code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () A : List[Any] = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). A : Tuple = [0, 2_5, 5_0] A : Optional[Any] = [2_5, 5_0, 7_5] A : int = fuzz.membership.trimf(X, abca) A : Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. A : Optional[int] = np.ones(7_5) A : Any = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) A : Any = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) A : Tuple = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) A : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) A : List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] A : Optional[int] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) A : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] A : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] A : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
274
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __A = pytest.mark.integration __A = {"comet"} __A = importlib.util.find_spec("fairseq") is not None __A = {"code_eval"} __A = os.name == "nt" __A = {"bertscore", "frugalscore", "perplexity"} __A = importlib.util.find_spec("transformers") is not None def UpperCamelCase__ ( lowercase__ : Tuple ): @wraps(__lowerCamelCase ) def wrapper(self : Dict , lowercase__ : Tuple ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( lowercase__ : Dict ): @wraps(__lowerCamelCase ) def wrapper(self : Optional[int] , lowercase__ : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( lowercase__ : List[Any] ): @wraps(__lowerCamelCase ) def wrapper(self : List[Any] , lowercase__ : List[str] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __lowerCamelCase ) return wrapper def UpperCamelCase__ ( ): snake_case : Tuple = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @local class lowerCamelCase__ ( parameterized.TestCase ): a__ : Optional[Any] = {} a__ : Union[str, Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = "[...]" snake_case : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _A ) ).module_path ) snake_case : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=_A ) # check parameters snake_case : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_A , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case : List[str] = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[Any] = "[...]" snake_case : Tuple = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _A ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case : int = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_A ): yield else: yield @contextmanager def lowerCamelCase_ ( self ): """simple docstring""" def load_local_metric(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return load_metric(os.path.join("metrics" , _A ) , *_A , **_A ) with patch("datasets.load_metric" ) as mock_load_metric: snake_case : Union[str, Any] = load_local_metric yield @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE ): """simple docstring""" def wrapper(SCREAMING_SNAKE_CASE ): snake_case : Optional[Any] = contextmanager(_A ) snake_case : Union[str, Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: snake_case : Optional[int] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): import torch def bert_cos_score_idf(lowercase__ : Dict , lowercase__ : List[Any] , *lowercase__ : int , **lowercase__ : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowerCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: snake_case : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def UpperCamelCase__ ( lowercase__ : List[Any] ): def load_from_checkpoint(lowercase__ : Dict ): class lowerCamelCase__ : def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" assert len(_A ) == 2 snake_case : Any = [0.19, 0.92] return scores, sum(_A ) / len(_A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: snake_case : Optional[Any] = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: snake_case : Optional[Any] = load_from_checkpoint yield def UpperCamelCase__ ( ): snake_case : Optional[int] = load_metric(os.path.join("metrics" , "seqeval" ) ) snake_case : Optional[int] = "ERROR" snake_case : List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__lowerCamelCase , match=re.escape(__lowerCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=__lowerCamelCase )
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _A : Any = logging.get_logger(__name__) _A : str = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowercase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = """trajectory_transformer""" _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : List[Any] = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any=1_00 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_49 , SCREAMING_SNAKE_CASE__ : List[str]=6 , SCREAMING_SNAKE_CASE__ : int=17 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=25 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Dict=1_28 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_0_0_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-1_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_02_56 , SCREAMING_SNAKE_CASE__ : Tuple=5_02_56 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> int: __lowerCAmelCase = vocab_size __lowerCAmelCase = action_weight __lowerCAmelCase = reward_weight __lowerCAmelCase = value_weight __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = block_size __lowerCAmelCase = action_dim __lowerCAmelCase = observation_dim __lowerCAmelCase = transition_dim __lowerCAmelCase = learning_rate __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_embd __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = resid_pdrop __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = kaiming_initializer_range __lowerCAmelCase = use_cache super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
229
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('padding_side' , 'right' ) _lowercase =kwargs.pop('return_attention_mask' , _A ) super().__init__(**_A ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(_A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_A ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(_A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(_A ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(_A ): _lowercase ='tf' elif is_torch_tensor(_A ): _lowercase ='pt' elif isinstance(_A , (int, float, list, tuple, np.ndarray) ): _lowercase ='np' else: raise ValueError( F'''type of {first_element} unknown: {type(_A )}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(_A ) else: _lowercase =[to_numpy(_A ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=_A , max_length=_A ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(_A ) if not all(len(_A ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _lowercase =[] for i in range(_A ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( _A , max_length=_A , pad_to_multiple_of=_A , truncation=_A , ) truncated_inputs.append(_A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(_A ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=_A , padding_strategy=_A , pad_to_multiple_of=_A , return_attention_mask=_A , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(_A ) return BatchFeature(_A , tensor_type=_A ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ) -> dict: '''simple docstring''' _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(_A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(_A ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(_A ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( _A , _A , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( _A , _A , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> Any: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(_A ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['attention_mask'][:max_length] return processed_features def A__ ( self , lowerCAmelCase=False , lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_A , _A ): _lowercase =PaddingStrategy(_A ) elif isinstance(_A , _A ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: str = UNetaDModel __lowercase: Any = """sample""" @property def lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) snake_case_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } snake_case_ = self.dummy_input return init_dict, inputs_dict class __A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = UNetaDModel __lowercase: List[str] = """sample""" @property def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = 4 snake_case_ = 4 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) snake_case_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" return (4, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" snake_case_ = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" snake_case_ , snake_case_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_A ) snake_case_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ , snake_case_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_A ) model.to(_A ) snake_case_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ , snake_case_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() snake_case_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = noise.to(_A ) snake_case_ = torch.tensor([10] * noise.shape[0] ).to(_A ) snake_case_ = model_accelerate(_A , _A )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case_ , snake_case_ = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() snake_case_ = model_normal_load(_A , _A )["""sample"""] assert torch_all_close(_A , _A , rtol=1E-3 ) def lowerCAmelCase ( self : Dict ) ->List[str]: """simple docstring""" snake_case_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(_A ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = noise.to(_A ) snake_case_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): snake_case_ = model(_A , _A ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class __A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = UNetaDModel __lowercase: Optional[Any] = """sample""" @property def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str=(32, 32) ) ->int: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) snake_case_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1E-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } snake_case_ = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" snake_case_ , snake_case_ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_A ) snake_case_ = self.dummy_input snake_case_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) snake_case_ = noise snake_case_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(_A ) snake_case_ = 4 snake_case_ = 3 snake_case_ = (256, 256) snake_case_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) snake_case_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): snake_case_ = model(_A , _A ).sample snake_case_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def lowerCAmelCase ( self : int ) ->int: """simple docstring""" snake_case_ = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(_A ) snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) snake_case_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): snake_case_ = model(_A , _A ).sample snake_case_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" pass
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _A = Mapping[str, np.ndarray] _A = Mapping[str, Any] # Is a nested dict. _A = 0.01 @dataclasses.dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _lowerCAmelCase : _lowercase =42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _lowercase =42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _lowercase =42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _lowercase =42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _lowercase =42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _lowercase =None # Optional remark about the protein. Included as a comment in output PDB # files _lowercase =None # Templates used to generate this protein (prediction-only) _lowercase =None # Chain corresponding to each parent _lowercase =None def lowerCamelCase__ ( __lowerCAmelCase : List[Any] ): """simple docstring""" lowerCAmelCase_ = r"(\[[A-Z]+\]\n)" lowerCAmelCase_ = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] lowerCAmelCase_ = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) lowerCAmelCase_ = ["N", "CA", "C"] lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None for g in groups: if "[PRIMARY]" == g[0]: lowerCAmelCase_ = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: lowerCAmelCase_ = "X" # FIXME: strings are immutable lowerCAmelCase_ = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCAmelCase_ = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) lowerCAmelCase_ = np.array(__lowerCamelCase ) lowerCAmelCase_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): lowerCAmelCase_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCAmelCase_ = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) lowerCAmelCase_ = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): lowerCAmelCase_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def lowerCamelCase__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] = 0 ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowerCAmelCase_ = prot.parents lowerCAmelCase_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCAmelCase_ = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: lowerCAmelCase_ = ["N/A"] pdb_headers.append(F"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = pdb_str.split("\n" ) lowerCAmelCase_ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowerCAmelCase_ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowerCAmelCase_ = [] if prot.parents_chain_index is not None: lowerCAmelCase_ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) lowerCAmelCase_ = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCAmelCase_ = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCAmelCase_ = [["N/A"]] def make_parent_line(__lowerCAmelCase : List[Any] ) -> str: return F"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCAmelCase_ = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): lowerCAmelCase_ = parents_per_chain[chain_counter] else: lowerCAmelCase_ = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = residue_constants.restypes + ["X"] def res_atoa(__lowerCAmelCase : Optional[Any] ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) lowerCAmelCase_ = residue_constants.atom_types lowerCAmelCase_ = [] lowerCAmelCase_ = prot.atom_mask lowerCAmelCase_ = prot.aatype lowerCAmelCase_ = prot.atom_positions lowerCAmelCase_ = prot.residue_index.astype(np.intaa ) lowerCAmelCase_ = prot.b_factors lowerCAmelCase_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowerCAmelCase_ = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) lowerCAmelCase_ = aatype.shape[0] lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 lowerCAmelCase_ = string.ascii_uppercase lowerCAmelCase_ = None # Add all atom sites. for i in range(__lowerCamelCase ): lowerCAmelCase_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowerCAmelCase_ = "ATOM" lowerCAmelCase_ = atom_name if len(__lowerCamelCase ) == 4 else F""" {atom_name}""" lowerCAmelCase_ = "" lowerCAmelCase_ = "" lowerCAmelCase_ = 1.00 lowerCAmelCase_ = atom_name[0] # Protein supports only C, N, O, S, this works. lowerCAmelCase_ = "" lowerCAmelCase_ = "A" if chain_index is not None: lowerCAmelCase_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCAmelCase_ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 lowerCAmelCase_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCAmelCase_ = True lowerCAmelCase_ = chain_index[i + 1] if should_terminate: # Close the chain. lowerCAmelCase_ = "TER" lowerCAmelCase_ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : str = None , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = None , __lowerCAmelCase : Dict = None , ): """simple docstring""" return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
231
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Tuple = 16 lowercase : Tuple = 32 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] = 16) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased") __UpperCamelCase : Optional[Any] = DatasetDict( { "train": dataset["train"].select(__lowerCamelCase), "validation": dataset["train"].select(__lowerCamelCase), "test": dataset["validation"], }) def tokenize_function(_lowerCamelCase : Optional[Any]): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCamelCase , max_length=__lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase : int = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase : Dict = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCamelCase : Optional[int]): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase : Tuple = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase : str = 8 else: __UpperCamelCase : Tuple = None return tokenizer.pad( __lowerCamelCase , padding="longest" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. __UpperCamelCase : Dict = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase) __UpperCamelCase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase) __UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["test"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase) return train_dataloader, eval_dataloader, test_dataloader def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any]) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[int] = [] # Download the dataset __UpperCamelCase : Optional[int] = load_dataset("glue" , "mrpc") # Create our splits __UpperCamelCase : Optional[int] = StratifiedKFold(n_splits=int(args.num_folds)) # Initialize accelerator __UpperCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase : Dict = config["lr"] __UpperCamelCase : str = int(config["num_epochs"]) __UpperCamelCase : List[str] = int(config["seed"]) __UpperCamelCase : int = int(config["batch_size"]) __UpperCamelCase : List[str] = evaluate.load("glue" , "mrpc") # If the batch size is too big we use gradient accumulation __UpperCamelCase : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase : List[str] = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase) # New Code # # Create our folds: __UpperCamelCase : List[Any] = kfold.split(np.zeros(datasets["train"].num_rows) , datasets["train"]["label"]) __UpperCamelCase : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__lowerCamelCase): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = get_fold_dataloaders( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase : List[Any] = model.to(accelerator.device) # Instantiate optimizer __UpperCamelCase : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase) # Instantiate scheduler __UpperCamelCase : Any = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # Now we train the model for epoch in range(__lowerCamelCase): model.train() for step, batch in enumerate(__lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __UpperCamelCase : Tuple = model(**__lowerCamelCase) __UpperCamelCase : List[str] = outputs.loss __UpperCamelCase : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __UpperCamelCase : str = model(**__lowerCamelCase) __UpperCamelCase : int = outputs.logits.argmax(dim=-1) __UpperCamelCase , __UpperCamelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) __UpperCamelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __lowerCamelCase) # New Code # # We also run predictions on the test set at the very end __UpperCamelCase : List[str] = [] for step, batch in enumerate(__lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __UpperCamelCase : Tuple = model(**__lowerCamelCase) __UpperCamelCase : Union[str, Any] = outputs.logits __UpperCamelCase , __UpperCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["labels"])) fold_predictions.append(predictions.cpu()) if i == 0: # We need all of the test predictions test_references.append(references.cpu()) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__lowerCamelCase , dim=0)) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __UpperCamelCase : Dict = torch.cat(__lowerCamelCase , dim=0) __UpperCamelCase : Tuple = torch.stack(__lowerCamelCase , dim=0).sum(dim=0).div(int(args.num_folds)).argmax(dim=-1) __UpperCamelCase : List[Any] = metric.compute(predictions=__lowerCamelCase , references=__lowerCamelCase) accelerator.print("Average test metrics from all folds:" , __lowerCamelCase) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU.") # New Code # parser.add_argument("--num_folds" , type=__lowerCamelCase , default=3 , help="The number of splits to perform across the dataset") __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : List[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCamelCase , __lowerCamelCase) if __name__ == "__main__": main()
232
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : Tuple = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['LayoutLMv2FeatureExtractor'] lowerCamelCase : List[str] = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures''') lowerCAmelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCAmelCase__ = get_tests_dir('''fixtures/dummy-config.json''') class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowercase = AutoFeatureExtractor.from_pretrained(_A ).to_dict() config_dict.pop('''feature_extractor_type''' ) __lowercase = WavaVecaFeatureExtractor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ) # make sure private variable is not incorrectly saved __lowercase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : int ): with self.assertRaisesRegex( _A ,'''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( _A ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = AutoFeatureExtractor.from_pretrained(_A ,revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): with self.assertRaisesRegex( _A ,'''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' ,): __lowercase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ,trust_remote_code=_A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) def SCREAMING_SNAKE_CASE ( self : str ): try: AutoConfig.register('''custom''' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoFeatureExtractor.register(_A ,_A ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) __lowercase = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Dict ): class lowercase_ (__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = True try: AutoConfig.register('''custom''' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # If remote code is not set, the default is to use local __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowercase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'''NewFeatureExtractor''' ) self.assertTrue(not hasattr(_A ,'''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=1_3 , _lowerCAmelCase : Any=3_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=3_2 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : List[Any]=3_7 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=1_0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[Any]=2 , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =is_training __lowercase =use_labels __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =scope __lowercase =encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase =(image_size // patch_size) ** 2 __lowercase =num_patches + 1 def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowercase =None if self.use_labels: __lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowercase =self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self : Any): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict): '''simple docstring''' __lowercase =ViTModel(config=_A) model.to(_A) model.eval() __lowercase =model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowerCamelCase ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str): '''simple docstring''' __lowercase =ViTForMaskedImageModeling(config=_A) model.to(_A) model.eval() __lowercase =model(_A) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __lowercase =1 __lowercase =ViTForMaskedImageModeling(_A) model.to(_A) model.eval() __lowercase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowercase =model(_A) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def __lowerCamelCase ( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =self.type_sequence_label_size __lowercase =ViTForImageClassification(_A) model.to(_A) model.eval() __lowercase =model(_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __lowercase =1 __lowercase =ViTForImageClassification(_A) model.to(_A) model.eval() __lowercase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowercase =model(_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) =config_and_inputs __lowercase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =ViTModelTester(self) __lowercase =ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =model_class(_A) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear)) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase =model_class(_A) __lowercase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase =[*signature.parameters.keys()] __lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A) @slow def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase =ViTModel.from_pretrained(_A) self.assertIsNotNone(_A) def _A ( ): """simple docstring""" __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCamelCase ( self : int): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(_A) __lowercase =self.default_image_processor __lowercase =prepare_img() __lowercase =image_processor(images=_A , return_tensors='pt').to(_A) # forward pass with torch.no_grad(): __lowercase =model(**_A) # verify the logits __lowercase =torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , _A) __lowercase =torch.tensor([-0.2744, 0.8215, -0.0836]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4)) @slow def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =ViTModel.from_pretrained('facebook/dino-vits8').to(_A) __lowercase =ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) __lowercase =prepare_img() __lowercase =image_processor(images=_A , return_tensors='pt') __lowercase =inputs.pixel_values.to(_A) # forward pass with torch.no_grad(): __lowercase =model(_A , interpolate_pos_encoding=_A) # verify the logits __lowercase =torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , _A) __lowercase =torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(_A) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') __lowercase =self.default_image_processor __lowercase =prepare_img() __lowercase =image_processor(images=_A , return_tensors='pt') __lowercase =inputs.pixel_values.to(_A) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowercase =model(_A)
166
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } UpperCamelCase_ = { """facebook/mbart-large-en-ro""": 10_24, """facebook/mbart-large-cc25""": 10_24, } # fmt: off UpperCamelCase_ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a_ (__SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[str] = [] __lowerCAmelCase : List[Any] = [] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_ = None , snake_case_=None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = len(self.sp_model ) _lowerCAmelCase : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase : Dict = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase : int = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : int = None _lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Dict = {} _lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) _lowerCAmelCase : List[Any] = self.convert_tokens_to_ids(_A ) _lowerCAmelCase : List[Any] = tgt_lang_id return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(_A , out_type=_A ) def __UpperCamelCase ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Dict = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = """""".join(_A ).replace(_A , """ """ ).strip() return out_string def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(_A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : List[str] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en_XX" , snake_case_ = None , snake_case_ = "ro_RO" , **snake_case_ , ): _lowerCAmelCase : int = src_lang _lowerCAmelCase : Any = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __UpperCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = self.lang_code_to_id[src_lang] _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = self.lang_code_to_id[lang] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class A (__SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , __lowerCAmelCase : str = None , __lowerCAmelCase : Dict = None , __lowerCAmelCase : Any = None , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Any = False , __lowerCAmelCase : Tuple = False , __lowerCAmelCase : int = None , **__lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" A__ = path_or_paths A__ = split if split or isinstance(_A , _A ) else """train""" A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def a_ ( self : Tuple ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class A (__SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Union[str, Any] = False , __lowerCAmelCase : List[str] = False , __lowerCAmelCase : str = None , **__lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def a_ ( self : str ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
274
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" from __future__ import annotations import math def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : Union[str, Any] ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) def UpperCamelCase__ ( ): snake_case : Optional[Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] snake_case : Union[str, Any] = math.log(len(__lowerCamelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[Any] = ProphetNetTokenizer _SCREAMING_SNAKE_CASE : Any = False def a ( self : str ) -> Dict: super().setUp() __lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: __lowerCAmelCase = """UNwant\u00E9d,running""" __lowerCAmelCase = """unwanted, running""" return input_text, output_text def a ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def a ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def a ( self : str ) -> Union[str, Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a ( self : List[str] ) -> List[str]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def a ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a ( self : str ) -> List[str]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a ( self : List[Any] ) -> Tuple: __lowerCAmelCase = BasicTokenizer(do_lower_case=_A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def a ( self : str ) -> List[Any]: __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowerCAmelCase = {} for i, token in enumerate(_A ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=_A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def a ( self : Tuple ) -> List[str]: __lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowerCAmelCase = tokenizer(_A , padding=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a ( self : List[Any] ) -> List[Any]: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def a ( self : Tuple ) -> str: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def a ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def a ( self : Dict ) -> Any: __lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
229
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
from __future__ import annotations def a ( A__ : str , A__ : List[Any] , A__ : Any ) -> Optional[Any]: """simple docstring""" _lowercase =list(range(len(__lowerCamelCase ) ) ) _lowercase =[v / w for v, w in zip(__lowerCamelCase , __lowerCamelCase )] index.sort(key=lambda A__ : ratio[i] , reverse=__lowerCamelCase ) _lowercase =0 _lowercase =[0] * len(__lowerCamelCase ) for i in index: if weight[i] <= capacity: _lowercase =1 max_value += value[i] capacity -= weight[i] else: _lowercase =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') __SCREAMING_SNAKE_CASE : List[str] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __SCREAMING_SNAKE_CASE : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : '''simple docstring''' __lowercase: str = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) __lowercase: Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) __lowercase: Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) __lowercase: Optional[int] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """A folder containing the training data."""}) __lowercase: int = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """A folder containing the validation data."""}) __lowercase: Optional[int] = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""}) __lowercase: Dict = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""}) __lowercase: List[Any] = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) __lowercase: Tuple = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowercase: str = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = {} if self.train_dir is not None: snake_case_ = self.train_dir if self.validation_dir is not None: snake_case_ = self.validation_dir snake_case_ = data_files if data_files else None @dataclass class __A : '''simple docstring''' __lowercase: Optional[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) __lowercase: str = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__SCREAMING_SNAKE_CASE)} , ) __lowercase: List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __lowercase: str = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __lowercase: Tuple = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) __lowercase: str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowercase: Any = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Name or path of preprocessor config."""}) __lowercase: Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowercase: int = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) __lowercase: Optional[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) __lowercase: List[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Stride to use for the encoder."""} , ) class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[Any]=192 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=0.6 ) ->List[Any]: """simple docstring""" snake_case_ = input_size snake_case_ = mask_patch_size snake_case_ = model_patch_size snake_case_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) snake_case_ = self.input_size // self.mask_patch_size snake_case_ = self.mask_patch_size // self.model_patch_size snake_case_ = self.rand_size**2 snake_case_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Tuple ) ->List[Any]: """simple docstring""" snake_case_ = np.random.permutation(self.token_count )[: self.mask_count] snake_case_ = np.zeros(self.token_count , dtype=_A ) snake_case_ = 1 snake_case_ = mask.reshape((self.rand_size, self.rand_size) ) snake_case_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case_ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _a ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , __lowerCamelCase , __lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCamelCase ) and data_args.train_val_split > 0.0: snake_case_ = ds["""train"""].train_test_split(data_args.train_val_split ) snake_case_ = split["""train"""] snake_case_ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: snake_case_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowerCamelCase ) elif model_args.model_name_or_path: snake_case_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: snake_case_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowerCamelCase , """decoder_type""" ): snake_case_ = """simmim""" # adapt config snake_case_ = model_args.image_size if model_args.image_size is not None else config.image_size snake_case_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size snake_case_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: snake_case_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowerCamelCase ) elif model_args.model_name_or_path: snake_case_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowerCamelCase ) else: snake_case_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } snake_case_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: snake_case_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ = AutoModelForMaskedImageModeling.from_config(__lowerCamelCase ) if training_args.do_train: snake_case_ = ds["""train"""].column_names else: snake_case_ = ds["""validation"""].column_names if data_args.image_column_name is not None: snake_case_ = data_args.image_column_name elif "image" in column_names: snake_case_ = """image""" elif "img" in column_names: snake_case_ = """img""" else: snake_case_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py snake_case_ = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator snake_case_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_SCREAMING_SNAKE_CASE ): snake_case_ = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] snake_case_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case_ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case_ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Initialize our trainer snake_case_ = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ = trainer.evaluate() trainer.log_metrics("""eval""" , __lowerCamelCase ) trainer.save_metrics("""eval""" , __lowerCamelCase ) # Write model card and (optionally) push to hub snake_case_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) if __name__ == "__main__": main()
347
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _A = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _A = KandinskyVaaPriorPipeline _A = ['prompt'] _A = ['prompt', 'negative_prompt'] _A = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] _A = False @property def _lowerCamelCase ( self :Optional[Any] ) -> Any: return 3_2 @property def _lowerCamelCase ( self :Optional[int] ) -> Tuple: return 3_2 @property def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: return self.time_input_dim @property def _lowerCamelCase ( self :List[str] ) -> List[Any]: return self.time_input_dim * 4 @property def _lowerCamelCase ( self :Optional[Any] ) -> int: return 1_0_0 @property def _lowerCamelCase ( self :Union[str, Any] ) -> List[Any]: __UpperCamelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_A ) @property def _lowerCamelCase ( self :int ) -> Tuple: torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __UpperCamelCase : Dict = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCamelCase : Union[str, Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowerCamelCase ( self :str ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __UpperCamelCase : Any = CLIPVisionModelWithProjection(_A ) return model @property def _lowerCamelCase ( self :Dict ) -> Optional[int]: __UpperCamelCase : Tuple = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor def _lowerCamelCase ( self :Tuple ) -> List[Any]: __UpperCamelCase : List[str] = self.dummy_prior __UpperCamelCase : Union[str, Any] = self.dummy_image_encoder __UpperCamelCase : List[Any] = self.dummy_text_encoder __UpperCamelCase : int = self.dummy_tokenizer __UpperCamelCase : int = self.dummy_image_processor __UpperCamelCase : Tuple = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=_A , clip_sample_range=10.0 , ) __UpperCamelCase : str = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _lowerCamelCase ( self :Tuple , a :Dict , a :int=0 ) -> Any: if str(_A ).startswith("mps" ): __UpperCamelCase : Tuple = torch.manual_seed(_A ) else: __UpperCamelCase : Any = torch.Generator(device=_A ).manual_seed(_A ) __UpperCamelCase : Union[str, Any] = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _lowerCamelCase ( self :int ) -> Optional[int]: __UpperCamelCase : List[str] = "cpu" __UpperCamelCase : Tuple = self.get_dummy_components() __UpperCamelCase : Dict = self.pipeline_class(**_A ) __UpperCamelCase : str = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) ) __UpperCamelCase : Optional[Any] = output.image_embeds __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __UpperCamelCase : Any = image[0, -1_0:] __UpperCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __UpperCamelCase : Optional[int] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = torch_device == "cpu" __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[str] = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def _lowerCamelCase ( self :Optional[Any] ) -> int: __UpperCamelCase : Union[str, Any] = torch_device == "cpu" __UpperCamelCase : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
232
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : str = len(__lowerCamelCase ) snake_case : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case : List[Any] = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): snake_case : Tuple = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: snake_case : Dict = subset[i - 1][j] if arr[i - 1] <= j: snake_case : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
124
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowerCAmelCase__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _A ( A__ ): """simple docstring""" __lowercase = torch.load(__lowerCamelCase , map_location='''cpu''' ) return sd def _A ( A__ , A__ , A__=rename_keys_prefix ): """simple docstring""" __lowercase = OrderedDict() __lowercase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowercase = key for name_pair in rename_keys_prefix: __lowercase = new_key.replace(name_pair[0] , name_pair[1] ) __lowercase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowercase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _A ( A__ , A__ ): """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowercase = '''pretraining''' if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} __lowercase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} __lowercase = '''vqa_advanced''' elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} __lowercase = '''vqa''' elif "nlvr" in checkpoint_path: __lowercase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } __lowercase = '''nlvr''' __lowercase = VisualBertConfig(**__lowerCamelCase ) # Load State Dict __lowercase = load_state_dict(__lowerCamelCase ) __lowercase = get_new_dict(__lowerCamelCase , __lowerCamelCase ) if model_type == "pretraining": __lowercase = VisualBertForPreTraining(__lowerCamelCase ) elif model_type == "vqa": __lowercase = VisualBertForQuestionAnswering(__lowerCamelCase ) elif model_type == "nlvr": __lowercase = VisualBertForVisualReasoning(__lowerCamelCase ) elif model_type == "multichoice": __lowercase = VisualBertForMultipleChoice(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _A ( _lowerCAmelCase="ro" , _lowerCAmelCase="en" , _lowerCAmelCase="wmt16" , _lowerCAmelCase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) __lowercase =f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __lowercase =datasets.load_dataset(__lowerCamelCase , __lowerCamelCase ) if save_dir is None: __lowercase =f"""{dataset}-{pair}""" __lowercase =Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __lowercase ='val' if split == 'validation' else split __lowercase =save_dir.joinpath(f"""{fn}.source""" ) __lowercase =save_dir.joinpath(f"""{fn}.target""" ) __lowercase =src_path.open('w+' ) __lowercase =tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowercase =x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
166
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _UpperCAmelCase ( _lowerCamelCase : List[Any] ) -> Tuple: _lowerCAmelCase : List[Any] = int(number**0.5 ) return number == sq * sq def _UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Dict ) -> Any: _lowerCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowerCAmelCase : Dict = x_den * y_den * z_den _lowerCAmelCase : List[str] = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] = 35 ) -> List[Any]: _lowerCAmelCase : List[str] = set() _lowerCAmelCase : int = 42 _lowerCAmelCase : List[Any] = Fraction(0 ) _lowerCAmelCase : int = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowerCAmelCase : int = x_num * y_den + x_den * y_num _lowerCAmelCase : int = x_den * y_den _lowerCAmelCase : Union[str, Any] = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : List[str] = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 _lowerCAmelCase : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowerCAmelCase : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): _lowerCAmelCase : Any = int(sqrt(__lowerCamelCase ) ) _lowerCAmelCase : List[str] = int(sqrt(__lowerCamelCase ) ) _lowerCAmelCase : Any = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : List[str] = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 _lowerCAmelCase : Tuple = x_num * y_num _lowerCAmelCase : Tuple = x_den * y_num + x_num * y_den _lowerCAmelCase : Any = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Any = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 _lowerCAmelCase : Tuple = x_num * x_num * y_num * y_num _lowerCAmelCase : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): _lowerCAmelCase : List[Any] = int(sqrt(__lowerCamelCase ) ) _lowerCAmelCase : str = int(sqrt(__lowerCamelCase ) ) _lowerCAmelCase : int = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowerCAmelCase : Tuple = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
309
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A : '''simple docstring''' def __init__( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : int=6 , __lowerCAmelCase : Optional[Any]=17 , __lowerCAmelCase : Tuple=23 , __lowerCAmelCase : Tuple=11 , __lowerCAmelCase : List[Any]=True , ) -> Optional[Any]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = act_dim A__ = state_dim A__ = hidden_size A__ = max_length A__ = is_training def a_ ( self : List[Any] ) -> Any: """simple docstring""" A__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) A__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) A__ = floats_tensor((self.batch_size, self.seq_length, 1) ) A__ = floats_tensor((self.batch_size, self.seq_length, 1) ) A__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) A__ = random_attention_mask((self.batch_size, self.seq_length) ) A__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a_ ( self : str ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , ) -> List[Any]: """simple docstring""" A__ = DecisionTransformerModel(config=_A ) model.to(_A ) model.eval() A__ = model(_A , _A , _A , _A , _A , _A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a_ ( self : Any ) -> Optional[int]: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : Tuple = () __lowerCamelCase : Optional[Any] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : Dict = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : Tuple = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Any = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Dict = False __lowerCamelCase : List[str] = False __lowerCamelCase : str = False __lowerCamelCase : Union[str, Any] = False def a_ ( self : str ) -> Dict: """simple docstring""" A__ = DecisionTransformerModelTester(self ) A__ = ConfigTester(self , config_class=_A , hidden_size=37 ) def a_ ( self : Any ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Tuple ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @slow def a_ ( self : List[Any] ) -> List[str]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DecisionTransformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_A ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(_A )] , _A ) @require_torch class A (unittest.TestCase ): '''simple docstring''' @slow def a_ ( self : int ) -> int: """simple docstring""" A__ = 2 # number of steps of autoregressive prediction we will perform A__ = 10 # defined by the RL environment, may be normalized A__ = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) A__ = model.to(_A ) A__ = model.config torch.manual_seed(0 ) A__ = torch.randn(1 , 1 , config.state_dim ).to(device=_A , dtype=torch.floataa ) # env.reset() A__ = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_A ) A__ = torch.tensor(_A , device=_A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) A__ = state A__ = torch.zeros(1 , 0 , config.act_dim , device=_A , dtype=torch.floataa ) A__ = torch.zeros(1 , 0 , device=_A , dtype=torch.floataa ) A__ = torch.tensor(0 , device=_A , dtype=torch.long ).reshape(1 , 1 ) for step in range(_A ): A__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_A )] , dim=1 ) A__ = torch.cat([rewards, torch.zeros(1 , 1 , device=_A )] , dim=1 ) A__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): A__ , A__ , A__ = model( states=_A , actions=_A , rewards=_A , returns_to_go=_A , timesteps=_A , attention_mask=_A , return_dict=_A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) A__ , A__ , A__ , A__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_A , dtype=torch.floataa ), 1.0, False, {}, ) A__ = action_pred[0, -1] A__ = torch.cat([states, state] , dim=1 ) A__ = returns_to_go[0, -1] - reward A__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) A__ = torch.cat( [timesteps, torch.ones((1, 1) , device=_A , dtype=torch.long ) * (step + 1)] , dim=1 )
274
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase__ ( lowercase__ : Optional[Any] ): for param in module.parameters(): snake_case : List[Any] = False def UpperCamelCase__ ( ): snake_case : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues" " with generations." ) return device def UpperCamelCase__ ( lowercase__ : Optional[Any] ): snake_case : str = plt.imshow(__lowerCamelCase ) fig.axes.get_xaxis().set_visible(__lowerCamelCase ) fig.axes.get_yaxis().set_visible(__lowerCamelCase ) plt.show() def UpperCamelCase__ ( ): snake_case : Tuple = datetime.now() snake_case : Any = current_time.strftime("%H:%M:%S" ) return timestamp
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _A : Tuple = '''\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n''' _A : Optional[Any] = '''\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n''' _A : Tuple = '''\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def a ( self : int ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any = 1 , SCREAMING_SNAKE_CASE__ : Union[str, Any] = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_A , hypotheses=_A , min_len=_A , max_len=_A ) }
229
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _a = 42 @flax_register_to_config class __lowerCAmelCase ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _a = 32 _a = 4 _a = 4 _a = ( """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """DownBlock2D""", ) _a = ("""UpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""") _a = False _a = (320, 640, 1_280, 1_280) _a = 2 _a = 8 _a = None _a = 1_280 _a = 0.0 _a = False _a = jnp.floataa _a = True _a = 0 _a = False def A__ ( self , lowerCAmelCase ) -> FrozenDict: '''simple docstring''' _lowercase =(1, self.in_channels, self.sample_size, self.sample_size) _lowercase =jnp.zeros(_A , dtype=jnp.floataa ) _lowercase =jnp.ones((1,) , dtype=jnp.intaa ) _lowercase =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowercase , _lowercase =jax.random.split(_A ) _lowercase ={'params': params_rng, 'dropout': dropout_rng} return self.init(_A , _A , _A , _A )["params"] def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =self.block_out_channels _lowercase =block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowercase =self.num_attention_heads or self.attention_head_dim # input _lowercase =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowercase =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowercase =FlaxTimestepEmbedding(_A , dtype=self.dtype ) _lowercase =self.only_cross_attention if isinstance(_A , _A ): _lowercase =(only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): _lowercase =(num_attention_heads,) * len(self.down_block_types ) # down _lowercase =[] _lowercase =block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowercase =output_channel _lowercase =block_out_channels[i] _lowercase =i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowercase =FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowercase =FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) _lowercase =down_blocks # mid _lowercase =FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowercase =[] _lowercase =list(reversed(_A ) ) _lowercase =list(reversed(_A ) ) _lowercase =list(reversed(_A ) ) _lowercase =reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowercase =output_channel _lowercase =reversed_block_out_channels[i] _lowercase =reversed_block_out_channels[min(i + 1 , len(_A ) - 1 )] _lowercase =i == len(_A ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowercase =FlaxCrossAttnUpBlockaD( in_channels=_A , out_channels=_A , prev_output_channel=_A , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowercase =FlaxUpBlockaD( in_channels=_A , out_channels=_A , prev_output_channel=_A , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_A ) _lowercase =output_channel _lowercase =up_blocks # out _lowercase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowercase =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = True , lowerCAmelCase = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(_A , jnp.ndarray ): _lowercase =jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowercase =timesteps.astype(dtype=jnp.floataa ) _lowercase =jnp.expand_dims(_A , 0 ) _lowercase =self.time_proj(_A ) _lowercase =self.time_embedding(_A ) # 2. pre-process _lowercase =jnp.transpose(_A , (0, 2, 3, 1) ) _lowercase =self.conv_in(_A ) # 3. down _lowercase =(sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): _lowercase , _lowercase =down_block(_A , _A , _A , deterministic=not train ) else: _lowercase , _lowercase =down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowercase =() for down_block_res_sample, down_block_additional_residual in zip( _A , _A ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowercase =new_down_block_res_samples # 4. mid _lowercase =self.mid_block(_A , _A , _A , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowercase =down_block_res_samples[-(self.layers_per_block + 1) :] _lowercase =down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_A , _A ): _lowercase =up_block( _A , temb=_A , encoder_hidden_states=_A , res_hidden_states_tuple=_A , deterministic=not train , ) else: _lowercase =up_block(_A , temb=_A , res_hidden_states_tuple=_A , deterministic=not train ) # 6. post-process _lowercase =self.conv_norm_out(_A ) _lowercase =nn.silu(_A ) _lowercase =self.conv_out(_A ) _lowercase =jnp.transpose(_A , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_A )
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __A (__SCREAMING_SNAKE_CASE): '''simple docstring''' __lowercase: Tuple = """trocr""" __lowercase: Tuple = ["""past_key_values"""] __lowercase: Optional[Any] = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str]=50_265 , UpperCAmelCase_ : int=1_024 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Tuple=4_096 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : str=2 , **UpperCAmelCase_ : str , ) ->int: """simple docstring""" snake_case_ = vocab_size snake_case_ = d_model snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = activation_function snake_case_ = max_position_embeddings snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = init_std snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = scale_embedding snake_case_ = use_learned_position_embeddings snake_case_ = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
231
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
import string def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> str: '''simple docstring''' __UpperCamelCase : Dict = "" for i in sequence: __UpperCamelCase : Any = ord(__lowerCamelCase) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : List[str] = string.ascii_letters __UpperCamelCase : Optional[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__lowerCamelCase)] if c in letters else c for c in sequence) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' from timeit import timeit print("Running performance benchmarks...") __UpperCamelCase : List[str] = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=__lowerCamelCase)} seconds') print(F'> atbash(): {timeit("atbash(printable)" , setup=__lowerCamelCase)} seconds') if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
232
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
from __future__ import annotations lowerCamelCase : List[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,) -> Union[str, Any]: snake_case : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid snake_case : List[Any] = 1 snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid snake_case : Dict = init[0] snake_case : int = init[1] snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell snake_case : Dict = [[f, g, x, y]] snake_case : Optional[int] = False # flag that is set when search is complete snake_case : Optional[Any] = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case : int = cell.pop() snake_case : Tuple = next_cell[2] snake_case : Any = next_cell[3] snake_case : Tuple = next_cell[1] if x == goal[0] and y == goal[1]: snake_case : List[Any] = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions snake_case : Union[str, Any] = x + DIRECTIONS[i][0] snake_case : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case : List[str] = g + cost snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case : Dict = 1 snake_case : Dict = i snake_case : Union[str, Any] = [] snake_case : Tuple = goal[0] snake_case : List[str] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] snake_case : Any = y - DIRECTIONS[action[x][y]][1] snake_case : Tuple = xa snake_case : int = ya invpath.append([x, y] ) snake_case : List[Any] = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : Dict = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : Any = 1 # the cost map which pushes the path closer to the goal lowerCamelCase : List[str] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : Dict = 9_9 lowerCamelCase , lowerCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__lowerCamelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =args.pruning_method __lowercase =args.threshold __lowercase =args.model_name_or_path.rstrip('/' ) __lowercase =args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) __lowercase =torch.load(os.path.join(__lowerCamelCase , 'pytorch_model.bin' ) ) __lowercase ={} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __lowercase =tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: __lowercase =tensor print(f"""Copied layer {name}""" ) elif "bias" in name: __lowercase =tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": __lowercase =MagnitudeBinarizer.apply(inputs=__lowerCamelCase , threshold=__lowerCamelCase ) __lowercase =tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue __lowercase =name[:-6] __lowercase =model[f"""{prefix_}mask_scores"""] __lowercase =TopKBinarizer.apply(__lowerCamelCase , __lowerCamelCase ) __lowercase =tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __lowercase =name[:-6] __lowercase =model[f"""{prefix_}mask_scores"""] __lowercase =ThresholdBinarizer.apply(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowercase =tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue __lowercase =name[:-6] __lowercase =model[f"""{prefix_}mask_scores"""] __lowercase , __lowercase =-0.1, 1.1 __lowercase =torch.sigmoid(__lowerCamelCase ) __lowercase =s * (r - l) + l __lowercase =s_bar.clamp(min=0.0 , max=1.0 ) __lowercase =tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: __lowercase =os.path.join( os.path.dirname(__lowerCamelCase ) , f"""bertarized_{os.path.basename(__lowerCamelCase )}""" ) if not os.path.isdir(__lowerCamelCase ): shutil.copytree(__lowerCamelCase , __lowerCamelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowerCamelCase = parser.parse_args() main(args)
166
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class a_ (__SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = ["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = True , snake_case_ = True , snake_case_ = 1 / 2_5_5 , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ): super().__init__(**_A ) _lowerCAmelCase : int = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _lowerCAmelCase : Any = get_size_dict(_A ) _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _lowerCAmelCase : Dict = get_size_dict(_A , default_to_square=_A , param_name="""crop_size""" ) _lowerCAmelCase : Union[str, Any] = do_resize _lowerCAmelCase : Tuple = do_rescale _lowerCAmelCase : str = do_normalize _lowerCAmelCase : List[Any] = do_center_crop _lowerCAmelCase : List[Any] = crop_size _lowerCAmelCase : int = size _lowerCAmelCase : Optional[int] = resample _lowerCAmelCase : Tuple = rescale_factor _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): _lowerCAmelCase : int = get_size_dict(_A ) if "shortest_edge" in size: _lowerCAmelCase : List[str] = get_resize_output_image_size(_A , size=size["""shortest_edge"""] , default_to_square=_A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowerCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ): return rescale(_A , scale=_A , data_format=_A , **_A ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Optional[Any] = get_size_dict(_A , param_name="""crop_size""" , default_to_square=_A ) _lowerCAmelCase : Dict = resample if resample is not None else self.resample _lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Dict = size if size is not None else self.size _lowerCAmelCase : Dict = get_size_dict(_A ) if not is_batched(_A ): _lowerCAmelCase : Tuple = [images] if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : Dict = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase : Tuple = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: _lowerCAmelCase : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _lowerCAmelCase : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _lowerCAmelCase : Any = [to_channel_dimension_format(_A , _A ) for image in images] _lowerCAmelCase : Tuple = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A : Optional[int] = { '''sample_size''': 3_2, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_0_0_0, '''block_out_channels''': [3_2, 6_4], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A : int = { '''sample_size''': 6_4, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_0_0_0, '''block_out_channels''': [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], '''attention_head_dim''': 6_4, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A : Tuple = { '''sample_size''': 2_5_6, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], '''attention_head_dim''': 6_4, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A : Tuple = { '''num_train_timesteps''': 4_0, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A : int = { '''num_train_timesteps''': 2_0_1, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A : Optional[Any] = { '''num_train_timesteps''': 1_5_1, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowerCamelCase ( __a :str ) -> Tuple: """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( __a :Dict , __a :Tuple , __a :Dict , __a :Dict , __a :str=False ) -> int: """simple docstring""" A__ = checkpoint[F'{old_prefix}.in_layers.0.weight'] A__ = checkpoint[F'{old_prefix}.in_layers.0.bias'] A__ = checkpoint[F'{old_prefix}.in_layers.2.weight'] A__ = checkpoint[F'{old_prefix}.in_layers.2.bias'] A__ = checkpoint[F'{old_prefix}.emb_layers.1.weight'] A__ = checkpoint[F'{old_prefix}.emb_layers.1.bias'] A__ = checkpoint[F'{old_prefix}.out_layers.0.weight'] A__ = checkpoint[F'{old_prefix}.out_layers.0.bias'] A__ = checkpoint[F'{old_prefix}.out_layers.3.weight'] A__ = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: A__ = checkpoint[F'{old_prefix}.skip_connection.weight'] A__ = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowerCamelCase ( __a :int , __a :Tuple , __a :Any , __a :Optional[int] , __a :List[Any]=None ) -> Optional[Any]: """simple docstring""" A__ , A__ , A__ = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) A__ , A__ , A__ = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) A__ = checkpoint[F'{old_prefix}.norm.weight'] A__ = checkpoint[F'{old_prefix}.norm.bias'] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( __a :str , __a :Any ) -> Dict: """simple docstring""" A__ = torch.load(__lowerCamelCase , map_location="""cpu""" ) A__ = {} A__ = checkpoint["""time_embed.0.weight"""] A__ = checkpoint["""time_embed.0.bias"""] A__ = checkpoint["""time_embed.2.weight"""] A__ = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: A__ = checkpoint["""label_emb.weight"""] A__ = checkpoint["""input_blocks.0.0.weight"""] A__ = checkpoint["""input_blocks.0.0.bias"""] A__ = unet_config["""down_block_types"""] A__ = unet_config["""layers_per_block"""] A__ = unet_config["""attention_head_dim"""] A__ = unet_config["""block_out_channels"""] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(__lowerCamelCase ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCamelCase ): A__ = F'down_blocks.{i}.resnets.{j}' A__ = F'input_blocks.{current_layer}.0' A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCamelCase ): A__ = F'down_blocks.{i}.resnets.{j}' A__ = F'input_blocks.{current_layer}.0' A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) A__ = F'down_blocks.{i}.attentions.{j}' A__ = F'input_blocks.{current_layer}.1' A__ = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: A__ = F'down_blocks.{i}.downsamplers.0' A__ = F'input_blocks.{current_layer}.0' A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = """mid_block.resnets.0""" A__ = """middle_block.0""" A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A__ = """mid_block.attentions.0""" A__ = """middle_block.1""" A__ = convert_attention(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A__ = """mid_block.resnets.1""" A__ = """middle_block.2""" A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A__ = 0 A__ = unet_config["""up_block_types"""] for i, layer_type in enumerate(__lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = F'up_blocks.{i}.resnets.{j}' A__ = F'output_blocks.{current_layer}.0' A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: A__ = F'up_blocks.{i}.upsamplers.0' A__ = F'output_blocks.{current_layer-1}.1' A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = F'up_blocks.{i}.resnets.{j}' A__ = F'output_blocks.{current_layer}.0' A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_skip=__lowerCamelCase ) A__ = F'up_blocks.{i}.attentions.{j}' A__ = F'output_blocks.{current_layer}.1' A__ = convert_attention( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) current_layer += 1 if i != len(__lowerCamelCase ) - 1: A__ = F'up_blocks.{i}.upsamplers.0' A__ = F'output_blocks.{current_layer-1}.2' A__ = convert_resnet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A__ = checkpoint["""out.0.weight"""] A__ = checkpoint["""out.0.bias"""] A__ = checkpoint["""out.2.weight"""] A__ = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": A : str = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') A : str = parser.parse_args() A : List[str] = strabool(args.class_cond) A : Optional[int] = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: A : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A : Any = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: A : Optional[int] = None A : int = con_pt_to_diffuser(args.unet_path, unet_config) A : Union[str, Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A : Optional[int] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A : int = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') A : int = CMStochasticIterativeScheduler(**scheduler_config) A : Optional[int] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
274
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = cached_file(_A , _A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A , _A ) ) ) with open(os.path.join(_A , "refs" , "main" ) ) as f: snake_case : Union[str, Any] = f.read() self.assertEqual(_A , os.path.join(_A , "snapshots" , _A , _A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. snake_case : Union[str, Any] = cached_file(_A , _A ) self.assertEqual(_A , _A ) # Using a specific revision to test the full commit hash. snake_case : List[str] = cached_file(_A , _A , revision="9b8c223" ) self.assertEqual(_A , os.path.join(_A , "snapshots" , _A , _A ) ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex(_A , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , _A ) with self.assertRaisesRegex(_A , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(_A , _A , revision="aaaa" ) with self.assertRaisesRegex(_A , "does not appear to have a file named" ): snake_case : List[str] = cached_file(_A , "conf" ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex(_A , "does not appear to have a file named" ): snake_case : Optional[int] = cached_file(_A , "conf" ) with open(os.path.join(_A , "refs" , "main" ) ) as f: snake_case : str = f.read() self.assertTrue(os.path.isfile(os.path.join(_A , ".no_exist" , _A , "conf" ) ) ) snake_case : int = cached_file(_A , "conf" , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) snake_case : int = cached_file(_A , "conf" , local_files_only=_A , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) snake_case : Any = mock.Mock() snake_case : str = 500 snake_case : Tuple = {} snake_case : List[Any] = HTTPError snake_case : Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_A ) as mock_head: snake_case : Any = cached_file(_A , "conf" , _raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self ): """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , _A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , _A , revision="ahaha" ) snake_case : Tuple = get_file_from_repo("bert-base-cased" , _A ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : List[Any] = json.loads(open(_A , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Dict = Path(_A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(_A , "a.txt" ) , str(_A ) ) self.assertIsNone(get_file_from_repo(_A , "b.txt" ) )
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowercase : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int]=sys.maxsize ) -> str: __lowerCAmelCase = """bilinear""" __lowerCAmelCase = max_size __lowerCAmelCase = short_edge_length def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: __lowerCAmelCase = [] for img in imgs: __lowerCAmelCase , __lowerCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize __lowerCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __lowerCAmelCase = size * 1.0 / min(_A , _A ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size if max(_A , _A ) > self.max_size: __lowerCAmelCase = self.max_size * 1.0 / max(_A , _A ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase = int(neww + 0.5 ) __lowerCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowerCAmelCase = Image.fromarray(_A ) __lowerCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __lowerCAmelCase = np.asarray(_A ) else: __lowerCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowerCAmelCase = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A ).squeeze(0 ) img_augs.append(_A ) return img_augs class _lowercase : '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: __lowerCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __lowerCAmelCase = cfg.INPUT.FORMAT __lowerCAmelCase = cfg.SIZE_DIVISIBILITY __lowerCAmelCase = cfg.PAD_VALUE __lowerCAmelCase = cfg.INPUT.MAX_SIZE_TEST __lowerCAmelCase = cfg.MODEL.DEVICE __lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCAmelCase = lambda SCREAMING_SNAKE_CASE__ : (x - self.pixel_mean) / self.pixel_std def a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: __lowerCAmelCase = tuple(max(_A ) for s in zip(*[img.shape for img in images] ) ) __lowerCAmelCase = [im.shape[-2:] for im in images] __lowerCAmelCase = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A ) ] return torch.stack(_A ), torch.tensor(_A ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Optional[Any]: with torch.no_grad(): if not isinstance(_A , _A ): __lowerCAmelCase = [images] if single_image: assert len(_A ) == 1 for i in range(len(_A ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_A , images.pop(_A ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __lowerCAmelCase = torch.tensor([im.shape[:2] for im in images] ) __lowerCAmelCase = self.aug(_A ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowerCAmelCase = [self.normalizer(_A ) for x in images] # now pad them to do the following operations __lowerCAmelCase , __lowerCAmelCase = self.pad(_A ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowerCAmelCase = torch.true_divide(_A , _A ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : Tuple ) -> Tuple: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : str ) -> Optional[Any]: '''simple docstring''' assert torch.isfinite(__lowerCamelCase ).all(), "Box tensor contains infinite or NaN!" __lowerCAmelCase , __lowerCAmelCase = box_size tensor[:, 0].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 1].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 2].clamp_(min=0 , max=__lowerCamelCase ) tensor[:, 3].clamp_(min=0 , max=__lowerCamelCase )
229
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=10 , lowerCAmelCase=3 , lowerCAmelCase=32 * 4 , lowerCAmelCase=32 * 6 , lowerCAmelCase=4 , lowerCAmelCase=32 , ) -> Any: '''simple docstring''' _lowercase =parent _lowercase =batch_size _lowercase =is_training _lowercase =use_auxiliary_loss _lowercase =num_queries _lowercase =num_channels _lowercase =min_size _lowercase =max_size _lowercase =num_labels _lowercase =mask_feature_size def A__ ( self ) -> str: '''simple docstring''' _lowercase =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) _lowercase =torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) _lowercase =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() _lowercase =(torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() _lowercase =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self ) -> Dict: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.prepare_config_and_inputs() _lowercase ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> str: '''simple docstring''' _lowercase =output.encoder_hidden_states _lowercase =output.pixel_decoder_hidden_states _lowercase =output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_config.decoder_layers ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> List[str]: '''simple docstring''' with torch.no_grad(): _lowercase =MaskFormerModel(config=_A ) model.to(_A ) model.eval() _lowercase =model(pixel_values=_A , pixel_mask=_A ) _lowercase =model(_A , output_hidden_states=_A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =MaskFormerForInstanceSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowercase =model(pixel_values=_A , pixel_mask=_A ) _lowercase =model(_A ) comm_check_on_output(_A ) _lowercase =model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _a = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =MaskFormerModelTester(self ) _lowercase =ConfigTester(self , config_class=_A , has_text_modality=_A ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A , **_A , output_hidden_states=_A ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def A__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def A__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='MaskFormer is not a generative model' ) def A__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def A__ ( self ) -> str: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ) -> int: '''simple docstring''' pass def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(_A ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) @slow def A__ ( self ) -> List[Any]: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: _lowercase =MaskFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =(self.model_tester.min_size,) * 2 _lowercase ={ 'pixel_values': torch.randn((2, 3, *size) , device=_A ), 'mask_labels': torch.randn((2, 10, *size) , device=_A ), 'class_labels': torch.zeros(2 , 10 , device=_A ).long(), } _lowercase =MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_A ) _lowercase =model(**_A ) self.assertTrue(outputs.loss is not None ) def A__ ( self ) -> int: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A , **_A , output_hidden_states=_A ) def A__ ( self ) -> str: '''simple docstring''' _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(_A ).to(_A ) _lowercase =model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def A__ ( self ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowercase =self.all_model_classes[1] _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() _lowercase =model_class(_A ) model.to(_A ) model.train() _lowercase =model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.all_model_classes[1] _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() _lowercase =True _lowercase =True _lowercase =model_class(_A ) model.to(_A ) model.train() _lowercase =model(_A , mask_labels=_A , class_labels=_A ) _lowercase =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowercase =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowercase =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowercase =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase_ = 1e-4 def a ( ) -> str: """simple docstring""" _lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): @cached_property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_A ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(_A , return_tensors='pt' ).to(_A ) _lowercase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowercase =model(**_A ) _lowercase =torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _lowercase =torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _lowercase =torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_A ) .eval() ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(_A , return_tensors='pt' ).to(_A ) _lowercase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowercase =model(**_A ) # masks_queries_logits _lowercase =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowercase =[ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _lowercase =torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits _lowercase =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowercase =torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(_A ) .eval() ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(_A , return_tensors='pt' ).to(_A ) _lowercase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): _lowercase =model(**_A ) # masks_queries_logits _lowercase =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowercase =[[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _lowercase =torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits _lowercase =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowercase =torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_A ) .eval() ) _lowercase =self.default_image_processor _lowercase =image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) _lowercase =inputs['pixel_values'].to(_A ) _lowercase =[el.to(_A ) for el in inputs['mask_labels']] _lowercase =[el.to(_A ) for el in inputs['class_labels']] with torch.no_grad(): _lowercase =model(**_A ) self.assertTrue(outputs.loss is not None )
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __SCREAMING_SNAKE_CASE : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __SCREAMING_SNAKE_CASE : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def _a ( ) -> int: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10_000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10_000 , globals=globals() , ) ) benchmark()
347
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _A = input("Enter image url: ").strip() print(f"""Downloading image from {url} ...""") _A = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image _A = soup.find("meta", {"property": "og:image"})["content"] _A = requests.get(image_url).content _A = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
231
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> Tuple: __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = BlipImageProcessor() __UpperCamelCase : Dict = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __UpperCamelCase : List[Any] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) __UpperCamelCase : Optional[int] = InstructBlipProcessor(_A , _A , _A ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self :Dict , **a :List[Any] ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).tokenizer def _lowerCamelCase ( self :Optional[Any] , **a :List[Any] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def _lowerCamelCase ( self :str , **a :Tuple ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).qformer_tokenizer def _lowerCamelCase ( self :str ) -> Dict: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __UpperCamelCase : List[str] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self :List[Any] ) -> Tuple: __UpperCamelCase : List[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __UpperCamelCase : str = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __UpperCamelCase : str = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) self.assertIsInstance(processor.qformer_tokenizer , _A ) def _lowerCamelCase ( self :Any ) -> str: __UpperCamelCase : List[Any] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : List[str] = self.get_qformer_tokenizer() __UpperCamelCase : Dict = InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : Dict = image_processor(_A , return_tensors="np" ) __UpperCamelCase : Tuple = processor(images=_A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self :List[Any] ) -> int: __UpperCamelCase : str = self.get_image_processor() __UpperCamelCase : Optional[int] = self.get_tokenizer() __UpperCamelCase : Tuple = self.get_qformer_tokenizer() __UpperCamelCase : Dict = InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) __UpperCamelCase : Any = "lower newer" __UpperCamelCase : int = processor(text=_A ) __UpperCamelCase : Dict = tokenizer(_A , return_token_type_ids=_A ) __UpperCamelCase : int = qformer_tokenizer(_A , return_token_type_ids=_A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : List[Any] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : List[str] = self.get_qformer_tokenizer() __UpperCamelCase : Dict = InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) __UpperCamelCase : int = "lower newer" __UpperCamelCase : Optional[int] = self.prepare_image_inputs() __UpperCamelCase : int = processor(text=_A , images=_A ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def _lowerCamelCase ( self :List[str] ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : List[Any] = self.get_tokenizer() __UpperCamelCase : int = self.get_qformer_tokenizer() __UpperCamelCase : Optional[Any] = InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) __UpperCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : Any = processor.batch_decode(_A ) __UpperCamelCase : int = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def _lowerCamelCase ( self :Union[str, Any] ) -> List[str]: __UpperCamelCase : str = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Dict = self.get_qformer_tokenizer() __UpperCamelCase : Dict = InstructBlipProcessor( tokenizer=_A , image_processor=_A , qformer_tokenizer=_A ) __UpperCamelCase : str = "lower newer" __UpperCamelCase : int = self.prepare_image_inputs() __UpperCamelCase : str = processor(text=_A , images=_A ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
232
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: return "".join(chr(ord(__lowerCamelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
124
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int]=1_3 ,lowercase__ : int=3 ,lowercase__ : str=True ,lowercase__ : Optional[int]=True ,lowercase__ : str=0.1 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Optional[int]=2_2_4 ,lowercase__ : str=1_0_0_0 ,lowercase__ : List[str]=[3, 3, 6, 4] ,lowercase__ : List[str]=[4_8, 5_6, 1_1_2, 2_2_0] ,): __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = num_labels __lowercase = image_size __lowercase = layer_depths __lowercase = embed_dims def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Tuple ): return SwiftFormerConfig( depths=self.layer_depths ,embed_dims=self.embed_dims ,mlp_ratio=4 ,downsamples=[True, True, True, True] ,hidden_act='''gelu''' ,num_labels=self.num_labels ,down_patch_size=3 ,down_stride=2 ,down_pad=1 ,drop_rate=0.0 ,drop_path_rate=0.0 ,use_layer_scale=_A ,layer_scale_init_value=1e-5 ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ): __lowercase = SwiftFormerModel(config=_A ) model.to(_A ) model.eval() __lowercase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dims[-1], 7, 7) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = self.num_labels __lowercase = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() __lowercase = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) __lowercase = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): ((__lowercase) , (__lowercase) , (__lowercase)) = self.prepare_config_and_inputs() __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = SwiftFormerModelTester(self ) __lowercase = ConfigTester( self ,config_class=_A ,has_text_modality=_A ,hidden_size=3_7 ,num_attention_heads=1_2 ,num_hidden_layers=1_2 ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_A ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_A ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_A ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SwiftFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): def check_hidden_states_output(lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_A ,_A ) ) __lowercase = outputs.hidden_states __lowercase = 8 self.assertEqual(len(_A ) ,_A ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_A ) ): self.assertEqual( hidden_states[i].shape ,torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_A ,_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Tuple ): def _config_zero_init(lowercase__ : Any ): __lowercase = copy.deepcopy(_A ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_A ,_A ,1e-1_0 ) if isinstance(getattr(_A ,_A ,_A ) ,_A ): __lowercase = _config_zero_init(getattr(_A ,_A ) ) setattr(_A ,_A ,_A ) return configs_no_init __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(_A ) for model_class in self.all_model_classes: __lowercase = model_class(config=_A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() ,[0.0, 1.0] ,msg=F"Parameter {name} of model {model_class} seems not properly initialized" ,) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(_A ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_A ,return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): __lowercase = model(**_A ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,_A ) __lowercase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1e-4 ) )
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BlipImageProcessor""" lowerCAmelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =False super().__init__(_A , _A) __lowercase =self.image_processor def __call__( self : Any , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : List[str] = True , _lowerCAmelCase : Any = False , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Any] = 0 , _lowerCAmelCase : Any = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : str = False , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Any = False , _lowerCAmelCase : Dict = False , _lowerCAmelCase : Dict = False , _lowerCAmelCase : str = True , _lowerCAmelCase : Optional[int] = None , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: __lowercase =self.tokenizer __lowercase =self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding # add pixel_values __lowercase =self.image_processor(_A , return_tensors=_A) if text is not None: __lowercase =self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) else: __lowercase =None if text_encoding is not None: encoding_image_processor.update(_A) return encoding_image_processor def __lowerCamelCase ( self : Union[str, Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A) def __lowerCamelCase ( self : int , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : int): '''simple docstring''' return self.tokenizer.decode(*_A , **_A) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
166
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class a_ : def __init__( self , snake_case_ = None ): _lowerCAmelCase : List[str] = value _lowerCAmelCase : Optional[int] = None # Added in order to delete a node easier _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Any = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class a_ : def __init__( self , snake_case_ = None ): _lowerCAmelCase : Any = root def __str__( self ): return str(self.root ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): if new_children is not None: # reset its kids _lowerCAmelCase : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children _lowerCAmelCase : Dict = new_children else: _lowerCAmelCase : Any = new_children else: _lowerCAmelCase : Union[str, Any] = new_children def __UpperCamelCase ( self , snake_case_ ): if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCamelCase ( self ): return self.root is None def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(_A ) # create a new Node if self.empty(): # if Tree is empty _lowerCAmelCase : int = new_node # set its root else: # Tree is not empty _lowerCAmelCase : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _lowerCAmelCase : List[Any] = new_node # We insert the new node in a leaf break else: _lowerCAmelCase : Any = parent_node.left else: if parent_node.right is None: _lowerCAmelCase : Dict = new_node break else: _lowerCAmelCase : Optional[Any] = parent_node.right _lowerCAmelCase : str = parent_node def __UpperCamelCase ( self , *snake_case_ ): for value in values: self.__insert(_A ) def __UpperCamelCase ( self , snake_case_ ): if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: _lowerCAmelCase : int = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _lowerCAmelCase : int = node.left if value < node.value else node.right return node def __UpperCamelCase ( self , snake_case_ = None ): if node is None: if self.root is None: return None _lowerCAmelCase : Optional[Any] = self.root if not self.empty(): while node.right is not None: _lowerCAmelCase : List[str] = node.right return node def __UpperCamelCase ( self , snake_case_ = None ): if node is None: _lowerCAmelCase : Optional[int] = self.root if self.root is None: return None if not self.empty(): _lowerCAmelCase : Tuple = self.root while node.left is not None: _lowerCAmelCase : int = node.left return node def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[int] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: _lowerCAmelCase : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _lowerCAmelCase : Union[str, Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCamelCase ( self , snake_case_ ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCamelCase ( self , snake_case_=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def _UpperCAmelCase ( _lowerCamelCase : Optional[int] ) -> Dict: _lowerCAmelCase : Optional[int] = [] if curr_node is not None: _lowerCAmelCase : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _UpperCAmelCase ( ) -> List[Any]: _lowerCAmelCase : Optional[int] = (8, 3, 6, 1, 10, 14, 13, 4, 7) _lowerCAmelCase : List[Any] = BinarySearchTree() for i in testlist: t.insert(__lowerCamelCase ) # Prints all the elements of the list in order traversal print(__lowerCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn\'t exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn\'t exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(__lowerCamelCase ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
309
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=99 , __lowerCAmelCase : Optional[Any]=[1, 1, 2] , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : str=8 , __lowerCAmelCase : Any=37 , __lowerCAmelCase : Dict="gelu_new" , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=False , ) -> Dict: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = block_sizes A__ = num_decoder_layers A__ = d_model A__ = n_head A__ = d_head A__ = d_inner A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = max_position_embeddings A__ = type_vocab_size A__ = 2 A__ = num_labels A__ = num_choices A__ = scope A__ = initializer_std # Used in the tests to check the size of the first attention layer A__ = n_head # Used in the tests to check the size of the first hidden state A__ = self.d_model # Used in the tests to check the number of output hidden states/attentions A__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A__ = self.num_hidden_layers + 2 def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def a_ ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" A__ = TFFunnelModel(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) A__ = [input_ids, input_mask] A__ = model(_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A__ = False A__ = TFFunnelModel(config=_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A__ = False A__ = TFFunnelModel(config=_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def a_ ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" A__ = TFFunnelBaseModel(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) A__ = [input_ids, input_mask] A__ = model(_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A__ = False A__ = TFFunnelBaseModel(config=_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A__ = False A__ = TFFunnelBaseModel(config=_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def a_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , ) -> Optional[Any]: """simple docstring""" A__ = TFFunnelForPreTraining(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" A__ = TFFunnelForMaskedLM(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" A__ = self.num_labels A__ = TFFunnelForSequenceClassification(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , ) -> Dict: """simple docstring""" A__ = self.num_choices A__ = TFFunnelForMultipleChoice(config=_A ) A__ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) A__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" A__ = self.num_labels A__ = TFFunnelForTokenClassification(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" A__ = TFFunnelForQuestionAnswering(config=_A ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase : Union[str, Any] = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : Dict = False def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = TFFunnelModelTester(self ) A__ = ConfigTester(self , config_class=_A ) def a_ ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def a_ ( self : Optional[Any] ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @require_tf class A (__SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __lowerCamelCase : Dict = False __lowerCamelCase : Optional[int] = False def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ = TFFunnelModelTester(self , base=_A ) A__ = ConfigTester(self , config_class=_A ) def a_ ( self : Any ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_A ) def a_ ( self : Tuple ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def a_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A )
274
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] = '''pt''' elif is_tf_available(): _A : int = '''tf''' else: _A : List[str] = '''jax''' class _lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = ByTaTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = False def a ( self : List[Any] ) -> Tuple: super().setUp() __lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a ( self : Any ) -> List[str]: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : List[Any]=20 , SCREAMING_SNAKE_CASE__ : List[str]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCAmelCase = [] for i in range(len(_A ) ): try: __lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , _A ) ) __lowerCAmelCase = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __lowerCAmelCase = """ """ + output_txt __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def a ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __lowerCAmelCase = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def a ( self : Tuple ) -> Any: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = """Unicode €.""" __lowerCAmelCase = tokenizer(_A ) __lowerCAmelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding __lowerCAmelCase = tokenizer.decode(_A ) self.assertEqual(_A , """Unicode €.</s>""" ) __lowerCAmelCase = tokenizer("""e è é ê ë""" ) __lowerCAmelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding __lowerCAmelCase = tokenizer.decode(_A ) self.assertEqual(_A , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def a ( self : int ) -> List[str]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowerCAmelCase = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def a ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertNotIn("""decoder_input_ids""" , _A ) self.assertNotIn("""decoder_attention_mask""" , _A ) def a ( self : Tuple ) -> Tuple: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] __lowerCAmelCase = tokenizer( text_target=_A , max_length=32 , padding="""max_length""" , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def a ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ["""A long paragraph for summarization. </s>"""] __lowerCAmelCase = ["""Summary of the text. </s>"""] # fmt: off __lowerCAmelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowerCAmelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowerCAmelCase = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch["""input_ids"""][0] ) self.assertEqual(_A , batch["""labels"""][0] ) def a ( self : Union[str, Any] ) -> Dict: # safety check on max_len default value so we are sure the test works __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(_A ) __lowerCAmelCase = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(_A ) __lowerCAmelCase = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def a ( self : Any ) -> int: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase = json.load(_A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __lowerCAmelCase = json.load(_A ) __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(1_25 )] __lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] __lowerCAmelCase = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase = tokenizer_class.from_pretrained( _A , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_A )] __lowerCAmelCase = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def a ( self : Union[str, Any] ) -> str: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __lowerCAmelCase = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([2_55] ) == """""" ) def a ( self : int ) -> int: pass def a ( self : Dict ) -> Any: pass def a ( self : str ) -> Any: pass def a ( self : Dict ) -> Optional[int]: pass def a ( self : Union[str, Any] ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __lowerCAmelCase = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __lowerCAmelCase = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def a ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __lowerCAmelCase = 0 __lowerCAmelCase = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + """_id""" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + """_id""" ) , _A ) setattr(_A , attr + """_id""" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + """_id""" ) , _A ) setattr(_A , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_A , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_A , """additional_special_tokens_ids""" ) , [] ) setattr(_A , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
229
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
from math import ceil, sqrt def a ( A__ : Tuple = 1000000 ) -> Dict: """simple docstring""" _lowercase =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowercase =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowercase =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __A (__SCREAMING_SNAKE_CASE): '''simple docstring''' __lowercase: Union[str, Any] = """deit""" def __init__( self : int , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Any=1E-12 , UpperCAmelCase_ : Optional[Any]=224 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=16 , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**_A ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = encoder_stride class __A (__SCREAMING_SNAKE_CASE): '''simple docstring''' __lowercase: Union[str, Any] = version.parse("""1.11""") @property def lowerCAmelCase ( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Dict ) ->float: """simple docstring""" return 1E-4
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : Optional[int] = None , ): """simple docstring""" if config_name_or_path is None: lowerCAmelCase_ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCAmelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCAmelCase_ = question_encoder_name_or_path lowerCAmelCase_ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCAmelCase_ = RagConfig.from_pretrained(__lowerCamelCase ) lowerCAmelCase_ = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCAmelCase_ = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCAmelCase_ = gen_config lowerCAmelCase_ = question_encoder_config lowerCAmelCase_ = model_class.from_pretrained_question_encoder_generator( __lowerCamelCase , __lowerCamelCase , config=__lowerCamelCase ) rag_model.save_pretrained(__lowerCamelCase ) # Sanity check. model_class.from_pretrained(__lowerCamelCase ) # Save tokenizers. lowerCAmelCase_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _A = parser.parse_args() _A = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
231
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> List[str]: __UpperCamelCase : int = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) __UpperCamelCase : Optional[Any] = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(_A ) , torch_builtin(_A ) ) ) self.assertFalse(torch.allclose(gelu_python(_A ) , gelu_new(_A ) ) ) def _lowerCamelCase ( self :List[str] ) -> Union[str, Any]: __UpperCamelCase : List[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) __UpperCamelCase : Tuple = get_activation("gelu" ) __UpperCamelCase : Optional[Any] = get_activation("gelu_10" ) __UpperCamelCase : str = torch_builtin(_A ) __UpperCamelCase : Tuple = geluaa(_A ) __UpperCamelCase : Any = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowerCamelCase ( self :Any ) -> int: get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(_A ): get_activation("bogus" ) with self.assertRaises(_A ): get_activation(_A ) def _lowerCamelCase ( self :str ) -> Dict: __UpperCamelCase : Any = get_activation("gelu" ) __UpperCamelCase : List[str] = 1 __UpperCamelCase : List[str] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_A ): __UpperCamelCase : List[Any] = acta.a
232
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Tuple = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase : Dict = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Optional[Any] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : List[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" ,__lowerCamelCase ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case : Union[str, Any] = { config.replace("""Config""" ,"""""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case : Any = collections.defaultdict(__lowerCamelCase ) snake_case : str = collections.defaultdict(__lowerCamelCase ) snake_case : str = collections.defaultdict(__lowerCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowerCamelCase ): snake_case : Union[str, Any] = None if _re_tf_models.match(__lowerCamelCase ) is not None: snake_case : Dict = tf_models snake_case : Optional[int] = _re_tf_models.match(__lowerCamelCase ).groups()[0] elif _re_flax_models.match(__lowerCamelCase ) is not None: snake_case : str = flax_models snake_case : Any = _re_flax_models.match(__lowerCamelCase ).groups()[0] elif _re_pt_models.match(__lowerCamelCase ) is not None: snake_case : Any = pt_models snake_case : List[Any] = _re_pt_models.match(__lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(__lowerCamelCase ) > 0: if attr_name in model_prefix_to_model_type: snake_case : int = True break # Try again after removing the last word in the name snake_case : Any = """""".join(camel_case_split(__lowerCamelCase )[:-1] ) snake_case : Optional[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case : Optional[int] = list(__lowerCamelCase ) all_models.sort() snake_case : Optional[Any] = {"""model_type""": all_models} snake_case : Optional[Any] = [pt_models[t] for t in all_models] snake_case : str = [tf_models[t] for t in all_models] snake_case : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case : Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case : str = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case : Optional[int] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case : str = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case : Any = """AutoTokenizer""" snake_case : Tuple = [processors[t] for t in all_models] return pd.DataFrame(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case : Any = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case : Any = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(__lowerCamelCase ,__lowerCamelCase ): continue # First extract all model_names snake_case : Union[str, Any] = [] for name in getattr(__lowerCamelCase ,__lowerCamelCase ).values(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): model_names.append(__lowerCamelCase ) else: model_names.extend(list(__lowerCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: snake_case : Tuple = get_frameworks_table() snake_case : Tuple = Dataset.from_pandas(__lowerCamelCase ) snake_case : List[Any] = hf_hub_download( """huggingface/transformers-metadata""" ,"""pipeline_tags.json""" ,repo_type="""dataset""" ,token=__lowerCamelCase ) snake_case : int = Dataset.from_json(__lowerCamelCase ) snake_case : List[Any] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(__lowerCamelCase ) ) } snake_case : List[Any] = update_pipeline_and_auto_class_table(__lowerCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case : str = sorted(table.keys() ) snake_case : Optional[Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case : Tuple = Dataset.from_pandas(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowerCamelCase ,"""frameworks.json""" ) ) tags_dataset.to_json(os.path.join(__lowerCamelCase ,"""pipeline_tags.json""" ) ) if commit_sha is not None: snake_case : Any = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case : Union[str, Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" ,folder_path=__lowerCamelCase ,repo_type="""dataset""" ,token=__lowerCamelCase ,commit_message=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Any = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case : List[Any] = transformers_module.pipelines.SUPPORTED_TASKS snake_case : Dict = [] for key in pipeline_tasks: if key not in in_table: snake_case : Dict = pipeline_tasks[key]["""pt"""] if isinstance(__lowerCamelCase ,(list, tuple) ): snake_case : Union[str, Any] = model[0] snake_case : Any = model.__name__ if model not in in_table.values(): missing.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: snake_case : Union[str, Any] = """, """.join(__lowerCamelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase : List[str] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : str=0.0 ,lowercase__ : Dict = None ,lowercase__ : str = "geglu" ,lowercase__ : List[Any] = None ,lowercase__ : Optional[int] = False ,lowercase__ : List[str] = False ,lowercase__ : Optional[Any] = False ,lowercase__ : Any = False ,lowercase__ : List[str] = True ,lowercase__ : Optional[int] = "layer_norm" ,lowercase__ : Optional[int] = False ,): super().__init__() __lowercase = only_cross_attention __lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowercase = AdaLayerNorm(_A ,_A ) elif self.use_ada_layer_norm_zero: __lowercase = AdaLayerNormZero(_A ,_A ) else: __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) __lowercase = Attention( query_dim=_A ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_A ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowercase = ( AdaLayerNorm(_A ,_A ) if self.use_ada_layer_norm else nn.LayerNorm(_A ,elementwise_affine=_A ) ) __lowercase = Attention( query_dim=_A ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,upcast_attention=_A ,) # is self-attn if encoder_hidden_states is none else: __lowercase = None __lowercase = None # 3. Feed-forward __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) __lowercase = FeedForward(_A ,dropout=_A ,activation_fn=_A ,final_dropout=_A ) # let chunk size default to None __lowercase = None __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Tuple ): # Sets chunk feed-forward __lowercase = chunk_size __lowercase = dim def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] = None ,lowercase__ : Any = None ,lowercase__ : Optional[int] = None ,lowercase__ : Any = None ,lowercase__ : Union[str, Any] = None ,lowercase__ : Tuple = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __lowercase = self.norma(_A ,_A ) elif self.use_ada_layer_norm_zero: __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.norma( _A ,_A ,_A ,hidden_dtype=hidden_states.dtype ) else: __lowercase = self.norma(_A ) __lowercase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowercase = self.attna( _A ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_A ,**_A ,) if self.use_ada_layer_norm_zero: __lowercase = gate_msa.unsqueeze(1 ) * attn_output __lowercase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowercase = ( self.norma(_A ,_A ) if self.use_ada_layer_norm else self.norma(_A ) ) __lowercase = self.attna( _A ,encoder_hidden_states=_A ,attention_mask=_A ,**_A ,) __lowercase = attn_output + hidden_states # 3. Feed-forward __lowercase = self.norma(_A ) if self.use_ada_layer_norm_zero: __lowercase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) __lowercase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowercase = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: __lowercase = self.ff(_A ) if self.use_ada_layer_norm_zero: __lowercase = gate_mlp.unsqueeze(1 ) * ff_output __lowercase = ff_output + hidden_states return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : int ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[int] = 4 ,lowercase__ : Optional[Any] = 0.0 ,lowercase__ : Dict = "geglu" ,lowercase__ : Dict = False ,): super().__init__() __lowercase = int(dim * mult ) __lowercase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowercase = GELU(_A ,_A ) if activation_fn == "gelu-approximate": __lowercase = GELU(_A ,_A ,approximate='''tanh''' ) elif activation_fn == "geglu": __lowercase = GEGLU(_A ,_A ) elif activation_fn == "geglu-approximate": __lowercase = ApproximateGELU(_A ,_A ) __lowercase = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A ,_A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): for module in self.net: __lowercase = module(_A ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : List[Any] = "none" ): super().__init__() __lowercase = nn.Linear(_A ,_A ) __lowercase = approximate def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ): if gate.device.type != "mps": return F.gelu(_A ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = self.proj(_A ) __lowercase = self.gelu(_A ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ): super().__init__() __lowercase = nn.Linear(_A ,dim_out * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Union[str, Any] ): if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase , __lowercase = self.proj(_A ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_A ) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ): super().__init__() __lowercase = nn.Linear(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ): __lowercase = self.proj(_A ) return x * torch.sigmoid(1.7_0_2 * x ) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : Union[str, Any] ): super().__init__() __lowercase = nn.Embedding(_A ,_A ) __lowercase = nn.SiLU() __lowercase = nn.Linear(_A ,embedding_dim * 2 ) __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : Any ): __lowercase = self.linear(self.silu(self.emb(_A ) ) ) __lowercase , __lowercase = torch.chunk(_A ,2 ) __lowercase = self.norm(_A ) * (1 + scale) + shift return x class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : str ): super().__init__() __lowercase = CombinedTimestepLabelEmbeddings(_A ,_A ) __lowercase = nn.SiLU() __lowercase = nn.Linear(_A ,6 * embedding_dim ,bias=_A ) __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ,eps=1e-6 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : str=None ): __lowercase = self.linear(self.silu(self.emb(_A ,_A ,hidden_dtype=_A ) ) ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = emb.chunk(6 ,dim=1 ) __lowercase = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] = None ,lowercase__ : Dict = 1e-5 ): super().__init__() __lowercase = num_groups __lowercase = eps if act_fn is None: __lowercase = None else: __lowercase = get_activation(_A ) __lowercase = nn.Linear(_A ,out_dim * 2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Tuple ): if self.act: __lowercase = self.act(_A ) __lowercase = self.linear(_A ) __lowercase = emb[:, :, None, None] __lowercase , __lowercase = emb.chunk(2 ,dim=1 ) __lowercase = F.group_norm(_A ,self.num_groups ,eps=self.eps ) __lowercase = x * (1 + scale) + shift return x
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' import baseaa def _A ( _lowerCAmelCase ): """simple docstring""" return baseaa.baaencode(string.encode('utf-8' ) ) def _A ( _lowerCAmelCase ): """simple docstring""" return baseaa.baadecode(__lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": lowerCamelCase = """Hello World!""" lowerCamelCase = baseaa_encode(test) print(encoded) lowerCamelCase = baseaa_decode(encoded) print(decoded)
166
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' UpperCamelCase_ = """\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n""" UpperCamelCase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) A : Optional[Any] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } A : Dict = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def __lowerCamelCase ( __a :Optional[Any] ) -> Dict: """simple docstring""" A__ = EfficientNetConfig() A__ = CONFIG_MAP[model_name]["""hidden_dim"""] A__ = CONFIG_MAP[model_name]["""width_coef"""] A__ = CONFIG_MAP[model_name]["""depth_coef"""] A__ = CONFIG_MAP[model_name]["""image_size"""] A__ = CONFIG_MAP[model_name]["""dropout_rate"""] A__ = CONFIG_MAP[model_name]["""dw_padding"""] A__ = """huggingface/label-files""" A__ = """imagenet-1k-id2label.json""" A__ = 1_0_0_0 A__ = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) A__ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im def __lowerCamelCase ( __a :List[str] ) -> Optional[Any]: """simple docstring""" A__ = CONFIG_MAP[model_name]["""image_size"""] A__ = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=__lowerCamelCase , ) return preprocessor def __lowerCamelCase ( __a :Tuple ) -> Union[str, Any]: """simple docstring""" A__ = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] A__ = sorted(set(__lowerCamelCase ) ) A__ = len(__lowerCamelCase ) A__ = {b: str(__lowerCamelCase ) for b, i in zip(__lowerCamelCase , range(__lowerCamelCase ) )} A__ = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: A__ = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) A__ = {} for item in rename_keys: if item[0] in original_param_names: A__ = """efficientnet.""" + item[1] A__ = """classifier.weight""" A__ = """classifier.bias""" return key_mapping def __lowerCamelCase ( __a :List[Any] , __a :List[str] , __a :Optional[int] ) -> Optional[int]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue A__ = key_mapping[key] if "_conv" in key and "kernel" in key: A__ = torch.from_numpy(__lowerCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A__ = torch.from_numpy(__lowerCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A__ = torch.from_numpy(np.transpose(__lowerCamelCase ) ) else: A__ = torch.from_numpy(__lowerCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowerCamelCase ) @torch.no_grad() def __lowerCamelCase ( __a :Dict , __a :Union[str, Any] , __a :List[str] , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = model_classes[model_name]( include_top=__lowerCamelCase , weights="""imagenet""" , input_tensor=__lowerCamelCase , input_shape=__lowerCamelCase , pooling=__lowerCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) A__ = original_model.trainable_variables A__ = original_model.non_trainable_variables A__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A__ = param.numpy() A__ = list(tf_params.keys() ) # Load HuggingFace model A__ = get_efficientnet_config(__lowerCamelCase ) A__ = EfficientNetForImageClassification(__lowerCamelCase ).eval() A__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) A__ = rename_keys(__lowerCamelCase ) replace_params(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Initialize preprocessor and preprocess input image A__ = convert_image_processor(__lowerCamelCase ) A__ = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): A__ = hf_model(**__lowerCamelCase ) A__ = outputs.logits.detach().numpy() # Original model inference A__ = False A__ = CONFIG_MAP[model_name]["""image_size"""] A__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A__ = image.img_to_array(__lowerCamelCase ) A__ = np.expand_dims(__lowerCamelCase , axis=0 ) A__ = original_model.predict(__lowerCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__lowerCamelCase ): os.mkdir(__lowerCamelCase ) # Save converted model and image processor hf_model.save_pretrained(__lowerCamelCase ) preprocessor.save_pretrained(__lowerCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) A__ = F'efficientnet-{model_name}' preprocessor.push_to_hub(__lowerCamelCase ) hf_model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') A : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
274
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class _lowercase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def a ( self : Any ) -> List[Any]: __lowerCAmelCase = load_tool("""text-to-speech""" ) self.tool.setup() def a ( self : List[str] ) -> Optional[int]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __lowerCAmelCase = self.tool("""hey""" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def a ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __lowerCAmelCase = self.tool("""hey""" ) __lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
229
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
from __future__ import annotations def a ( A__ : Optional[int] ) -> Tuple: """simple docstring""" if not nums: raise ValueError('List is empty' ) return sum(__lowerCamelCase ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __SCREAMING_SNAKE_CASE : Any = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __SCREAMING_SNAKE_CASE : Any = 128_022 __SCREAMING_SNAKE_CASE : Optional[Any] = 128_028 @require_sentencepiece class __A (__SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: Tuple = MaMaaaTokenizer __lowercase: List[Any] = False __lowercase: List[str] = False __lowercase: Optional[int] = True def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" super().setUp() snake_case_ = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ = dict(zip(_A , range(len(_A ) ) ) ) snake_case_ = Path(self.tmpdirname ) save_json(_A , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) snake_case_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : str ) ->Dict: """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" snake_case_ = """</s>""" snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(_A ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2, 3, 4, 5, 6] , ) snake_case_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) snake_case_ = tokenizer.convert_tokens_to_string(_A ) self.assertEqual(_A , """This is a test""" ) @slow def lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" snake_case_ = {"""input_ids""": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class __A (unittest.TestCase): '''simple docstring''' __lowercase: Tuple = """facebook/m2m100_418M""" __lowercase: List[str] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __lowercase: Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __lowercase: int = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def lowerCAmelCase ( cls : Any ) ->int: """simple docstring""" snake_case_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) snake_case_ = 1 return cls def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 128_063 ) def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = self.tokenizer.get_vocab() self.assertEqual(len(_A ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , _A ) def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = """en""" snake_case_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) # fmt: off snake_case_ = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on snake_case_ = self.tokenizer.decode(_A , skip_special_tokens=_A ) snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = tempfile.mkdtemp() snake_case_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_A ) snake_case_ = MaMaaaTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.lang_token_to_id , _A ) @require_torch def lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" snake_case_ = """en""" snake_case_ = """fr""" snake_case_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors="""pt""" ) snake_case_ = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case_ = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case_ = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(_A ) , { # en_XX, A, test, EOS """input_ids""": [[128_022, 58, 4_183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 128_006, } , )
347
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , ) -> List[str]: super().__init__() lowerCAmelCase_ = nn.Embedding(_A , _A ) lowerCAmelCase_ = nn.Embedding(_A , _A ) lowerCAmelCase_ = False lowerCAmelCase_ = nn.Dropout(p=_A ) lowerCAmelCase_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) lowerCAmelCase_ = nn.ModuleList() for lyr_num in range(_A ): lowerCAmelCase_ = TaBlock(_A ) self.encoders.append(_A ) lowerCAmelCase_ = TaLayerNorm(_A ) lowerCAmelCase_ = nn.Dropout(p=_A ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: lowerCAmelCase_ = self.token_embedder(_A ) lowerCAmelCase_ = encoder_input_tokens.shape[1] lowerCAmelCase_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) lowerCAmelCase_ = self.dropout_pre(_A ) # inverted the attention mask lowerCAmelCase_ = encoder_input_tokens.size() lowerCAmelCase_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: lowerCAmelCase_ = lyr(_A , _A )[0] lowerCAmelCase_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
231
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self :Optional[Any] , a :Any = None , a :Tuple = None , **a :str , ) -> List[Any]: super().__init__(self , **_A ) __UpperCamelCase : Tuple = repo_info __UpperCamelCase : Any = token __UpperCamelCase : str = None def _lowerCamelCase ( self :Any ) -> Union[str, Any]: if self.dir_cache is None: __UpperCamelCase : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __UpperCamelCase : Optional[int] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(_A ): {"name": str(_A ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCamelCase ( self :int , a :List[Any] , a :Optional[int] = "rb" , **a :str , ) -> str: if not isinstance(self.repo_info , _A ): raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' ) __UpperCamelCase : Tuple = hf_hub_url(self.repo_info.id , _A , revision=self.repo_info.sha ) return fsspec.open( _A , mode=_A , headers=get_authentication_headers_for_url(_A , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def _lowerCamelCase ( self :int , a :Union[str, Any] , **a :List[Any] ) -> List[Any]: self._get_dirs() __UpperCamelCase : List[Any] = self._strip_protocol(_A ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_A ) def _lowerCamelCase ( self :Dict , a :Any , a :Optional[Any]=False , **a :List[Any] ) -> str: self._get_dirs() __UpperCamelCase : Any = PurePosixPath(path.strip("/" ) ) __UpperCamelCase : Tuple = {} for p, f in self.dir_cache.items(): __UpperCamelCase : Optional[int] = PurePosixPath(p.strip("/" ) ) __UpperCamelCase : List[str] = p.parent if root == path: __UpperCamelCase : Any = f __UpperCamelCase : Dict = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
232
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
124
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _A ( ): """simple docstring""" __lowercase = [randint(-1000 , 1000 ) for i in range(10 )] __lowercase = randint(-5000 , 5000 ) return (arr, r) lowerCAmelCase__ = make_dataset() def _A ( A__ , A__ ): """simple docstring""" for triplet in permutations(__lowerCamelCase , 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def _A ( A__ , A__ ): """simple docstring""" arr.sort() __lowercase = len(__lowerCamelCase ) for i in range(n - 1 ): __lowercase , __lowercase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _A ( ): """simple docstring""" __lowercase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowercase = ''' triplet_sum1(*dataset) ''' __lowercase = ''' triplet_sum2(*dataset) ''' __lowercase = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=10000 ) __lowercase = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=10000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ = solution_times() print(f'The time for naive implementation is {times[0]}.') print(f'The time for optimized implementation is {times[1]}.')
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __lowerCamelCase ( self : List[Any]): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def __lowerCamelCase ( self : str): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def __lowerCamelCase ( self : int): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =torch.arange(self.height * self.width) __lowercase =torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='trunc'), ] , axis=1 , ) return coords @property def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase , *__lowercase =self.shape __lowercase =int(np.prod(_A)) __lowercase =self.get_image_coords() __lowercase =torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) __lowercase =self.get_camera_rays(_A) __lowercase =rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3) return rays def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase , *__lowercase , __lowercase =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowercase =coords.view(_A , -1 , 2) __lowercase =self.resolution() __lowercase =self.fov() __lowercase =(flat.float() / (res - 1)) * 2 - 1 __lowercase =fracs * torch.tan(fov / 2) __lowercase =fracs.view(_A , -1 , 2) __lowercase =( self.z.view(_A , 1 , 3) + self.x.view(_A , 1 , 3) * fracs[:, :, :1] + self.y.view(_A , 1 , 3) * fracs[:, :, 1:] ) __lowercase =directions / directions.norm(dim=-1 , keepdim=_A) __lowercase =torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3) def __lowerCamelCase ( self : str , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[] __lowercase =[] __lowercase =[] __lowercase =[] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowercase =np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowercase =-z * 4 __lowercase =np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] ) __lowercase =np.cross(__lowerCamelCase , __lowerCamelCase ) origins.append(__lowerCamelCase ) xs.append(__lowerCamelCase ) ys.append(__lowerCamelCase ) zs.append(__lowerCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , width=__lowerCamelCase , height=__lowerCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCamelCase )) , )
166
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable UpperCamelCase_ = list[list[float | int]] def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any ) -> str: _lowerCAmelCase : List[str] = len(__lowerCamelCase ) _lowerCAmelCase : Optional[int] = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] _lowerCAmelCase : int = 42 _lowerCAmelCase : List[Any] = 42 _lowerCAmelCase : Optional[int] = 42 _lowerCAmelCase : str = 42 _lowerCAmelCase : Optional[int] = 42 _lowerCAmelCase : List[Any] = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : int = vector[row][0] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase , _lowerCAmelCase : Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCamelCase ): _lowerCAmelCase : List[Any] = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : List[str] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCamelCase ): for row in range(__lowerCamelCase ): _lowerCAmelCase : str = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase ) ] def _UpperCAmelCase ( _lowerCamelCase : List[str] ) -> Tuple: _lowerCAmelCase : Any = len(__lowerCamelCase ) _lowerCAmelCase : Tuple = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] _lowerCAmelCase : Any = [[0] for _ in range(__lowerCamelCase )] _lowerCAmelCase : Tuple = 42 _lowerCAmelCase : int = 42 _lowerCAmelCase : Tuple = 42 _lowerCAmelCase : Union[str, Any] = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): _lowerCAmelCase : List[str] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(__lowerCamelCase , __lowerCamelCase ) def interpolated_func(_lowerCamelCase : Dict ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def _UpperCAmelCase ( _lowerCamelCase : int ) -> List[str]: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _UpperCAmelCase ( _lowerCamelCase : List[Any] = question_function , _lowerCamelCase : int = 10 ) -> Tuple: _lowerCAmelCase : str = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : Optional[int] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : int = 42 _lowerCAmelCase : Optional[int] = 42 for poly in polynomials: _lowerCAmelCase : Tuple = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F'{solution() = }')
309
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A (__SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = TextToVideoSDPipeline __lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowerCamelCase : Optional[int] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) A__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ = CLIPTextModel(_A ) A__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def a_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=0 ) -> Optional[int]: """simple docstring""" if str(_A ).startswith("""mps""" ): A__ = torch.manual_seed(_A ) else: A__ = torch.Generator(device=_A ).manual_seed(_A ) A__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = TextToVideoSDPipeline(**_A ) A__ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs(_A ) A__ = """np""" A__ = sd_pipe(**_A ).frames A__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) A__ = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self : Any ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self : Tuple ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def a_ ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def a_ ( self : Tuple ) -> Any: """simple docstring""" pass def a_ ( self : str ) -> Any: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : int ) -> int: """simple docstring""" A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) A__ = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) A__ = pipe.to("""cuda""" ) A__ = """Spiderman is surfing""" A__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ = pipe(_A , generator=_A , num_inference_steps=25 , output_type="""pt""" ).frames A__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def a_ ( self : Optional[int] ) -> int: """simple docstring""" A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) A__ = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) A__ = pipe.to("""cuda""" ) A__ = """Spiderman is surfing""" A__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ = pipe(_A , generator=_A , num_inference_steps=2 , output_type="""pt""" ).frames A__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
274
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 / 255 , SCREAMING_SNAKE_CASE=True , ): """simple docstring""" snake_case : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : Dict = num_channels snake_case : Optional[Any] = min_resolution snake_case : Union[str, Any] = max_resolution snake_case : int = do_resize snake_case : Tuple = size snake_case : Union[str, Any] = do_normalize snake_case : int = image_mean snake_case : Any = image_std snake_case : Dict = do_rescale snake_case : Any = rescale_factor snake_case : Tuple = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" if not batched: snake_case : Dict = image_inputs[0] if isinstance(_A , Image.Image ): snake_case , snake_case : Optional[Any] = image.size else: snake_case , snake_case : Dict = image.shape[1], image.shape[2] if w < h: snake_case : Dict = int(self.size["shortest_edge"] * h / w ) snake_case : str = self.size["shortest_edge"] elif w > h: snake_case : List[str] = self.size["shortest_edge"] snake_case : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case : Optional[Any] = self.size["shortest_edge"] snake_case : Optional[int] = self.size["shortest_edge"] else: snake_case : List[str] = [] for image in image_inputs: snake_case , snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case : Any = max(_A , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] snake_case : str = max(_A , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): a__ : Any = DetaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = DetaImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "image_mean" ) ) self.assertTrue(hasattr(_A , "image_std" ) ) self.assertTrue(hasattr(_A , "do_normalize" ) ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "do_rescale" ) ) self.assertTrue(hasattr(_A , "do_pad" ) ) self.assertTrue(hasattr(_A , "size" ) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : Dict = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case , snake_case : List[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) snake_case : Tuple = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : Dict = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : List[Any] = image_processing(_A , return_tensors="pt" ).pixel_values snake_case , snake_case : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : int = image_processing(_A , return_tensors="pt" ).pixel_values snake_case , snake_case : List[str] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case : Dict = json.loads(f.read() ) snake_case : str = {"image_id": 39_769, "annotations": target} # encode them snake_case : List[Any] = DetaImageProcessor() snake_case : Tuple = image_processing(images=_A , annotations=_A , return_tensors="pt" ) # verify pixel values snake_case : List[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _A ) snake_case : Optional[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case : str = torch.tensor([58_87.96_00, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _A ) ) # verify boxes snake_case : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _A ) snake_case : Any = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _A , atol=1E-3 ) ) # verify image_id snake_case : Optional[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _A ) ) # verify is_crowd snake_case : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _A ) ) # verify class_labels snake_case : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _A ) ) # verify orig_size snake_case : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _A ) ) # verify size snake_case : Dict = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _A ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case : List[Any] = json.loads(f.read() ) snake_case : Any = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} snake_case : str = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case : Tuple = DetaImageProcessor(format="coco_panoptic" ) snake_case : List[str] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors="pt" ) # verify pixel values snake_case : Optional[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , _A ) snake_case : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case : Optional[int] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _A ) ) # verify boxes snake_case : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _A ) snake_case : Any = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _A , atol=1E-3 ) ) # verify image_id snake_case : Union[str, Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _A ) ) # verify is_crowd snake_case : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _A ) ) # verify class_labels snake_case : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _A ) ) # verify masks snake_case : Optional[Any] = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _A ) # verify orig_size snake_case : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _A ) ) # verify size snake_case : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _A ) )
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from typing import Any class _lowercase : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = data __lowerCAmelCase = None class _lowercase : '''simple docstring''' def __init__( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = None def a ( self : Tuple ) -> Tuple: __lowerCAmelCase = self.head while temp is not None: print(temp.data , end=""" """ ) __lowerCAmelCase = temp.next print() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCAmelCase = Node(_A ) __lowerCAmelCase = self.head __lowerCAmelCase = new_node def a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: if node_data_a == node_data_a: return else: __lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __lowerCAmelCase = node_a.next __lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __lowerCAmelCase = node_a.next if node_a is None or node_a is None: return __lowerCAmelCase , __lowerCAmelCase = node_a.data, node_a.data if __name__ == "__main__": _A : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
229
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" from math import ceil def _a ( _SCREAMING_SNAKE_CASE = 1_001 ) -> Optional[int]: snake_case_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): snake_case_ = 2 * i + 1 snake_case_ = 2 * i snake_case_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __SCREAMING_SNAKE_CASE : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ) -> List[Any]: super().__init__() lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = max_length lowerCAmelCase_ = vocab lowerCAmelCase_ = merges lowerCAmelCase_ = BytePairTokenizer(_A , _A , sequence_length=_A ) @classmethod def __a ( cls , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) -> Any: lowerCAmelCase_ = [" ".join(_A ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase_ = tokenizer.get_vocab() return cls(_A , _A , *_A , **_A ) @classmethod def __a ( cls , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_A , *_A , **_A ) return cls.from_tokenizer(_A , *_A , **_A ) @classmethod def __a ( cls , _UpperCamelCase ) -> Tuple: return cls(**_A ) def __a ( self ) -> Optional[int]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Union[str, Any]: lowerCAmelCase_ = self.tf_tokenizer(_A ) lowerCAmelCase_ = tf.ones_like(_A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase_ , lowerCAmelCase_ = pad_model_inputs( _A , max_seq_length=_A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
231
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> int: '''simple docstring''' __UpperCamelCase : str = 1 __UpperCamelCase : Tuple = 2 while i * i <= n: __UpperCamelCase : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(__lowerCamelCase) > 500: break return t_num if __name__ == "__main__": print(solution())
232
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : int = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } lowerCamelCase : List[Any] = {'mobilebert-uncased': 5_1_2} lowerCamelCase : List[str] = {} class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = MobileBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> List[str]: super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _A ) != do_lower_case or normalizer_state.get("""strip_accents""" , _A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _A ) != tokenize_chinese_chars ): snake_case : Optional[int] = getattr(_A , normalizer_state.pop("""type""" ) ) snake_case : str = do_lower_case snake_case : List[Any] = strip_accents snake_case : Union[str, Any] = tokenize_chinese_chars snake_case : int = normalizer_class(**_A ) snake_case : Tuple = do_lower_case def UpperCAmelCase ( self , A , A=None ) -> int: snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Union[str, Any] = [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : Tuple = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' def _A ( A__ = 3 , A__ = 7 , A__ = 1000000 ): """simple docstring""" __lowercase = 0 __lowercase = 1 for current_denominator in range(1 , limit + 1 ): __lowercase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase = current_numerator __lowercase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __lowerCamelCase ( *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any]): '''simple docstring''' pass def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __lowerCamelCase ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =DepthEstimationPipeline(model=_A , image_processor=_A) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png') self.assertEqual({'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)} , _A) import datasets __lowercase =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test') __lowercase =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png'), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ]) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, {'predicted_depth': ANY(torch.Tensor), 'depth': ANY(Image.Image)}, ] , _A , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF') def __lowerCamelCase ( self : List[Any]): '''simple docstring''' pass @slow @require_torch def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='Intel/dpt-large' __lowercase =pipeline('depth-estimation' , model=_A) __lowercase =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg') __lowercase =hashimage(outputs['depth']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item()) , 29.304) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item()) , 2.662) @require_torch def __lowerCamelCase ( self : Any): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT')
166
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] ) -> str: for attribute in key.split(""".""" ): _lowerCAmelCase : int = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : Optional[Any] = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _lowerCAmelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase : Any = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : int = value elif weight_type == "bias": _lowerCAmelCase : Union[str, Any] = value else: _lowerCAmelCase : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = fairseq_model.state_dict() _lowerCAmelCase : Dict = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Optional[int] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue _lowerCAmelCase : Optional[int] = True if "*" in mapped_key: _lowerCAmelCase : Optional[int] = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : Tuple = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: _lowerCAmelCase : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Dict = """weight""" else: _lowerCAmelCase : Tuple = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple ) -> int: _lowerCAmelCase : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Any = name.split(""".""" ) _lowerCAmelCase : List[str] = int(items[0] ) _lowerCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) _lowerCAmelCase : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : Any=True ) -> Optional[Any]: if config_path is not None: _lowerCAmelCase : List[Any] = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase : Dict = UniSpeechSatConfig() _lowerCAmelCase : int = """""" if is_finetuned: _lowerCAmelCase : List[str] = UniSpeechSatForCTC(__lowerCamelCase ) else: _lowerCAmelCase : List[str] = UniSpeechSatForPreTraining(__lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : Tuple = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
def __lowerCamelCase ( __a :int , __a :int , __a :Tuple ) -> Dict: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__lowerCamelCase , exponent // 2 , __lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCamelCase , exponent - 1 , __lowerCamelCase )) % modulo_value def __lowerCamelCase ( __a :List[str] = 1_7_7_7 , __a :Any = 1_8_5_5 , __a :Any = 8 ) -> List[str]: """simple docstring""" A__ = base for _ in range(1 , __lowerCamelCase ): A__ = _modexpt(__lowerCamelCase , __lowerCamelCase , 1_0**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
274
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __A = logging.get_logger(__name__) class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , _A , ) super().__init__(*_A , **_A )
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _A : Optional[Any] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: _A : int = json.load(f) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return FSMTTokenizer.from_pretrained(_A ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCAmelCase = FSMTForConditionalGeneration.from_pretrained(_A ).to(_A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 2_6.0], ["""ru-en""", 2_2.0], ["""en-de""", 2_2.0], ["""de-en""", 2_9.0], ] ) @slow def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __lowerCAmelCase = f"""facebook/wmt19-{pair}""" __lowerCAmelCase = self.get_tokenizer(_A ) __lowerCAmelCase = self.get_model(_A ) __lowerCAmelCase = bleu_data[pair]["""src"""] __lowerCAmelCase = bleu_data[pair]["""tgt"""] __lowerCAmelCase = tokenizer(_A , return_tensors="""pt""" , truncation=_A , padding="""longest""" ).to(_A ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowerCAmelCase = tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) __lowerCAmelCase = calculate_bleu(_A , _A ) print(_A ) self.assertGreaterEqual(scores["""bleu"""] , _A )
229
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
def a ( A__ : Tuple ) -> List[Any]: """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(__lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" import math def _a ( ) -> Optional[Any]: snake_case_ = input("""Enter message: """ ) snake_case_ = int(input(f"""Enter key [2-{len(__lowerCamelCase ) - 1}]: """ ) ) snake_case_ = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): snake_case_ = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): snake_case_ = decrypt_message(__lowerCamelCase , __lowerCamelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = [""""""] * key for col in range(__lowerCamelCase ): snake_case_ = col while pointer < len(__lowerCamelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__lowerCamelCase ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ = math.ceil(len(__lowerCamelCase ) / key ) snake_case_ = key snake_case_ = (num_cols * num_rows) - len(__lowerCamelCase ) snake_case_ = [""""""] * num_cols snake_case_ = 0 snake_case_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): snake_case_ = 0 row += 1 return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
347
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import functools from typing import Any def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not all( isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie lowerCAmelCase_ = {} lowerCAmelCase_ = "WORD_KEEPER" for word in words: lowerCAmelCase_ = trie for c in word: if c not in trie_node: lowerCAmelCase_ = {} lowerCAmelCase_ = trie_node[c] lowerCAmelCase_ = True lowerCAmelCase_ = len(__lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__lowerCAmelCase : List[str] ) -> bool: if index == len_string: return True lowerCAmelCase_ = trie for i in range(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ = trie_node.get(string[i] , __lowerCamelCase ) if trie_node is None: return False if trie_node.get(__lowerCamelCase , __lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
231
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : str = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() __UpperCamelCase : List[str] = dict(zip(_A , range(len(_A ) ) ) ) __UpperCamelCase : Optional[int] = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } __UpperCamelCase : Optional[int] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_6_0_0_0, "return_attention_mask": False, "do_normalize": True, } __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : List[str] = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) # load decoder from hub __UpperCamelCase : str = "hf-internal-testing/ngram-beam-search-decoder" def _lowerCamelCase ( self :str , **a :List[str] ) -> int: __UpperCamelCase : Any = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def _lowerCamelCase ( self :List[Any] , **a :Dict ) -> int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def _lowerCamelCase ( self :str , **a :List[str] ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : int = self.get_tokenizer() __UpperCamelCase : List[Any] = self.get_feature_extractor() __UpperCamelCase : int = self.get_decoder() __UpperCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def _lowerCamelCase ( self :int ) -> List[Any]: __UpperCamelCase : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __UpperCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : str = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(_A , "include" ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _lowerCamelCase ( self :List[str] ) -> str: __UpperCamelCase : List[str] = self.get_feature_extractor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : Tuple = self.get_decoder() __UpperCamelCase : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) __UpperCamelCase : str = feature_extractor(_A , return_tensors="np" ) __UpperCamelCase : Union[str, Any] = processor(_A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : List[str] = self.get_feature_extractor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : List[str] = self.get_decoder() __UpperCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : Dict = "This is a test string" __UpperCamelCase : Optional[Any] = processor(text=_A ) __UpperCamelCase : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self :List[str] , a :List[Any]=(2, 1_0, 1_6) , a :List[Any]=7_7 ) -> Optional[Any]: np.random.seed(_A ) return np.random.rand(*_A ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_feature_extractor() __UpperCamelCase : List[Any] = self.get_tokenizer() __UpperCamelCase : List[Any] = self.get_decoder() __UpperCamelCase : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : str = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __UpperCamelCase : List[str] = processor.decode(_A ) __UpperCamelCase : Optional[int] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def _lowerCamelCase ( self :List[str] , a :Optional[Any] ) -> Dict: __UpperCamelCase : Dict = self.get_feature_extractor() __UpperCamelCase : Optional[int] = self.get_tokenizer() __UpperCamelCase : Any = self.get_decoder() __UpperCamelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __UpperCamelCase : Tuple = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: __UpperCamelCase : Optional[Any] = processor.batch_decode(_A , _A ) __UpperCamelCase : List[Any] = list(_A ) with get_context("fork" ).Pool() as p: __UpperCamelCase : List[Any] = decoder.decode_beams_batch(_A , _A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def _lowerCamelCase ( self :Dict ) -> int: __UpperCamelCase : Tuple = self.get_feature_extractor() __UpperCamelCase : Optional[int] = self.get_tokenizer() __UpperCamelCase : Optional[int] = self.get_decoder() __UpperCamelCase : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : str = self._get_dummy_logits() __UpperCamelCase : List[str] = 1_5 __UpperCamelCase : int = -20.0 __UpperCamelCase : List[Any] = -4.0 __UpperCamelCase : Optional[Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) __UpperCamelCase : List[str] = decoded_processor_out.text __UpperCamelCase : int = list(_A ) with get_context("fork" ).Pool() as pool: __UpperCamelCase : str = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) __UpperCamelCase : Dict = [d[0][0] for d in decoded_decoder_out] __UpperCamelCase : str = [d[0][2] for d in decoded_decoder_out] __UpperCamelCase : int = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1E-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _A , atol=1E-3 ) ) def _lowerCamelCase ( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.get_feature_extractor() __UpperCamelCase : Optional[Any] = self.get_tokenizer() __UpperCamelCase : Any = self.get_decoder() __UpperCamelCase : List[str] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) __UpperCamelCase : int = self._get_dummy_logits() __UpperCamelCase : str = 2.0 __UpperCamelCase : List[str] = 5.0 __UpperCamelCase : str = -20.0 __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Optional[Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) __UpperCamelCase : Tuple = decoded_processor_out.text __UpperCamelCase : Optional[int] = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context("fork" ).Pool() as pool: __UpperCamelCase : Optional[int] = decoder.decode_beams_batch( _A , _A , ) __UpperCamelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , _A ) __UpperCamelCase : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : Dict = processor.decoder.model_container[processor.decoder._model_key] __UpperCamelCase : Any = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __UpperCamelCase : Union[str, Any] = os.listdir(_A ) __UpperCamelCase : Union[str, Any] = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : int = snapshot_download("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : int = WavaVecaProcessorWithLM.from_pretrained(_A ) __UpperCamelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] __UpperCamelCase : Optional[int] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __UpperCamelCase : Optional[int] = os.listdir(_A ) __UpperCamelCase : List[str] = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: __UpperCamelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : int = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : Any = floats_list((3, 1_0_0_0) ) __UpperCamelCase : List[Any] = processor_wavaveca(_A , return_tensors="np" ) __UpperCamelCase : Tuple = processor_auto(_A , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __UpperCamelCase : Union[str, Any] = self._get_dummy_logits() __UpperCamelCase : Any = processor_wavaveca.batch_decode(_A ) __UpperCamelCase : Dict = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : List[str] = self.get_feature_extractor() __UpperCamelCase : List[Any] = self.get_tokenizer() __UpperCamelCase : int = self.get_decoder() __UpperCamelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def _lowerCamelCase ( a :List[Any] , a :Dict ) -> Optional[Any]: __UpperCamelCase : List[str] = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self :Optional[int] ) -> str: __UpperCamelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : Optional[Any] = self._get_dummy_logits()[0] __UpperCamelCase : int = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: __UpperCamelCase : Dict = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __UpperCamelCase : Union[str, Any] = self._get_dummy_logits() __UpperCamelCase : Any = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [" ".join(self.get_from_offsets(_A , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCamelCase ( self :List[str] ) -> int: import torch __UpperCamelCase : str = load_dataset("common_voice" , "en" , split="train" , streaming=_A ) __UpperCamelCase : Tuple = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __UpperCamelCase : Tuple = iter(_A ) __UpperCamelCase : str = next(_A ) __UpperCamelCase : Union[str, Any] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) __UpperCamelCase : List[Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __UpperCamelCase : Any = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): __UpperCamelCase : List[Any] = model(_A ).logits.cpu().numpy() __UpperCamelCase : Any = processor.decode(logits[0] , output_word_offsets=_A ) __UpperCamelCase : Optional[int] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __UpperCamelCase : Optional[Any] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] __UpperCamelCase : List[Any] = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(_A , "word" ) ) , _A ) self.assertEqual(" ".join(self.get_from_offsets(_A , "word" ) ) , output.text ) # output times __UpperCamelCase : Tuple = torch.tensor(self.get_from_offsets(_A , "start_time" ) ) __UpperCamelCase : List[str] = torch.tensor(self.get_from_offsets(_A , "end_time" ) ) # fmt: off __UpperCamelCase : Any = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __UpperCamelCase : List[str] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
232
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__lowerCamelCase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : List[str] = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) snake_case : List[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format snake_case : Dict = PipelineDataFormat.from_str( format=__lowerCamelCase ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(__lowerCamelCase ,__lowerCamelCase ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , A , A ) -> Union[str, Any]: snake_case : List[str] = nlp snake_case : Optional[int] = reader @staticmethod def UpperCAmelCase ( A ) -> List[Any]: snake_case : Union[str, Any] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=_A , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=_A , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=_A , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=_A , help="""Name or path to the model\'s config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=_A , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=_A , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=_A , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=_A , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=_A ) def UpperCAmelCase ( self ) -> str: snake_case , snake_case : int = self._nlp, [] for entry in self._reader: snake_case : Optional[Any] = nlp(**_A ) if self._reader.is_multi_columns else nlp(_A ) if isinstance(_A , _A ): outputs.append(_A ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case : Optional[int] = self._reader.save_binary(_A ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(_A )
124
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCAmelCase__ = '''pytorch_model.bin''' lowerCAmelCase__ = '''pytorch_model.bin.index.json''' lowerCAmelCase__ = '''adapter_config.json''' lowerCAmelCase__ = '''adapter_model.bin''' lowerCAmelCase__ = '''adapter_model.safetensors''' lowerCAmelCase__ = '''tf_model.h5''' lowerCAmelCase__ = '''tf_model.h5.index.json''' lowerCAmelCase__ = '''model.ckpt''' lowerCAmelCase__ = '''flax_model.msgpack''' lowerCAmelCase__ = '''flax_model.msgpack.index.json''' lowerCAmelCase__ = '''model.safetensors''' lowerCAmelCase__ = '''model.safetensors.index.json''' lowerCAmelCase__ = '''config.json''' lowerCAmelCase__ = '''preprocessor_config.json''' lowerCAmelCase__ = FEATURE_EXTRACTOR_NAME lowerCAmelCase__ = '''generation_config.json''' lowerCAmelCase__ = '''modelcard.json''' lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCAmelCase__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCAmelCase__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCAmelCase__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _A ( A__ ): """simple docstring""" if version.parse(__lowerCamelCase ) < version.parse(__lowerCamelCase ): if "dev" in min_version: __lowercase = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: __lowercase = F"This example requires a minimum version of {min_version}," error_message += F" but the version found is {__version__}.\n" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" while a != 0: __lowercase , __lowercase =b % a, a return b def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if gcd(__lowerCamelCase , __lowerCamelCase ) != 1: __lowercase =f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__lowerCamelCase ) __lowercase , __lowercase , __lowercase =1, 0, a __lowercase , __lowercase , __lowercase =0, 1, m while va != 0: __lowercase =ua // va __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase =(ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
166
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' UpperCamelCase_ = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Tuple ) -> Optional[int]: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : str ) -> str: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
309
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A : Any = '''http://www.mocksite.com/file1.txt''' A : Tuple = '''\"text\": [\"foo\", \"foo\"]''' A : Optional[int] = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class A : '''simple docstring''' __lowerCamelCase : Optional[Any] = 200 __lowerCamelCase : int = {'''Content-Length''': '''100'''} __lowerCamelCase : List[str] = {} def a_ ( self : Union[str, Any] , **__lowerCAmelCase : str ) -> int: """simple docstring""" return [bytes(_A , """utf-8""" )] def __lowerCamelCase ( *__a :Tuple , **__a :Optional[Any] ) -> str: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def __lowerCamelCase ( __a :Union[str, Any] , __a :int , __a :str ) -> str: """simple docstring""" import requests monkeypatch.setattr(__lowerCamelCase , """request""" , __lowerCamelCase ) A__ = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = {"""train""": url} A__ = """dummy""" A__ = """downloads""" A__ = tmp_path A__ = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) A__ = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) A__ = dl_manager.download(__lowerCamelCase ) A__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): A__ = [downloaded_paths] A__ = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() A__ = downloaded_paths.values() A__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] A__ = Path(__lowerCamelCase ) A__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() A__ = downloaded_path.read_text() assert content == CONTENT A__ = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() A__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def __lowerCamelCase ( __a :Union[str, Any] , __a :List[Any] , __a :Optional[int] ) -> List[str]: """simple docstring""" A__ = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): A__ = {"""train""": filename} A__ = """dummy""" A__ = xz_file.parent A__ = """extracted""" A__ = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) A__ = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) A__ = dl_manager.extract(__lowerCamelCase ) A__ = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): A__ = [extracted_paths] A__ = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() A__ = extracted_paths.values() A__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] A__ = Path(__lowerCamelCase ) A__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() A__ = extracted_path.read_text() A__ = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCamelCase ( __a :str , __a :List[Any] ) -> Any: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): A__ = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def __lowerCamelCase ( __a :Union[str, Any] , __a :Optional[Any] ) -> Tuple: """simple docstring""" A__ = request.getfixturevalue(__lowerCamelCase ) A__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def __lowerCamelCase ( __a :Optional[int] , __a :int ) -> List[Any]: """simple docstring""" A__ = request.getfixturevalue(__lowerCamelCase ) A__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCamelCase ( __a :Dict ) -> Any: """simple docstring""" A__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
274
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase__ ( lowercase__ : Optional[int] ): return 1 / (1 + np.exp(-z )) def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : int ): return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : str ): snake_case : List[str] = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def UpperCamelCase__ ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Optional[int]=7_0000 ): snake_case : Optional[int] = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): snake_case : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : Optional[int] = sigmoid_function(__lowerCamelCase ) snake_case : Optional[int] = np.dot(x.T , h - y ) / y.size snake_case : Any = theta - alpha * gradient # updating the weights snake_case : int = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : int = sigmoid_function(__lowerCamelCase ) snake_case : Tuple = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __A = datasets.load_iris() __A = iris.data[:, :2] __A = (iris.target != 0) * 1 __A = 0.1 __A = logistic_reg(alpha, x, y, max_iterations=70_000) print("theta: ", theta) # printing the theta i.e our weights vector def UpperCamelCase__ ( lowercase__ : List[Any] ): return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__A) , (__A)) = (x[:, 0].min(), x[:, 0].max()) ((__A) , (__A)) = (x[:, 1].min(), x[:, 1].max()) ((__A) , (__A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __A = np.c_[xxa.ravel(), xxa.ravel()] __A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
148
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowercase : '''simple docstring''' pass
229
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _a = ["""input_features""", """is_longer"""] def __init__( self , lowerCAmelCase=64 , lowerCAmelCase=48_000 , lowerCAmelCase=480 , lowerCAmelCase=10 , lowerCAmelCase=1_024 , lowerCAmelCase=0.0 , lowerCAmelCase=False , lowerCAmelCase = 0 , lowerCAmelCase = 14_000 , lowerCAmelCase = None , lowerCAmelCase = "fusion" , lowerCAmelCase = "repeatpad" , **lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) _lowercase =top_db _lowercase =truncation _lowercase =padding _lowercase =fft_window_size _lowercase =(fft_window_size >> 1) + 1 _lowercase =hop_length _lowercase =max_length_s _lowercase =max_length_s * sampling_rate _lowercase =sampling_rate _lowercase =frequency_min _lowercase =frequency_max _lowercase =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='htk' , ) _lowercase =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='slaney' , mel_scale='slaney' , ) def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( _A , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='dB' , ) return log_mel_spectrogram.T def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase =[0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase =[0] # randomly choose index for each part _lowercase =np.random.choice(ranges[0] ) _lowercase =np.random.choice(ranges[1] ) _lowercase =np.random.choice(ranges[2] ) _lowercase =mel[idx_front : idx_front + chunk_frames, :] _lowercase =mel[idx_middle : idx_middle + chunk_frames, :] _lowercase =mel[idx_back : idx_back + chunk_frames, :] _lowercase =torch.tensor(mel[None, None, :] ) _lowercase =torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_A ) _lowercase =mel_shrink[0][0].numpy() _lowercase =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase =True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase =len(_A ) - max_length _lowercase =np.random.randint(0 , overflow + 1 ) _lowercase =waveform[idx : idx + max_length] _lowercase =self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase =self._np_extract_fbank_features(_A , self.mel_filters ) _lowercase =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase =np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase =False else: _lowercase =self._random_mel_fusion(_A , _A , _A ) _lowercase =True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase =int(max_length / len(_A ) ) _lowercase =np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase =int(max_length / len(_A ) ) _lowercase =np.stack(np.tile(_A , _A ) ) _lowercase =np.pad(_A , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase =self._np_extract_fbank_features(_A , self.mel_filters ) _lowercase =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase =self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' _lowercase =truncation if truncation is not None else self.truncation _lowercase =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): _lowercase =np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. _lowercase =[ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] _lowercase =[] _lowercase =[] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase =np.random.randint(0 , len(_A ) ) _lowercase =True if isinstance(input_mel[0] , _A ): _lowercase =[np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase =[[longer] for longer in is_longer] _lowercase ={'input_features': input_mel, 'is_longer': is_longer} _lowercase =BatchFeature(_A ) if return_tensors is not None: _lowercase =input_features.convert_to_tensors(_A ) return input_features
205
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A (__SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = KandinskyVaaControlnetImgaImgPipeline __lowercase: Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __lowercase: Dict = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] __lowercase: Dict = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase: Optional[Any] = False @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return 32 @property def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" return 32 @property def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" return 100 @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ = UNetaDConditionModel(**_A ) return model @property def lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case_ = DDIMScheduler(**_A ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=0 ) ->Union[str, Any]: """simple docstring""" snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_A ) ).convert("""RGB""" ).resize((256, 256) ) # create hint snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith("""mps""" ): snake_case_ = torch.manual_seed(_A ) else: snake_case_ = torch.Generator(device=_A ).manual_seed(_A ) snake_case_ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = """cpu""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_A ) snake_case_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) snake_case_ = pipe(**self.get_dummy_inputs(_A ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case_ = torch.from_numpy(np.array(_A ) ).float() / 255.0 snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case_ = """A robot, 4k photo""" snake_case_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) snake_case_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) snake_case_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( _A , image=_A , strength=0.85 , generator=_A , negative_prompt="""""" , ).to_tuple() snake_case_ = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _A = logging.get_logger(__name__) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , _A , ) super().__init__(*_A , **_A )
231
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowerCamelCase , help="where to store parsed gold_data_path file" , ) __UpperCamelCase : int = parser.parse_args() with open(args.src_path , "r") as src_file, open(args.evaluation_set , "w") as eval_file, open( args.gold_data_path , "w") as gold_file: __UpperCamelCase : int = json.load(__lowerCamelCase) for dpr_record in tqdm(__lowerCamelCase): __UpperCamelCase : str = dpr_record["question"] __UpperCamelCase : List[str] = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n") gold_file.write("\t".join(__lowerCamelCase) + "\n") if __name__ == "__main__": main()
232
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: snake_case : Any = 0 @slow def UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): snake_case : List[str] = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): snake_case : Dict = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type snake_case : Optional[Any] = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def UpperCAmelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_A , """vocab.txt""" ) ) snake_case : int = AutoTokenizer.from_pretrained(_A , tokenizer_type="""bert""" , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_A , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_A , """merges.txt""" ) ) snake_case : int = AutoTokenizer.from_pretrained(_A , tokenizer_type="""gpt2""" , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_A , """vocab.txt""" ) ) snake_case : int = AutoTokenizer.from_pretrained(_A , tokenizer_type="""bert""" ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_A , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_A , """merges.txt""" ) ) snake_case : List[str] = AutoTokenizer.from_pretrained(_A , tokenizer_type="""gpt2""" ) self.assertIsInstance(_A , _A ) def UpperCAmelCase ( self ) -> int: with pytest.raises(_A ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def UpperCAmelCase ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: snake_case : Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def UpperCAmelCase ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): snake_case : Optional[int] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def UpperCAmelCase ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai snake_case : List[Any] = TOKENIZER_MAPPING.values() snake_case : List[str] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def UpperCAmelCase ( self ) -> Dict: self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _A ) @require_tokenizers def UpperCAmelCase ( self ) -> Dict: snake_case : str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_A ) snake_case : Optional[Any] = """Hello, world. How are you?""" snake_case : List[str] = tokenizer.tokenize(_A ) self.assertEqual("""[UNK]""" , tokens[0] ) snake_case : List[Any] = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_A ) snake_case : Tuple = tokenizer.tokenize(_A ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def UpperCAmelCase ( self ) -> int: snake_case : Optional[int] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def UpperCAmelCase ( self ) -> str: # Check we can load the tokenizer config of an online model. snake_case : Any = get_tokenizer_config("""bert-base-cased""" ) snake_case : Optional[Any] = config.pop("""_commit_hash""" , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. snake_case : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. snake_case : List[str] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : Tuple = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def UpperCAmelCase ( self ) -> Tuple: try: AutoConfig.register("""custom""" , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) snake_case : int = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCAmelCase ( self ) -> List[Any]: try: AutoConfig.register("""custom""" , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) snake_case : Any = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) snake_case : Optional[int] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): snake_case : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : Tuple = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def UpperCAmelCase ( self ) -> List[str]: class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _snake_case = False class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _snake_case = NewTokenizer _snake_case = False try: AutoConfig.register("""custom""" , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local snake_case : int = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. snake_case : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) snake_case : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub snake_case : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ) -> List[str]: snake_case : int = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex( _A , """bert-base is not a local folder and is not a valid model identifier""" ): snake_case : List[Any] = AutoTokenizer.from_pretrained("""bert-base""" ) def UpperCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( _A , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(_A , revision="""aaaaaa""" ) def UpperCAmelCase ( self ) -> Optional[int]: # Make sure we have cached the tokenizer. snake_case : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
124
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ (__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 'new-model' if is_tf_available(): class lowercase_ (__SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = NewModelConfig @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = '''bert-base-cased''' __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = '''bert-base-cased''' __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForCausalLM.from_pretrained(_A ) __lowercase , __lowercase = TFAutoModelForCausalLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForMaskedLM.from_pretrained(_A ) __lowercase , __lowercase = TFAutoModelForMaskedLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) __lowercase , __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE ( self : Tuple ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowercase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) __lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) __lowercase , __lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained( _A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) self.assertEqual(model.num_parameters() ,1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_A ) ,1_4_4_1_0 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) self.assertEqual(model.num_parameters() ,1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_A ) ,1_4_4_1_0 ) def SCREAMING_SNAKE_CASE ( self : Dict ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __lowercase = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A ,_A ) __lowercase = copy.deepcopy(model.config ) __lowercase = ['''FunnelBaseModel'''] __lowercase = TFAutoModel.from_config(_A ) self.assertIsInstance(_A ,_A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __lowercase = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): try: AutoConfig.register('''new-model''' ,_A ) __lowercase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A ,_A ) auto_class.register(_A ,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A ,_A ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = BertModelTester(self ).get_config() __lowercase = NewModelConfig(**tiny_config.to_dict() ) __lowercase = auto_class.from_config(_A ) self.assertIsInstance(_A ,_A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __lowercase = auto_class.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( _A ,'''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = TFAutoModel.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( _A ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = TFAutoModel.from_pretrained(_A ,revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : str ): with self.assertRaisesRegex( _A ,'''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' ,): __lowercase = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex(_A ,'''Use `from_pt=True` to load this model''' ): __lowercase = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Make sure we have cached the model. __lowercase = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint __lowercase = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' lowerCamelCase = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
166
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCAmelCase : int = StableDiffusionInstructPixaPixPipeline __lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) _lowerCAmelCase : str = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) _lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase ( self , snake_case_ , snake_case_=0 ): _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_A ) ).to(_A ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Dict = Image.fromarray(np.uinta(_A ) ).convert("""RGB""" ) if str(_A ).startswith("""mps""" ): _lowerCAmelCase : Any = torch.manual_seed(_A ) else: _lowerCAmelCase : List[str] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = StableDiffusionInstructPixaPixPipeline(**_A ) _lowerCAmelCase : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Any = self.get_dummy_inputs(_A ) _lowerCAmelCase : int = sd_pipe(**_A ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCAmelCase : Dict = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**_A ) _lowerCAmelCase : Optional[int] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[str] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Optional[Any] = """french fries""" _lowerCAmelCase : Tuple = sd_pipe(**_A , negative_prompt=_A ) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCAmelCase : str = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : int = StableDiffusionInstructPixaPixPipeline(**_A ) _lowerCAmelCase : List[str] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : int = self.get_dummy_inputs(_A ) _lowerCAmelCase : int = [inputs["""prompt"""]] * 2 _lowerCAmelCase : Dict = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) _lowerCAmelCase : List[str] = image / 2 + 0.5 _lowerCAmelCase : Dict = image.permute(0 , 3 , 1 , 2 ) _lowerCAmelCase : List[str] = image.repeat(2 , 1 , 1 , 1 ) _lowerCAmelCase : List[str] = sd_pipe(**_A ).images _lowerCAmelCase : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _lowerCAmelCase : List[str] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _lowerCAmelCase : str = StableDiffusionInstructPixaPixPipeline(**_A ) _lowerCAmelCase : Tuple = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = sd_pipe(**_A ).images _lowerCAmelCase : str = image[0, -3:, -3:, -1] _lowerCAmelCase : Union[str, Any] = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _lowerCAmelCase : List[str] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_A ) _lowerCAmelCase : List[Any] = VaeImageProcessor(do_resize=_A , do_normalize=_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Dict = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type="""pt""" ) )[0] _lowerCAmelCase : Tuple = components["""vae"""] _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs_by_type(_A , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _lowerCAmelCase : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() _lowerCAmelCase : Dict = pipe(**_A )[0] _lowerCAmelCase : Dict = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , snake_case_=0 ): _lowerCAmelCase : int = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _lowerCAmelCase : int = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _lowerCAmelCase : List[Any] = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**_A ).images _lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCAmelCase : List[str] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_A ) _lowerCAmelCase : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _lowerCAmelCase : Optional[int] = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**_A ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_A ) _lowerCAmelCase : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _lowerCAmelCase : Union[str, Any] = self.get_inputs() _lowerCAmelCase : int = pipe(**_A ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCAmelCase : Optional[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : int = 0 def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: _lowerCAmelCase : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowerCAmelCase : List[Any] = latents[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowerCAmelCase : int = latents[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_A , torch_dtype=torch.floataa ) _lowerCAmelCase : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _lowerCAmelCase : List[Any] = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_A , torch_dtype=torch.floataa ) _lowerCAmelCase : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : str = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**_A ) _lowerCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase : Union[str, Any] = inputs["""image"""].resize((5_0_4, 5_0_4) ) _lowerCAmelCase : str = """timbrooks/instruct-pix2pix""" _lowerCAmelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _lowerCAmelCase : Dict = pipe(**_A ) _lowerCAmelCase : Optional[Any] = output.images[0] _lowerCAmelCase : List[str] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _lowerCAmelCase : List[Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
from collections.abc import Callable def __snake_case ( _lowerCAmelCase : Callable[[float], float] , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: A_ : float = a A_ : float = b if function(_lowerCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCAmelCase ) == 0: return b elif ( function(_lowerCAmelCase ) * function(_lowerCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: A_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCAmelCase ) == 0: return mid elif function(_lowerCAmelCase ) * function(_lowerCAmelCase ) < 0: A_ : List[str] = mid else: A_ : Optional[Any] = mid A_ : Optional[Any] = start + (end - start) / 2.0 return mid def __snake_case ( _lowerCAmelCase : float ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 1 @register_to_config def __init__( self :Union[str, Any] , snake_case :int = 2_000 , snake_case :float = 0.15 , snake_case :float = 0.01 , snake_case :float = 1348.0 , snake_case :float = 1e-5 , snake_case :int = 1 , ): '''simple docstring''' A_ : Dict = sigma_max # setable values A_ : List[Any] = None self.set_sigmas(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :torch.FloatTensor , snake_case :Optional[int] = None ): '''simple docstring''' return sample def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :float = None , snake_case :Union[str, torch.device] = None ): '''simple docstring''' A_ : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ : Tuple = torch.linspace(1 , snake_case , snake_case , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int , snake_case :float = None , snake_case :float = None , snake_case :float = None ): '''simple docstring''' A_ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min A_ : Any = sigma_max if sigma_max is not None else self.config.sigma_max A_ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case , snake_case ) A_ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ : Any = torch.exp(torch.linspace(math.log(snake_case ) , math.log(snake_case ) , snake_case ) ) A_ : str = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Dict ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :int , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) A_ : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ : Optional[Any] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ : Dict = timesteps.to(self.discrete_sigmas.device ) A_ : Optional[int] = self.discrete_sigmas[timesteps].to(sample.device ) A_ : int = self.get_adjacent_sigma(snake_case , snake_case ).to(sample.device ) A_ : Union[str, Any] = torch.zeros_like(snake_case ) A_ : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ : Tuple = diffusion.unsqueeze(-1 ) A_ : Optional[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case , device=sample.device , dtype=sample.dtype ) A_ : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case , prev_sample_mean=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :Optional[torch.Generator] = None , snake_case :bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ : int = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ : List[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ : str = step_size.unsqueeze(-1 ) A_ : Optional[Any] = sample + step_size * model_output A_ : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor , ): '''simple docstring''' A_ : Union[str, Any] = timesteps.to(original_samples.device ) A_ : List[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case ) * sigmas[:, None, None, None] ) A_ : Optional[int] = noise + original_samples return noisy_samples def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
300
1