code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , '''Tatoeba directory does not exist.''' ) class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
def a__ ( ): """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : str = 2 while i * i <= n: __SCREAMING_SNAKE_CASE : Dict = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def a__ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(snake_case ) > 500 ) if __name__ == "__main__": print(solution())
303
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""DeiTFeatureExtractor"""] lowercase_ = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_url(repo_id=snake_case , path=snake_case , revision=snake_case ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(snake_case )}'''
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase_ = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""LayoutLMv3FeatureExtractor"""] lowercase_ = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase_ = logging.get_logger(__name__) class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = None @staticmethod def UpperCAmelCase__ ( ): """simple docstring""" raise NotImplementedError def UpperCAmelCase__ ( self : List[str] , _A : Any , _A : int , _A : str , **_A : Tuple ): """simple docstring""" raise NotImplementedError def UpperCAmelCase__ ( self : Optional[int] , _A : int ): """simple docstring""" raise NotImplementedError def UpperCAmelCase__ ( self : int ): """simple docstring""" if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] ): """simple docstring""" return F'''`pip install {cls.pip_package or cls.name}`''' class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''optuna''' @staticmethod def UpperCAmelCase__ ( ): """simple docstring""" return is_optuna_available() def UpperCAmelCase__ ( self : int , _A : Any , _A : int , _A : str , **_A : Optional[Any] ): """simple docstring""" return run_hp_search_optuna(_A , _A , _A , **_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : int ): """simple docstring""" return default_hp_space_optuna(_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''ray''' lowerCAmelCase_ = '''\'ray[tune]\'''' @staticmethod def UpperCAmelCase__ ( ): """simple docstring""" return is_ray_available() def UpperCAmelCase__ ( self : str , _A : Dict , _A : int , _A : str , **_A : str ): """simple docstring""" return run_hp_search_ray(_A , _A , _A , **_A ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[int] ): """simple docstring""" return default_hp_space_ray(_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''sigopt''' @staticmethod def UpperCAmelCase__ ( ): """simple docstring""" return is_sigopt_available() def UpperCAmelCase__ ( self : List[Any] , _A : Optional[int] , _A : int , _A : str , **_A : str ): """simple docstring""" return run_hp_search_sigopt(_A , _A , _A , **_A ) def UpperCAmelCase__ ( self : str , _A : Tuple ): """simple docstring""" return default_hp_space_sigopt(_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''wandb''' @staticmethod def UpperCAmelCase__ ( ): """simple docstring""" return is_wandb_available() def UpperCAmelCase__ ( self : Union[str, Any] , _A : List[Any] , _A : int , _A : str , **_A : Any ): """simple docstring""" return run_hp_search_wandb(_A , _A , _A , **_A ) def UpperCAmelCase__ ( self : str , _A : List[Any] ): """simple docstring""" return default_hp_space_wandb(_A ) lowercase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = available_backends[0].name if len(snake_case ) > 1: logger.info( F'''{len(snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase_ = False class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = pipe( image=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
def a__ ( snake_case ): """simple docstring""" if len(snake_case ) <= 1: return lst __SCREAMING_SNAKE_CASE : List[Any] = 1 while i < len(snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = 1 return lst if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
303
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float("""nan""") class __UpperCamelCase : """simple docstring""" def __init__( self : Any , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = sys.stdout __SCREAMING_SNAKE_CASE : Optional[int] = open(_A , '''a''' ) def __getattr__( self : int , _A : List[Any] ): """simple docstring""" return getattr(self.stdout , _A ) def UpperCAmelCase__ ( self : str , _A : str ): """simple docstring""" self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _A , 0 , re.M ) ) def a__ ( snake_case=80 , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] # deal with critical env vars __SCREAMING_SNAKE_CASE : str = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __SCREAMING_SNAKE_CASE : int = os.environ.get(snake_case , snake_case ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __SCREAMING_SNAKE_CASE : Union[str, Any] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' while len(snake_case ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case ) == 0 or len(snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case ) __SCREAMING_SNAKE_CASE : Dict = '''''' return "\\\n".join(snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" # unwrap multi-line input __SCREAMING_SNAKE_CASE : str = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __SCREAMING_SNAKE_CASE : Optional[int] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __SCREAMING_SNAKE_CASE : List[str] = subprocess.run(snake_case , capture_output=snake_case , text=snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __SCREAMING_SNAKE_CASE : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Optional[Any] = json.load(snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Optional[int] = F'''{id}: {variation:<{longest_variation_len}}''' __SCREAMING_SNAKE_CASE : str = F'''{preamble}: ''' __SCREAMING_SNAKE_CASE : List[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case ) , desc=snake_case , leave=snake_case ): __SCREAMING_SNAKE_CASE : Optional[int] = process_run_single( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Dict = single_run_metrics[target_metric_key] if not math.isnan(snake_case ): metrics.append(snake_case ) results.append(snake_case ) outcome += "✓" else: outcome += "✘" __SCREAMING_SNAKE_CASE : str = F'''\33[2K\r{outcome}''' if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __SCREAMING_SNAKE_CASE : List[str] = round(mean_metrics[target_metric_key] , 2 ) __SCREAMING_SNAKE_CASE : Any = F'''{outcome} {mean_target}''' if len(snake_case ) > 1: results_str += F''' {tuple(round(snake_case , 2 ) for x in results )}''' print(snake_case ) __SCREAMING_SNAKE_CASE : int = variation return mean_metrics else: print(snake_case ) return {variation_key: variation, target_metric_key: nan} def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = pd.DataFrame(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = '''variation''' __SCREAMING_SNAKE_CASE : List[str] = '''diff_%''' __SCREAMING_SNAKE_CASE : Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __SCREAMING_SNAKE_CASE : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case ): # as a fallback, use the minimal value as the sentinel __SCREAMING_SNAKE_CASE : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = df.apply( lambda snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __SCREAMING_SNAKE_CASE : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __SCREAMING_SNAKE_CASE : Dict = df.reindex(snake_case , axis='''columns''' ) # reorder cols # capitalize __SCREAMING_SNAKE_CASE : str = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __SCREAMING_SNAKE_CASE : Optional[Any] = df.rename(lambda snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : Dict = df.rename(lambda snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case ) ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case , type=snake_case , required=snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case , type=snake_case , nargs='''+''' , required=snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case , type=snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case , type=snake_case , required=snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() __SCREAMING_SNAKE_CASE : Dict = args.output_dir Path(snake_case ).mkdir(exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : Dict = get_base_command(snake_case , snake_case ) # split each dimension into its --foo variations __SCREAMING_SNAKE_CASE : Tuple = [list(map(str.strip , re.split(R'''\|''' , snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __SCREAMING_SNAKE_CASE : str = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case ) ) ) ) __SCREAMING_SNAKE_CASE : str = max(len(snake_case ) for x in variations ) # split wanted keys __SCREAMING_SNAKE_CASE : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __SCREAMING_SNAKE_CASE : int = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Tee(snake_case ) print(F'''\n*** Running {len(snake_case )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case )}''' ) __SCREAMING_SNAKE_CASE : Dict = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for id, variation in enumerate(tqdm(snake_case , desc='''Total completion: ''' , leave=snake_case ) ): __SCREAMING_SNAKE_CASE : Any = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case , snake_case , snake_case , snake_case , args.target_metric_key , snake_case , args.repeat_times , snake_case , args.verbose , ) ) process_results(snake_case , args.target_metric_key , snake_case , args.base_variation , snake_case ) if __name__ == "__main__": main()
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = BartphoTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Optional[Any] = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __SCREAMING_SNAKE_CASE : str = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BartphoTokenizer(_A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : str , **_A : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''This is a là test''' __SCREAMING_SNAKE_CASE : Optional[int] = '''This is a<unk><unk> test''' return input_text, output_text def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BartphoTokenizer(_A , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE : List[Any] = '''This is a là test''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : List[str] = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : Optional[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __SCREAMING_SNAKE_CASE : int = F'''{src_lang}-{tgt_lang}''' __SCREAMING_SNAKE_CASE : Optional[int] = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=snake_case , exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(snake_case , '''README.md''' ) print(F'''Generating {path}''' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase_ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from math import factorial def a__ ( snake_case = 20 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __SCREAMING_SNAKE_CASE : Optional[Any] = n // 2 return int(factorial(snake_case ) / (factorial(snake_case ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowercase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
303
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''deit''' def __init__( self : str , _A : List[str]=768 , _A : Dict=12 , _A : Union[str, Any]=12 , _A : int=3072 , _A : List[Any]="gelu" , _A : Dict=0.0 , _A : str=0.0 , _A : str=0.02 , _A : List[Any]=1e-12 , _A : List[str]=224 , _A : Dict=16 , _A : Optional[int]=3 , _A : Optional[Any]=True , _A : List[Any]=16 , **_A : List[Any] , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : int = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = image_size __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : List[str] = qkv_bias __SCREAMING_SNAKE_CASE : int = encoder_stride class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return 1e-4
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''xlm-roberta''' def __init__( self : str , _A : Tuple=3_0522 , _A : Any=768 , _A : Tuple=12 , _A : Union[str, Any]=12 , _A : List[Any]=3072 , _A : Union[str, Any]="gelu" , _A : int=0.1 , _A : int=0.1 , _A : int=512 , _A : Dict=2 , _A : str=0.02 , _A : List[str]=1e-12 , _A : Any=1 , _A : Optional[Any]=0 , _A : Union[str, Any]=2 , _A : Dict="absolute" , _A : List[Any]=True , _A : Union[str, Any]=None , **_A : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : int = layer_norm_eps __SCREAMING_SNAKE_CASE : Any = position_embedding_type __SCREAMING_SNAKE_CASE : str = use_cache __SCREAMING_SNAKE_CASE : Dict = classifier_dropout class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
1
import math def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case ) def a__ ( snake_case = 1 / 12_345 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : int = 3 while True: __SCREAMING_SNAKE_CASE : Dict = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case ): __SCREAMING_SNAKE_CASE : Any = int(snake_case ) total_partitions += 1 if check_partition_perfect(snake_case ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a__ ( snake_case ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" return max(metric_fn(snake_case , snake_case ) for gt in ground_truths ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = [line.strip() for line in open(snake_case , '''r''' ).readlines()] __SCREAMING_SNAKE_CASE : List[Any] = [] if args.gold_data_mode == "qa": __SCREAMING_SNAKE_CASE : Optional[Any] = pd.read_csv(snake_case , sep='''\t''' , header=snake_case ) for answer_list in data[1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = ast.literal_eval(snake_case ) answers.append(snake_case ) else: __SCREAMING_SNAKE_CASE : Dict = [line.strip() for line in open(snake_case , '''r''' ).readlines()] __SCREAMING_SNAKE_CASE : Union[str, Any] = [[reference] for reference in references] __SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(snake_case , snake_case ): total += 1 em += metric_max_over_ground_truths(snake_case , snake_case , snake_case ) fa += metric_max_over_ground_truths(snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = 100.0 * em / total __SCREAMING_SNAKE_CASE : str = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = args.k __SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(snake_case , '''r''' ).readlines()] __SCREAMING_SNAKE_CASE : List[str] = [line.strip() for line in open(snake_case , '''r''' ).readlines()] __SCREAMING_SNAKE_CASE : int = 0 for hypo, reference in zip(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = set(hypo.split('''\t''' )[:k] ) __SCREAMING_SNAKE_CASE : int = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __SCREAMING_SNAKE_CASE : List[str] = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" def strip_title(snake_case ): if title.startswith('''"''' ): __SCREAMING_SNAKE_CASE : int = title[1:] if title.endswith('''"''' ): __SCREAMING_SNAKE_CASE : Tuple = title[:-1] return title __SCREAMING_SNAKE_CASE : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case , return_tensors='''pt''' , padding=snake_case , truncation=snake_case , )['''input_ids'''].to(args.device ) __SCREAMING_SNAKE_CASE : Dict = rag_model.rag.question_encoder(snake_case ) __SCREAMING_SNAKE_CASE : int = question_enc_outputs[0] __SCREAMING_SNAKE_CASE : str = rag_model.retriever( snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __SCREAMING_SNAKE_CASE : Dict = [] for docs in all_docs: __SCREAMING_SNAKE_CASE : Dict = [strip_title(snake_case ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(snake_case ) ) return provenance_strings def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case , return_tensors='''pt''' , padding=snake_case , truncation=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict.input_ids.to(args.device ) __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict.attention_mask.to(args.device ) __SCREAMING_SNAKE_CASE : List[str] = rag_model.generate( # rag_model overwrites generate snake_case , attention_mask=snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rag_model.retriever.generator_tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) if args.print_predictions: for q, a in zip(snake_case , snake_case ): logger.info('''Q: {} - A: {}'''.format(snake_case , snake_case ) ) return answers def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=snake_case , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=snake_case , choices=['''exact''', '''compressed''', '''legacy'''] , type=snake_case , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=snake_case , type=snake_case , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=snake_case , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=snake_case , type=snake_case , required=snake_case , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=snake_case , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=snake_case , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=snake_case , type=snake_case , required=snake_case , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=snake_case , type=snake_case , required=snake_case , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=snake_case , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=snake_case , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=snake_case , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=snake_case , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=snake_case , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=snake_case , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) __SCREAMING_SNAKE_CASE : Dict = parser.parse_args() __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {} if args.model_type is None: __SCREAMING_SNAKE_CASE : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration __SCREAMING_SNAKE_CASE : List[str] = args.n_docs if args.index_name is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = args.index_name if args.index_path is not None: __SCREAMING_SNAKE_CASE : int = args.index_path else: __SCREAMING_SNAKE_CASE : Optional[Any] = BartForConditionalGeneration __SCREAMING_SNAKE_CASE : List[str] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k __SCREAMING_SNAKE_CASE : Tuple = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(snake_case , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(snake_case ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): __SCREAMING_SNAKE_CASE : List[str] = RagRetriever.from_pretrained(snake_case , **snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = model_class.from_pretrained(snake_case , retriever=snake_case , **snake_case ) model.retriever.init_retrieval() else: __SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(snake_case , **snake_case ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: __SCREAMING_SNAKE_CASE : int = [] for line in tqdm(snake_case ): questions.append(line.strip() ) if len(snake_case ) == args.eval_batch_size: __SCREAMING_SNAKE_CASE : Dict = evaluate_batch_fn(snake_case , snake_case , snake_case ) preds_file.write('''\n'''.join(snake_case ) + '''\n''' ) preds_file.flush() __SCREAMING_SNAKE_CASE : Dict = [] if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Tuple = evaluate_batch_fn(snake_case , snake_case , snake_case ) preds_file.write('''\n'''.join(snake_case ) ) preds_file.flush() score_fn(snake_case , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase_ = get_args() main(args)
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase_ = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def a__ ( snake_case , snake_case , snake_case , snake_case=None ): """simple docstring""" # Initialise PyTorch model __SCREAMING_SNAKE_CASE : int = XLNetConfig.from_json_file(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = finetuning_task __SCREAMING_SNAKE_CASE : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] __SCREAMING_SNAKE_CASE : Dict = XLNetForSequenceClassification(snake_case ) elif "squad" in finetuning_task: __SCREAMING_SNAKE_CASE : List[Any] = finetuning_task __SCREAMING_SNAKE_CASE : Optional[int] = XLNetForQuestionAnswering(snake_case ) else: __SCREAMING_SNAKE_CASE : Any = XLNetLMHeadModel(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case , snake_case , snake_case ) # Save pytorch-model __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = os.path.join(snake_case , snake_case ) print(F'''Save PyTorch model to {os.path.abspath(snake_case )}''' ) torch.save(model.state_dict() , snake_case ) print(F'''Save configuration file to {os.path.abspath(snake_case )}''' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) lowercase_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : Optional[int]=7 , _A : List[str]=True , _A : Any=True , _A : Dict=False , _A : List[str]=True , _A : Any=99 , _A : str=32 , _A : Optional[int]=5 , _A : Union[str, Any]=4 , _A : Union[str, Any]=64 , _A : Dict="gelu" , _A : List[Any]=0.1 , _A : List[str]=0.1 , _A : Optional[int]=512 , _A : List[Any]=16 , _A : int=2 , _A : Union[str, Any]=0.02 , _A : Tuple=3 , _A : Union[str, Any]=4 , _A : Dict=None , _A : Tuple=2 , _A : Any=2 , _A : str=2 , _A : List[str]=2 , _A : int=4 , _A : Any=1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : List[str] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : str = use_input_mask __SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[Any] = use_labels __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : int = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : Optional[int] = num_choices __SCREAMING_SNAKE_CASE : Any = scope __SCREAMING_SNAKE_CASE : Optional[int] = q_groups __SCREAMING_SNAKE_CASE : int = k_groups __SCREAMING_SNAKE_CASE : int = v_groups __SCREAMING_SNAKE_CASE : Optional[int] = post_attention_groups __SCREAMING_SNAKE_CASE : List[str] = intermediate_groups __SCREAMING_SNAKE_CASE : Union[str, Any] = output_groups def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Any = None if self.use_labels: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCAmelCase__ ( self : Dict , _A : Any , _A : Optional[Any] , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = SqueezeBertModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , _A : Tuple , _A : Optional[int] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = SqueezeBertForMaskedLM(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Any , _A : Any , _A : Any , _A : List[str] , _A : Optional[int] , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = SqueezeBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : str = model( _A , attention_mask=_A , start_positions=_A , end_positions=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : str , _A : Dict , _A : Optional[Any] , _A : Any , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels __SCREAMING_SNAKE_CASE : Tuple = SqueezeBertForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : List[Any] , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = SqueezeBertForTokenClassification(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Union[str, Any] , _A : int , _A : str , _A : Dict , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.num_choices __SCREAMING_SNAKE_CASE : int = SqueezeBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : List[Any] = model( _A , attention_mask=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs __SCREAMING_SNAKE_CASE : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase_ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = SqueezeBertModelTester(self ) __SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=_A , dim=37 ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_A ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_A ) @slow def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[str] = SqueezeBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __SCREAMING_SNAKE_CASE : str = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_A )[0] __SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 3) ) self.assertEqual(output.shape , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(_A , _A , atol=1e-4 ) )
303
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
lowercase_ = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} lowercase_ = ["""a""", """b""", """c""", """d""", """e"""] def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = start # add current to visited visited.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __SCREAMING_SNAKE_CASE : List[str] = topological_sort(snake_case , snake_case , snake_case ) # if all neighbors visited add current to sort sort.append(snake_case ) # if all vertices haven't been visited select a new one to visit if len(snake_case ) != len(snake_case ): for vertice in vertices: if vertice not in visited: __SCREAMING_SNAKE_CASE : Union[str, Any] = topological_sort(snake_case , snake_case , snake_case ) # return sort return sort if __name__ == "__main__": lowercase_ = topological_sort("""a""", [], []) print(sort)
303
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
1
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def UpperCAmelCase__ ( self : Dict , _A : Any , _A : int , _A : int=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = spearmanr(_A , _A ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
303
import os import sys lowercase_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
303
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] lowercase_ = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''git_vision_model''' def __init__( self : Dict , _A : Optional[Any]=768 , _A : List[Any]=3072 , _A : List[Any]=12 , _A : Dict=12 , _A : List[Any]=3 , _A : Dict=224 , _A : Optional[Any]=16 , _A : str="quick_gelu" , _A : Any=1e-5 , _A : Union[str, Any]=0.0 , _A : int=0.02 , **_A : Optional[Any] , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Optional[Any] = patch_size __SCREAMING_SNAKE_CASE : Optional[Any] = image_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : List[str] = attention_dropout __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : List[Any] = hidden_act @classmethod def UpperCAmelCase__ ( cls : List[Any] , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __SCREAMING_SNAKE_CASE : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_A , **_A ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''git''' def __init__( self : Union[str, Any] , _A : int=None , _A : Union[str, Any]=3_0522 , _A : int=768 , _A : Tuple=6 , _A : Optional[int]=12 , _A : Tuple=3072 , _A : Dict="gelu" , _A : Optional[Any]=0.1 , _A : Any=0.1 , _A : Tuple=1024 , _A : Optional[Any]=0.02 , _A : Optional[int]=1e-12 , _A : List[str]=0 , _A : Optional[Any]="absolute" , _A : str=True , _A : int=False , _A : Dict=101 , _A : Any=102 , _A : int=None , **_A : int , ): """simple docstring""" super().__init__(bos_token_id=_A , eos_token_id=_A , pad_token_id=_A , **_A ) if vision_config is None: __SCREAMING_SNAKE_CASE : List[Any] = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : str = position_embedding_type __SCREAMING_SNAKE_CASE : Dict = use_cache __SCREAMING_SNAKE_CASE : Tuple = tie_word_embeddings __SCREAMING_SNAKE_CASE : Dict = num_image_with_embedding __SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id __SCREAMING_SNAKE_CASE : Dict = eos_token_id def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
from __future__ import annotations def a__ ( snake_case ): """simple docstring""" # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
303
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase_ = logging.get_logger(__name__) # TODO: upload to AWS lowercase_ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''retribert''' def __init__( self : List[str] , _A : Tuple=3_0522 , _A : List[str]=768 , _A : int=8 , _A : Any=12 , _A : Optional[Any]=3072 , _A : Tuple="gelu" , _A : str=0.1 , _A : Optional[Any]=0.1 , _A : str=512 , _A : Optional[Any]=2 , _A : List[str]=0.02 , _A : Any=1e-12 , _A : int=True , _A : int=128 , _A : Dict=0 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : List[Any] = share_encoders __SCREAMING_SNAKE_CASE : Dict = projection_dim
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } lowercase_ = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } lowercase_ = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase_ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase_ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase_ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowercase_ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowercase_ = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCAmelCase__ ) class __UpperCamelCase : """simple docstring""" def __call__( self : Any , _A : str , _A : Optional[str] = None , _A : Optional[str] = None , _A : Union[bool, str] = False , _A : Union[bool, str] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , **_A : List[Any] , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: __SCREAMING_SNAKE_CASE : Any = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) __SCREAMING_SNAKE_CASE : str = titles if not isinstance(_A , _A ) else [titles] __SCREAMING_SNAKE_CASE : List[str] = texts if not isinstance(_A , _A ) else [texts] __SCREAMING_SNAKE_CASE : List[Any] = len(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = questions if not isinstance(_A , _A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F'''There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.''' ) __SCREAMING_SNAKE_CASE : Any = super().__call__(_A , _A , padding=_A , truncation=_A )['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[Any] = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: __SCREAMING_SNAKE_CASE : str = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __SCREAMING_SNAKE_CASE : Any = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def UpperCAmelCase__ ( self : List[Any] , _A : BatchEncoding , _A : DPRReaderOutput , _A : int = 16 , _A : int = 64 , _A : int = 4 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = reader_input['''input_ids'''] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = reader_output[:3] __SCREAMING_SNAKE_CASE : Any = len(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) __SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __SCREAMING_SNAKE_CASE : str = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __SCREAMING_SNAKE_CASE : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __SCREAMING_SNAKE_CASE : List[str] = sequence_ids.index(self.pad_token_id ) else: __SCREAMING_SNAKE_CASE : Optional[int] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__ ( self : Optional[int] , _A : List[int] , _A : List[int] , _A : int , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(_A , key=lambda _A : x[1] , reverse=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['''input_ids''', '''attention_mask''']
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
lowercase_ = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowercase_ = frozenset(["""prompt""", """negative_prompt"""]) lowercase_ = frozenset([]) lowercase_ = frozenset(["""image"""]) lowercase_ = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowercase_ = frozenset(["""image"""]) lowercase_ = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowercase_ = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowercase_ = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowercase_ = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowercase_ = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowercase_ = frozenset(["""image""", """mask_image"""]) lowercase_ = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowercase_ = frozenset(["""example_image""", """image""", """mask_image"""]) lowercase_ = frozenset(["""class_labels"""]) lowercase_ = frozenset(["""class_labels"""]) lowercase_ = frozenset(["""batch_size"""]) lowercase_ = frozenset([]) lowercase_ = frozenset(["""batch_size"""]) lowercase_ = frozenset([]) lowercase_ = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowercase_ = frozenset(["""prompt""", """negative_prompt"""]) lowercase_ = frozenset(["""input_tokens"""]) lowercase_ = frozenset(["""input_tokens"""])
303
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''ctrl''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , _A : int=24_6534 , _A : str=256 , _A : List[Any]=1280 , _A : Tuple=8192 , _A : List[str]=48 , _A : List[str]=16 , _A : str=0.1 , _A : Any=0.1 , _A : str=1e-6 , _A : str=0.02 , _A : Union[str, Any]=True , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = n_positions __SCREAMING_SNAKE_CASE : Dict = n_embd __SCREAMING_SNAKE_CASE : List[Any] = n_layer __SCREAMING_SNAKE_CASE : Tuple = n_head __SCREAMING_SNAKE_CASE : str = dff __SCREAMING_SNAKE_CASE : List[str] = resid_pdrop __SCREAMING_SNAKE_CASE : Optional[int] = embd_pdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache super().__init__(**_A )
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''focalnet''' def __init__( self : int , _A : Optional[Any]=224 , _A : Union[str, Any]=4 , _A : Union[str, Any]=3 , _A : Tuple=96 , _A : Tuple=False , _A : List[Any]=[192, 384, 768, 768] , _A : List[str]=[2, 2, 6, 2] , _A : List[Any]=[2, 2, 2, 2] , _A : Optional[int]=[3, 3, 3, 3] , _A : str="gelu" , _A : Optional[int]=4.0 , _A : Tuple=0.0 , _A : Tuple=0.1 , _A : str=False , _A : Dict=1e-4 , _A : Tuple=False , _A : List[str]=False , _A : Optional[Any]=False , _A : int=0.02 , _A : Any=1e-5 , _A : Union[str, Any]=32 , _A : Dict=None , _A : Optional[int]=None , **_A : Tuple , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Dict = image_size __SCREAMING_SNAKE_CASE : int = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : Optional[Any] = embed_dim __SCREAMING_SNAKE_CASE : Any = use_conv_embed __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : Optional[int] = focal_levels __SCREAMING_SNAKE_CASE : Any = focal_windows __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : str = mlp_ratio __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = drop_path_rate __SCREAMING_SNAKE_CASE : Any = use_layerscale __SCREAMING_SNAKE_CASE : Dict = layerscale_value __SCREAMING_SNAKE_CASE : int = use_post_layernorm __SCREAMING_SNAKE_CASE : List[Any] = use_post_layernorm_in_modulation __SCREAMING_SNAKE_CASE : Optional[int] = normalize_modulator __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = encoder_stride __SCREAMING_SNAKE_CASE : List[Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
303
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
def a__ ( snake_case , snake_case , snake_case = 0 , snake_case = 0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = right or len(snake_case ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case , snake_case , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
def a__ ( snake_case ): """simple docstring""" if length <= 0 or not isinstance(snake_case , snake_case ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(snake_case )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __SCREAMING_SNAKE_CASE : Optional[int] = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __SCREAMING_SNAKE_CASE : List[str] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = text_generator('''This is a test''' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ] , ) __SCREAMING_SNAKE_CASE : str = text_generator.model.config.eos_token_id __SCREAMING_SNAKE_CASE : Union[str, Any] = '''<pad>''' __SCREAMING_SNAKE_CASE : Dict = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], [ {'''generated_token_ids''': ANY(_A )}, {'''generated_token_ids''': ANY(_A )}, ], ] , ) @require_tf def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' , do_sample=_A ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __SCREAMING_SNAKE_CASE : List[Any] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_A ) self.assertEqual( _A , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCAmelCase__ ( self : int , _A : Any , _A : int , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = '''Hello I believe in''' __SCREAMING_SNAKE_CASE : Optional[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator(_A ) self.assertEqual( _A , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __SCREAMING_SNAKE_CASE : int = text_generator(_A , stop_sequence=''' fe''' ) self.assertEqual(_A , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCAmelCase__ ( self : str , _A : str , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = text_generator.model __SCREAMING_SNAKE_CASE : Dict = text_generator.tokenizer __SCREAMING_SNAKE_CASE : str = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __SCREAMING_SNAKE_CASE : Dict = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline(task='''text-generation''' , model=_A , tokenizer=_A , return_full_text=_A ) __SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' , return_full_text=_A ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: __SCREAMING_SNAKE_CASE : Dict = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], [{'''generated_text''': ANY(_A )}, {'''generated_text''': ANY(_A )}], ] , ) with self.assertRaises(_A ): __SCREAMING_SNAKE_CASE : Any = text_generator('''test''' , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): __SCREAMING_SNAKE_CASE : Optional[Any] = text_generator('''test''' , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): __SCREAMING_SNAKE_CASE : str = text_generator('''test''' , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = text_generator('''''' ) self.assertEqual(_A , [{'''generated_text''': ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __SCREAMING_SNAKE_CASE : int = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __SCREAMING_SNAKE_CASE : Dict = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) __SCREAMING_SNAKE_CASE : str = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" import torch # Classic `model_kwargs` __SCREAMING_SNAKE_CASE : Any = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __SCREAMING_SNAKE_CASE : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __SCREAMING_SNAKE_CASE : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __SCREAMING_SNAKE_CASE : List[str] = pipe('''This is a test''' ) self.assertEqual( _A , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : Optional[int] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_A , top_p=0.5 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''Hello world''' __SCREAMING_SNAKE_CASE : List[str] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger('''transformers.generation.tf_utils''' ) else: __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger('''transformers.generation.utils''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: __SCREAMING_SNAKE_CASE : int = text_generator(_A , max_length=10 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: __SCREAMING_SNAKE_CASE : List[str] = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: __SCREAMING_SNAKE_CASE : List[str] = text_generator(_A , max_length=10 ) self.assertNotIn(_A , cl.out )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : List[Any] , *_A : Any , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCAmelCase__ ( cls : Tuple , *_A : Optional[int] , **_A : str ): """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCAmelCase__ ( cls : str , *_A : Tuple , **_A : Dict ): """simple docstring""" requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
303
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowercase_ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowercase_ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowercase_ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
1
def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(snake_case , n - 1 , snake_case ) * a) % mod else: __SCREAMING_SNAKE_CASE : List[str] = binary_exponentiation(snake_case , n / 2 , snake_case ) return (b * b) % mod # a prime number lowercase_ = 701 lowercase_ = 1_000_000_000 lowercase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Dict = list(range(snake_case ) ) # Find permutation while factorials: __SCREAMING_SNAKE_CASE : Dict = factorials.pop() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __UpperCamelCase : """simple docstring""" def __init__( self : str , _A : str = "cpu" , _A : str = "openai/clip-vit-large-patch14" ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = device __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizerFast.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : List[str] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] __SCREAMING_SNAKE_CASE : int = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] __SCREAMING_SNAKE_CASE : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __SCREAMING_SNAKE_CASE : Any = torchvision.transforms.Resize(224 ) __SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.CenterCrop(224 ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.resize(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.center_crop(_A ) __SCREAMING_SNAKE_CASE : Dict = self.normalize(_A ) return images def __call__( self : str , _A : str=None , _A : Dict=None , **_A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.tokenizer(text=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = self.preprocess_img(_A ) __SCREAMING_SNAKE_CASE : Dict = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , _A : Union[str, Any]=10 , _A : Union[str, Any]=0.01 , _A : Any=None , _A : str=None , _A : List[Any]=None , _A : Dict=None , _A : Union[str, Any]=None , _A : str=None , _A : Tuple=False , _A : int=True , _A : str="image" , _A : Tuple=True , _A : int=False , _A : int=False , _A : Dict=False , ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Dict = device if device else get_device() if vqgan: __SCREAMING_SNAKE_CASE : str = vqgan else: __SCREAMING_SNAKE_CASE : List[Any] = load_vqgan(self.device , conf_path=_A , ckpt_path=_A ) self.vqgan.eval() if clip: __SCREAMING_SNAKE_CASE : Union[str, Any] = clip else: __SCREAMING_SNAKE_CASE : Tuple = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __SCREAMING_SNAKE_CASE : int = ProcessorGradientFlow(device=self.device ) __SCREAMING_SNAKE_CASE : Tuple = iterations __SCREAMING_SNAKE_CASE : List[str] = lr __SCREAMING_SNAKE_CASE : List[str] = log __SCREAMING_SNAKE_CASE : Any = make_grid __SCREAMING_SNAKE_CASE : Union[str, Any] = return_val __SCREAMING_SNAKE_CASE : Tuple = quantize __SCREAMING_SNAKE_CASE : int = self.vqgan.decoder.z_shape def UpperCAmelCase__ ( self : Optional[Any] , _A : int=None , _A : Tuple=None , _A : List[Any]=5 , _A : List[str]=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [] if output_path is None: __SCREAMING_SNAKE_CASE : str = '''./animation.gif''' if input_path is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.save_path __SCREAMING_SNAKE_CASE : int = sorted(glob(input_path + '''/*''' ) ) if not len(_A ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_A ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(_A ) __SCREAMING_SNAKE_CASE : List[str] = [frame_duration] * len(_A ) if extend_frames: __SCREAMING_SNAKE_CASE : str = 1.5 __SCREAMING_SNAKE_CASE : str = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_A ) ) imageio.mimsave(_A , _A , duration=_A ) print(F'''gif saved to {output_path}''' ) def UpperCAmelCase__ ( self : int , _A : List[Any]=None , _A : Optional[int]=None ): """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __SCREAMING_SNAKE_CASE : Tuple = preprocess(Image.open(_A ) , target_image_size=256 ).to(self.device ) __SCREAMING_SNAKE_CASE : Tuple = preprocess_vqgan(_A ) __SCREAMING_SNAKE_CASE, *__SCREAMING_SNAKE_CASE : int = self.vqgan.encode(_A ) return z def UpperCAmelCase__ ( self : List[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.latent.detach().requires_grad_() __SCREAMING_SNAKE_CASE : str = base_latent + transform_vector if self.quantize: __SCREAMING_SNAKE_CASE, *__SCREAMING_SNAKE_CASE : int = self.vqgan.quantize(_A ) else: __SCREAMING_SNAKE_CASE : List[Any] = trans_latent return self.vqgan.decode(_A ) def UpperCAmelCase__ ( self : Tuple , _A : Dict , _A : Optional[Any] , _A : Tuple=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.clip_preprocessor(text=_A , images=_A , return_tensors='''pt''' , padding=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.clip(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = clip_outputs.logits_per_image if weights is not None: __SCREAMING_SNAKE_CASE : Optional[int] = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase__ ( self : Optional[Any] , _A : str , _A : Dict , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , _A , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __SCREAMING_SNAKE_CASE : Dict = self._get_clip_similarity(neg_prompts['''prompts'''] , _A , weights=neg_prompts['''weights'''] ) else: __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1] , device=self.device ) __SCREAMING_SNAKE_CASE : List[Any] = -torch.log(_A ) + torch.log(_A ) return loss def UpperCAmelCase__ ( self : Tuple , _A : List[str] , _A : List[str] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn_like(self.latent , requires_grad=_A , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __SCREAMING_SNAKE_CASE : List[Any] = self._add_vector(_A ) __SCREAMING_SNAKE_CASE : int = loop_post_process(_A ) __SCREAMING_SNAKE_CASE : List[Any] = self._get_CLIP_loss(_A , _A , _A ) print('''CLIP loss''' , _A ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase__ ( self : str , _A : List[Any] , _A : List[str] , _A : Optional[int] ): """simple docstring""" wandb.init(reinit=_A , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __SCREAMING_SNAKE_CASE : str = Image.open(_A ) __SCREAMING_SNAKE_CASE : str = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(_A ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[int] ): """simple docstring""" if not prompts: return [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_A , (tuple, list) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = prompt[0] __SCREAMING_SNAKE_CASE : Tuple = float(prompt[1] ) elif ":" in prompt: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = prompt.split(''':''' ) __SCREAMING_SNAKE_CASE : Tuple = float(_A ) else: __SCREAMING_SNAKE_CASE : str = prompt __SCREAMING_SNAKE_CASE : Any = 1.0 processed_prompts.append(_A ) weights.append(_A ) return { "prompts": processed_prompts, "weights": torch.tensor(_A , device=self.device ), } def UpperCAmelCase__ ( self : List[str] , _A : str , _A : str=None , _A : Optional[int]=None , _A : int=True , _A : Dict=False , _A : List[Any]=True , _A : int=True , _A : str=None , ): """simple docstring""" if image_path: __SCREAMING_SNAKE_CASE : List[Any] = self._get_latent(_A ) else: __SCREAMING_SNAKE_CASE : Any = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_A , _A , _A ) assert pos_prompts, "You must provide at least one positive prompt." __SCREAMING_SNAKE_CASE : Optional[int] = self.process_prompts(_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.process_prompts(_A ) if save_final and save_path is None: __SCREAMING_SNAKE_CASE : List[Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_A ): os.makedirs(_A ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = save_path + '''_''' + get_timestamp() os.makedirs(_A ) __SCREAMING_SNAKE_CASE : List[Any] = save_path __SCREAMING_SNAKE_CASE : Optional[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_A ) ) __SCREAMING_SNAKE_CASE : Optional[int] = loop_post_process(_A ) for iter, transformed_img in enumerate(self._optimize_CLIP(_A , _A , _A ) ): if show_intermediate: show_pil(_A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_A )} ) if show_final: show_pil(_A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''nat''' lowerCAmelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , _A : Tuple=4 , _A : str=3 , _A : Union[str, Any]=64 , _A : Union[str, Any]=[3, 4, 6, 5] , _A : Dict=[2, 4, 8, 16] , _A : Dict=7 , _A : Optional[Any]=3.0 , _A : List[str]=True , _A : str=0.0 , _A : List[Any]=0.0 , _A : Tuple=0.1 , _A : int="gelu" , _A : Tuple=0.02 , _A : Optional[Any]=1e-5 , _A : int=0.0 , _A : List[str]=None , _A : List[Any]=None , **_A : List[str] , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Tuple = patch_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_channels __SCREAMING_SNAKE_CASE : str = embed_dim __SCREAMING_SNAKE_CASE : Tuple = depths __SCREAMING_SNAKE_CASE : List[Any] = len(_A ) __SCREAMING_SNAKE_CASE : List[str] = num_heads __SCREAMING_SNAKE_CASE : int = kernel_size __SCREAMING_SNAKE_CASE : int = mlp_ratio __SCREAMING_SNAKE_CASE : Tuple = qkv_bias __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : Optional[int] = int(embed_dim * 2 ** (len(_A ) - 1) ) __SCREAMING_SNAKE_CASE : Tuple = layer_scale_init_value __SCREAMING_SNAKE_CASE : Optional[int] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_A ) + 1 )] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : str , *_A : int , **_A : List[Any] ): """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ReformerTokenizer lowerCAmelCase_ = ReformerTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : List[str] = ReformerTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''<s>''' __SCREAMING_SNAKE_CASE : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_A ) , 1000 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : int = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Optional[Any]=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input __SCREAMING_SNAKE_CASE : Dict = '''This is a simple input''' __SCREAMING_SNAKE_CASE : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') __SCREAMING_SNAKE_CASE : List[str] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''' ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ReformerTokenizer(_A , keep_accents=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) __SCREAMING_SNAKE_CASE : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' __SCREAMING_SNAKE_CASE : List[str] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE : int = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence __SCREAMING_SNAKE_CASE : int = list(self.big_tokenizer.get_vocab().keys() )[:10] __SCREAMING_SNAKE_CASE : Any = ''' '''.join(_A ) __SCREAMING_SNAKE_CASE : List[str] = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : str = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __SCREAMING_SNAKE_CASE : Optional[Any] = encoded_sequence['''input_ids'''].shape __SCREAMING_SNAKE_CASE : Union[str, Any] = ReformerModel(_A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __SCREAMING_SNAKE_CASE : Dict = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_A , sequences=_A , )
303
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a__ ( snake_case ): """simple docstring""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def a__ ( snake_case ): """simple docstring""" # word like '180' or '身高' or '神' for char in word: __SCREAMING_SNAKE_CASE : List[Any] = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = set() for token in tokens: __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) __SCREAMING_SNAKE_CASE : Dict = list(snake_case ) return word_list def a__ ( snake_case , snake_case ): """simple docstring""" if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE : List[Any] = max([len(snake_case ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE : List[Any] = bert_tokens __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = 0, len(snake_case ) while start < end: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = min(end - start , snake_case ) for i in range(snake_case , 1 , -1 ): __SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] __SCREAMING_SNAKE_CASE : Union[str, Any] = start + i __SCREAMING_SNAKE_CASE : List[str] = False break if single_word: start += 1 return bert_word def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(0 , len(snake_case ) , 100 ): __SCREAMING_SNAKE_CASE : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws __SCREAMING_SNAKE_CASE : str = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = [] for i in range(0 , len(snake_case ) , 100 ): __SCREAMING_SNAKE_CASE : List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=snake_case , truncation=snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case ) == len(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] for input_ids, chinese_word in zip(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : List[str] = [] for id in input_ids: __SCREAMING_SNAKE_CASE : Optional[Any] = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = add_sub_symbol(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": __SCREAMING_SNAKE_CASE : Any = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def a__ ( snake_case ): """simple docstring""" # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : List[str] = f.readlines() __SCREAMING_SNAKE_CASE : str = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE : Dict = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE : Dict = prepare_ref(snake_case , snake_case , snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Any = [json.dumps(snake_case ) + '''\n''' for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) lowercase_ = parser.parse_args() main(args)
303
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
import os import sys lowercase_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
303
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def a__ ( snake_case ): """simple docstring""" # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __SCREAMING_SNAKE_CASE : Any = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE : int = R'''.*/layers_(\d+)''' __SCREAMING_SNAKE_CASE : str = key if re.match(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = R'''(encoder|decoder)\/''' if re.match(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : str = re.match(snake_case , snake_case ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE : int = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , snake_case ) __SCREAMING_SNAKE_CASE : int = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , snake_case ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE : Tuple = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , snake_case ) __SCREAMING_SNAKE_CASE : Any = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , snake_case ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE : List[str] = new_key.replace(snake_case , snake_case ) print(F'''{key} -> {new_key}''' ) __SCREAMING_SNAKE_CASE : List[str] = s_dict.pop(snake_case ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE : List[Any] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE : Optional[int] = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE : Dict = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE : Dict = s_dict[key] for idx in range(snake_case ): __SCREAMING_SNAKE_CASE : Tuple = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(snake_case ) return s_dict lowercase_ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def a__ ( snake_case , snake_case ): """simple docstring""" # Convert a google style config to the hugging face fromat import regex as re with open(snake_case , '''r''' ) as f: __SCREAMING_SNAKE_CASE : int = f.read() __SCREAMING_SNAKE_CASE : int = re.findall(R'''(.*) = ([0-9.]*)''' , snake_case ) __SCREAMING_SNAKE_CASE : List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE : int = float(snake_case ) if '''.''' in value else int(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , snake_case )[0] __SCREAMING_SNAKE_CASE : Optional[int] = str(activation[1] ) __SCREAMING_SNAKE_CASE : Tuple = num_experts __SCREAMING_SNAKE_CASE : str = SwitchTransformersConfig(**snake_case ) return config def a__ ( snake_case , snake_case , snake_case=None , snake_case="./" , snake_case=8 ): """simple docstring""" # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = checkpoints.load_tax_checkpoint(snake_case ) if gin_file is not None: __SCREAMING_SNAKE_CASE : Any = convert_gin_to_config(snake_case , snake_case ) else: __SCREAMING_SNAKE_CASE : List[str] = SwitchTransformersConfig.from_pretrained(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = SwitchTransformersForConditionalGeneration(snake_case ) __SCREAMING_SNAKE_CASE : str = flax_params['''target'''] __SCREAMING_SNAKE_CASE : Dict = flatten_dict(snake_case , sep='''/''' ) __SCREAMING_SNAKE_CASE : Any = rename_keys(snake_case ) __SCREAMING_SNAKE_CASE : Dict = unflatten_dict(snake_case , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(snake_case , snake_case ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
303
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
1
import warnings from functools import wraps from typing import Callable def a__ ( snake_case ): """simple docstring""" @wraps(snake_case ) def _inner_fn(*snake_case , **snake_case ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowercase_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = {} with open(snake_case , '''r''' ) as file: for line_number, line in enumerate(snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = line.strip() if line: __SCREAMING_SNAKE_CASE : Any = line.split() __SCREAMING_SNAKE_CASE : Optional[Any] = line_number __SCREAMING_SNAKE_CASE : Dict = words[0] __SCREAMING_SNAKE_CASE : List[Any] = value return result def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" for attribute in key.split('''.''' ): __SCREAMING_SNAKE_CASE : Tuple = getattr(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case ): __SCREAMING_SNAKE_CASE : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __SCREAMING_SNAKE_CASE : List[Any] = '''param''' if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE : int = getattr(snake_case , snake_case ).shape elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE : Tuple = hf_pointer for attribute in hf_param_name.split('''.''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = getattr(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : str = shape_pointer.shape # let's reduce dimension __SCREAMING_SNAKE_CASE : Union[str, Any] = value[0] else: __SCREAMING_SNAKE_CASE : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE : int = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __SCREAMING_SNAKE_CASE : Tuple = getattr(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = value else: __SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case ): __SCREAMING_SNAKE_CASE : Tuple = PARAM_MAPPING[full_name.split('''.''' )[-1]] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''param''' if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE : List[Any] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE : Any = '''.'''.join([key, hf_param_name] ) else: __SCREAMING_SNAKE_CASE : List[Any] = key __SCREAMING_SNAKE_CASE : str = value if '''lm_head''' in full_key else value[0] lowercase_ = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def a__ ( snake_case , snake_case , snake_case=None , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = False for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE : Optional[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(snake_case )[0].split('''.''' )[-2] __SCREAMING_SNAKE_CASE : Union[str, Any] = mapped_key.replace('''*''' , snake_case ) if "weight_g" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = '''weight_g''' elif "weight_v" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = '''weight_v''' elif "bias" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE : List[Any] = '''weight''' else: __SCREAMING_SNAKE_CASE : Dict = None if hf_dict is not None: rename_dict(snake_case , snake_case , snake_case , snake_case , snake_case ) else: set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) return is_used return is_used def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : str = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __SCREAMING_SNAKE_CASE : Optional[Any] = True else: __SCREAMING_SNAKE_CASE : List[Any] = load_wavaveca_layer(snake_case , snake_case , snake_case ) if not is_used: unused_weights.append(snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = full_name.split('''conv_layers.''' )[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = name.split('''.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = int(items[0] ) __SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case ) @torch.no_grad() def a__ ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=True , snake_case=False ): """simple docstring""" if config_path is not None: __SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained(snake_case ) else: __SCREAMING_SNAKE_CASE : Dict = WavaVecaConfig() if is_seq_class: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_txt_into_dict(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaForSequenceClassification(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , ) feature_extractor.save_pretrained(snake_case ) elif is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE : Tuple = Dictionary.load(snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE : Optional[int] = target_dict.pad_index __SCREAMING_SNAKE_CASE : str = target_dict.bos_index __SCREAMING_SNAKE_CASE : Tuple = target_dict.eos_index __SCREAMING_SNAKE_CASE : Any = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(snake_case , '''vocab.json''' ) if not os.path.isdir(snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case ) ) return os.makedirs(snake_case , exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Dict = 1 with open(snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : int = WavaVecaCTCTokenizer( snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case , ) __SCREAMING_SNAKE_CASE : Any = True if config.feat_extract_norm == '''layer''' else False __SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , ) __SCREAMING_SNAKE_CASE : Any = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) processor.save_pretrained(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = WavaVecaForCTC(snake_case ) else: __SCREAMING_SNAKE_CASE : List[str] = WavaVecaForPreTraining(snake_case ) if is_finetuned or is_seq_class: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __SCREAMING_SNAKE_CASE : Tuple = argparse.Namespace(task='''audio_pretraining''' ) __SCREAMING_SNAKE_CASE : int = fairseq.tasks.setup_task(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model[0].eval() recursively_load_weights(snake_case , snake_case , not is_finetuned ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowercase_ = parser.parse_args() lowercase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
303
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowercase_ = input("""Enter image url: """).strip() print(f'''Downloading image from {url} ...''') lowercase_ = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowercase_ = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowercase_ = requests.get(image_url).content lowercase_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
from typing import Any def a__ ( snake_case ): """simple docstring""" if not input_list: return [] __SCREAMING_SNAKE_CASE : int = [input_list.count(snake_case ) for value in input_list] __SCREAMING_SNAKE_CASE : Any = max(snake_case ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
303
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __UpperCamelCase : """simple docstring""" def __init__( self : Dict , _A : Dict , _A : List[str]=13 , _A : Union[str, Any]=2 , _A : Union[str, Any]=24 , _A : List[str]=16 , _A : Optional[Any]=True , _A : Tuple=True , _A : int=32 , _A : Optional[Any]=5 , _A : int=4 , _A : int=37 , _A : Dict="gelu" , _A : Dict=0.1 , _A : Optional[int]=0.1 , _A : str=10 , _A : List[str]=0.02 , _A : int=None , _A : int=2 , _A : Any=2 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Any = patch_size __SCREAMING_SNAKE_CASE : List[Any] = max_length __SCREAMING_SNAKE_CASE : Union[str, Any] = num_mel_bins __SCREAMING_SNAKE_CASE : List[str] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : str = scope __SCREAMING_SNAKE_CASE : str = frequency_stride __SCREAMING_SNAKE_CASE : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __SCREAMING_SNAKE_CASE : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = frequency_out_dimension * time_out_dimension __SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 2 def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_values, labels def UpperCAmelCase__ ( self : Any ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ASTModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : str = {'''input_values''': input_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[Any] , _A : Tuple , _A : int , _A : Tuple , _A : Tuple ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = ASTModelTester(self ) __SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Tuple = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(_A ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : Optional[int] = ['''input_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Any = ASTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = torchaudio.load(snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : str ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.default_feature_extractor __SCREAMING_SNAKE_CASE : Dict = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_A ) __SCREAMING_SNAKE_CASE : Dict = self.default_feature_extractor __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = prepare_audio() __SCREAMING_SNAKE_CASE : Union[str, Any] = audio.squeeze().numpy() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(_A , sampling_rate=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : str = model(**_A ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" # Initialise PyTorch model __SCREAMING_SNAKE_CASE : str = LxmertConfig.from_json_file(snake_case ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : Any = LxmertForPreTraining(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case , snake_case , snake_case ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import operator def a__ ( snake_case , snake_case = False , snake_case = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = operator.lt if reverse else operator.gt __SCREAMING_SNAKE_CASE : Optional[int] = solution or [] if not arr: return solution __SCREAMING_SNAKE_CASE : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(snake_case ): if _operator(snake_case , sublist[-1] ): sublist.append(snake_case ) arr.pop(snake_case ) # merging sublist into solution list if not solution: solution.extend(snake_case ) else: while sublist: __SCREAMING_SNAKE_CASE : List[str] = sublist.pop(0 ) for i, xx in enumerate(snake_case ): if not _operator(snake_case , snake_case ): solution.insert(snake_case , snake_case ) break else: solution.append(snake_case ) strand_sort(snake_case , snake_case , snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCamelCase : """simple docstring""" def __init__( self : int , _A : int , _A : List[Any]=13 , _A : int=32 , _A : Any=2 , _A : Dict=3 , _A : str=16 , _A : str=[1, 2, 1] , _A : Tuple=[2, 2, 4] , _A : Tuple=2 , _A : int=2.0 , _A : str=True , _A : str=0.0 , _A : Union[str, Any]=0.0 , _A : List[str]=0.1 , _A : Tuple="gelu" , _A : Optional[Any]=False , _A : Optional[Any]=True , _A : int=0.02 , _A : List[str]=1e-5 , _A : Union[str, Any]=True , _A : Union[str, Any]=None , _A : Union[str, Any]=True , _A : Optional[int]=10 , _A : Dict=8 , _A : int=["stage1", "stage2", "stage3"] , _A : str=[1, 2, 3] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[str] = patch_size __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Optional[int] = embed_dim __SCREAMING_SNAKE_CASE : List[Any] = depths __SCREAMING_SNAKE_CASE : Optional[Any] = num_heads __SCREAMING_SNAKE_CASE : Tuple = window_size __SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio __SCREAMING_SNAKE_CASE : Any = qkv_bias __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = use_absolute_embeddings __SCREAMING_SNAKE_CASE : Any = patch_norm __SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : Any = scope __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = encoder_stride __SCREAMING_SNAKE_CASE : str = out_features __SCREAMING_SNAKE_CASE : str = out_indices def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : int = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[Any] , _A : Union[str, Any] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinModel(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __SCREAMING_SNAKE_CASE : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self : Any , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_A ): __SCREAMING_SNAKE_CASE : Optional[int] = ['''stem'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerSwinBackbone(config=_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = MaskFormerSwinModelTester(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_A , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Any ): """simple docstring""" return def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) @unittest.skip('''Swin does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = model_class(_A ) __SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_A , _A ) ) __SCREAMING_SNAKE_CASE : int = outputs.hidden_states __SCREAMING_SNAKE_CASE : Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_A ) , _A ) # Swin has a different seq_length __SCREAMING_SNAKE_CASE : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_A , _A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[Any] = 3 __SCREAMING_SNAKE_CASE : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __SCREAMING_SNAKE_CASE : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase__ ( self : int ): """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_A : Optional[int] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 return t def check_equivalence(_A : Tuple , _A : Tuple , _A : Tuple , _A : Union[str, Any]={} ): with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = model(**_A , return_dict=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(**_A , return_dict=_A , **_A ).to_tuple() def recursive_check(_A : int , _A : Dict ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif isinstance(_A , _A ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_A ) , set_nan_tensor_to_zero(_A ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}. Dict has''' F''' `nan`: {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}.''' ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_A , _A , return_labels=_A ) __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) __SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(_A , _A , return_labels=_A ) __SCREAMING_SNAKE_CASE : int = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {'''output_hidden_states''': True} ) @require_torch class __UpperCamelCase ( unittest.TestCase , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase_ = MaskFormerSwinConfig def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[int] = backbone_class(_A ) backbone.to(_A ) backbone.eval() __SCREAMING_SNAKE_CASE : Optional[int] = backbone(**_A ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _A ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**_A , output_hidden_states=_A ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __SCREAMING_SNAKE_CASE : List[Any] = backbone(**_A , output_attentions=_A ) self.assertIsNotNone(outputs.attentions )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from math import isqrt def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = False return [i for i in range(2 , snake_case ) if is_prime[i]] def a__ ( snake_case = 10**8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = calculate_prime_numbers(max_number // 2 ) __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : List[str] = len(snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
303
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : Any = 13 __SCREAMING_SNAKE_CASE : Tuple = 7 __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : str = 99 __SCREAMING_SNAKE_CASE : Dict = 32 __SCREAMING_SNAKE_CASE : List[str] = 2 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : List[Any] = 37 __SCREAMING_SNAKE_CASE : Optional[int] = '''gelu''' __SCREAMING_SNAKE_CASE : Dict = 0.1 __SCREAMING_SNAKE_CASE : Any = 0.1 __SCREAMING_SNAKE_CASE : str = 512 __SCREAMING_SNAKE_CASE : Optional[int] = 16 __SCREAMING_SNAKE_CASE : Optional[int] = 2 __SCREAMING_SNAKE_CASE : List[Any] = 0.02 __SCREAMING_SNAKE_CASE : int = 3 __SCREAMING_SNAKE_CASE : List[str] = 4 __SCREAMING_SNAKE_CASE : List[str] = None def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : List[Any] , _A : Optional[Any] , _A : List[Any] , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = TFEsmModel(config=_A ) __SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __SCREAMING_SNAKE_CASE : Tuple = model(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = [input_ids, input_mask] __SCREAMING_SNAKE_CASE : str = model(_A ) __SCREAMING_SNAKE_CASE : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , _A : Optional[Any] , _A : Dict , _A : int , _A : Dict , _A : str , _A : Optional[Any] , _A : int , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : Dict = TFEsmModel(config=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } __SCREAMING_SNAKE_CASE : List[str] = model(_A ) __SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask] __SCREAMING_SNAKE_CASE : Optional[Any] = model(_A , encoder_hidden_states=_A ) # Also check the case where encoder outputs are not passed __SCREAMING_SNAKE_CASE : str = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , _A : Union[str, Any] , _A : Optional[Any] , _A : str , _A : Union[str, Any] , _A : str , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = TFEsmForMaskedLM(config=_A ) __SCREAMING_SNAKE_CASE : int = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Tuple , _A : Optional[Any] , _A : int , _A : Any , _A : List[str] , _A : List[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = TFEsmForTokenClassification(config=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __SCREAMING_SNAKE_CASE : Tuple = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : int = config_and_inputs __SCREAMING_SNAKE_CASE : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = TFEsmModelTester(self ) __SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = TFEsmModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[int] = model_class(_A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __SCREAMING_SNAKE_CASE : int = model.get_bias() assert isinstance(_A , _A ) for k, v in name.items(): assert isinstance(_A , tf.Variable ) else: __SCREAMING_SNAKE_CASE : int = model.get_output_embeddings() assert x is None __SCREAMING_SNAKE_CASE : Optional[Any] = model.get_bias() assert name is None @require_tf class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __SCREAMING_SNAKE_CASE : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE : Optional[int] = model(_A )[0] __SCREAMING_SNAKE_CASE : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _A ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Dict = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __SCREAMING_SNAKE_CASE : List[str] = model(_A )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
303
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def a__ ( snake_case , snake_case = 16 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : int = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE : Any = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __SCREAMING_SNAKE_CASE : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def a__ ( snake_case , snake_case ): """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __SCREAMING_SNAKE_CASE : str = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE : List[str] = config['''lr'''] __SCREAMING_SNAKE_CASE : Optional[int] = int(config['''num_epochs'''] ) __SCREAMING_SNAKE_CASE : int = int(config['''seed'''] ) __SCREAMING_SNAKE_CASE : List[Any] = int(config['''batch_size'''] ) __SCREAMING_SNAKE_CASE : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case ) def inner_training_loop(snake_case ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE : int = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = get_dataloaders(snake_case , snake_case ) # Instantiate scheduler __SCREAMING_SNAKE_CASE : Tuple = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE : str = model(**snake_case ) __SCREAMING_SNAKE_CASE : List[str] = outputs.loss accelerator.backward(snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(**snake_case ) __SCREAMING_SNAKE_CASE : Tuple = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() __SCREAMING_SNAKE_CASE : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( snake_case , snake_case=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def a__ ( snake_case , snake_case=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for old_item in old_list: __SCREAMING_SNAKE_CASE : List[str] = old_item.replace('''in_layers.0''' , '''norm1''' ) __SCREAMING_SNAKE_CASE : Dict = new_item.replace('''in_layers.2''' , '''conv1''' ) __SCREAMING_SNAKE_CASE : Any = new_item.replace('''out_layers.0''' , '''norm2''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = new_item.replace('''out_layers.3''' , '''conv2''' ) __SCREAMING_SNAKE_CASE : Tuple = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) __SCREAMING_SNAKE_CASE : Dict = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) __SCREAMING_SNAKE_CASE : List[Any] = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a__ ( snake_case , snake_case=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [] for old_item in old_list: __SCREAMING_SNAKE_CASE : Dict = old_item __SCREAMING_SNAKE_CASE : Dict = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) __SCREAMING_SNAKE_CASE : int = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) __SCREAMING_SNAKE_CASE : Any = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) __SCREAMING_SNAKE_CASE : Any = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def a__ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None ): """simple docstring""" assert isinstance(snake_case , snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __SCREAMING_SNAKE_CASE : Optional[int] = old_checkpoint[path] __SCREAMING_SNAKE_CASE : Tuple = old_tensor.shape[0] // 3 __SCREAMING_SNAKE_CASE : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __SCREAMING_SNAKE_CASE : Union[str, Any] = old_tensor.shape[0] // config['''num_head_channels'''] // 3 __SCREAMING_SNAKE_CASE : str = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = old_tensor.split(channels // num_heads , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = query.reshape(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = key.reshape(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = value.reshape(snake_case ) for path in paths: __SCREAMING_SNAKE_CASE : List[Any] = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __SCREAMING_SNAKE_CASE : List[Any] = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) __SCREAMING_SNAKE_CASE : str = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) __SCREAMING_SNAKE_CASE : Any = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: __SCREAMING_SNAKE_CASE : Optional[int] = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __SCREAMING_SNAKE_CASE : Tuple = old_checkpoint[path['''old''']][:, :, 0] else: __SCREAMING_SNAKE_CASE : int = old_checkpoint[path['''old''']] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : str = checkpoint['''time_embed.0.weight'''] __SCREAMING_SNAKE_CASE : List[Any] = checkpoint['''time_embed.0.bias'''] __SCREAMING_SNAKE_CASE : Any = checkpoint['''time_embed.2.weight'''] __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint['''time_embed.2.bias'''] __SCREAMING_SNAKE_CASE : str = checkpoint['''input_blocks.0.0.weight'''] __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint['''input_blocks.0.0.bias'''] __SCREAMING_SNAKE_CASE : int = checkpoint['''out.0.weight'''] __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint['''out.0.bias'''] __SCREAMING_SNAKE_CASE : int = checkpoint['''out.2.weight'''] __SCREAMING_SNAKE_CASE : int = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only __SCREAMING_SNAKE_CASE : List[Any] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) __SCREAMING_SNAKE_CASE : int = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the middle blocks only __SCREAMING_SNAKE_CASE : Any = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) __SCREAMING_SNAKE_CASE : List[str] = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the output blocks only __SCREAMING_SNAKE_CASE : List[str] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) __SCREAMING_SNAKE_CASE : str = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(snake_case ) } for i in range(1 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = (i - 1) // (config['''num_res_blocks'''] + 1) __SCREAMING_SNAKE_CASE : Dict = (i - 1) % (config['''num_res_blocks'''] + 1) __SCREAMING_SNAKE_CASE : List[Any] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] __SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: __SCREAMING_SNAKE_CASE : List[str] = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] __SCREAMING_SNAKE_CASE : str = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue __SCREAMING_SNAKE_CASE : Dict = renew_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = {'''old''': F'''input_blocks.{i}.0''', '''new''': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} __SCREAMING_SNAKE_CASE : Optional[Any] = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path, resnet_op] , config=snake_case ) if len(snake_case ): __SCREAMING_SNAKE_CASE : List[str] = renew_attention_paths(snake_case ) __SCREAMING_SNAKE_CASE : Dict = { '''old''': F'''input_blocks.{i}.1''', '''new''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } __SCREAMING_SNAKE_CASE : Any = { F'''input_blocks.{i}.1.qkv.bias''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { '''key''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=snake_case , config=snake_case , ) __SCREAMING_SNAKE_CASE : int = middle_blocks[0] __SCREAMING_SNAKE_CASE : Optional[Any] = middle_blocks[1] __SCREAMING_SNAKE_CASE : int = middle_blocks[2] __SCREAMING_SNAKE_CASE : str = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) __SCREAMING_SNAKE_CASE : Dict = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = renew_attention_paths(snake_case ) __SCREAMING_SNAKE_CASE : Dict = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , attention_paths_to_split=snake_case , config=snake_case ) for i in range(snake_case ): __SCREAMING_SNAKE_CASE : int = i // (config['''num_res_blocks'''] + 1) __SCREAMING_SNAKE_CASE : Dict = i % (config['''num_res_blocks'''] + 1) __SCREAMING_SNAKE_CASE : int = [shave_segments(snake_case , 2 ) for name in output_blocks[i]] __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for layer in output_block_layers: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = layer.split('''.''' )[0], shave_segments(snake_case , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case ) else: __SCREAMING_SNAKE_CASE : Tuple = [layer_name] if len(snake_case ) > 1: __SCREAMING_SNAKE_CASE : Dict = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] __SCREAMING_SNAKE_CASE : Any = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] __SCREAMING_SNAKE_CASE : Tuple = renew_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = renew_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''old''': F'''output_blocks.{i}.0''', '''new''': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __SCREAMING_SNAKE_CASE : Optional[int] = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) __SCREAMING_SNAKE_CASE : List[Any] = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] __SCREAMING_SNAKE_CASE : List[Any] = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(snake_case ) == 2: __SCREAMING_SNAKE_CASE : int = [] if len(snake_case ): __SCREAMING_SNAKE_CASE : List[str] = renew_attention_paths(snake_case ) __SCREAMING_SNAKE_CASE : int = { '''old''': F'''output_blocks.{i}.1''', '''new''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } __SCREAMING_SNAKE_CASE : Tuple = { F'''output_blocks.{i}.1.qkv.bias''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { '''key''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', '''query''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', '''value''': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=snake_case , ) else: __SCREAMING_SNAKE_CASE : Tuple = renew_resnet_paths(snake_case , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __SCREAMING_SNAKE_CASE : Any = '''.'''.join(['''output_blocks''', str(snake_case ), path['''old''']] ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join(['''up_blocks''', str(snake_case ), '''resnets''', str(snake_case ), path['''new''']] ) __SCREAMING_SNAKE_CASE : Dict = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowercase_ = parser.parse_args() lowercase_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowercase_ = json.loads(f.read()) lowercase_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowercase_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowercase_ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase_ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
1
def a__ ( ): """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowercase_ = generate_large_matrix() lowercase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a__ ( snake_case ): """simple docstring""" assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __SCREAMING_SNAKE_CASE : Union[str, Any] = (left + right) // 2 __SCREAMING_SNAKE_CASE : int = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __SCREAMING_SNAKE_CASE : str = mid + 1 else: __SCREAMING_SNAKE_CASE : Any = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = len(grid[0] ) for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : List[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def a__ ( snake_case ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def a__ ( ): """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __SCREAMING_SNAKE_CASE : Optional[Any] = timeit(F'''{func}(grid=grid)''' , setup=snake_case , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" # initialize config if "resnet-50" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: __SCREAMING_SNAKE_CASE : str = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) __SCREAMING_SNAKE_CASE : str = DetrConfig(use_timm_backbone=snake_case , backbone_config=snake_case ) # set label attributes __SCREAMING_SNAKE_CASE : Any = '''panoptic''' in model_name if is_panoptic: __SCREAMING_SNAKE_CASE : str = 250 else: __SCREAMING_SNAKE_CASE : Any = 91 __SCREAMING_SNAKE_CASE : int = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Dict = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Dict = idalabel __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def a__ ( snake_case ): """simple docstring""" # here we list all keys to be renamed (original name on the left, our name on the right) __SCREAMING_SNAKE_CASE : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Any = val def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = '''''' if is_panoptic: __SCREAMING_SNAKE_CASE : str = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[:256] __SCREAMING_SNAKE_CASE : str = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[:256] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE : str = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __SCREAMING_SNAKE_CASE : Any = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[:256, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias_cross_attn[:256] __SCREAMING_SNAKE_CASE : int = in_proj_weight_cross_attn[256:512, :] __SCREAMING_SNAKE_CASE : Any = in_proj_bias_cross_attn[256:512] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight_cross_attn[-256:, :] __SCREAMING_SNAKE_CASE : int = in_proj_bias_cross_attn[-256:] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = get_detr_config(snake_case ) # load original model from torch hub __SCREAMING_SNAKE_CASE : Tuple = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F'''Converting model {model_name}...''' ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=snake_case ).eval() __SCREAMING_SNAKE_CASE : int = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case ): if is_panoptic: __SCREAMING_SNAKE_CASE : Any = '''detr.''' + src rename_key(snake_case , snake_case , snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case , is_panoptic=snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE : Any = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __SCREAMING_SNAKE_CASE : str = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __SCREAMING_SNAKE_CASE : Any = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Any = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __SCREAMING_SNAKE_CASE : Any = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : Dict = DetrForSegmentation(snake_case ) if is_panoptic else DetrForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() # verify our conversion on an image __SCREAMING_SNAKE_CASE : List[str] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __SCREAMING_SNAKE_CASE : Dict = DetrImageProcessor(format=snake_case ) __SCREAMING_SNAKE_CASE : int = processor(images=prepare_img() , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[str] = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE : Optional[Any] = detr(snake_case ) __SCREAMING_SNAKE_CASE : int = model(snake_case ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowercase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : str , _A : WhisperForConditionalGeneration , _A : WhisperProcessor , _A : AutoencoderKL , _A : CLIPTextModel , _A : CLIPTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _A : StableDiffusionSafetyChecker , _A : CLIPImageProcessor , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def UpperCAmelCase__ ( self : Any , _A : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": __SCREAMING_SNAKE_CASE : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self : Optional[Any] , _A : int , _A : Optional[Any]=1_6000 , _A : int = 512 , _A : int = 512 , _A : int = 50 , _A : float = 7.5 , _A : Optional[Union[str, List[str]]] = None , _A : Optional[int] = 1 , _A : float = 0.0 , _A : Optional[torch.Generator] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.speech_processor.feature_extractor( _A , return_tensors='''pt''' , sampling_rate=_A ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE : List[Any] = self.speech_model.generate(_A , max_length=48_0000 ) __SCREAMING_SNAKE_CASE : Dict = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = 1 elif isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[int] = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get prompt text embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __SCREAMING_SNAKE_CASE : Any = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = text_embeddings.shape __SCREAMING_SNAKE_CASE : List[str] = text_embeddings.repeat(1 , _A , 1 ) __SCREAMING_SNAKE_CASE : int = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: __SCREAMING_SNAKE_CASE : List[str] = [''''''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=''' F''' {type(_A )}.''' ) elif isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: __SCREAMING_SNAKE_CASE : int = negative_prompt __SCREAMING_SNAKE_CASE : Dict = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE : int = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE : str = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE : List[Any] = uncond_embeddings.repeat(1 , _A , 1 ) __SCREAMING_SNAKE_CASE : Any = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE : List[Any] = torch.randn(_A , generator=_A , device='''cpu''' , dtype=_A ).to( self.device ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __SCREAMING_SNAKE_CASE : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE : List[str] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if accepts_eta: __SCREAMING_SNAKE_CASE : Optional[Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual __SCREAMING_SNAKE_CASE : Any = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) __SCREAMING_SNAKE_CASE : List[Any] = 1 / 0.1_82_15 * latents __SCREAMING_SNAKE_CASE : Dict = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
303
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = len(snake_case ) for _ in range(snake_case ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowercase_ = list(range(10, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
303
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowercase_ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowercase_ = """▁""" class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : List[str] , _A : int=None , _A : List[Any]=None , _A : List[str]=True , _A : Union[str, Any]=True , _A : Any=False , _A : int="[CLS]" , _A : Optional[Any]="[SEP]" , _A : str="<unk>" , _A : List[Any]="[SEP]" , _A : int="<pad>" , _A : Optional[int]="[CLS]" , _A : Tuple="[MASK]" , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A ) if isinstance(_A , _A ) else mask_token ) super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) __SCREAMING_SNAKE_CASE : List[str] = do_lower_case __SCREAMING_SNAKE_CASE : Tuple = remove_space __SCREAMING_SNAKE_CASE : Tuple = keep_accents __SCREAMING_SNAKE_CASE : Tuple = vocab_file __SCREAMING_SNAKE_CASE : Optional[Any] = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : List[str] , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
303
import os import sys lowercase_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
303
1
import argparse import os import re lowercase_ = """src/transformers""" # Pattern that looks at the indentation in a line. lowercase_ = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(R"""\[([^\]]+)\]""") def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def a__ ( snake_case , snake_case="" , snake_case=None , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 __SCREAMING_SNAKE_CASE : Optional[Any] = ['''\n'''.join(lines[:index] )] else: __SCREAMING_SNAKE_CASE : Tuple = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __SCREAMING_SNAKE_CASE : Optional[Any] = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(snake_case ) ) if index < len(snake_case ) - 1: __SCREAMING_SNAKE_CASE : Any = [lines[index + 1]] index += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = [] else: blocks.append('''\n'''.join(snake_case ) ) __SCREAMING_SNAKE_CASE : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append('''\n'''.join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def a__ ( snake_case ): """simple docstring""" def _inner(snake_case ): return key(snake_case ).lower().replace('''_''' , '''''' ) return _inner def a__ ( snake_case , snake_case=None ): """simple docstring""" # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: __SCREAMING_SNAKE_CASE : Optional[int] = noop # Constants are all uppercase, they go first. __SCREAMING_SNAKE_CASE : Optional[Any] = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __SCREAMING_SNAKE_CASE : List[Any] = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. __SCREAMING_SNAKE_CASE : str = [obj for obj in objects if not key(snake_case )[0].isupper()] __SCREAMING_SNAKE_CASE : str = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def a__ ( snake_case ): """simple docstring""" # This inner function sort imports between [ ]. def _replace(snake_case ): __SCREAMING_SNAKE_CASE : Tuple = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __SCREAMING_SNAKE_CASE : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" __SCREAMING_SNAKE_CASE : str = import_statement.split('''\n''' ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __SCREAMING_SNAKE_CASE : str = 2 if lines[1].strip() == '''[''' else 1 __SCREAMING_SNAKE_CASE : Optional[Any] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __SCREAMING_SNAKE_CASE : Tuple = sort_objects(snake_case , key=lambda snake_case : x[1] ) __SCREAMING_SNAKE_CASE : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __SCREAMING_SNAKE_CASE : str = _re_bracket_content.sub(_replace , lines[1] ) else: __SCREAMING_SNAKE_CASE : Tuple = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = keys[:-1] __SCREAMING_SNAKE_CASE : str = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line __SCREAMING_SNAKE_CASE : Tuple = _re_bracket_content.sub(_replace , snake_case ) return import_statement def a__ ( snake_case , snake_case=True ): """simple docstring""" with open(snake_case , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = split_code_in_indented_blocks( snake_case , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __SCREAMING_SNAKE_CASE : Tuple = main_blocks[block_idx] __SCREAMING_SNAKE_CASE : Optional[int] = block.split('''\n''' ) # Get to the start of the imports. __SCREAMING_SNAKE_CASE : str = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __SCREAMING_SNAKE_CASE : List[str] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. __SCREAMING_SNAKE_CASE : Tuple = '''\n'''.join(block_lines[line_idx:-1] ) __SCREAMING_SNAKE_CASE : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __SCREAMING_SNAKE_CASE : List[str] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __SCREAMING_SNAKE_CASE : Optional[int] = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __SCREAMING_SNAKE_CASE : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __SCREAMING_SNAKE_CASE : Any = [(i, key) for i, key in enumerate(snake_case ) if key is not None] __SCREAMING_SNAKE_CASE : Optional[Any] = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __SCREAMING_SNAKE_CASE : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. __SCREAMING_SNAKE_CASE : Dict = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(snake_case ) ) def a__ ( snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: __SCREAMING_SNAKE_CASE : Optional[int] = sort_imports(os.path.join(snake_case , '''__init__.py''' ) , check_only=snake_case ) if result: __SCREAMING_SNAKE_CASE : Union[str, Any] = [os.path.join(snake_case , '''__init__.py''' )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
303
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowercase_ = open # noqa: we just need to have a builtin inside this module to test it properly
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''deberta-v2''' def __init__( self : Any , _A : Tuple=12_8100 , _A : int=1536 , _A : int=24 , _A : List[Any]=24 , _A : Any=6144 , _A : List[Any]="gelu" , _A : List[str]=0.1 , _A : Any=0.1 , _A : Tuple=512 , _A : Optional[int]=0 , _A : List[Any]=0.02 , _A : Optional[int]=1e-7 , _A : Tuple=False , _A : Optional[Any]=-1 , _A : Union[str, Any]=0 , _A : Union[str, Any]=True , _A : List[Any]=None , _A : Optional[int]=0 , _A : Optional[int]="gelu" , **_A : List[str] , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : Any = initializer_range __SCREAMING_SNAKE_CASE : str = relative_attention __SCREAMING_SNAKE_CASE : Tuple = max_relative_positions __SCREAMING_SNAKE_CASE : List[str] = pad_token_id __SCREAMING_SNAKE_CASE : Optional[Any] = position_biased_input # Backwards compatibility if type(_A ) == str: __SCREAMING_SNAKE_CASE : List[str] = [x.strip() for x in pos_att_type.lower().split('''|''' )] __SCREAMING_SNAKE_CASE : Optional[Any] = pos_att_type __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Any = kwargs.get('''pooler_hidden_size''' , _A ) __SCREAMING_SNAKE_CASE : Tuple = pooler_dropout __SCREAMING_SNAKE_CASE : int = pooler_hidden_act class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return 12 def UpperCAmelCase__ ( self : List[Any] , _A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _A : int = -1 , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , _A : int = 3 , _A : int = 40 , _A : int = 40 , _A : "PreTrainedTokenizerBase" = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = super().generate_dummy_inputs(preprocessor=_A , framework=_A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
303
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''time_series_transformer''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Any , _A : Optional[int] = None , _A : Optional[int] = None , _A : str = "student_t" , _A : str = "nll" , _A : int = 1 , _A : List[int] = [1, 2, 3, 4, 5, 6, 7] , _A : Optional[Union[str, bool]] = "mean" , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : int = 0 , _A : Optional[List[int]] = None , _A : Optional[List[int]] = None , _A : int = 32 , _A : int = 32 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : int = 2 , _A : bool = True , _A : str = "gelu" , _A : int = 64 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : float = 0.1 , _A : int = 100 , _A : float = 0.02 , _A : Optional[int]=True , **_A : Optional[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = prediction_length __SCREAMING_SNAKE_CASE : List[Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = distribution_output __SCREAMING_SNAKE_CASE : Optional[Any] = loss __SCREAMING_SNAKE_CASE : int = input_size __SCREAMING_SNAKE_CASE : int = num_time_features __SCREAMING_SNAKE_CASE : Optional[int] = lags_sequence __SCREAMING_SNAKE_CASE : List[str] = scaling __SCREAMING_SNAKE_CASE : List[Any] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_real_features __SCREAMING_SNAKE_CASE : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cardinality else: __SCREAMING_SNAKE_CASE : int = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __SCREAMING_SNAKE_CASE : Dict = embedding_dimension else: __SCREAMING_SNAKE_CASE : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : Union[str, Any] = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : Dict = input_size * len(_A ) + self._number_of_features __SCREAMING_SNAKE_CASE : Dict = d_model __SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Dict = encoder_layers __SCREAMING_SNAKE_CASE : Any = decoder_layers __SCREAMING_SNAKE_CASE : Any = dropout __SCREAMING_SNAKE_CASE : Any = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : Dict = encoder_layerdrop __SCREAMING_SNAKE_CASE : Any = decoder_layerdrop __SCREAMING_SNAKE_CASE : Any = activation_function __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Dict = use_cache super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Dict , **_A : Dict ): """simple docstring""" super().__init__(**_A ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(_A ) def UpperCAmelCase__ ( self : Union[str, Any] , **_A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = {} __SCREAMING_SNAKE_CASE : str = {} __SCREAMING_SNAKE_CASE : str = {} # preprocess args if "points_per_batch" in kwargs: __SCREAMING_SNAKE_CASE : Any = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __SCREAMING_SNAKE_CASE : str = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __SCREAMING_SNAKE_CASE : List[Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __SCREAMING_SNAKE_CASE : int = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __SCREAMING_SNAKE_CASE : Tuple = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __SCREAMING_SNAKE_CASE : Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __SCREAMING_SNAKE_CASE : str = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Tuple , _A : Optional[int] , *_A : Any , _A : Any=None , _A : Union[str, Any]=None , **_A : Optional[Any] ): """simple docstring""" return super().__call__(_A , *_A , num_workers=_A , batch_size=_A , **_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[Any] , _A : Any=64 , _A : int = 0 , _A : float = 512 / 1500 , _A : Optional[int] = 32 , _A : Optional[int] = 1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = load_image(_A ) __SCREAMING_SNAKE_CASE : List[str] = self.image_processor.size['''longest_edge'''] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.generate_crop_boxes( _A , _A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=_A , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __SCREAMING_SNAKE_CASE : Dict = self.get_inference_context() with inference_context(): __SCREAMING_SNAKE_CASE : Optional[int] = self._ensure_tensor_on_device(_A , device=self.device ) __SCREAMING_SNAKE_CASE : int = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __SCREAMING_SNAKE_CASE : Tuple = image_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = grid_points.shape[1] __SCREAMING_SNAKE_CASE : str = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _A , _A ): __SCREAMING_SNAKE_CASE : str = grid_points[:, i : i + points_per_batch, :, :] __SCREAMING_SNAKE_CASE : Optional[int] = input_labels[:, i : i + points_per_batch] __SCREAMING_SNAKE_CASE : Dict = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase__ ( self : Tuple , _A : int , _A : Any=0.88 , _A : List[str]=0.95 , _A : Any=0 , _A : str=1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = model_inputs.pop('''input_boxes''' ) __SCREAMING_SNAKE_CASE : Dict = model_inputs.pop('''is_last''' ) __SCREAMING_SNAKE_CASE : Optional[int] = model_inputs.pop('''original_sizes''' ).tolist() __SCREAMING_SNAKE_CASE : Optional[Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model(**_A ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __SCREAMING_SNAKE_CASE : int = model_outputs['''pred_masks'''] __SCREAMING_SNAKE_CASE : str = self.image_processor.post_process_masks( _A , _A , _A , _A , binarize=_A ) __SCREAMING_SNAKE_CASE : List[str] = model_outputs['''iou_scores'''] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _A , _A , _A , _A , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase__ ( self : Tuple , _A : Dict , _A : List[Any]=False , _A : Optional[Any]=False , _A : str=0.7 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[str] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor.post_process_for_mask_generation( _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE : Dict = defaultdict(_A ) for output in model_outputs: for k, v in output.items(): extra[k].append(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} if output_rle_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = rle_mask if output_bboxes_mask: __SCREAMING_SNAKE_CASE : Any = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
303
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : List[Any] , _A : List[Any]=2 , _A : Any=3 , _A : Union[str, Any]=4 , _A : int=2 , _A : Dict=7 , _A : Dict=True , _A : int=True , _A : List[str]=True , _A : Tuple=True , _A : Tuple=99 , _A : Any=36 , _A : List[Any]=3 , _A : Optional[int]=4 , _A : Any=37 , _A : int="gelu" , _A : int=0.1 , _A : Tuple=0.1 , _A : Dict=512 , _A : Dict=16 , _A : Optional[Any]=2 , _A : List[str]=0.02 , _A : Any=6 , _A : Any=6 , _A : Optional[Any]=3 , _A : str=4 , _A : Optional[Any]=None , _A : List[str]=1000 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : List[str] = image_size __SCREAMING_SNAKE_CASE : Any = patch_size __SCREAMING_SNAKE_CASE : Dict = text_seq_length __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : str = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Tuple = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = coordinate_size __SCREAMING_SNAKE_CASE : Any = shape_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels __SCREAMING_SNAKE_CASE : str = num_choices __SCREAMING_SNAKE_CASE : Tuple = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE : Dict = text_seq_length __SCREAMING_SNAKE_CASE : str = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE : List[Any] = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 3] __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 1] __SCREAMING_SNAKE_CASE : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE : Union[str, Any] = bbox[i, j, 2] __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 0] __SCREAMING_SNAKE_CASE : str = t __SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Optional[int] , _A : List[Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : Tuple , _A : List[str] , _A : str , _A : Union[str, Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = LayoutLMvaModel(config=_A ) model.to(_A ) model.eval() # text + image __SCREAMING_SNAKE_CASE : Dict = model(_A , pixel_values=_A ) __SCREAMING_SNAKE_CASE : Dict = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A ) __SCREAMING_SNAKE_CASE : Tuple = model(_A , bbox=_A , pixel_values=_A , token_type_ids=_A ) __SCREAMING_SNAKE_CASE : int = model(_A , bbox=_A , pixel_values=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE : List[str] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : str , _A : str , _A : str , _A : Union[str, Any] , _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForSequenceClassification(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : Tuple , _A : Optional[int] , _A : Tuple , _A : Optional[int] , _A : Optional[int] , _A : int , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : Any = LayoutLMvaForTokenClassification(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : Union[str, Any] , _A : List[str] , _A : int , _A : str , _A : int , _A : List[Any] , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = LayoutLMvaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : str = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Dict , _A : Tuple , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : int ): """simple docstring""" return True def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : Any , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : List[Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in get_values(_A ): __SCREAMING_SNAKE_CASE : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_A , ) return inputs_dict def UpperCAmelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_A ) __SCREAMING_SNAKE_CASE : Any = self.default_image_processor __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __SCREAMING_SNAKE_CASE : Any = model( input_ids=input_ids.to(_A ) , bbox=bbox.to(_A ) , pixel_values=pixel_values.to(_A ) , ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''vqvae'''] def __init__( self : List[str] , _A : AutoencoderKL , _A : UNetaDConditionModel , _A : Mel , _A : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A , mel=_A , vqvae=_A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" return 50 if isinstance(self.scheduler , _A ) else 1000 @torch.no_grad() def __call__( self : str , _A : int = 1 , _A : str = None , _A : np.ndarray = None , _A : int = 0 , _A : int = 0 , _A : int = None , _A : torch.Generator = None , _A : float = 0 , _A : float = 0 , _A : torch.Generator = None , _A : float = 0 , _A : torch.Tensor = None , _A : torch.Tensor = None , _A : str=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) __SCREAMING_SNAKE_CASE : Tuple = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE : List[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_A , device=self.device , ) __SCREAMING_SNAKE_CASE : Dict = noise __SCREAMING_SNAKE_CASE : Tuple = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.mel.audio_slice_to_image(_A ) __SCREAMING_SNAKE_CASE : str = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE : str = (input_image / 255) * 2 - 1 __SCREAMING_SNAKE_CASE : str = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.vqvae.encode(torch.unsqueeze(_A , 0 ) ).latent_dist.sample( generator=_A )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE : int = self.scheduler.add_noise(_A , _A , self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE : List[Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : Optional[int] = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.add_noise(_A , _A , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _A ): __SCREAMING_SNAKE_CASE : Tuple = self.unet(_A , _A , _A )['''sample'''] else: __SCREAMING_SNAKE_CASE : int = self.unet(_A , _A )['''sample'''] if isinstance(self.scheduler , _A ): __SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step( model_output=_A , timestep=_A , sample=_A , eta=_A , generator=_A , )['''prev_sample'''] else: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step( model_output=_A , timestep=_A , sample=_A , generator=_A , )['''prev_sample'''] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE : Any = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE : Optional[int] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE : str = self.vqvae.decode(_A )['''sample'''] __SCREAMING_SNAKE_CASE : Tuple = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : List[str] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __SCREAMING_SNAKE_CASE : str = (images * 255).round().astype('''uint8''' ) __SCREAMING_SNAKE_CASE : Dict = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A , mode='''RGB''' ).convert('''L''' ) for _ in images) ) __SCREAMING_SNAKE_CASE : Any = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) , **ImagePipelineOutput(_A ) ) @torch.no_grad() def UpperCAmelCase__ ( self : Dict , _A : List[Image.Image] , _A : int = 50 ): """simple docstring""" assert isinstance(self.scheduler , _A ) self.scheduler.set_timesteps(_A ) __SCREAMING_SNAKE_CASE : int = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE : Tuple = (sample / 255) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __SCREAMING_SNAKE_CASE : Any = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : int = self.unet(_A , _A )['''sample'''] __SCREAMING_SNAKE_CASE : Tuple = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE : Optional[int] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( _A : torch.Tensor , _A : torch.Tensor , _A : float ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = acos(torch.dot(torch.flatten(_A ) , torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def a__ ( snake_case ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = create_tensor(snake_case ) __SCREAMING_SNAKE_CASE : str = gather(snake_case ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [state.process_index] __SCREAMING_SNAKE_CASE : List[str] = gather_object(snake_case ) assert len(snake_case ) == state.num_processes, F'''{gathered_obj}, {len(snake_case )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = create_tensor(snake_case ) __SCREAMING_SNAKE_CASE : Any = broadcast(snake_case ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def a__ ( snake_case ): """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.arange(state.num_processes ).to(state.device ) __SCREAMING_SNAKE_CASE : str = pad_across_processes(snake_case ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def a__ ( snake_case ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return __SCREAMING_SNAKE_CASE : Optional[Any] = create_tensor(snake_case ) __SCREAMING_SNAKE_CASE : int = reduce(snake_case , '''sum''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), F'''{reduced_tensor} != {truth_tensor}''' def a__ ( snake_case ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return __SCREAMING_SNAKE_CASE : Optional[Any] = create_tensor(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = reduce(snake_case , '''mean''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), F'''{reduced_tensor} != {truth_tensor}''' def a__ ( snake_case ): """simple docstring""" # For xla_spawn (TPUs) main() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = PartialState() state.print(F'''State: {state}''' ) state.print('''testing gather''' ) test_gather(snake_case ) state.print('''testing gather_object''' ) test_gather_object(snake_case ) state.print('''testing broadcast''' ) test_broadcast(snake_case ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(snake_case ) state.print('''testing reduce_sum''' ) test_reduce_sum(snake_case ) state.print('''testing reduce_mean''' ) test_reduce_mean(snake_case ) if __name__ == "__main__": main()
303
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
def a__ ( snake_case ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __SCREAMING_SNAKE_CASE : Tuple = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": lowercase_ = input("""Enter a string """).strip() lowercase_ = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import fire from utils import calculate_rouge, save_json def a__ ( snake_case , snake_case , snake_case=None , **snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [x.strip() for x in open(snake_case ).readlines()] __SCREAMING_SNAKE_CASE : Any = [x.strip() for x in open(snake_case ).readlines()][: len(snake_case )] __SCREAMING_SNAKE_CASE : List[Any] = calculate_rouge(snake_case , snake_case , **snake_case ) if save_path is not None: save_json(snake_case , snake_case , indent=snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
303
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase_ = True except (ImportError, AttributeError): lowercase_ = object def a__ ( *snake_case , **snake_case ): """simple docstring""" pass lowercase_ = False lowercase_ = logging.get_logger("""transformers-cli/serving""") def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(snake_case , args.host , args.port , args.workers ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase__ ( _A : ArgumentParser ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=_A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=_A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=_A , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=_A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=_A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=_A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=_A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=_A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=_A ) def __init__( self : Dict , _A : Pipeline , _A : str , _A : int , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = pipeline __SCREAMING_SNAKE_CASE : str = host __SCREAMING_SNAKE_CASE : int = port __SCREAMING_SNAKE_CASE : Optional[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=_A , response_class=_A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=_A , response_class=_A , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase__ ( self : List[str] , _A : str = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) ): """simple docstring""" try: __SCREAMING_SNAKE_CASE : Optional[Any] = self._pipeline.tokenizer.tokenize(_A ) if return_ids: __SCREAMING_SNAKE_CASE : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(_A ) return ServeTokenizeResult(tokens=_A , tokens_ids=_A ) else: return ServeTokenizeResult(tokens=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) def UpperCAmelCase__ ( self : str , _A : List[int] = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) , _A : bool = Body(_A , embed=_A ) , ): """simple docstring""" try: __SCREAMING_SNAKE_CASE : Optional[int] = self._pipeline.tokenizer.decode(_A , _A , _A ) return ServeDeTokenizeResult(model='''''' , text=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) async def UpperCAmelCase__ ( self : Tuple , _A : List[Any]=Body(_A , embed=_A ) ): """simple docstring""" if len(_A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __SCREAMING_SNAKE_CASE : str = self._pipeline(_A ) return ServeForwardResult(output=_A ) except Exception as e: raise HTTPException(500 , {'''error''': str(_A )} )
303
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( snake_case ): """simple docstring""" if "://" in dataset_path: __SCREAMING_SNAKE_CASE : Any = dataset_path.split('''://''' )[1] return dataset_path def a__ ( snake_case ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def a__ ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock()
303
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __SCREAMING_SNAKE_CASE : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_euler''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_euler''' ) __SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe([prompt] , generator=_A , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) __SCREAMING_SNAKE_CASE : Any = output.images __SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __SCREAMING_SNAKE_CASE : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __SCREAMING_SNAKE_CASE : Any = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe( [prompt] , generator=_A , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_A , ) __SCREAMING_SNAKE_CASE : Tuple = output.images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
303
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
303
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''mra''' def __init__( self : str , _A : List[str]=5_0265 , _A : int=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Tuple=1 , _A : List[str]=0.02 , _A : Union[str, Any]=1e-5 , _A : Optional[int]="absolute" , _A : Union[str, Any]=4 , _A : List[Any]="full" , _A : Union[str, Any]=0 , _A : Union[str, Any]=0 , _A : Optional[Any]=1 , _A : Union[str, Any]=0 , _A : Any=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = block_per_row __SCREAMING_SNAKE_CASE : Union[str, Any] = approx_mode __SCREAMING_SNAKE_CASE : Optional[int] = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE : List[Any] = initial_prior_diagonal_n_blocks
303
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """Salesforce/codegen-350M-mono""": 2_048, } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = CodeGenTokenizer def __init__( self : List[Any] , _A : str=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None , _A : Union[str, Any]="<|endoftext|>" , _A : Optional[int]="<|endoftext|>" , _A : Tuple="<|endoftext|>" , _A : Optional[int]=False , **_A : int , ): """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) if kwargs.pop('''add_bos_token''' , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: __SCREAMING_SNAKE_CASE : str = getattr(_A , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : List[str] = add_prefix_space __SCREAMING_SNAKE_CASE : Optional[Any] = pre_tok_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space def UpperCAmelCase__ ( self : List[Any] , *_A : List[Any] , **_A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def UpperCAmelCase__ ( self : int , *_A : Optional[Any] , **_A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def UpperCAmelCase__ ( self : str , _A : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _A : bool = False , _A : bool = None , _A : Optional[List[str]] = None , **_A : Union[str, Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = super().decode( token_ids=_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , **_A , ) if truncate_before_pattern is not None and len(_A ) > 0: __SCREAMING_SNAKE_CASE : Any = self.truncate(_A , _A ) return decoded_text def UpperCAmelCase__ ( self : List[str] , _A : Union[str, Any] , _A : Optional[Any] ): """simple docstring""" def find_re(_A : List[str] , _A : Union[str, Any] , _A : Optional[Any] ): __SCREAMING_SNAKE_CASE : List[Any] = pattern.search(_A , _A ) return m.start() if m else -1 __SCREAMING_SNAKE_CASE : List[Any] = [re.compile(_A , re.MULTILINE ) for pattern in truncate_before_pattern] __SCREAMING_SNAKE_CASE : List[str] = list(re.finditer('''^print''' , _A , re.MULTILINE ) ) if len(_A ) > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = completion[: prints[1].start()] __SCREAMING_SNAKE_CASE : Dict = list(re.finditer('''^def''' , _A , re.MULTILINE ) ) if len(_A ) > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = completion[: defs[1].start()] __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : str = [ pos for pos in [find_re(_A , _A , _A ) for terminal in terminals] if pos != -1 ] if len(_A ) > 0: return completion[: min(_A )] else: return completion
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
def a__ ( snake_case ): """simple docstring""" if not head: return True # split the list to two parts __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = head.next, head while fast and fast.next: __SCREAMING_SNAKE_CASE : Union[str, Any] = fast.next.next __SCREAMING_SNAKE_CASE : Tuple = slow.next __SCREAMING_SNAKE_CASE : int = slow.next __SCREAMING_SNAKE_CASE : Any = None # Don't forget here! But forget still works! # reverse the second part __SCREAMING_SNAKE_CASE : Optional[Any] = None while second: __SCREAMING_SNAKE_CASE : List[Any] = second.next __SCREAMING_SNAKE_CASE : Optional[int] = node __SCREAMING_SNAKE_CASE : int = second __SCREAMING_SNAKE_CASE : Any = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __SCREAMING_SNAKE_CASE : List[str] = node.next __SCREAMING_SNAKE_CASE : Dict = head.next return True def a__ ( snake_case ): """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __SCREAMING_SNAKE_CASE : Optional[int] = head while fast and fast.next: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = fast.next.next, slow.next # 2. Push the second half into the stack __SCREAMING_SNAKE_CASE : str = [slow.val] while slow.next: __SCREAMING_SNAKE_CASE : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __SCREAMING_SNAKE_CASE : Tuple = cur.next return True def a__ ( snake_case ): """simple docstring""" if not head or not head.next: return True __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : List[Any] = 0 while head: if head.val in d: d[head.val].append(snake_case ) else: __SCREAMING_SNAKE_CASE : List[str] = [pos] __SCREAMING_SNAKE_CASE : Optional[Any] = head.next pos += 1 __SCREAMING_SNAKE_CASE : int = pos - 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for v in d.values(): if len(snake_case ) % 2 != 0: middle += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = 0 for i in range(0 , len(snake_case ) ): if v[i] + v[len(snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = args.log_outputs __SCREAMING_SNAKE_CASE : Optional[int] = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __SCREAMING_SNAKE_CASE : Any = load_metric('''wer''' ) __SCREAMING_SNAKE_CASE : Optional[int] = load_metric('''cer''' ) # compute metrics __SCREAMING_SNAKE_CASE : Union[str, Any] = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __SCREAMING_SNAKE_CASE : Any = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __SCREAMING_SNAKE_CASE : Any = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case ) with open(F'''{dataset_id}_eval_results.txt''' , '''w''' ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __SCREAMING_SNAKE_CASE : List[str] = F'''log_{dataset_id}_predictions.txt''' __SCREAMING_SNAKE_CASE : Any = F'''log_{dataset_id}_targets.txt''' with open(snake_case , '''w''' ) as p, open(snake_case , '''w''' ) as t: # mapping function to write output def write_to_file(snake_case , snake_case ): p.write(F'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(snake_case , with_indices=snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __SCREAMING_SNAKE_CASE : Any = re.sub(snake_case , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __SCREAMING_SNAKE_CASE : List[Any] = ''' '''.join(text.split(snake_case ) ) return text def a__ ( snake_case ): """simple docstring""" # load dataset __SCREAMING_SNAKE_CASE : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained(args.model_id ) __SCREAMING_SNAKE_CASE : int = feature_extractor.sampling_rate # resample audio __SCREAMING_SNAKE_CASE : Any = dataset.cast_column('''audio''' , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: __SCREAMING_SNAKE_CASE : Any = 0 if torch.cuda.is_available() else -1 __SCREAMING_SNAKE_CASE : Optional[int] = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prediction['''text'''] __SCREAMING_SNAKE_CASE : str = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __SCREAMING_SNAKE_CASE : Optional[int] = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowercase_ = parser.parse_args() main(args)
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
1
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """facebook/nllb-large-en-ro""": 1_024, """facebook/nllb-200-distilled-600M""": 1_024, } # fmt: off lowercase_ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = NllbTokenizer lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self : str , _A : Optional[Any]=None , _A : Any=None , _A : str="<s>" , _A : List[str]="</s>" , _A : Union[str, Any]="</s>" , _A : Optional[int]="<s>" , _A : Optional[int]="<unk>" , _A : Any="<pad>" , _A : Optional[int]="<mask>" , _A : Union[str, Any]=None , _A : Dict=None , _A : Optional[Any]=None , _A : Optional[Any]=False , **_A : List[str] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __SCREAMING_SNAKE_CASE : List[Any] = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __SCREAMING_SNAKE_CASE : Any = vocab_file __SCREAMING_SNAKE_CASE : int = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __SCREAMING_SNAKE_CASE : str = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''eng_Latn''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) __SCREAMING_SNAKE_CASE : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self : int , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ ( self : int , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , _A : int , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : List[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = src_lang __SCREAMING_SNAKE_CASE : Dict = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tgt_lang_id return inputs def UpperCAmelCase__ ( self : Optional[int] , _A : List[str] , _A : str = "eng_Latn" , _A : Optional[List[str]] = None , _A : str = "fra_Latn" , **_A : Tuple , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = src_lang __SCREAMING_SNAKE_CASE : Dict = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self : Optional[Any] , _A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE : str = [self.cur_lang_code] __SCREAMING_SNAKE_CASE : Tuple = [self.eos_token_id] __SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self : Dict , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cur_lang_code] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self : int , _A : str , _A : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
303
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase_ = logging.getLogger(__name__) class __UpperCamelCase : """simple docstring""" def __init__( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = False def UpperCAmelCase__ ( self : List[Any] , _A : Optional[int] , _A : Optional[Any] , _A : Any , _A : str ): """simple docstring""" if not self.initialized: __SCREAMING_SNAKE_CASE : Union[str, Any] = RagRetriever( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __SCREAMING_SNAKE_CASE : Optional[int] = True def UpperCAmelCase__ ( self : str ): """simple docstring""" self.retriever.index.init_index() def UpperCAmelCase__ ( self : str , _A : str , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.retriever._main_retrieve(_A , _A ) return doc_ids, retrieved_doc_embeds class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , _A : Tuple , _A : str , _A : List[str] , _A : Optional[int] , _A : List[str]=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_A ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __SCREAMING_SNAKE_CASE : List[Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_A , _A , _A , _A ) for worker in self.retrieval_workers ] ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCAmelCase__ ( self : Union[str, Any] , _A : List[Any] , _A : Tuple ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __SCREAMING_SNAKE_CASE : Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = ray.get(random_worker.retrieve.remote(_A , _A ) ) else: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) @classmethod def UpperCAmelCase__ ( cls : int , _A : Dict , _A : str=None , **_A : Optional[Any] ): """simple docstring""" return super(_A , cls ).get_tokenizers(_A , _A , **_A ) @classmethod def UpperCAmelCase__ ( cls : List[str] , _A : Any , _A : Optional[Any] , _A : Optional[Any]=None , **_A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''config''' , _A ) or RagConfig.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : str = RagTokenizer.from_pretrained(_A , config=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rag_tokenizer.question_encoder __SCREAMING_SNAKE_CASE : Any = rag_tokenizer.generator if indexed_dataset is not None: __SCREAMING_SNAKE_CASE : Dict = '''custom''' __SCREAMING_SNAKE_CASE : Optional[int] = CustomHFIndex(config.retrieval_vector_size , _A ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = cls._build_index(_A ) return cls( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
303
import os import sys lowercase_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
303
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''ibert''' def __init__( self : Optional[int] , _A : List[Any]=3_0522 , _A : Optional[int]=768 , _A : Union[str, Any]=12 , _A : Union[str, Any]=12 , _A : List[str]=3072 , _A : int="gelu" , _A : Optional[Any]=0.1 , _A : Optional[Any]=0.1 , _A : str=512 , _A : str=2 , _A : Optional[int]=0.02 , _A : Tuple=1e-12 , _A : Dict=1 , _A : List[str]=0 , _A : Dict=2 , _A : int="absolute" , _A : Optional[Any]=False , _A : Union[str, Any]="none" , **_A : str , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : str = position_embedding_type __SCREAMING_SNAKE_CASE : Dict = quant_mode __SCREAMING_SNAKE_CASE : Tuple = force_dequant class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @property def UpperCAmelCase__ ( self : int ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
303
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , _A : Optional[int] , _A : List[str]=13 , _A : Tuple=7 , _A : Tuple=True , _A : List[str]=True , _A : Dict=99 , _A : Tuple=32 , _A : str=5 , _A : List[Any]=4 , _A : Tuple=37 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : Any=0.1 , _A : List[Any]=50 , _A : List[str]=0.02 , _A : List[str]=True , _A : Dict=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = seq_length __SCREAMING_SNAKE_CASE : Tuple = is_training __SCREAMING_SNAKE_CASE : int = use_input_mask __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : str = use_labels __SCREAMING_SNAKE_CASE : Dict = scope def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : str ): """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Dict , _A : List[Any] , _A : Tuple , _A : Tuple , _A : Dict , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(_A , attention_mask=_A ) __SCREAMING_SNAKE_CASE : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , _A : int , _A : Any , _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : int = BertGenerationEncoder(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , _A : int , _A : Any , _A : Dict , _A : Optional[int] , _A : str , _A : Any , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : Dict = BertGenerationDecoder(config=_A ).to(_A ).eval() # first forward pass __SCREAMING_SNAKE_CASE : Dict = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __SCREAMING_SNAKE_CASE : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : int = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['''hidden_states'''][0] __SCREAMING_SNAKE_CASE : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : int , _A : Optional[int] , _A : List[str] , *_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = BertGenerationDecoder(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCAmelCase_ = (BertGenerationDecoder,) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BertGenerationEncoderTester(self ) __SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : List[Any] = '''bert''' self.model_tester.create_and_check_model(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( _A , _A , _A , _A , _A , _A , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_A ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = model(_A )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[str] = model(_A )[0] __SCREAMING_SNAKE_CASE : str = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , _A ) __SCREAMING_SNAKE_CASE : int = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''audio-spectrogram-transformer''' def __init__( self : Dict , _A : str=768 , _A : Dict=12 , _A : List[Any]=12 , _A : List[Any]=3072 , _A : List[str]="gelu" , _A : Dict=0.0 , _A : List[str]=0.0 , _A : Dict=0.02 , _A : Any=1e-12 , _A : Union[str, Any]=16 , _A : str=True , _A : Any=10 , _A : List[str]=10 , _A : List[str]=1024 , _A : str=128 , **_A : int , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Tuple = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias __SCREAMING_SNAKE_CASE : int = frequency_stride __SCREAMING_SNAKE_CASE : int = time_stride __SCREAMING_SNAKE_CASE : int = max_length __SCREAMING_SNAKE_CASE : List[str] = num_mel_bins
303
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __SCREAMING_SNAKE_CASE : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def a__ ( snake_case , snake_case , snake_case=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE : Optional[Any] = '''''' else: __SCREAMING_SNAKE_CASE : List[Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Dict = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-config.hidden_size :] def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = val def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DeiTConfig() # all deit models have fine-tuned heads __SCREAMING_SNAKE_CASE : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE : str = 1_000 __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Optional[int] = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : int = idalabel __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Tuple = int(deit_name[-6:-4] ) __SCREAMING_SNAKE_CASE : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __SCREAMING_SNAKE_CASE : Optional[int] = 192 __SCREAMING_SNAKE_CASE : Tuple = 768 __SCREAMING_SNAKE_CASE : Optional[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[int] = 3 elif deit_name[9:].startswith('''small''' ): __SCREAMING_SNAKE_CASE : List[Any] = 384 __SCREAMING_SNAKE_CASE : List[Any] = 1_536 __SCREAMING_SNAKE_CASE : int = 12 __SCREAMING_SNAKE_CASE : List[str] = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __SCREAMING_SNAKE_CASE : Dict = 1_024 __SCREAMING_SNAKE_CASE : Tuple = 4_096 __SCREAMING_SNAKE_CASE : List[Any] = 24 __SCREAMING_SNAKE_CASE : Any = 16 # load original model from timm __SCREAMING_SNAKE_CASE : Any = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE : Tuple = timm_model.state_dict() __SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(snake_case , snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model __SCREAMING_SNAKE_CASE : Tuple = DeiTForImageClassificationWithTeacher(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by DeiTImageProcessor __SCREAMING_SNAKE_CASE : Optional[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __SCREAMING_SNAKE_CASE : Any = DeiTImageProcessor(size=snake_case , crop_size=config.image_size ) __SCREAMING_SNAKE_CASE : List[str] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Tuple = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE : Tuple = model(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = timm_model(snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
303
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters lowercase_ = False lowercase_ = False def a__ ( snake_case ): """simple docstring""" return TrainCommand(snake_case ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase__ ( _A : ArgumentParser ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=_A , required=_A , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_A , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=_A , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=_A , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=_A , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=_A , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_A , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=_A , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=_A , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=_A , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=_A , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=_A , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=_A , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=_A ) def __init__( self : Optional[Any] , _A : Namespace ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = logging.get_logger('''transformers-cli/training''' ) __SCREAMING_SNAKE_CASE : List[Any] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_A ) __SCREAMING_SNAKE_CASE : Any = args.output __SCREAMING_SNAKE_CASE : Optional[int] = args.column_label __SCREAMING_SNAKE_CASE : Dict = args.column_text __SCREAMING_SNAKE_CASE : Optional[int] = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __SCREAMING_SNAKE_CASE : Any = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) __SCREAMING_SNAKE_CASE : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __SCREAMING_SNAKE_CASE : List[str] = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) __SCREAMING_SNAKE_CASE : List[str] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __SCREAMING_SNAKE_CASE : Any = args.validation_split __SCREAMING_SNAKE_CASE : List[str] = args.train_batch_size __SCREAMING_SNAKE_CASE : List[str] = args.valid_batch_size __SCREAMING_SNAKE_CASE : Tuple = args.learning_rate __SCREAMING_SNAKE_CASE : List[str] = args.adam_epsilon def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE : List[str] = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = dc.update(1 ) __SCREAMING_SNAKE_CASE : str = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(2 ) __SCREAMING_SNAKE_CASE : List[str] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = dc.update(3 ) __SCREAMING_SNAKE_CASE : Optional[Any] = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE : Optional[int] = DisjunctiveConstraint(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
303
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = DDIMPipeline lowerCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } lowerCAmelCase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase_ = False def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) __SCREAMING_SNAKE_CASE : str = DDIMScheduler() __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCAmelCase__ ( self : List[Any] , _A : Any , _A : Any=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(_A ) __SCREAMING_SNAKE_CASE : int = pipe(**_A ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) __SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''google/ddpm-cifar10-32''' __SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : Dict = DDIMScheduler() __SCREAMING_SNAKE_CASE : Any = DDIMPipeline(unet=_A , scheduler=_A ) ddim.to(_A ) ddim.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = ddim(generator=_A , eta=0.0 , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Any = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_A , scheduler=_A ) ddpm.to(_A ) ddpm.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = ddpm(generator=_A , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
303
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase_ = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : """simple docstring""" def __init__( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = WATERMARK_BITS __SCREAMING_SNAKE_CASE : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def UpperCAmelCase__ ( self : List[Any] , _A : torch.FloatTensor ): """simple docstring""" if images.shape[-1] < 256: return images __SCREAMING_SNAKE_CASE : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Dict = [self.encoder.encode(_A , '''dwtDct''' ) for image in images] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
303
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __SCREAMING_SNAKE_CASE : Tuple = model(_A )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE : int = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
from torch import nn def a__ ( snake_case ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
303
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase_ = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""OwlViTFeatureExtractor"""] lowercase_ = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import math import qiskit def a__ ( snake_case = 1 , snake_case = 1 , snake_case = 1 ): """simple docstring""" if ( isinstance(snake_case , snake_case ) or isinstance(snake_case , snake_case ) or isinstance(snake_case , snake_case ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(snake_case ) != input_a) or (math.floor(snake_case ) != input_a) or (math.floor(snake_case ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers __SCREAMING_SNAKE_CASE : int = qiskit.QuantumRegister(4 , '''qr''' ) __SCREAMING_SNAKE_CASE : int = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries __SCREAMING_SNAKE_CASE : Union[str, Any] = [input_a, input_a, carry_in] __SCREAMING_SNAKE_CASE : Dict = qiskit.QuantumCircuit(snake_case , snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case ) # measure the last two qbits __SCREAMING_SNAKE_CASE : Any = qiskit.Aer.get_backend('''aer_simulator''' ) __SCREAMING_SNAKE_CASE : int = qiskit.execute(snake_case , snake_case , shots=1_000 ) return job.result().get_counts(snake_case ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(_A , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def UpperCAmelCase__ ( self : Optional[int] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Any , _A : List[str]=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __SCREAMING_SNAKE_CASE : List[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __SCREAMING_SNAKE_CASE : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __SCREAMING_SNAKE_CASE : int = black.format_str(_A , mode=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_A , '''w''' , newline='''\n''' ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , '''r''' ) as f: self.assertTrue(f.read() , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_A , _A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _A ) , ) # Copy consistency with a really long name __SCREAMING_SNAKE_CASE : List[str] = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _A , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _A ) , ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] __SCREAMING_SNAKE_CASE : List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) __SCREAMING_SNAKE_CASE : Any = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __SCREAMING_SNAKE_CASE : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = check_copies.convert_to_localized_md( _A , _A , localized_readme['''format_model_list'''] ) self.assertFalse(_A ) self.assertEqual(_A , _A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = check_copies.convert_to_localized_md( _A , _A , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_A ) __SCREAMING_SNAKE_CASE : Dict = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __SCREAMING_SNAKE_CASE : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = check_copies.convert_to_localized_md( _A , _A , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_A , _A )
303
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = initial_vectors for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = iteration_step(snake_case ) return vectors def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE : str = vectors[i + 1] new_vectors.append(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = numpy.radians(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = numpy.cos(snake_case ), numpy.sin(snake_case ) __SCREAMING_SNAKE_CASE : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
303
1
from __future__ import annotations lowercase_ = [True] * 1_000_001 lowercase_ = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): lowercase_ = False i += 1 def a__ ( snake_case ): """simple docstring""" return seive[n] def a__ ( snake_case ): """simple docstring""" return any(digit in '''02468''' for digit in str(snake_case ) ) def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(snake_case ) and not contains_an_even_digit(snake_case ): __SCREAMING_SNAKE_CASE : Dict = str(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = [int(str_num[j:] + str_num[:j] ) for j in range(len(snake_case ) )] if all(is_prime(snake_case ) for i in list_nums ): result.append(snake_case ) return result def a__ ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
303
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] , _A : List[Any] ): """simple docstring""" if latents is None: __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __SCREAMING_SNAKE_CASE : Tuple = latents.to(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase__ ( self : Tuple , _A : List[str]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : int , _A : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Dict , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : torch.FloatTensor , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[str] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hint.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.timesteps __SCREAMING_SNAKE_CASE : Tuple = self.movq.config.latent_channels __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent __SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Dict = {'''image_embeds''': image_embeds, '''hint''': hint} __SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Any = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : Tuple = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
303
1