCase_ ( self : Any , __lowercase : Any ):
'''simple docstring'''
__a = model_inputs.pop("""candidate_labels""" )
__a = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , __lowercase ):
__a = text_inputs[0]
else:
# Batching case.
__a = text_inputs[0][0]
__a = self.model(**__lowercase , **__lowercase )
__a = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = model_outputs.pop("""candidate_labels""" )
__a = model_outputs["""logits"""][0]
if self.framework == "pt":
__a = logits.softmax(dim=0 )
__a = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
__a = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : -x[0] )
]
return result
| 302
| 0
|
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : Any=[1, 2, 1] , UpperCamelCase__ : int=[2, 2, 4] , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[int]=2.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Union[str, Any]=1E-5 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Tuple=["stage1", "stage2", "stage3"] , UpperCamelCase__ : Tuple=[1, 2, 3] , ) -> Dict:
"""simple docstring"""
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = image_size
__magic_name__ = patch_size
__magic_name__ = num_channels
__magic_name__ = embed_dim
__magic_name__ = depths
__magic_name__ = num_heads
__magic_name__ = window_size
__magic_name__ = mlp_ratio
__magic_name__ = qkv_bias
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = drop_path_rate
__magic_name__ = hidden_act
__magic_name__ = use_absolute_embeddings
__magic_name__ = patch_norm
__magic_name__ = layer_norm_eps
__magic_name__ = initializer_range
__magic_name__ = is_training
__magic_name__ = scope
__magic_name__ = use_labels
__magic_name__ = type_sequence_label_size
__magic_name__ = encoder_stride
__magic_name__ = out_features
__magic_name__ = out_indices
def _lowercase ( self : str ) -> Optional[int]:
"""simple docstring"""
__magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : Tuple ) -> str:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowercase ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = model(UpperCamelCase__ )
__magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _lowercase ( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = model(UpperCamelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(UpperCamelCase__ ):
__magic_name__ = ["""stem"""]
__magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ )
def _lowercase ( self : Any ) -> Any:
"""simple docstring"""
__magic_name__ = self.prepare_config_and_inputs()
__magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs
__magic_name__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _A , _A , unittest.TestCase ):
'''simple docstring'''
a__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
a__ = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {}
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def _lowercase ( self : Any ) -> List[str]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModelTester(self )
__magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def _lowercase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
pass
def _lowercase ( self : str ) -> Dict:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return
def _lowercase ( self : str ) -> str:
"""simple docstring"""
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def _lowercase ( self : int ) -> Optional[Any]:
"""simple docstring"""
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCamelCase__ )
@unittest.skip("""Swin does not use inputs_embeds""" )
def _lowercase ( self : Any ) -> int:
"""simple docstring"""
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def _lowercase ( self : str ) -> List[Any]:
"""simple docstring"""
pass
def _lowercase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def _lowercase ( self : Tuple ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
__magic_name__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ = [*signature.parameters.keys()]
__magic_name__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def _lowercase ( self : Tuple ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def _lowercase ( self : List[str] ) -> Dict:
"""simple docstring"""
pass
def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Any:
"""simple docstring"""
__magic_name__ = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
__magic_name__ = outputs.hidden_states
__magic_name__ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
# Swin has a different seq_length
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _lowercase ( self : Dict ) -> Dict:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = 3
__magic_name__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ = True
self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def _lowercase ( self : Optional[int] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowercase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowercase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
pass
def _lowercase ( self : Dict ) -> Any:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(UpperCamelCase__ : Union[str, Any] ):
__magic_name__ = 0
return t
def check_equivalence(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int={} ):
with torch.no_grad():
__magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ )
__magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple()
def recursive_check(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ):
if isinstance(UpperCamelCase__ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ):
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(UpperCamelCase__ ) , set_nan_tensor_to_zero(UpperCamelCase__ ) , atol=1E-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
F''' {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}. Dict has'''
F''' `nan`: {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}.'''
) , )
recursive_check(UpperCamelCase__ , UpperCamelCase__ )
for model_class in self.all_model_classes:
__magic_name__ = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase , _A ):
'''simple docstring'''
a__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
a__ = MaskFormerSwinConfig
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__magic_name__ = MaskFormerSwinModelTester(self )
def _lowercase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
__magic_name__ = backbone_class(UpperCamelCase__ )
backbone.to(UpperCamelCase__ )
backbone.eval()
__magic_name__ = backbone(**UpperCamelCase__ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , UpperCamelCase__ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__magic_name__ = backbone(**UpperCamelCase__ , output_hidden_states=UpperCamelCase__ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__magic_name__ , __magic_name__ , __magic_name__ = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__magic_name__ = backbone(**UpperCamelCase__ , output_attentions=UpperCamelCase__ )
self.assertIsNotNone(outputs.attentions )
| 88
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCamelCase__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Dict =['pixel_values']
def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ):
'''simple docstring'''
super().__init__(**__lowercase )
__a = size if size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" )
__a = do_resize
__a = do_rescale
__a = do_normalize
__a = do_center_crop
__a = crop_size
__a = size
__a = resample
__a = rescale_factor
__a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__a = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "shortest_edge" in size:
__a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__a = (size["""height"""], size["""width"""])
else:
raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" )
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ):
'''simple docstring'''
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ):
'''simple docstring'''
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ):
'''simple docstring'''
__a = do_resize if do_resize is not None else self.do_resize
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = do_center_crop if do_center_crop is not None else self.do_center_crop
__a = crop_size if crop_size is not None else self.crop_size
__a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase )
__a = resample if resample is not None else self.resample
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = size if size is not None else self.size
__a = get_size_dict(__lowercase )
if not is_batched(__lowercase ):
__a = [images]
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__a = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 302
| 0
|
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __magic_name__ ( _UpperCamelCase ):
def __init__( self : Union[str, Any] ):
_a : Dict = []
def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Any ):
self.events.append('on_init_end' )
def __lowercase ( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ,**_UpperCAmelCase : Dict ):
self.events.append('on_train_begin' )
def __lowercase ( self : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : List[Any] ):
self.events.append('on_train_end' )
def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ,**_UpperCAmelCase : Optional[Any] ):
self.events.append('on_epoch_begin' )
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ):
self.events.append('on_epoch_end' )
def __lowercase ( self : Dict ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[int] ):
self.events.append('on_step_begin' )
def __lowercase ( self : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ,**_UpperCAmelCase : Dict ):
self.events.append('on_step_end' )
def __lowercase ( self : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,**_UpperCAmelCase : Any ):
self.events.append('on_evaluate' )
def __lowercase ( self : int ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : int ):
self.events.append('on_predict' )
def __lowercase ( self : int ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Tuple ):
self.events.append('on_save' )
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Union[str, Any] ):
self.events.append('on_log' )
def __lowercase ( self : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int ,**_UpperCAmelCase : List[str] ):
self.events.append('on_prediction_step' )
@require_torch
class __magic_name__ ( unittest.TestCase ):
def __lowercase ( self : int ):
_a : Optional[int] = tempfile.mkdtemp()
def __lowercase ( self : str ):
shutil.rmtree(self.output_dir )
def __lowercase ( self : int ,_UpperCAmelCase : Dict=0 ,_UpperCAmelCase : str=0 ,_UpperCAmelCase : Dict=64 ,_UpperCAmelCase : List[str]=64 ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=False ,**_UpperCAmelCase : int ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
_a : int = RegressionDataset(length=_UpperCAmelCase )
_a : str = RegressionDataset(length=_UpperCAmelCase )
_a : List[Any] = RegressionModelConfig(a=_UpperCAmelCase ,b=_UpperCAmelCase )
_a : Optional[int] = RegressionPreTrainedModel(_UpperCAmelCase )
_a : Optional[int] = TrainingArguments(self.output_dir ,disable_tqdm=_UpperCAmelCase ,report_to=[] ,**_UpperCAmelCase )
return Trainer(
_UpperCAmelCase ,_UpperCAmelCase ,train_dataset=_UpperCAmelCase ,eval_dataset=_UpperCAmelCase ,callbacks=_UpperCAmelCase ,)
def __lowercase ( self : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any] ):
self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) )
# Order doesn't matter
_a : List[Any] = sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cb.__class__.__name__ )
_a : List[str] = sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cb.__class__.__name__ )
for cba, cba in zip(_UpperCAmelCase ,_UpperCAmelCase ):
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase )
elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertEqual(_UpperCAmelCase ,cba.__class__ )
elif not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertEqual(cba.__class__ ,_UpperCAmelCase )
else:
self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase )
def __lowercase ( self : Any ,_UpperCAmelCase : Optional[Any] ):
_a : str = ['on_init_end', 'on_train_begin']
_a : str = 0
_a : Optional[int] = len(trainer.get_eval_dataloader() )
_a : List[Any] = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('on_epoch_begin' )
for _ in range(_UpperCAmelCase ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('on_log' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('on_save' )
expected_events.append('on_epoch_end' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __lowercase ( self : Optional[Any] ):
_a : str = self.get_trainer()
_a : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
# Callbacks passed at init are added to the default callbacks
_a : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
_a : Union[str, Any] = self.get_trainer(disable_tqdm=_UpperCAmelCase )
_a : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
def __lowercase ( self : Tuple ):
_a : List[str] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
_a : Optional[int] = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(_UpperCAmelCase )
expected_callbacks.remove(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
_a : Optional[Any] = self.get_trainer()
_a : List[Any] = trainer.pop_callback(_UpperCAmelCase )
self.assertEqual(cb.__class__ ,_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
trainer.add_callback(_UpperCAmelCase )
expected_callbacks.insert(0 ,_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
# We can also add, pop, or remove by instance
_a : str = self.get_trainer()
_a : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(_UpperCAmelCase )
expected_callbacks.remove(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
_a : Tuple = self.get_trainer()
_a : Optional[Any] = trainer.callback_handler.callbacks[0]
_a : Optional[Any] = trainer.pop_callback(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
trainer.add_callback(_UpperCAmelCase )
expected_callbacks.insert(0 ,_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase )
def __lowercase ( self : List[Any] ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='ignore' ,category=_UpperCAmelCase )
_a : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
_a : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
# Independent log/save/eval
_a : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
_a : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
_a : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
_a : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
_a : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='steps' )
trainer.train()
_a : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
_a : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='epoch' )
trainer.train()
_a : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
# A bit of everything
_a : Optional[int] = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy='steps' ,)
trainer.train()
_a : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) )
# warning should be emitted for duplicated callbacks
with patch('transformers.trainer_callback.logger.warning' ) as warn_mock:
_a : List[str] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(_UpperCAmelCase ) in warn_mock.call_args[0][0]
| 89
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoTokenizer.from_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = tokenizer("""This is me""" , return_tensors="""pt""" )
__a = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__a = model.generate(**__lowercase )
__a = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__a = model_reloaded.generate(**__lowercase )
self.assertTrue(torch.allclose(__lowercase , __lowercase ) )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = """hf-internal-testing/tiny-random-t5"""
__a = AutoModelForSeqaSeqLM.from_pretrained(__lowercase )
__a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__lowercase ):
model.save_pretrained(__lowercase )
__a = model.reverse_bettertransformer()
model.save_pretrained(__lowercase )
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["FNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["FNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 90
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCamelCase__ = {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] ='albert'
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=30000 , __lowercase : List[str]=128 , __lowercase : Optional[Any]=4096 , __lowercase : Dict=12 , __lowercase : Any=1 , __lowercase : Optional[Any]=64 , __lowercase : Any=16384 , __lowercase : Any=1 , __lowercase : Union[str, Any]="gelu_new" , __lowercase : List[str]=0 , __lowercase : int=0 , __lowercase : Dict=512 , __lowercase : str=2 , __lowercase : List[str]=0.02 , __lowercase : Union[str, Any]=1E-12 , __lowercase : int=0.1 , __lowercase : Any="absolute" , __lowercase : Optional[int]=0 , __lowercase : Dict=2 , __lowercase : Optional[Any]=3 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = embedding_size
__a = hidden_size
__a = num_hidden_layers
__a = num_hidden_groups
__a = num_attention_heads
__a = inner_group_num
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = classifier_dropout_prob
__a = position_embedding_type
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 302
| 0
|
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
UpperCAmelCase_ : List[str] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
UpperCAmelCase_ : Optional[int] = """pt""" if is_torch_available() else """tf"""
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase = CamembertTokenizer
__UpperCamelCase = CamembertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE_ : Optional[int] = CamembertTokenizer(lowercase_)
tokenizer.save_pretrained(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : List[str]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = '''<pad>'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[str] = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''')
self.assertEqual(vocab_keys[1] , '''<pad>''')
self.assertEqual(vocab_keys[-1] , '''<mask>''')
self.assertEqual(len(lowercase_) , 1004)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1005)
def _SCREAMING_SNAKE_CASE ( self : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = CamembertTokenizer(lowercase_)
tokenizer.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE_ : Tuple = '''I was born in 92000, and this is falsé.'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.encode(lowercase_)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = rust_tokenizer.encode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
SCREAMING_SNAKE_CASE_ : Dict = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowercase_)
SCREAMING_SNAKE_CASE_ : Any = rust_tokenizer.tokenize(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
def _SCREAMING_SNAKE_CASE ( self : int):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Optional[int] = '''I was born in 92000, and this is falsé.'''
SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer.tokenize(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.encode(lowercase_)
SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer.encode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
@slow
def _SCREAMING_SNAKE_CASE ( self : Any):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Any = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
SCREAMING_SNAKE_CASE_ : Tuple = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowercase_ , )
| 91
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _a ( ):
__lowerCAmelCase = ArgumentParser(
description=(
"PyTorch TPU distributed training launch "
"helper utility that will spawn up "
"multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=SCREAMING_SNAKE_CASE_ , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE_ )
return parser.parse_args()
def _a ( ):
__lowerCAmelCase = parse_args()
# Import training_script as a module.
__lowerCAmelCase = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__lowerCAmelCase = script_fpath.stem
__lowerCAmelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ )
# Patch sys.argv
__lowerCAmelCase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 92
|
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = val
__a = None
__a = None
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Any ):
'''simple docstring'''
if self.val:
if val < self.val:
if self.left is None:
__a = Node(__lowercase )
else:
self.left.insert(__lowercase )
elif val > self.val:
if self.right is None:
__a = Node(__lowercase )
else:
self.right.insert(__lowercase )
else:
__a = val
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if root:
inorder(root.left , _SCREAMING_SNAKE_CASE )
res.append(root.val )
inorder(root.right , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
if len(_SCREAMING_SNAKE_CASE ) == 0:
return arr
__a = Node(arr[0] )
for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ):
root.insert(arr[i] )
# Traverse BST in order.
__a = []
inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 302
| 0
|
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : dict ):
"""simple docstring"""
lowercase_ : Union[str, Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , '''html.parser''' )
lowercase_ : List[Any] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
lowercase_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowercase : Optional[int] = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 3_0,
"pages": "3979-3990",
"year": 2_0_1_8,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 93
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = patch_size
__a = num_channels
__a = make_divisible(512 * width_multiplier , divisor=8 )
__a = hidden_act
__a = conv_kernel_size
__a = output_stride
__a = classifier_dropout_prob
__a = use_labels
__a = is_training
__a = num_labels
__a = initializer_range
__a = scope
__a = width_multiplier
__a = ffn_dropout
__a = attn_dropout
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ):
'''simple docstring'''
__a = MobileViTVaModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ):
'''simple docstring'''
__a = self.num_labels
__a = MobileViTVaForSemanticSegmentation(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[Any] =(
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowerCamelCase : Any =(
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict =False
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : int =False
__lowerCamelCase : Any =False
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = MobileViTVaModelTester(self )
__a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.hidden_states
__a = 5
self.assertEqual(len(__lowercase ) , __lowercase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__a = 2
for i in range(len(__lowercase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = MobileViTVaModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits
# verify the logits
__a = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __lowercase )
__a = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=__lowercase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = model.to(__lowercase )
__a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
__a = outputs.logits.detach().cpu()
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] )
__a = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __lowercase )
__a = image_processor.post_process_semantic_segmentation(outputs=__lowercase )
__a = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __lowercase )
| 302
| 0
|
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : List[Any] = logging.get_logger(__name__)
# TODO Update this
snake_case : Union[str, Any] = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = 'esm'
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1026 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ):
super().__init__(pad_token_id=_lowerCamelCase , mask_token_id=_lowerCamelCase , **_lowerCamelCase )
a :Tuple = vocab_size
a :List[str] = hidden_size
a :int = num_hidden_layers
a :int = num_attention_heads
a :Union[str, Any] = intermediate_size
a :Union[str, Any] = hidden_dropout_prob
a :Any = attention_probs_dropout_prob
a :List[Any] = max_position_embeddings
a :str = initializer_range
a :Tuple = layer_norm_eps
a :Union[str, Any] = position_embedding_type
a :List[str] = use_cache
a :str = emb_layer_norm_before
a :List[str] = token_dropout
a :str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
a :Optional[Any] = EsmFoldConfig()
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
a :Dict = EsmFoldConfig(**_lowerCamelCase )
a :Optional[Any] = esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
a :str = get_default_vocab_list()
else:
a :Dict = vocab_list
else:
a :Tuple = None
a :List[str] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , _lowerCamelCase ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = super().to_dict()
if isinstance(self.esmfold_config , _lowerCamelCase ):
a :Optional[Any] = self.esmfold_config.to_dict()
return output
@dataclass
class _snake_case :
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = 128
SCREAMING_SNAKE_CASE__ = None
def SCREAMING_SNAKE_CASE__ ( self ):
if self.trunk is None:
a :List[str] = TrunkConfig()
elif isinstance(self.trunk , _lowerCamelCase ):
a :List[Any] = TrunkConfig(**self.trunk )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = asdict(self )
a :Any = self.trunk.to_dict()
return output
@dataclass
class _snake_case :
SCREAMING_SNAKE_CASE__ = 48
SCREAMING_SNAKE_CASE__ = 1024
SCREAMING_SNAKE_CASE__ = 128
SCREAMING_SNAKE_CASE__ = 32
SCREAMING_SNAKE_CASE__ = 32
SCREAMING_SNAKE_CASE__ = 32
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = 4
SCREAMING_SNAKE_CASE__ = 128
SCREAMING_SNAKE_CASE__ = None
def SCREAMING_SNAKE_CASE__ ( self ):
if self.structure_module is None:
a :List[Any] = StructureModuleConfig()
elif isinstance(self.structure_module , _lowerCamelCase ):
a :Optional[int] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
a :Tuple = self.sequence_state_dim // self.sequence_head_width
a :Union[str, Any] = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Union[str, Any] = asdict(self )
a :Dict = self.structure_module.to_dict()
return output
@dataclass
class _snake_case :
SCREAMING_SNAKE_CASE__ = 384
SCREAMING_SNAKE_CASE__ = 128
SCREAMING_SNAKE_CASE__ = 16
SCREAMING_SNAKE_CASE__ = 128
SCREAMING_SNAKE_CASE__ = 12
SCREAMING_SNAKE_CASE__ = 4
SCREAMING_SNAKE_CASE__ = 8
SCREAMING_SNAKE_CASE__ = 0.1
SCREAMING_SNAKE_CASE__ = 8
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
SCREAMING_SNAKE_CASE__ = 7
SCREAMING_SNAKE_CASE__ = 10
SCREAMING_SNAKE_CASE__ = 1e-8
SCREAMING_SNAKE_CASE__ = 1e5
def SCREAMING_SNAKE_CASE__ ( self ):
return asdict(self )
def __lowerCamelCase ( ):
"""simple docstring"""
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 94
|
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 302
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : str = {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 95
|
import string
import numpy
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : List[str] =string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
__lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 )
__lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ )
def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ):
'''simple docstring'''
__a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
__a = encrypt_key.shape[0]
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
return self.key_string.index(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : int ):
'''simple docstring'''
return self.key_string[round(__lowercase )]
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = len(self.key_string )
if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1:
__a = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = [char for char in text.upper() if char in self.key_string]
__a = chars[-1]
while len(__lowercase ) % self.break_key != 0:
chars.append(__lowercase )
return "".join(__lowercase )
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[
0
]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
__a = det % len(self.key_string )
__a = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
__a = i
break
__a = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__lowercase ) )
def UpperCamelCase_ ( self : Any , __lowercase : str ):
'''simple docstring'''
__a = self.make_decrypt_key()
__a = self.process_text(text.upper() )
__a = """"""
for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ):
__a = text[i : i + self.break_key]
__a = [self.replace_letters(__lowercase ) for char in batch]
__a = numpy.array([vec] ).T
__a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0]
__a = """""".join(
self.replace_digits(__lowercase ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = int(input("""Enter the order of the encryption key: """ ) )
__a = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(_SCREAMING_SNAKE_CASE ):
__a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(_SCREAMING_SNAKE_CASE )
__a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
__a = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
__a = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(_SCREAMING_SNAKE_CASE ) )
elif option == "2":
__a = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
def _snake_case ( lowercase__ ):
_lowerCamelCase : str = str(lowercase__ )
return n == n[::-1]
def _snake_case ( lowercase__ = 1000000 ):
_lowerCamelCase : Optional[int] = 0
for i in range(1 , lowercase__ ):
if is_palindrome(lowercase__ ) and is_palindrome(bin(lowercase__ ).split('b' )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 96
|
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : List[Any] ='autoformer'
__lowerCamelCase : str ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ):
'''simple docstring'''
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__lowercase ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=__lowercase , **__lowercase )
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 302
| 0
|
'''simple docstring'''
import pytest
__snake_case = '''__dummy_dataset1__'''
__snake_case = '''
import json
import os
import datasets
REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"
URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}
class __DummyDataset1__(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
]
)
),
"langs": datasets.Sequence(datasets.Value("string")),
"spans": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(features=features)
def _split_generators(self, dl_manager):
dl_path = dl_manager.download(URLS)
return [
datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),
datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),
]
def _generate_examples(self, filepath):
with open(filepath, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
yield i, json.loads(line)
'''
@pytest.fixture
def a ( ) -> List[str]:
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def a ( ) -> List[Any]:
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def a ( __a , __a , __a ) -> int:
'''simple docstring'''
UpperCamelCase__ :Any = dataset_loading_script_name
UpperCamelCase__ :Optional[int] = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=__a )
UpperCamelCase__ :List[str] = script_dir / f'''{script_name}.py'''
with open(__a , '''w''' ) as f:
f.write(__a )
return str(__a )
| 97
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302
| 0
|
"""simple docstring"""
from __future__ import annotations
import queue
class snake_case :
"""simple docstring"""
def __init__( self : int ,lowerCamelCase__ : List[str] ):
UpperCAmelCase__ = data
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def a_ ( ):
print('\n********Press N to stop entering at any point of time********\n' )
UpperCAmelCase__ = input('Enter the value of the root node: ' ).strip().lower()
UpperCAmelCase__ = queue.Queue()
UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) )
q.put(lowerCamelCase )
while not q.empty():
UpperCAmelCase__ = q.get()
UpperCAmelCase__ = f'''Enter the left node of {node_found.data}: '''
UpperCAmelCase__ = input(lowerCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) )
UpperCAmelCase__ = left_node
q.put(lowerCamelCase )
UpperCAmelCase__ = f'''Enter the right node of {node_found.data}: '''
UpperCAmelCase__ = input(lowerCamelCase ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCAmelCase__ = TreeNode(int(lowerCamelCase ) )
UpperCAmelCase__ = right_node
q.put(lowerCamelCase )
raise
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
UpperCAmelCase__ = queue.Queue()
q.put(lowerCamelCase )
while not q.empty():
UpperCAmelCase__ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
UpperCAmelCase__ = queue.Queue()
q.put(lowerCamelCase )
while not q.empty():
UpperCAmelCase__ = []
while not q.empty():
UpperCAmelCase__ = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(lowerCamelCase )
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
UpperCAmelCase__ = []
UpperCAmelCase__ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(lowerCamelCase )
UpperCAmelCase__ = n.left
# end of while means current node doesn't have left child
UpperCAmelCase__ = stack.pop()
# start to traverse its right child
UpperCAmelCase__ = n.right
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
UpperCAmelCase__ = []
UpperCAmelCase__ = node
while n or stack:
while n:
stack.append(lowerCamelCase )
UpperCAmelCase__ = n.left
UpperCAmelCase__ = stack.pop()
print(n.data , end=',' )
UpperCAmelCase__ = n.right
def a_ ( lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ) or not node:
return
UpperCAmelCase__ , UpperCAmelCase__ = [], []
UpperCAmelCase__ = node
stacka.append(lowerCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
UpperCAmelCase__ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(lowerCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def a_ ( lowerCamelCase = "" , lowerCamelCase=5_0 , lowerCamelCase="*" ):
if not s:
return "\n" + width * char
UpperCAmelCase__ , UpperCAmelCase__ = divmod(width - len(lowerCamelCase ) - 2 , 2 )
return f'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('Binary Tree Traversals'))
lowerCAmelCase__ : TreeNode = build_tree()
print(prompt('Pre Order Traversal'))
pre_order(node)
print(prompt() + '\n')
print(prompt('In Order Traversal'))
in_order(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal'))
post_order(node)
print(prompt() + '\n')
print(prompt('Level Order Traversal'))
level_order(node)
print(prompt() + '\n')
print(prompt('Actual Level Order Traversal'))
level_order_actual(node)
print('*' * 50 + '\n')
print(prompt('Pre Order Traversal - Iteration Version'))
pre_order_iter(node)
print(prompt() + '\n')
print(prompt('In Order Traversal - Iteration Version'))
in_order_iter(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal - Iteration Version'))
post_order_iter(node)
print(prompt())
| 98
|
from __future__ import annotations
lowerCamelCase__ = """#"""
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[Any] ):
'''simple docstring'''
__a = {}
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in text:
if char not in trie:
__a = {}
__a = trie[char]
__a = True
def UpperCamelCase_ ( self : Tuple , __lowercase : str ):
'''simple docstring'''
__a = self._trie
for char in prefix:
if char in trie:
__a = trie[char]
else:
return []
return self._elements(__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : dict ):
'''simple docstring'''
__a = []
for c, v in d.items():
__a = [""" """] if c == END else [(c + s) for s in self._elements(__lowercase )]
result.extend(__lowercase )
return tuple(__lowercase )
lowerCamelCase__ = Trie()
lowerCamelCase__ = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""")
for word in words:
trie.insert_word(word)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = trie.find_word(_SCREAMING_SNAKE_CASE )
return tuple(string + word for word in suffixes )
def lowerCAmelCase__ ( ):
"""simple docstring"""
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 302
| 0
|
def A_ ( A__ , A__ ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def A_ ( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 99
|
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__lowercase , __lowercase , 0 )
__a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__lowercase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
__a = nn.Linear(__lowercase , __lowercase )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__lowercase , __lowercase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , )
for d in range(__lowercase )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__lowercase )
elif norm_in_type is None:
__a = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
__a = nn.LayerNorm(__lowercase )
__a = nn.Linear(__lowercase , __lowercase )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
__a = nn.Parameter(torch.zeros(1 , __lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = {}
def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ):
if hasattr(__lowercase , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__lowercase , __lowercase , __lowercase )
return processors
def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__a = len(self.attn_processors.keys() )
if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ):
if hasattr(__lowercase , """set_processor""" ):
if not isinstance(__lowercase , __lowercase ):
module.set_processor(__lowercase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ):
'''simple docstring'''
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__lowercase ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__lowercase )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__lowercase )
__a = self.embedding_proj(__lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__lowercase )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 )
additional_embeds.append(__lowercase )
__a = torch.cat(
__lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__lowercase )
for block in self.transformer_blocks:
__a = block(__lowercase , attention_mask=__lowercase )
__a = self.norm_out(__lowercase )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__lowercase )
def UpperCamelCase_ ( self : Any , __lowercase : Tuple ):
'''simple docstring'''
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 302
| 0
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__ = logging.get_logger(__name__)
set_seed(770)
__magic_name__ = {
"c_attn": "att_proj",
"c_proj": "out_proj",
"c_fc": "in_proj",
"transformer.": "",
"h.": "layers.",
"ln_1": "layernorm_1",
"ln_2": "layernorm_2",
"ln_f": "layernorm_final",
"wpe": "position_embeds_layer",
"wte": "input_embeds_layer",
}
__magic_name__ = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
__magic_name__ = os.path.dirname(os.path.abspath(__file__))
__magic_name__ = os.path.join(os.path.expanduser("~"), ".cache")
__magic_name__ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=False ):
__SCREAMING_SNAKE_CASE = model_type
if use_small:
key += "_small"
return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] )
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ )
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ):
if model_type == "text":
__SCREAMING_SNAKE_CASE = BarkSemanticModel
__SCREAMING_SNAKE_CASE = BarkSemanticConfig
__SCREAMING_SNAKE_CASE = BarkSemanticGenerationConfig
elif model_type == "coarse":
__SCREAMING_SNAKE_CASE = BarkCoarseModel
__SCREAMING_SNAKE_CASE = BarkCoarseConfig
__SCREAMING_SNAKE_CASE = BarkCoarseGenerationConfig
elif model_type == "fine":
__SCREAMING_SNAKE_CASE = BarkFineModel
__SCREAMING_SNAKE_CASE = BarkFineConfig
__SCREAMING_SNAKE_CASE = BarkFineGenerationConfig
else:
raise NotImplementedError()
__SCREAMING_SNAKE_CASE = f"{model_type}_small" if use_small else model_type
__SCREAMING_SNAKE_CASE = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(UpperCamelCase_ ):
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." )
_download(model_info["""repo_id"""] , model_info["""file_name"""] )
__SCREAMING_SNAKE_CASE = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ )
# this is a hack
__SCREAMING_SNAKE_CASE = checkpoint["""model_args"""]
if "input_vocab_size" not in model_args:
__SCREAMING_SNAKE_CASE = model_args["""vocab_size"""]
__SCREAMING_SNAKE_CASE = model_args["""vocab_size"""]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
__SCREAMING_SNAKE_CASE = model_args.pop("""n_head""" )
__SCREAMING_SNAKE_CASE = model_args.pop("""n_embd""" )
__SCREAMING_SNAKE_CASE = model_args.pop("""n_layer""" )
__SCREAMING_SNAKE_CASE = ConfigClass(**checkpoint["""model_args"""] )
__SCREAMING_SNAKE_CASE = ModelClass(config=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = GenerationConfigClass()
__SCREAMING_SNAKE_CASE = model_generation_config
__SCREAMING_SNAKE_CASE = checkpoint["""model"""]
# fixup checkpoint
__SCREAMING_SNAKE_CASE = """_orig_mod."""
for k, v in list(state_dict.items() ):
if k.startswith(UpperCamelCase_ ):
# replace part of the key with corresponding layer name in HF implementation
__SCREAMING_SNAKE_CASE = k[len(UpperCamelCase_ ) :]
for old_layer_name in new_layer_name_dict:
__SCREAMING_SNAKE_CASE = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] )
__SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = set(state_dict.keys() ) - set(model.state_dict().keys() )
__SCREAMING_SNAKE_CASE = {k for k in extra_keys if not k.endswith(""".attn.bias""" )}
__SCREAMING_SNAKE_CASE = set(model.state_dict().keys() ) - set(state_dict.keys() )
__SCREAMING_SNAKE_CASE = {k for k in missing_keys if not k.endswith(""".attn.bias""" )}
if len(UpperCamelCase_ ) != 0:
raise ValueError(f"extra keys found: {extra_keys}" )
if len(UpperCamelCase_ ) != 0:
raise ValueError(f"missing keys: {missing_keys}" )
model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = model.num_parameters(exclude_embeddings=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = checkpoint["""best_val_loss"""].item()
logger.info(f"model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss" )
model.eval()
model.to(UpperCamelCase_ )
del checkpoint, state_dict
return model
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_="text" ):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
__SCREAMING_SNAKE_CASE = """cpu""" # do conversion on cpu
__SCREAMING_SNAKE_CASE = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ )
# load bark initial model
__SCREAMING_SNAKE_CASE = _bark_load_model(UpperCamelCase_ , """cpu""" , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ )
if model_type == "text":
__SCREAMING_SNAKE_CASE = bark_model["""model"""]
if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params():
raise ValueError("""initial and new models don't have the same number of parameters""" )
# check if same output as the bark model
__SCREAMING_SNAKE_CASE = 5
__SCREAMING_SNAKE_CASE = 10
if model_type in ["text", "coarse"]:
__SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
__SCREAMING_SNAKE_CASE = bark_model(UpperCamelCase_ )[0]
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ )
# take last logits
__SCREAMING_SNAKE_CASE = output_new_model_total.logits[:, [-1], :]
else:
__SCREAMING_SNAKE_CASE = 3
__SCREAMING_SNAKE_CASE = 8
__SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
__SCREAMING_SNAKE_CASE = model(UpperCamelCase_ , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = bark_model(UpperCamelCase_ , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("""initial and new outputs don't have the same shape""" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("""initial and new outputs are not equal""" )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__SCREAMING_SNAKE_CASE = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) )
__SCREAMING_SNAKE_CASE = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) )
__SCREAMING_SNAKE_CASE = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , """config.json""" ) )
__SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" )
__SCREAMING_SNAKE_CASE = BarkSemanticModel.from_pretrained(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = BarkCoarseModel.from_pretrained(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = BarkFineModel.from_pretrained(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("""facebook/encodec_24khz""" )
__SCREAMING_SNAKE_CASE = BarkConfig.from_sub_model_configs(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
__SCREAMING_SNAKE_CASE = BarkModel(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = semantic
__SCREAMING_SNAKE_CASE = coarseAcoustic
__SCREAMING_SNAKE_CASE = fineAcoustic
__SCREAMING_SNAKE_CASE = codec
__SCREAMING_SNAKE_CASE = bark_generation_config
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("model_type", type=str, help="text, coarse or fine.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.")
__magic_name__ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 100
|
from functools import lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
__a = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(_SCREAMING_SNAKE_CASE )
if n > 1:
factors.add(_SCREAMING_SNAKE_CASE )
return factors
@lru_cache
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ):
"""simple docstring"""
__a = 2
while True:
# Increment each value of a generated range
__a = [base + i for i in range(_SCREAMING_SNAKE_CASE )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group]
checker.append(_SCREAMING_SNAKE_CASE )
# If all numbers in the list are equal, return the group variable.
if equality(_SCREAMING_SNAKE_CASE ):
return group
# Increment our base variable by 1
base += 1
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ):
"""simple docstring"""
__a = run(_SCREAMING_SNAKE_CASE )
return results[0] if len(_SCREAMING_SNAKE_CASE ) else None
if __name__ == "__main__":
print(solution())
| 302
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.