code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
21
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : list[float] , __lowercase : list[float] ) -> float: '''simple docstring''' _UpperCAmelCase = sorted(numsa + numsa ) _UpperCAmelCase , _UpperCAmelCase = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :Tuple = [float(x) for x in input('''Enter the elements of first array: ''').split()] __SCREAMING_SNAKE_CASE :Any = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
22
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase__: Union[str, Any] = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] , __snake_case : Path , __snake_case : Union[str, None] = None , __snake_case : Union[List[str], None] = None , __snake_case : Union[str, List[str], None] = None , __snake_case : bool = True , ) -> Tuple: UpperCAmelCase : Optional[Any] = [file for file in os.listdir(__snake_case ) if os.path.isfile(os.path.join(__snake_case , __snake_case ) )] if identifier is not None: UpperCAmelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__snake_case , __snake_case ): for n_ in n_identifier: UpperCAmelCase : Dict = [file for file in files if n_ not in file] else: UpperCAmelCase : Dict = [file for file in files if n_identifier not in file] UpperCAmelCase : int = ignore_files or [] ignore_files.append('''__init__.py''' ) UpperCAmelCase : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __snake_case ) if only_modules: UpperCAmelCase : List[str] = file.split('''.''' )[0] try: UpperCAmelCase : Dict = getattr(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = doctest.DocTestSuite(__snake_case ) UpperCAmelCase : str = unittest.TextTestRunner().run(__snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase : Any = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A ( self : Any ) -> Tuple: UpperCAmelCase : List[str] = Path('''src/transformers''' ) UpperCAmelCase : int = '''modeling''' UpperCAmelCase : Tuple = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__snake_case , identifier=__snake_case , ignore_files=__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = Path('''src/transformers''' ) UpperCAmelCase : Tuple = '''tokenization''' self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' ) UpperCAmelCase : str = '''configuration''' self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' ) UpperCAmelCase : str = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__snake_case , n_identifier=__snake_case ) def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Dict = Path('''docs/source''' ) UpperCAmelCase : Union[str, Any] = ['''favicon.ico'''] self.analyze_directory(__snake_case , ignore_files=__snake_case , only_modules=__snake_case )
23
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } snake_case_ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off snake_case_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : int = ['input_ids', 'attention_mask'] A_ : Tuple = MBartTokenizer A_ : List[int] = [] A_ : List[int] = [] def __init__(self : Optional[int] , a__ : str=None , a__ : int=None , a__ : Any="<s>" , a__ : Any="</s>" , a__ : Any="</s>" , a__ : List[str]="<s>" , a__ : List[str]="<unk>" , a__ : Dict="<pad>" , a__ : List[Any]="<mask>" , a__ : Union[str, Any]=None , a__ : Any=None , a__ : Union[str, Any]=None , **a__ : int , ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , **a__ , ) __snake_case = vocab_file __snake_case = False if not self.vocab_file else True __snake_case = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case = src_lang if src_lang is not None else '''en_XX''' __snake_case = self.convert_tokens_to_ids(self._src_lang ) __snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a (self : Optional[int] ): """simple docstring""" return self._src_lang @src_lang.setter def a (self : Tuple , a__ : str ): """simple docstring""" __snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a (self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a (self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a (self : List[Any] , a__ : Optional[Any] , a__ : str , a__ : Optional[str] , a__ : Optional[str] , **a__ : int ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case = src_lang __snake_case = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = tgt_lang_id return inputs def a (self : Tuple , a__ : List[str] , a__ : str = "en_XX" , a__ : Optional[List[str]] = None , a__ : str = "ro_RO" , **a__ : Tuple , ): """simple docstring""" __snake_case = src_lang __snake_case = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def a (self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a (self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a (self : Optional[int] , a__ : str ): """simple docstring""" __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code] __snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a (self : Union[str, Any] , a__ : str ): """simple docstring""" __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code] __snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
24
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = XGLMTokenizer __UpperCamelCase : List[str] = XGLMTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : str = True def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[Any] = XGLMTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """<pad>""" SCREAMING_SNAKE_CASE__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_08 ) def __magic_name__ (self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = XGLMTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __magic_name__ (self ) -> List[str]: """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def __magic_name__ (self ) -> List[str]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) SCREAMING_SNAKE_CASE__ : Any = XGLMTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = """I was born in 92000, and this is falsé.""" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """Hello World!""" SCREAMING_SNAKE_CASE__ : Any = [2, 3_12_27, 44_47, 35] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = { """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="""facebook/xglm-564M""" , padding=SCREAMING_SNAKE_CASE__ , )
25
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "owlvit_text_model" def __init__( self , _a=4_9408 , _a=512 , _a=2048 , _a=12 , _a=8 , _a=16 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9406 , _a=4_9407 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Dict = vocab_size _A : List[Any] = hidden_size _A : Optional[int] = intermediate_size _A : Optional[Any] = num_hidden_layers _A : List[Any] = num_attention_heads _A : List[Any] = max_position_embeddings _A : str = hidden_act _A : Optional[Any] = layer_norm_eps _A : Optional[int] = attention_dropout _A : Optional[int] = initializer_range _A : Optional[int] = initializer_factor @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : Union[str, Any] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": _A : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "owlvit_vision_model" def __init__( self , _a=768 , _a=3072 , _a=12 , _a=12 , _a=3 , _a=768 , _a=32 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict: super().__init__(**_a ) _A : int = hidden_size _A : Optional[int] = intermediate_size _A : Tuple = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : Union[str, Any] = num_channels _A : Any = image_size _A : str = patch_size _A : List[Any] = hidden_act _A : Optional[int] = layer_norm_eps _A : Optional[int] = attention_dropout _A : List[str] = initializer_range _A : List[str] = initializer_factor @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : Tuple = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": _A : List[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "owlvit" _a = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=True , **_a , ) -> Optional[Any]: super().__init__(**_a ) if text_config is None: _A : str = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: _A : int = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) _A : Dict = OwlViTTextConfig(**_a ) _A : int = OwlViTVisionConfig(**_a ) _A : Any = projection_dim _A : List[Any] = logit_scale_init_value _A : Any = return_dict _A : List[str] = 1.0 @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : Optional[Any] = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) @classmethod def a__ ( cls , _a , _a , **_a ) -> List[str]: _A : Dict = {} _A : Dict = text_config _A : Optional[Any] = vision_config return cls.from_dict(_a , **_a ) def a__ ( self ) -> List[Any]: _A : Dict = copy.deepcopy(self.__dict__ ) _A : Dict = self.text_config.to_dict() _A : Optional[Any] = self.vision_config.to_dict() _A : List[str] = self.__class__.model_type return output class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def a__ ( self ) -> float: return 1e-4 def a__ ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _A : Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _A : Any = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def a__ ( self ) -> int: return 14
26
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
28
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
def lowercase__ ( __snake_case : int = 4_000_000 ): '''simple docstring''' UpperCAmelCase_ : int = [0, 1] UpperCAmelCase_ : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCAmelCase_ : str = 0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
29
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ) -> Union[str, Any]: debug_launcher(test_script.main ) def _lowercase ( self : List[Any] ) -> Tuple: debug_launcher(test_ops.main )
30
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase_ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : Dict = get_logger(__name__) def lowercase ( __snake_case : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str=0 ): os.makedirs(__snake_case , exist_ok=__snake_case ) with FSDP.state_dict_type( __snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ : str = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ : Any = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ : str = os.path.join(__snake_case , __snake_case ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__snake_case , __snake_case ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ : str = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ : int = os.path.join(__snake_case , __snake_case ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__snake_case , __snake_case ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ : int = os.path.join(__snake_case , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowercase_ : Dict = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__snake_case , storage_writer=dist_cp.FileSystemWriter(__snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def lowercase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase_ : int = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowercase_ : Dict = os.path.join(__snake_case , __snake_case ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ : Any = torch.load(__snake_case ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ : Union[str, Any] = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowercase_ : Any = os.path.join(__snake_case , __snake_case ) logger.info(F'''Loading model from {input_model_file}''' ) lowercase_ : int = torch.load(__snake_case ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ : Union[str, Any] = ( os.path.join(__snake_case , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowercase_ : List[Any] = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__snake_case , storage_reader=dist_cp.FileSystemReader(__snake_case ) , planner=DefaultLoadPlanner() , ) lowercase_ : Optional[Any] = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__snake_case ) def lowercase ( __snake_case : Any , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple=0 ): os.makedirs(__snake_case , exist_ok=__snake_case ) with FSDP.state_dict_type( __snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ : Tuple = FSDP.optim_state_dict(__snake_case , __snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ : Any = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ : Optional[Any] = os.path.join(__snake_case , __snake_case ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__snake_case , __snake_case ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowercase_ : List[Any] = os.path.join(__snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(__snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def lowercase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ : int = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ : List[str] = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowercase_ : List[Any] = os.path.join(__snake_case , __snake_case ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowercase_ : str = torch.load(__snake_case ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowercase_ : Union[str, Any] = ( os.path.join(__snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowercase_ : Tuple = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(__snake_case ) , ) lowercase_ : Optional[int] = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowercase_ : Optional[int] = FSDP.optim_state_dict_to_load(__snake_case , __snake_case , __snake_case ) optimizer.load_state_dict(__snake_case )
33
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter A =True except ImportError: A =False A =logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ (_a : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _a ( __a ): @staticmethod def A ( lowercase : ArgumentParser ): '''simple docstring''' UpperCAmelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowercase , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowercase , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowercase ) def __init__( self : List[Any] , lowercase : bool , lowercase : str , lowercase : Dict=None , *lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = testing UpperCAmelCase = testing_file UpperCAmelCase = path def A ( self : Optional[Any] ): '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowercase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCAmelCase = ( Path(lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCAmelCase = json.load(lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase , extra_context=lowercase , ) UpperCAmelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = configuration['''lowercase_modelname'''] UpperCAmelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"{directory}/configuration.json" ) UpperCAmelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCAmelCase = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(lowercase , exist_ok=lowercase ) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=lowercase ) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , '''w''' ): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(lowercase : Union[str, Any] ): with open(lowercase , '''r''' ) as f: UpperCAmelCase = f.readlines() with open(lowercase , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase : str , lowercase : str , lowercase : List[str] ): # Create temp file UpperCAmelCase , UpperCAmelCase = mkstemp() UpperCAmelCase = False with fdopen(lowercase , '''w''' ) as new_file: with open(lowercase ) as old_file: for line in old_file: new_file.write(lowercase ) if line_to_copy_below in line: UpperCAmelCase = True for line_to_copy in lines_to_copy: new_file.write(lowercase ) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(lowercase , lowercase ) # Remove original file remove(lowercase ) # Move new file move(lowercase , lowercase ) def skip_units(lowercase : List[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase : Tuple ): with open(lowercase ) as datafile: UpperCAmelCase = [] UpperCAmelCase = False UpperCAmelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase = line.split('''"''' )[1] UpperCAmelCase = skip_units(lowercase ) elif "# Below: " in line and "##" not in line: UpperCAmelCase = line.split('''"''' )[1] UpperCAmelCase = skip_units(lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase , lowercase , lowercase ) UpperCAmelCase = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase = [] elif "##" not in line: lines_to_copy.append(lowercase ) remove(lowercase ) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(lowercase )
34
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Tuple , *snake_case_ : Union[str, Any] , **snake_case_ : Any ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _snake_case = pd.read_csv("sample_data.csv", header=None) _snake_case = df.shape[:1][0] # If you're using some other dataset input the target column _snake_case = df.iloc[:, 1:2] _snake_case = actual_data.values.reshape(len_data, 1) _snake_case = MinMaxScaler().fit_transform(actual_data) _snake_case = 10 _snake_case = 5 _snake_case = 20 _snake_case = len_data - periods * look_back _snake_case = actual_data[:division] _snake_case = actual_data[division - look_back :] _snake_case, _snake_case = [], [] _snake_case, _snake_case = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _snake_case = np.array(train_x) _snake_case = np.array(test_x) _snake_case = np.array([list(i.ravel()) for i in train_y]) _snake_case = np.array([list(i.ravel()) for i in test_y]) _snake_case = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") _snake_case = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _snake_case = model.predict(x_test)
36
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: with open(UpperCamelCase , """rb""" ) as flax_state_f: lowerCAmelCase__ : Union[str, Any] = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCAmelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCAmelCase__ : Dict = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) lowerCAmelCase__ : Any = """""" lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase , sep=""".""" ) lowerCAmelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase__ : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase__ : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase__ : str = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase__ : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCAmelCase__ : Union[str, Any] = """.""".join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase__ : int = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase__ : Optional[int] = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
37
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Union[str, Any] ): UpperCamelCase :Union[str, Any] = """ylacombe/bark-small""" UpperCamelCase :List[str] = tempfile.mkdtemp() UpperCamelCase :List[Any] = """en_speaker_1""" UpperCamelCase :int = """This is a test string""" UpperCamelCase :int = """speaker_embeddings_path.json""" UpperCamelCase :Optional[Any] = """speaker_embeddings""" def _A ( self : int , **__lowerCamelCase : Any ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCamelCase ) def _A ( self : Dict ): shutil.rmtree(self.tmpdirname ) def _A ( self : List[Any] ): UpperCamelCase :Optional[int] = self.get_tokenizer() UpperCamelCase :str = BarkProcessor(tokenizer=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _A ( self : int ): UpperCamelCase :Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase :Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase :Tuple = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _A ( self : Tuple ): UpperCamelCase :Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase :Any = 35 UpperCamelCase :Optional[int] = 2 UpperCamelCase :Tuple = 8 UpperCamelCase :Optional[Any] = { """semantic_prompt""": np.ones(__lowerCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase :List[Any] = processor(text=self.input_string , voice_preset=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase :List[Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Tuple = processor(text=self.input_string , voice_preset=__lowerCamelCase ) UpperCamelCase :Dict = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase :List[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def _A ( self : List[str] ): UpperCamelCase :Any = self.get_tokenizer() UpperCamelCase :List[str] = BarkProcessor(tokenizer=__lowerCamelCase ) UpperCamelCase :Tuple = processor(text=self.input_string ) UpperCamelCase :Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
38
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _a = False class __lowerCamelCase ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'A painting of a squirrel eating a burger ' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = generator.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = 'A painting of a squirrel eating a burger ' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=UpperCAmelCase , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowercase = """sshleifer/bart-tiny-random""" __lowercase = """patrickvonplaten/t5-tiny-random""" @require_torch class _A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Any): return AutoConfig.from_pretrained(__UpperCAmelCase) def __snake_case ( self : str): a , *a : Optional[int] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def __snake_case ( self : List[str]): a , *a : Union[str, Any] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=__UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a , *a : Optional[int] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=__UpperCAmelCase) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def __snake_case ( self : List[str]): a , *a : Union[str, Any] = create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def __snake_case ( self : List[Any]): with self.assertRaises(__UpperCAmelCase): create_student_by_copying_alternating_layers(__UpperCAmelCase , tempfile.mkdtemp() , e=__UpperCAmelCase , d=__UpperCAmelCase)
40
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowercase ( unittest.TestCase ): a = MODEL_FOR_MASKED_LM_MAPPING a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCamelCase_ ( self: str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) lowerCamelCase__ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) lowerCamelCase__ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) lowerCamelCase__ : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) lowerCamelCase__ : Tuple = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) lowerCamelCase__ : List[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() lowerCamelCase__ : Union[str, Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_torch def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(UpperCamelCase__ ) @slow @require_tf def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(UpperCamelCase__ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: List[str] ): lowerCamelCase__ : int = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) lowerCamelCase__ : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) lowerCamelCase__ : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) lowerCamelCase__ : Dict = None lowerCamelCase__ : Dict = None self.run_pipeline_test(UpperCamelCase__ , [] ) @require_tf def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) lowerCamelCase__ : str = None lowerCamelCase__ : str = None self.run_pipeline_test(UpperCamelCase__ , [] ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: List[str] ): lowerCamelCase__ : List[str] = fill_masker.tokenizer lowerCamelCase__ : Optional[int] = fill_masker.model lowerCamelCase__ : Tuple = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : str = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : Union[str, Any] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , ) with self.assertRaises(UpperCamelCase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(UpperCamelCase__ ): fill_masker("""This is""" ) self.run_test_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_targets(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_top_k_targets(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_duplicate_targets_and_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_multiple_masks(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Optional[int] = tokenizer.get_vocab() lowerCamelCase__ : str = sorted(vocab.keys() )[:2] # Pipeline argument lowerCamelCase__ : Any = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , targets=UpperCamelCase__ ) lowerCamelCase__ : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Call argument lowerCamelCase__ : str = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) lowerCamelCase__ : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Score equivalence lowerCamelCase__ : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) lowerCamelCase__ : int = [top_mask["""token_str"""] for top_mask in outputs] lowerCamelCase__ : Optional[int] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ) == set(UpperCamelCase__ ): lowerCamelCase__ : Dict = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) # Raises with invalid with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(UpperCamelCase__ ): lowerCamelCase__ : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , top_k=2 ) lowerCamelCase__ : List[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) lowerCamelCase__ : Dict = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: List[Any] , UpperCamelCase__: int ): lowerCamelCase__ : str = tokenizer.get_vocab() lowerCamelCase__ : Optional[Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # top_k=2, ntargets=3 lowerCamelCase__ : Optional[int] = sorted(vocab.keys() )[:3] lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=UpperCamelCase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__ : Any = [el["""token_str"""] for el in sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x["score"] , reverse=UpperCamelCase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ).issubset(UpperCamelCase__ ): lowerCamelCase__ : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=UpperCamelCase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple ): lowerCamelCase__ : int = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : Dict = tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__ : Union[str, Any] = sorted(vocab.keys() )[:3] lowerCamelCase__ : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__ : Dict = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=UpperCamelCase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCamelCase__ ) , 3 ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Any , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase__ : str = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , )
41
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
'''simple docstring''' from __future__ import annotations lowercase : Any = 8.988E9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> dict[str, float]: _snake_case = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: _snake_case = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: _snake_case = abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: _snake_case = (COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
42
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowercase = 3 def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' print('''Generating primitive root of p''' ) while True: __UpperCamelCase :Tuple = random.randrange(3 , SCREAMING_SNAKE_CASE ) if pow(SCREAMING_SNAKE_CASE , 2 , SCREAMING_SNAKE_CASE ) == 1: continue if pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) == 1: continue return g def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' print('''Generating prime p...''' ) __UpperCamelCase :List[Any] = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE ) # select large prime number. __UpperCamelCase :Optional[Any] = primitive_root(SCREAMING_SNAKE_CASE ) # one primitive root on modulo p. __UpperCamelCase :Optional[int] = random.randrange(3 , SCREAMING_SNAKE_CASE ) # private_key -> have to be greater than 2 for safety. __UpperCamelCase :List[Any] = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = (key_size, e_a, e_a, p) __UpperCamelCase :str = (key_size, d) return public_key, private_key def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __UpperCamelCase , __UpperCamelCase :str = generate_key(SCREAMING_SNAKE_CASE ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def lowerCamelCase ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''elgamal''' , 2_048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
43
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
"""simple docstring""" _a : Union[str, Any] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
44
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) __a = get_activation('''gelu_10''' ) __a = torch_builtin(_a ) __a = geluaa(_a ) __a = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCAmelCase ( self ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) __a = 1 __a = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): __a = acta.a
45
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , **lowercase , ) -> int: super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) lowerCAmelCase = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} lowerCAmelCase = Text( cache_dir=lowercase , data_files=lowercase , features=lowercase , **lowercase , ) def _snake_case ( self ) -> Tuple: # Build iterable dataset if self.streaming: lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset
46
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
'''simple docstring''' from math import factorial def _lowerCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: """simple docstring""" return sum(int(_UpperCamelCase ) for x in str(factorial(_UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
47
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ : int = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case :Dict = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __a = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) __a = in_proj_weight[ : encoder_config.hidden_size, : ] __a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __a = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = dct.pop(_UpperCAmelCase ) __a = val def __snake_case ( _UpperCAmelCase ): if "handwritten" in checkpoint_url: __a = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __a = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = ViTConfig(image_size=384 , qkv_bias=_UpperCAmelCase ) __a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __a = 768 elif "large" in checkpoint_url: # use ViT-large encoder __a = 1024 __a = 4096 __a = 24 __a = 16 __a = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __a = False __a = '''relu''' __a = 1024 __a = True __a = False __a = False # load HuggingFace model __a = ViTModel(_UpperCAmelCase , add_pooling_layer=_UpperCAmelCase ) __a = TrOCRForCausalLM(_UpperCAmelCase ) __a = VisionEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys __a = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='''cpu''' , check_hash=_UpperCAmelCase )['''model'''] __a = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __a = state_dict.pop(_UpperCAmelCase ) if key.startswith('''decoder''' ) and "output_projection" not in key: __a = val else: __a = val # load state dict model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image __a = ViTImageProcessor(size=encoder_config.image_size ) __a = RobertaTokenizer.from_pretrained('''roberta-large''' ) __a = TrOCRProcessor(_UpperCAmelCase , _UpperCAmelCase ) __a = processor(images=prepare_img(_UpperCAmelCase ) , return_tensors='''pt''' ).pixel_values # verify logits __a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __a = model(pixel_values=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) __a = outputs.logits __a = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: __a = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __a = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __a = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __a = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __snake_case :List[Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
49
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any=7 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[Any]=18 , UpperCAmelCase : Dict=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=None , ) -> Any: lowerCamelCase__ : Any = size if size is not None else {'shortest_edge': 18} lowerCamelCase__ : List[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase__ : Tuple = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Union[str, Any] = num_frames lowerCamelCase__ : Any = image_size lowerCamelCase__ : int = min_resolution lowerCamelCase__ : Tuple = max_resolution lowerCamelCase__ : List[str] = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : Union[str, Any] = do_normalize lowerCamelCase__ : List[str] = image_mean lowerCamelCase__ : Tuple = image_std lowerCamelCase__ : Tuple = crop_size def A_ ( self : Tuple ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = VivitImageProcessor if is_vision_available() else None def A_ ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase__ : Optional[int] = VivitImageProcessingTester(self ) @property def A_ ( self : int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def A_ ( self : List[Any] ) -> Optional[int]: # Initialize image_processing lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCamelCase__ : str = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Optional[int] = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : int ) -> Union[str, Any]: # Initialize image_processing lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : Dict ) -> Optional[int]: # Initialize image_processing lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCamelCase__ : Union[str, Any] = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
50
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device snake_case_ : Optional[Any] = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : int): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''') # remove text_unet pipe.remove_unused_weights() pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case) UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = generator.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
51
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = """▁""" __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} __lowerCamelCase : Tuple = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } __lowerCamelCase : Optional[Any] = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } __lowerCamelCase : int = { """ernie-m-base""": 514, """ernie-m-large""": 514, } __lowerCamelCase : Union[str, Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class A__ ( __snake_case ): _UpperCAmelCase :List[str] = ["input_ids"] _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = RESOURCE_FILES_NAMES def __init__( self , A_ , A_=None , A_=False , A_="utf8" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , vocab_file=A_ , encoding=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : List[Any] = sentencepiece_model_ckpt UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : List[Any] = self.load_vocab(filepath=A_ ) else: UpperCamelCase : Optional[Any] = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : Union[str, Any] = {v: k for k, v in self.vocab.items()} def __UpperCamelCase( self , A_ ): '''simple docstring''' if text is None: return None UpperCamelCase : Optional[Any] = self.tokenize(A_ ) UpperCamelCase , UpperCamelCase : Any = "", [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : int = self.SP_CHAR_MAPPING.get(A_ ) else: UpperCamelCase : int = unicodedata.normalize("NFKC" , A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : List[Any] = token[1:] UpperCamelCase : Tuple = text[offset:].index(A_ ) + offset UpperCamelCase : List[Any] = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : Dict = end return token_mapping @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.vocab ) def __UpperCamelCase( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCamelCase : Tuple = self.__dict__.copy() UpperCamelCase : Dict = None return state def __setstate__( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(A_ , A_ ) for c in text) ) def __UpperCamelCase( self , A_ , A_=False , A_=64 , A_=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCamelCase : Any = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCamelCase : Union[str, Any] = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCamelCase : Dict = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(A_ ) else: UpperCamelCase : List[str] = self.sp_model.SampleEncodeAsPieces(A_ , A_ , A_ ) UpperCamelCase : Tuple = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue UpperCamelCase : str = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) UpperCamelCase : List[str] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Dict = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.convert_ids_to_tokens(A_ ) UpperCamelCase : Optional[Any] = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.reverse_vocab.get(A_ , self.unk_token ) def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] UpperCamelCase : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __UpperCamelCase( self , A_ , A_=None , A_=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def __UpperCamelCase( self , A_ ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: UpperCamelCase : Optional[Any] = unicodedata.category(A_ ) if cat == "Zs": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : str = {} with io.open(A_ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A_ ): UpperCamelCase : List[Any] = line.rstrip("\n" ) UpperCamelCase : Any = int(A_ ) return token_to_idx def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = 0 if os.path.isdir(A_ ): UpperCamelCase : Optional[int] = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCamelCase : List[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(A_ , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCamelCase : Any = token_index writer.write(token + "\n" ) index += 1 UpperCamelCase : Any = os.path.join(A_ , "sentencepiece.bpe.model" ) with open(A_ , "wb" ) as fi: UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
52
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : List[str] =logging.get_logger(__name__) def lowercase__ ( __lowercase : str , __lowercase : List[Any] ) -> Dict: """simple docstring""" __UpperCamelCase = b.T __UpperCamelCase = np.sum(np.square(__lowercase ) , axis=1 ) __UpperCamelCase = np.sum(np.square(__lowercase ) , axis=0 ) __UpperCamelCase = np.matmul(__lowercase , __lowercase ) __UpperCamelCase = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase__ ( __lowercase : Tuple , __lowercase : Dict ) -> List[Any]: """simple docstring""" __UpperCamelCase = x.reshape(-1 , 3 ) __UpperCamelCase = squared_euclidean_distance(__lowercase , __lowercase ) return np.argmin(__lowercase , axis=1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =["pixel_values"] def __init__( self : Union[str, Any] , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : bool = True , **__A : List[str] , ): super().__init__(**__A ) __UpperCamelCase = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} __UpperCamelCase = get_size_dict(__A ) __UpperCamelCase = np.array(__A ) if clusters is not None else None __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_normalize __UpperCamelCase = do_color_quantize def _lowerCamelCase ( self : Optional[int] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Union[str, Any] , ): __UpperCamelCase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size['height'], size['width']) , resample=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : Dict , __A : np.ndarray , __A : Optional[Union[str, ChannelDimension]] = None , ): __UpperCamelCase = rescale(image=__A , scale=1 / 127.5 , data_format=__A ) __UpperCamelCase = image - 1 return image def _lowerCamelCase ( self : Optional[Any] , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Optional[bool] = None , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A : Optional[int] , ): __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(__A ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCamelCase = clusters if clusters is not None else self.clusters __UpperCamelCase = np.array(__A ) __UpperCamelCase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__A ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=__A ) for image in images] if do_color_quantize: __UpperCamelCase = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCamelCase = np.array(__A ) __UpperCamelCase = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCamelCase = images.shape[0] __UpperCamelCase = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCamelCase = list(__A ) else: __UpperCamelCase = [to_channel_dimension_format(__A , __A ) for image in images] __UpperCamelCase = {'input_ids': images} return BatchFeature(data=__A , tensor_type=__A )
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: debug_launcher(test_script.main ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: debug_launcher(test_ops.main )
54
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return 1 if input_a == input_a else 0 def __snake_case ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
55
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a : str = 1.0_54_57_18_17E-34 # unit of ℏ : J * s a : Union[str, Any] = 3E8 # unit of c : m * s^-1 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: snake_case_ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: snake_case_ = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: snake_case_ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
56
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A : Tuple = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False , ): '''simple docstring''' output_path.parent.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , use_external_data_format=_UpperCamelCase , enable_onnx_checker=_UpperCamelCase , opset_version=_UpperCamelCase , ) else: export( _UpperCamelCase , _UpperCamelCase , f=output_path.as_posix() , input_names=_UpperCamelCase , output_names=_UpperCamelCase , dynamic_axes=_UpperCamelCase , do_constant_folding=_UpperCamelCase , opset_version=_UpperCamelCase , ) @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): '''simple docstring''' __lowerCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: __lowerCAmelCase = "cpu" __lowerCAmelCase = Path(_UpperCamelCase ) # VAE DECODER __lowerCAmelCase = AutoencoderKL.from_pretrained(model_path + "/vae" ) __lowerCAmelCase = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase = vae_decoder.decode onnx_export( _UpperCamelCase , model_args=( torch.randn(1 , _UpperCamelCase , 25 , 25 ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_UpperCamelCase , ) del vae_decoder if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") A : Optional[int] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
57
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def lowerCamelCase ( __lowerCamelCase : List[Any] ) ->List[List[ImageInput]]: if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: _SCREAMING_SNAKE_CASE = get_resize_output_image_size(A , size["""shortest_edge"""] , default_to_square=A ) elif "height" in size and "width" in size: _SCREAMING_SNAKE_CASE = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(A , size=A , resample=A , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def snake_case_( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = to_numpy_array(A ) if do_resize: _SCREAMING_SNAKE_CASE = self.resize(image=A , size=A , resample=A ) if do_center_crop: _SCREAMING_SNAKE_CASE = self.center_crop(A , size=A ) if do_rescale: _SCREAMING_SNAKE_CASE = self.rescale(image=A , scale=A ) if do_normalize: _SCREAMING_SNAKE_CASE = self.normalize(image=A , mean=A , std=A ) _SCREAMING_SNAKE_CASE = to_channel_dimension_format(A , A ) return image def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""crop_size""" ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _SCREAMING_SNAKE_CASE = make_batched(A ) _SCREAMING_SNAKE_CASE = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] _SCREAMING_SNAKE_CASE = {"""pixel_values""": videos} return BatchFeature(data=A , tensor_type=A )
58
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __lowerCamelCase = logging.getLogger() def UpperCamelCase ( ): snake_case : Any = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case : Tuple = parser.parse_args() return args.f class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : str ) -> None: '''simple docstring''' snake_case : int = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[int] ) -> str: '''simple docstring''' snake_case : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(snake_case__ , "argv" , snake_case__ ): snake_case : List[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__ , 0.666 ) @slow @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(snake_case__ ) snake_case : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ ) snake_case : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ )
59
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class snake_case_( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=5_1_2 , UpperCamelCase_ : Optional[Any]=1_6 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ): lowerCAmelCase : str = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Tuple = use_attention_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : int = num_choices def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_attention_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCamelCase__ ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : Any = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ )[0] lowerCAmelCase : str = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , UpperCamelCase_ ) # compare the actual values for a slice. lowerCAmelCase : Optional[Any] = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCamelCase_ ) lowerCAmelCase : str = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] # compare the actual values for a slice. lowerCAmelCase : str = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
60
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = """bert-generation""" def __init__( self , lowercase_=5_0358 , lowercase_=1024 , lowercase_=24 , lowercase_=16 , lowercase_=4096 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_=2 , lowercase_=1 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Any = use_cache
61
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float = 0.1 ): __UpperCamelCase =3 __UpperCamelCase =3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
62
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase_ : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase_ : Any = 'PoolFormerConfig' # Base docstring lowerCAmelCase_ : Union[str, Any] = 'sail/poolformer_s12' lowerCAmelCase_ : str = [1, 5_12, 7, 7] # Image classification docstring lowerCAmelCase_ : Dict = 'sail/poolformer_s12' lowerCAmelCase_ : List[str] = 'tabby, tabby cat' lowerCAmelCase_ : str = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCamelCase ( lowercase : List[Any] , lowercase : float = 0.0 , lowercase : bool = False ) -> str: if drop_prob == 0.0 or not training: return input _a = 1 - drop_prob _a = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _a = keep_prob + torch.rand(lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _a = input.div(lowercase ) * random_tensor return output class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : Optional[float] = None ): super().__init__() _a = drop_prob def UpperCamelCase__ ( self : List[str] , __a : torch.Tensor ): return drop_path(__a , self.drop_prob , self.training ) def UpperCamelCase__ ( self : Union[str, Any] ): return "p={}".format(self.drop_prob ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Any , __a : Optional[Any] , __a : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : List[Any]=None ): super().__init__() _a = patch_size if isinstance(__a , collections.abc.Iterable ) else (patch_size, patch_size) _a = stride if isinstance(__a , collections.abc.Iterable ) else (stride, stride) _a = padding if isinstance(__a , collections.abc.Iterable ) else (padding, padding) _a = nn.Convad(__a , __a , kernel_size=__a , stride=__a , padding=__a ) _a = norm_layer(__a ) if norm_layer else nn.Identity() def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[Any] ): _a = self.projection(__a ) _a = self.norm(__a ) return embeddings class __SCREAMING_SNAKE_CASE (nn.GroupNorm ): """simple docstring""" def __init__( self : Tuple , __a : Dict , **__a : Union[str, Any] ): super().__init__(1 , __a , **__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): super().__init__() _a = nn.AvgPoolad(__a , stride=1 , padding=pool_size // 2 , count_include_pad=__a ) def UpperCamelCase__ ( self : Dict , __a : List[Any] ): return self.pool(__a ) - hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : Union[str, Any] , __a : List[Any] , __a : List[str] , __a : str ): super().__init__() _a = nn.Convad(__a , __a , 1 ) _a = nn.Convad(__a , __a , 1 ) _a = PoolFormerDropPath(__a ) if isinstance(config.hidden_act , __a ): _a = ACTaFN[config.hidden_act] else: _a = config.hidden_act def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): _a = self.conva(__a ) _a = self.act_fn(__a ) _a = self.drop(__a ) _a = self.conva(__a ) _a = self.drop(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __a : Optional[Any] , __a : Any , __a : List[Any] , __a : Dict , __a : Dict , __a : int ): super().__init__() _a = PoolFormerPooling(__a ) _a = PoolFormerOutput(__a , __a , __a , __a ) _a = PoolFormerGroupNorm(__a ) _a = PoolFormerGroupNorm(__a ) # Useful for training neural nets _a = PoolFormerDropPath(__a ) if drop_path > 0.0 else nn.Identity() _a = config.use_layer_scale if config.use_layer_scale: _a = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) _a = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) def UpperCamelCase__ ( self : int , __a : Union[str, Any] ): if self.use_layer_scale: _a = self.pooling(self.before_norm(__a ) ) _a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _a = hidden_states + self.drop_path(__a ) _a = () _a = self.output(self.after_norm(__a ) ) _a = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _a = hidden_states + self.drop_path(__a ) _a = (output,) + outputs return outputs else: _a = self.drop_path(self.pooling(self.before_norm(__a ) ) ) # First residual connection _a = pooling_output + hidden_states _a = () # Second residual connection inside the PoolFormerOutput block _a = self.drop_path(self.output(self.after_norm(__a ) ) ) _a = hidden_states + layer_output _a = (output,) + outputs return outputs class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : Optional[int] ): super().__init__() _a = config # stochastic depth decay rule _a = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _a = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _a = nn.ModuleList(__a ) # Transformer blocks _a = [] _a = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _a = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__a ) ) _a = nn.ModuleList(__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Any , __a : List[Any]=False , __a : Union[str, Any]=True ): _a = () if output_hidden_states else None _a = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _a , _a = layers # Get patch embeddings from hidden_states _a = embedding_layer(__a ) # Send the embeddings through the blocks for _, blk in enumerate(__a ): _a = blk(__a ) _a = layer_outputs[0] if output_hidden_states: _a = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =PoolFormerConfig __a ='poolformer' __a ='pixel_values' __a =True def UpperCamelCase__ ( self : List[Any] , __a : Union[str, Any] ): if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : Optional[int]=False ): if isinstance(__a , __a ): _a = value lowerCAmelCase_ : List[Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , __a : Optional[Any] ): super().__init__(__a ) _a = config _a = PoolFormerEncoder(__a ) # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self : str ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[torch.FloatTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _a = self.encoder( __a , output_hidden_states=__a , return_dict=__a , ) _a = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=encoder_outputs.hidden_states , ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Any , __a : int ): super().__init__() _a = nn.Linear(config.hidden_size , config.hidden_size ) def UpperCamelCase__ ( self : Optional[int] , __a : Optional[int] ): _a = self.dense(__a ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict , __a : Optional[Any] ): super().__init__(__a ) _a = config.num_labels _a = PoolFormerModel(__a ) # Final norm _a = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _a = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self : Any , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ): _a = return_dict if return_dict is not None else self.config.use_return_dict _a = self.poolformer( __a , output_hidden_states=__a , return_dict=__a , ) _a = outputs[0] _a = self.classifier(self.norm(__a ).mean([-2, -1] ) ) _a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a = "single_label_classification" else: _a = "multi_label_classification" if self.config.problem_type == "regression": _a = MSELoss() if self.num_labels == 1: _a = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": _a = CrossEntropyLoss() _a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a = BCEWithLogitsLoss() _a = loss_fct(__a , __a ) if not return_dict: _a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
63
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
"""simple docstring""" import cmath import math def UpperCAmelCase__ (snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float ): """simple docstring""" _snake_case : Dict = math.radians(snake_case__ ) _snake_case : Dict = math.radians(snake_case__ ) # Convert voltage and current to rectangular form _snake_case : str = cmath.rect(snake_case__ , snake_case__ ) _snake_case : str = cmath.rect(snake_case__ , snake_case__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
64
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__(self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=1_3 , __UpperCAmelCase : Optional[int]=[3_0, 3_0] , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : Tuple=5 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : List[str]=3_7 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : List[str]=1_0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=8 , __UpperCAmelCase : List[str]=1_0 , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = n_targets UpperCAmelCase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ = num_patches + 1 + self.num_detection_tokens def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ = [] for i in range(self.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__UpperCAmelCase ) UpperCAmelCase__ = torch.rand(self.n_targets , 4 , device=__UpperCAmelCase ) labels.append(__UpperCAmelCase ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = YolosModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase_ (self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(pixel_values=__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ = model(pixel_values=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __UpperCAmelCase : Tuple = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : int = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Dict = False def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : str=False ) -> int: """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.ones( size=(self.model_tester.n_targets,) , device=__UpperCAmelCase , dtype=torch.long ) UpperCAmelCase__ = torch.ones( self.model_tester.n_targets , 4 , device=__UpperCAmelCase , dtype=torch.float ) labels.append(__UpperCAmelCase ) UpperCAmelCase__ = labels return inputs_dict def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = YolosModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" pass def lowercase_ (self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowercase_ (self : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True # in YOLOS, the seq_len is different UpperCAmelCase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ = len(__UpperCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = 1 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] ): UpperCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # YOLOS has a different seq_length UpperCAmelCase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : str ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[Any] ) -> Any: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = YolosModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(__UpperCAmelCase ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__UpperCAmelCase , ) UpperCAmelCase__ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing UpperCAmelCase__ = image_processor.post_process_object_detection( __UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__UpperCAmelCase ) UpperCAmelCase__ = [7_5, 7_5, 1_7, 6_3, 1_7] UpperCAmelCase__ = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__UpperCAmelCase ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , __UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , __UpperCAmelCase ) self.assertTrue(torch.allclose(results["boxes"][0, :] , __UpperCAmelCase ) )
65
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A_ ( ): '''simple docstring''' snake_case_ :Optional[int] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" snake_case_ :Optional[Any] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert("""RGB""" ) return image def A_ ( _lowercase ): '''simple docstring''' snake_case_ :str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :str = dct.pop(_lowercase ) snake_case_ :Dict = val def A_ ( _lowercase, _lowercase ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ :Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) snake_case_ :Tuple = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict snake_case_ :Union[str, Any] = torch.cat((q_bias, torch.zeros_like(_lowercase, requires_grad=_lowercase ), v_bias) ) snake_case_ :int = qkv_bias def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[str] = 364 if """coco""" in model_name else 224 snake_case_ :Tuple = InstructBlipVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: snake_case_ :Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xl""", dense_act_fn="""gelu""", bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ :List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""", dense_act_fn="""gelu""", bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: snake_case_ :Optional[int] = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""", vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: snake_case_ :Optional[Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""", vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 snake_case_ :Optional[int] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() snake_case_ :List[str] = InstructBlipConfig(vision_config=_lowercase, text_config=_lowercase, qformer_config=_lowercase ) return config, image_size @torch.no_grad() def A_ ( _lowercase, _lowercase=None, _lowercase=False ): '''simple docstring''' snake_case_ :int = AutoTokenizer.from_pretrained("""bert-base-uncased""", truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: snake_case_ :Optional[int] = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""", truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) snake_case_ :str = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""", truncation_side="""left""", bos_token="""</s>""", unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) snake_case_, snake_case_ :Union[str, Any] = get_blipa_config(_lowercase ) snake_case_ :Union[str, Any] = InstructBlipForConditionalGeneration(_lowercase ).eval() snake_case_ :Union[str, Any] = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } snake_case_, snake_case_ :List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case_ :Optional[Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" snake_case_ :Any = """cuda:2""" if torch.cuda.is_available() else """cpu""" snake_case_, snake_case_, snake_case_ :int = load_model_and_preprocess( name=_lowercase, model_type=_lowercase, is_eval=_lowercase, device=_lowercase ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case_ :int = original_model.state_dict() snake_case_ :int = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ :Optional[Any] = state_dict.pop(_lowercase ) if key.startswith("""Qformer.bert""" ): snake_case_ :str = key.replace("""Qformer.bert""", """qformer""" ) if "attention.self" in key: snake_case_ :int = key.replace("""self""", """attention""" ) if "llm_proj" in key: snake_case_ :Dict = key.replace("""llm_proj""", """language_projection""" ) if "t5_proj" in key: snake_case_ :Dict = key.replace("""t5_proj""", """language_projection""" ) if key.startswith("""llm_model""" ): snake_case_ :Union[str, Any] = key.replace("""llm_model""", """language_model""" ) if key.startswith("""t5""" ): snake_case_ :List[str] = key.replace("""t5""", """language""" ) snake_case_ :List[str] = val # read in qv biases read_in_q_v_bias(_lowercase, _lowercase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowercase, strict=_lowercase ) snake_case_ :Optional[Any] = load_demo_image() snake_case_ :Tuple = """What is unusual about this image?""" # create processor snake_case_ :Tuple = BlipImageProcessor( size={"""height""": image_size, """width""": image_size}, image_mean=_lowercase, image_std=_lowercase ) snake_case_ :Tuple = InstructBlipProcessor( image_processor=_lowercase, tokenizer=_lowercase, qformer_tokenizer=_lowercase, ) snake_case_ :Tuple = processor(images=_lowercase, text=_lowercase, return_tensors="""pt""" ).to(_lowercase ) # make sure processor creates exact same pixel values snake_case_ :Optional[Any] = vis_processors["""eval"""](_lowercase ).unsqueeze(0 ).to(_lowercase ) snake_case_ :List[str] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "vicuna" in model_name: snake_case_ :List[Any] = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits snake_case_ :Union[str, Any] = hf_model(**_lowercase ).logits else: snake_case_ :Dict = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits snake_case_ :Dict = tokenizer("""\n""", return_tensors="""pt""" ).input_ids.to(_lowercase ) snake_case_ :List[str] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100 ) snake_case_ :List[Any] = hf_model(**_lowercase, labels=_lowercase ).logits print("""First values of original logits:""", original_logits[0, :3, :3] ) print("""First values of HF logits:""", logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape snake_case_ :Any = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ), _lowercase, atol=_lowercase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) snake_case_ :Dict = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) snake_case_ :str = hf_model.generate( **_lowercase, do_sample=_lowercase, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? snake_case_ :Optional[int] = 2 print("""Original generation:""", _lowercase ) snake_case_ :str = processor.batch_decode(_lowercase, skip_special_tokens=_lowercase ) snake_case_ :Any = [text.strip() for text in output_text] print("""HF generation:""", _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f"""Salesforce/{model_name}""" ) hf_model.push_to_hub(f"""Salesforce/{model_name}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() __a = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __UpperCAmelCase =False try: __UpperCAmelCase =_is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a__ : def __init__( self : Dict , a : str = None , a : list = [] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = choices __lowerCamelCase = prompt if sys.platform == "win32": __lowerCamelCase = '''*''' else: __lowerCamelCase = '''➔ ''' def SCREAMING_SNAKE_CASE__ ( self : str , a : int , a : str = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , a ) else: forceWrite(self.choices[index] , a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : int ): """simple docstring""" if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Any , a : Direction , a : int = 1 ): """simple docstring""" __lowerCamelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a ) move_cursor(a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a )] for number in range(10 )] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = int(chr(self.current_selection ) ) __lowerCamelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __lowerCamelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(a ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __lowerCamelCase = int(builtins.input() ) except ValueError: __lowerCamelCase = default_choice else: __lowerCamelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(a , '''\n''' ) return choice
67
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'switch_transformers' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , lowercase=32128 , lowercase=768 , lowercase=64 , lowercase=2048 , lowercase=64 , lowercase=12 , lowercase=3 , lowercase=12 , lowercase=3 , lowercase=12 , lowercase=8 , lowercase=False , lowercase=0.01 , lowercase="float32" , lowercase=False , lowercase=32 , lowercase=128 , lowercase=0.1 , lowercase=1e-6 , lowercase=0.001 , lowercase=0.001 , lowercase=1.0 , lowercase="relu" , lowercase=True , lowercase=False , lowercase=True , lowercase=0 , lowercase=1 , **lowercase , ) -> Tuple: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_sparse_encoder_layers A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A__ = self.num_layers // self.num_sparse_encoder_layers else: A__ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A__ = self.num_decoder_layers // self.num_sparse_decoder_layers else: A__ = self.num_decoder_layers # HACK: this will create 0 sparse layers A__ = num_heads A__ = num_experts A__ = expert_capacity A__ = router_bias A__ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) A__ = router_dtype A__ = router_ignore_padding_tokens A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = add_router_probs A__ = router_z_loss_coef A__ = router_aux_loss_coef A__ = self.feed_forward_proj.split("-" ) A__ = act_info[-1] A__ = act_info[0] == "gated" if len(lowercase ) > 1 and act_info[0] != "gated" or len(lowercase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = "gelu_new" super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , **lowercase , )
68
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
"""simple docstring""" import torch from transformers import AutoModel class UpperCamelCase ( torch.nn.Module ): def __init__( self, lowerCAmelCase__="sayef/fsner-bert-base-uncased") -> List[Any]: super(lowerCAmelCase__, self).__init__() snake_case_ = AutoModel.from_pretrained(lowerCAmelCase__, return_dict=lowerCAmelCase__) snake_case_ = torch.nn.CosineSimilarity(3, 1e-08) snake_case_ = torch.nn.Softmax(dim=1) def a_ ( self, **lowerCAmelCase__) -> Union[str, Any]: return self.bert(**lowerCAmelCase__).last_hidden_state def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: return token_embeddings.sum(2, keepdim=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=1) -> List[Any]: return self.softmax(T * self.cos(lowerCAmelCase__, lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = W_supports['sizes'].tolist() snake_case_ = W_supports['start_token_id'].item() snake_case_ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ = self.BERT(**lowerCAmelCase__) snake_case_ = self.BERT(**lowerCAmelCase__) snake_case_ = None snake_case_ = None snake_case_ = W_supports['input_ids'] == start_token_id snake_case_ = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCAmelCase__): if i == 0: snake_case_ = 0 else: snake_case_ = support_sizes[i - 1] snake_case_ = S[s : s + size][start_token_masks[s : s + size]] snake_case_ = S[s : s + size][end_token_masks[s : s + size]] snake_case_ = torch.matmul(q[i], s_start.T).sum(1).softmax(0) snake_case_ = torch.matmul(q[i], s_end.T).sum(1).softmax(0) if p_starts is not None: snake_case_ = torch.vstack((p_starts, p_start)) snake_case_ = torch.vstack((p_ends, p_end)) else: snake_case_ = p_start snake_case_ = p_end return p_starts, p_ends
69
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : List[str] ={'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device A_ :Any = False class __A ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __UpperCamelCase : int =torch.manual_seed(0 ) __UpperCamelCase : str =pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __UpperCamelCase : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase : str =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
71
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase__ = '''bert-base-cased''' lowerCAmelCase__ = '''google/pegasus-xsum''' lowerCAmelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCAmelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCAmelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCAmelCase__ = '''sshleifer/bart-tiny-random''' lowerCAmelCase__ = '''sshleifer/tiny-mbart''' lowerCAmelCase__ = '''sshleifer/tiny-marian-en-de''' def snake_case_ ( A_ : Path, A_ : list ): '''simple docstring''' _lowerCamelCase : List[Any] = '''\n'''.join(A_ ) Path(A_ ).open('''w''' ).writelines(A_ ) def snake_case_ ( A_ : Tuple ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(A_, F'''{split}.source''' ), A_ ) _dump_articles(os.path.join(A_, F'''{split}.target''' ), A_ ) return tmp_dir class __snake_case ( _lowercase): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase : str = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) _lowerCamelCase : List[Any] = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) _lowerCamelCase : Union[str, Any] = 4 _lowerCamelCase : Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowerCamelCase , _lowerCamelCase : Tuple = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _lowerCamelCase : int = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path='''train''' , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , ) _lowerCamelCase : Any = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowerCamelCase : List[Any] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowerCamelCase : List[str] = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) _lowerCamelCase : Any = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) _lowerCamelCase : List[str] = 4 _lowerCamelCase : Tuple = LegacySeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path='''train''' , max_source_length=2_0 , max_target_length=__lowerCAmelCase , ) _lowerCamelCase : Dict = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) _lowerCamelCase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowerCamelCase : str = tmp_dir.joinpath('''train.source''' ).open().readlines() _lowerCamelCase : Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__lowerCAmelCase , __lowerCAmelCase , 1_2_8 , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = {x.name for x in tmp_dir.iterdir()} _lowerCamelCase : Dict = {x.name for x in save_dir.iterdir()} _lowerCamelCase : Optional[Any] = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowerCAmelCase ) < len(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__lowerCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = self._get_dataset(max_len=6_4 ) _lowerCamelCase : Any = 6_4 _lowerCamelCase : str = ds.make_dynamic_sampler(__lowerCAmelCase , required_batch_size_multiple=__lowerCAmelCase ) _lowerCamelCase : List[str] = [len(__lowerCAmelCase ) for x in batch_sampler] assert len(set(__lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowerCAmelCase ) == len(__lowerCAmelCase ) # no dropped or added examples _lowerCamelCase : Optional[int] = DataLoader(__lowerCAmelCase , batch_sampler=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : List[Any] = [] for batch in data_loader: _lowerCamelCase : Union[str, Any] = batch['''input_ids'''].shape _lowerCamelCase : Optional[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowerCamelCase : str = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(__lowerCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowerCAmelCase ) assert num_src_per_batch[0] == max(__lowerCAmelCase ) if failures: raise AssertionError(f'''too many tokens in {len(__lowerCAmelCase )} batches''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = self._get_dataset(max_len=5_1_2 ) _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : List[Any] = ds.make_sortish_sampler(__lowerCAmelCase , shuffle=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _lowerCamelCase : Optional[int] = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.pad_token_id def count_pad_tokens(__lowerCAmelCase : Dict , __lowerCAmelCase : str="input_ids" ): return [batch[k].eq(__lowerCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowerCAmelCase , k='''labels''' ) ) < sum(count_pad_tokens(__lowerCAmelCase , k='''labels''' ) ) assert sum(count_pad_tokens(__lowerCAmelCase ) ) < sum(count_pad_tokens(__lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[Any]=1_0_0_0 , __lowerCAmelCase : Dict=1_2_8 ): """simple docstring""" if os.getenv('''USE_REAL_DATA''' , __lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = '''examples/seq2seq/wmt_en_ro''' _lowerCamelCase : Dict = max_len * 2 * 6_4 if not Path(__lowerCAmelCase ).joinpath('''train.len''' ).exists(): save_len_file(__lowerCAmelCase , __lowerCAmelCase ) else: _lowerCamelCase : int = '''examples/seq2seq/test_data/wmt_en_ro''' _lowerCamelCase : Optional[int] = max_len * 4 save_len_file(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Dict = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path='''train''' , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , n_obs=__lowerCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self._get_dataset() _lowerCamelCase : Optional[int] = set(DistributedSortishSampler(__lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCAmelCase ) ) _lowerCamelCase : Tuple = set(DistributedSortishSampler(__lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCAmelCase ) ) assert idsa.intersection(__lowerCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase , use_fast=__lowerCAmelCase ) if tok_name == MBART_TINY: _lowerCamelCase : str = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _lowerCamelCase : Union[str, Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowerCamelCase : str = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _lowerCamelCase : Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(__lowerCAmelCase ) == 0
72
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
from string import ascii_uppercase a ={str(ord(c) - 55): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 3_6: raise ValueError('base must be <= 36' ) __lowerCamelCase : List[str] = '' __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Optional[int] = 0 while div != 1: __lowerCamelCase , __lowerCamelCase : List[Any] = divmod(lowerCamelCase__ , lowerCamelCase__ ) if base >= 1_1 and 9 < mod < 3_6: __lowerCamelCase : Optional[int] = ALPHABET_VALUES[str(lowerCamelCase__ )] else: __lowerCamelCase : Optional[Any] = str(lowerCamelCase__ ) new_value += actual_value __lowerCamelCase : Union[str, Any] = num // base __lowerCamelCase : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowerCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
73
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowercase = 25_60_47 _lowercase = 25_61_45 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = NllbTokenizer _lowerCamelCase: Dict = NllbTokenizerFast _lowerCamelCase: str = True _lowerCamelCase: int = True _lowerCamelCase: str = {} def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A = NllbTokenizer(A_ ,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = NllbTokenizer(A_ ,keep_accents=A_ ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) A = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: A = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A_ ,A_ ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ,legacy_format=A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ ,A_ ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False A = tempfile.mkdtemp() A = tokenizer_r.save_pretrained(A_ ,legacy_format=A_ ) A = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A = tokenizer_r.from_pretrained(A_ ) A = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ ,A_ ) ) shutil.rmtree(A_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: if not self.test_seqaseq: return A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. A = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] A = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: A = tokenizer.prepare_seqaseq_batch( src_texts=A_ ,tgt_texts=A_ ,max_length=3 ,max_target_length=10 ,return_tensors='pt' ,src_lang='eng_Latn' ,tgt_lang='ron_Latn' ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified A = tokenizer.prepare_seqaseq_batch( A_ ,tgt_texts=A_ ,max_length=3 ,return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) A = tokenizer.prepare_seqaseq_batch( src_texts=A_ ,max_length=3 ,max_target_length=10 ,return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn('decoder_input_ids' ,A_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = [AddedToken('<special>' ,lstrip=A_ )] A = self.rust_tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ) A = tokenizer_r.encode('Hey this is a <special> token' ) A = tokenizer_r.encode('<special>' ,add_special_tokens=A_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A = self.rust_tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ,) A = self.tokenizer_class.from_pretrained( A_ ,additional_special_tokens=A_ ,**A_ ) A = tokenizer_p.encode('Hey this is a <special> token' ) A = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(A_ ,A_ ) self.assertEqual(A_ ,A_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase: Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase: Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase: List[str] = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ) -> List[str]: A = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='eng_Latn' ,tgt_lang='ron_Latn' ) A = 1 return cls def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] ,25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] ,25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] ,25_6057 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: self.assertIn(A_ ,self.tokenizer.all_special_ids ) # fmt: off A = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on A = self.tokenizer.decode(A_ ,skip_special_tokens=A_ ) A = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=A_ ) self.assertEqual(A_ ,A_ ) self.assertNotIn(self.tokenizer.eos_token ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] ,A_ ) A = 10 A = self.tokenizer(A_ ,max_length=A_ ,truncation=A_ ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,A_ ) self.assertEqual(len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) ,[25_6203, 3] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = tempfile.mkdtemp() A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) A = NllbTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,A_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=A_ ,truncation=A_ ,max_length=len(self.expected_src_tokens ) ,return_tensors='pt' ,) A = shift_tokens_right( batch['labels'] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(A_ ,A_ ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,A_ ) self.assertEqual(A_ ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = self.tokenizer(self.src_text ,padding=A_ ,truncation=A_ ,max_length=3 ,return_tensors='pt' ) A = self.tokenizer( text_target=self.tgt_text ,padding=A_ ,truncation=A_ ,max_length=10 ,return_tensors='pt' ) A = targets['input_ids'] A = shift_tokens_right( A_ ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = self.tokenizer._build_translation_inputs( 'A test' ,return_tensors='pt' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(A_ ) ,{ # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } ,) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = True A = self.tokenizer( 'UN Chief says there is no military solution in Syria' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids ,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) A = False A = self.tokenizer( 'UN Chief says there is no military solution in Syria' ,src_lang='eng_Latn' ,tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids ,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
74
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Optional[int] = 16 a_ : Union[str, Any] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> Dict: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Optional[int] = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> str: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) set_seed(__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ =batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ =MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ =os.path.split(__snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ =0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ =loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(__snake_case ), '''epoch''': epoch, } , step=__snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def a_ ( ) -> int: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
75
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCamelCase ( __A ): '''simple docstring''' @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE : Any = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE : int = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.sep_token_id SCREAMING_SNAKE_CASE : Tuple = tokenizer.cls_token_id SCREAMING_SNAKE_CASE : Optional[int] = 128 SCREAMING_SNAKE_CASE : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE : List[str] = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE : Dict = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE : str = 4 def _map_to_encoder_decoder_inputs(a : List[str] ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE : Any = tokenizer(batch["article"] , padding="max_length" , truncation=a , max_length=512 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(batch["highlights"] , padding="max_length" , truncation=a , max_length=128 ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs.input_ids SCREAMING_SNAKE_CASE : List[str] = inputs.attention_mask SCREAMING_SNAKE_CASE : str = outputs.input_ids SCREAMING_SNAKE_CASE : List[str] = outputs.input_ids.copy() SCREAMING_SNAKE_CASE : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE : Any = outputs.attention_mask assert all(len(a ) == 512 for x in inputs.input_ids ) assert all(len(a ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a : int ): SCREAMING_SNAKE_CASE : Dict = pred.label_ids SCREAMING_SNAKE_CASE : Optional[Any] = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : int = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a ) )] ) / len(a ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=a , batch_size=a , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Any = SeqaSeqTrainingArguments( output_dir=a , per_device_train_batch_size=a , per_device_eval_batch_size=a , predict_with_generate=a , evaluation_strategy="steps" , do_train=a , do_eval=a , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE : Optional[Any] = SeqaSeqTrainer( model=a , args=a , compute_metrics=_compute_metrics , train_dataset=a , eval_dataset=a , tokenizer=a , ) # start training trainer.train()
76
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _UpperCamelCase : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _UpperCamelCase : Optional[int] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _UpperCamelCase : Optional[Any] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCamelCase : List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _UpperCamelCase : Optional[Any] = "allenai" def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : str = dict((re.sub(R'@@$' , '' , _lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _lowerCAmelCase ), v) for k, v in d.items() ) lowercase__ : Optional[int] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowercase__ : int = d[k] # restore return da def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ): '''simple docstring''' assert os.path.exists(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowercase__ : str = basename(_lowerCAmelCase ) lowercase__ : Any = dirname(_lowerCAmelCase ) lowercase__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__ : Union[str, Any] = cls.hub_models() lowercase__ : List[Any] = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowercase__ : List[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) lowercase__ : int = hub_utils.from_pretrained( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , archive_map=_lowerCAmelCase , **_lowerCAmelCase ) lowercase__ : Tuple = vars(chkpt['args']['model'] ) lowercase__ : List[Any] = args['source_lang'] lowercase__ : Any = args['target_lang'] lowercase__ : Any = dirname(_lowerCAmelCase ) lowercase__ : Dict = basename(_lowerCAmelCase ) # dicts lowercase__ : Optional[Any] = os.path.join(_lowerCAmelCase , f"""dict.{src_lang}.txt""" ) lowercase__ : Any = os.path.join(_lowerCAmelCase , f"""dict.{tgt_lang}.txt""" ) lowercase__ : List[str] = Dictionary.load(_lowerCAmelCase ) lowercase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) lowercase__ : Optional[int] = len(_lowerCAmelCase ) lowercase__ : List[str] = os.path.join(_lowerCAmelCase , 'vocab-src.json' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__ : Union[str, Any] = True for k in src_vocab.keys(): if not k.islower(): lowercase__ : Any = False break lowercase__ : Any = Dictionary.load(_lowerCAmelCase ) lowercase__ : int = rewrite_dict_keys(tgt_dict.indices ) lowercase__ : Any = len(_lowerCAmelCase ) lowercase__ : List[str] = os.path.join(_lowerCAmelCase , 'vocab-tgt.json' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # merges_file (bpecodes) lowercase__ : Tuple = os.path.join(_lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__ : Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): break with open(_lowerCAmelCase , encoding='utf-8' ) as fin: lowercase__ : List[str] = fin.read() lowercase__ : Tuple = re.sub(R' \d+$' , '' , _lowerCAmelCase , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCAmelCase ) # model config lowercase__ : Dict = os.path.join(_lowerCAmelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}""" lowercase__ : Union[str, Any] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.0_2, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowercase__ : List[str] = 5 lowercase__ : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__ : Dict = best_score_hparams[model_dir]['length_penalty'] else: lowercase__ : Optional[Any] = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # tokenizer config lowercase__ : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCAmelCase , ensure_ascii=_lowerCAmelCase , indent=_lowerCAmelCase ) ) # model lowercase__ : int = chkpt['models'][0] lowercase__ : Tuple = model.state_dict() # rename keys to start with 'model.' lowercase__ : Tuple = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__ : Any = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[int] = FSMTConfig.from_pretrained(_lowerCAmelCase ) lowercase__ : List[Any] = FSMTForConditionalGeneration(_lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) # save lowercase__ : str = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
77
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" def _lowerCAmelCase ( ): UpperCAmelCase = [] UpperCAmelCase = 1 while len(lowercase_ ) < 1e6: constant.append(str(lowercase_ ) ) i += 1 UpperCAmelCase = ''.join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
78
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''markuplm''' def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=30522 , __UpperCAmelCase : str=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : str=1E-12 , __UpperCAmelCase : str=0 , __UpperCAmelCase : int=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[int]=256 , __UpperCAmelCase : Any=1024 , __UpperCAmelCase : Union[str, Any]=216 , __UpperCAmelCase : Any=1001 , __UpperCAmelCase : int=32 , __UpperCAmelCase : List[str]=50 , __UpperCAmelCase : str="absolute" , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout # additional properties _A = max_depth _A = max_xpath_tag_unit_embeddings _A = max_xpath_subs_unit_embeddings _A = tag_pad_id _A = subs_pad_id _A = xpath_unit_hidden_size
79
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
'''simple docstring''' import json import sys def _UpperCamelCase ( __A , __A ) -> List[Any]: '''simple docstring''' with open(__A , encoding="utf-8" ) as f: UpperCamelCase__ = json.load(__A ) UpperCamelCase__ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(__A ): UpperCamelCase__ = results[benchmark_name] UpperCamelCase__ = benchmark_name.split("/" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCamelCase__ = "| metric |" UpperCamelCase__ = "|--------|" UpperCamelCase__ = "| new / old (diff) |" for metric_name in sorted(__A ): UpperCamelCase__ = benchmark_res[metric_name] UpperCamelCase__ = metric_vals["new"] UpperCamelCase__ = metric_vals.get("old" , __A ) UpperCamelCase__ = metric_vals.get("diff" , __A ) UpperCamelCase__ = F''' {new_val:f}''' if isinstance(__A , (int, float) ) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(__A , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(__A ) ) if __name__ == "__main__": a__ : Tuple = sys.argv[1] a__ : Union[str, Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
80
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
"""simple docstring""" def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =set() # Replace all the whitespace in our sentence a =input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase ) == 26 def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =[False] * 26 for char in input_str: if char.islower(): a =True elif char.isupper(): a =True return all(lowercase ) def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _A ( ): """simple docstring""" from timeit import timeit a ='''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowercase ) ) print(timeit('''is_pangram_faster()''' , setup=lowercase ) ) print(timeit('''is_pangram_fastest()''' , setup=lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
81
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __lowerCAmelCase : __lowerCamelCase = None __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = None __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = False __lowerCamelCase = None __lowerCamelCase = None def snake_case ( self ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(_snake_case ) for k, v in self.__dict__.items()} )
82
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'spiece.model'} snake_case_ : Union[str, Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : List[str]="<unk>" ,lowerCamelCase__ : List[Any]="<sep>" ,lowerCamelCase__ : Dict="<pad>" ,lowerCamelCase__ : Dict="<cls>" ,lowerCamelCase__ : str="<mask>" ,lowerCamelCase__ : Dict=["<eop>", "<eod>"] ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,**lowerCamelCase__ : Any ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token _UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCamelCase__ ,) _UpperCamelCase : Union[str, Any] = 3 _UpperCamelCase : int = do_lower_case _UpperCamelCase : str = remove_space _UpperCamelCase : str = keep_accents _UpperCamelCase : Any = vocab_file _UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _UpperCamelCase : Tuple = jieba _UpperCamelCase : Optional[Any] = str.maketrans(' \n' ,'\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Any = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : List[str] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _UpperCamelCase : List[Any] = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Dict ): '''simple docstring''' if self.remove_space: _UpperCamelCase : str = ' '.join(inputs.strip().split() ) else: _UpperCamelCase : Union[str, Any] = inputs _UpperCamelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _UpperCamelCase : List[str] = unicodedata.normalize('NFKD' ,lowerCamelCase__ ) _UpperCamelCase : Any = ''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: _UpperCamelCase : Any = outputs.lower() return outputs def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Any = self.preprocess_text(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ ) _UpperCamelCase : int = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _UpperCamelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCamelCase : Tuple = cur_pieces[1:] else: _UpperCamelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = ''.join(lowerCamelCase__ ).replace(lowerCamelCase__ ,' ' ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [self.sep_token_id] _UpperCamelCase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : str = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ ,'wb' ) as fi: _UpperCamelCase : str = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : List[str] = super()._decode(*lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Dict = text.replace(' ' ,'' ).replace('\u2582' ,' ' ).replace('\u2583' ,'\n' ) return text
83
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: return None class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self , __A , __A , __A , __A ) -> int: return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): UpperCAmelCase_ :Tuple = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCAmelCase ( self ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """tf""" , 12 , **__A ) @require_torch @slow def __lowerCAmelCase ( self ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """pt""" , 12 , **__A ) @require_torch @slow def __lowerCAmelCase ( self ) -> str: from transformers import BertModel lowerCAmelCase_ :Tuple = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__A ) ) vocab_file.flush() lowerCAmelCase_ :Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCAmelCase_ :List[str] = BertModel(BertConfig(vocab_size=len(__A ) ) ) model.save_pretrained(__A ) self._test_export(__A , """pt""" , 12 , __A ) @require_tf @slow def __lowerCAmelCase ( self ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ :Optional[int] = self._test_export(__A , """tf""" , 12 , **__A ) lowerCAmelCase_ :List[str] = quantize(Path(__A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def __lowerCAmelCase ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCAmelCase_ :str = self._test_export(__A , """pt""" , 12 , **__A ) lowerCAmelCase_ :Optional[Any] = quantize(__A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def __lowerCAmelCase ( self , __A , __A , __A , __A=None , **__A ) -> str: try: # Compute path with TemporaryDirectory() as tempdir: lowerCAmelCase_ :Any = Path(__A ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__A , __A , __A , __A , __A , **__A ) return path except Exception as e: self.fail(__A ) @require_torch @require_tokenizers @slow def __lowerCAmelCase ( self ) -> Any: from transformers import BertModel lowerCAmelCase_ :Tuple = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ :int = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """pt""" ) @require_tf @require_tokenizers @slow def __lowerCAmelCase ( self ) -> Any: from transformers import TFBertModel lowerCAmelCase_ :int = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowerCAmelCase_ :int = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """tf""" ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: lowerCAmelCase_ :str = FeatureExtractionPipeline(__A , __A ) lowerCAmelCase_ :str = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = infer_shapes(__A , __A ) # Assert all variables are present self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __A ) self.assertSequenceEqual(variable_names[3:] , __A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowerCAmelCase_ :str = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowerCAmelCase_ , lowerCAmelCase_ :str = ensure_valid_input(FuncContiguousArgs() , __A , __A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__A ) , set(__A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__A , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCAmelCase_ , lowerCAmelCase_ :Any = ensure_valid_input(FuncNonContiguousArgs() , __A , __A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__A ) , 1 ) self.assertEqual(len(__A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :int = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
84
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _snake_case ( lowercase_ ): lowerCAmelCase_ : torch.FloatTensor lowerCAmelCase_ : Optional[torch.FloatTensor] = None def UpperCamelCase_( snake_case : str , snake_case : Any=0.999 , snake_case : List[str]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) snake_case_ = [] for i in range(snake_case ): snake_case_ = i / num_diffusion_timesteps snake_case_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case ) / alpha_bar_fn(snake_case ) , snake_case ) ) return torch.tensor(snake_case , dtype=torch.floataa ) class _snake_case ( lowercase_ , lowercase_ ): @register_to_config def __init__( self , a__ = 1_000 , a__ = "fixed_small_log" , a__ = True , a__ = 1.0 , a__ = "epsilon" , a__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) snake_case_ = betas_for_alpha_bar(a__ ) snake_case_ = 1.0 - self.betas snake_case_ = torch.cumprod(self.alphas , dim=0 ) snake_case_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case_ = 1.0 # setable values snake_case_ = None snake_case_ = torch.from_numpy(np.arange(0 , a__ )[::-1].copy() ) snake_case_ = variance_type def lowerCAmelCase__ ( self , a__ , a__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Any: '''simple docstring''' snake_case_ = num_inference_steps snake_case_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case_ = (np.arange(0 , a__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case_ = torch.from_numpy(a__ ).to(a__ ) def lowerCAmelCase__ ( self , a__ , a__=None , a__=None , a__=None ) -> Optional[int]: '''simple docstring''' if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case_ = torch.log(torch.clamp(a__ , min=1e-20 ) ) snake_case_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case_ = variance.log() snake_case_ = beta.log() snake_case_ = (predicted_variance + 1) / 2 snake_case_ = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ = None , a__=None , a__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case_ , snake_case_ = torch.split(a__ , sample.shape[1] , dim=1 ) else: snake_case_ = None # 1. compute alphas, betas if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] snake_case_ = self.alphas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev snake_case_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ = torch.clamp( a__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ = 0 if t > 0: snake_case_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=a__ , device=model_output.device ) snake_case_ = self._get_variance( a__ , predicted_variance=a__ , prev_timestep=a__ , ) if self.variance_type == "fixed_small_log": snake_case_ = variance elif self.variance_type == "learned_range": snake_case_ = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' " for the UnCLIPScheduler." ) snake_case_ = variance * variance_noise snake_case_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , ) -> torch.FloatTensor: '''simple docstring''' snake_case_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case_ = timesteps.to(original_samples.device ) snake_case_ = alphas_cumprod[timesteps] ** 0.5 snake_case_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_alpha_prod.unsqueeze(-1 ) snake_case_ = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
85
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Dict = PhobertTokenizer A_ : int = False def __lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : List[str] = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __lowerCAmelCase : List[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : List[Any] = ['#version: 0.2', 'l à</w>'] __lowerCAmelCase : Optional[Any] = {'unk_token': '<unk>'} __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = 'Tôi là VinAI Research' __lowerCAmelCase : Tuple = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def __lowerCamelCase ( self ): __lowerCAmelCase : Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase : List[str] = 'Tôi là VinAI Research' __lowerCAmelCase : List[str] = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __lowerCAmelCase : Optional[int] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] __lowerCAmelCase : List[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
86
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( _lowerCamelCase : str = "laptop"): lowercase__ : Optional[Any] = f'''https://www.amazon.in/laptop/s?k={product}''' lowercase__ : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } lowercase__ : List[str] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase).text) # Initialize a Pandas dataframe with the column titles lowercase__ : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"}) , ): try: lowercase__ : List[str] = item.ha.text lowercase__ : List[str] = "https://www.amazon.in/" + item.ha.a["href"] lowercase__ : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"}).text try: lowercase__ : Tuple = item.find("span" , attrs={"class": "a-icon-alt"}).text except AttributeError: lowercase__ : List[Any] = "Not available" try: lowercase__ : int = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"}).text.split("₹")[1] ) except AttributeError: lowercase__ : Any = "" try: lowercase__ : Optional[Any] = float( ( ( float(product_mrp.strip("₹").replace("," , "")) - float(product_price.strip("₹").replace("," , "")) ) / float(product_mrp.strip("₹").replace("," , "")) ) * 100) except ValueError: lowercase__ : Dict = float("nan") except AttributeError: pass lowercase__ : Tuple = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase__ : str = " " lowercase__ : Dict = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase = '''headphones''' get_amazon_product_data(product).to_csv(f"Amazon Product Data for {product}.csv")
87
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = ['audio_values', 'audio_mask'] def __init__( self : Tuple ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : List[str]=1 ,_UpperCAmelCase : Any=[16, 16] ,_UpperCAmelCase : Dict=128 ,_UpperCAmelCase : Tuple=44100 ,_UpperCAmelCase : Optional[Any]=86 ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : Union[str, Any]=0.0 ,**_UpperCAmelCase : List[str] ,): super().__init__( feature_size=_UpperCAmelCase ,sampling_rate=_UpperCAmelCase ,padding_value=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : List[Any] = spectrogram_length _a : Tuple = num_channels _a : Dict = patch_size _a : Optional[Any] = feature_size // self.patch_size[1] _a : Tuple = n_fft _a : List[Any] = sampling_rate // hop_length_to_sampling_rate _a : List[str] = sampling_rate _a : Union[str, Any] = padding_value _a : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=_UpperCAmelCase ,min_frequency=0.0 ,max_frequency=2_20_50.0 ,sampling_rate=_UpperCAmelCase ,norm='slaney' ,mel_scale='slaney' ,).T def __lowercase ( self : Tuple ,_UpperCAmelCase : np.array ): _a : List[str] = spectrogram( _UpperCAmelCase ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='dB' ,db_range=80.0 ,) _a : List[Any] = log_spec[:, :-1] _a : Optional[Any] = log_spec - 20.0 _a : Dict = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0 return log_spec def __call__( self : int ,_UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCAmelCase : Optional[Union[str, TensorType]] = None ,_UpperCAmelCase : Optional[bool] = True ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Any ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a : Optional[Any] = isinstance(_UpperCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _a : Optional[int] = is_batched_numpy or ( isinstance(_UpperCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _a : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase ,np.ndarray ): _a : Optional[int] = np.asarray(_UpperCAmelCase ,dtype=np.floataa ) elif isinstance(_UpperCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _a : Any = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,_UpperCAmelCase ): _a : Tuple = [np.asarray(_UpperCAmelCase ,dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _a : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _a : Dict = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _a : Union[str, Any] = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding _a : Dict = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _a : Union[str, Any] = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _a : List[Any] = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): _a : Any = audio_features[i] _a : List[Any] = feature # return as BatchFeature if return_attention_mask: _a : Tuple = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _a : Tuple = {'audio_values': padded_audio_features} _a : Optional[Any] = BatchFeature(data=_UpperCAmelCase ,tensor_type=_UpperCAmelCase ) return encoded_inputs
89
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
import math def lowerCamelCase_ ( UpperCamelCase__ : int ) -> str: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 0 while num > 0: __lowerCamelCase = num % 8 __lowerCamelCase = octal + (remainder * math.floor(math.pow(10 , UpperCamelCase__ ) )) counter += 1 __lowerCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(UpperCamelCase__ )}""" def lowerCamelCase_ ( ) -> None: """simple docstring""" print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
90
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
"""simple docstring""" from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5) SCREAMING_SNAKE_CASE_ : List[Any] = Rectangle(height=0.25 , width=0.25) SCREAMING_SNAKE_CASE_ : List[Any] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : List[str] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : List[str] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Dict = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = Text('''CPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : Tuple = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Any = [mem.copy() for i in range(4)] SCREAMING_SNAKE_CASE_ : Union[str, Any] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[str] = Text('''GPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : int = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = Text('''Model''' , font_size=24) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Any = [] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) model_cpu_arr.append(lowercase_) self.add(*lowercase_ , *lowercase_ , *lowercase_) SCREAMING_SNAKE_CASE_ : Any = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Text('''Loaded Checkpoint''' , font_size=24) SCREAMING_SNAKE_CASE_ : List[Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) checkpoint.move_to([3, 0.5, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Dict = [] for i, rect in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : Any = fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) ckpt_arr.append(lowercase_) SCREAMING_SNAKE_CASE_ : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(lowercase_) self.add(*lowercase_ , *lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) SCREAMING_SNAKE_CASE_ : int = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0]) SCREAMING_SNAKE_CASE_ : List[str] = [meta_mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = [meta_mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Dict = Text('''Disk''' , font_size=24) SCREAMING_SNAKE_CASE_ : str = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) disk.move_to([-4.0, -1.25, 0]) self.play(Write(lowercase_ , run_time=3) , Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) SCREAMING_SNAKE_CASE_ : int = [] for i, rect in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(FadeOut(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_ , run_time=3)) self.play( FadeOut(lowercase_ , lowercase_ , *lowercase_ , *lowercase_) , ) self.wait()
91
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = val def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 10_00 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load("facebookresearch/dino:main" , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) if base_model: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
92
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _lowercase : int = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _lowercase : Union[str, Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _lowercase : Tuple = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def _snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = 0.0 for i, j in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else 0.0 lowercase_ : Union[str, Any] = n_correct / len(__SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
93
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Union[str, Any] = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
94
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
from __future__ import annotations from math import pi def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
95
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self ): _lowerCamelCase : List[Any] = ort.SessionOptions() _lowerCamelCase : Any = False return options def A_ ( self ): _lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCamelCase : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = 'A red cat sitting on a park bench' _lowerCamelCase : str = np.random.RandomState(0 ) _lowerCamelCase : Optional[Any] = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type='np' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self ): _lowerCamelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) _lowerCamelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = 'A red cat sitting on a park bench' _lowerCamelCase : str = np.random.RandomState(0 ) _lowerCamelCase : str = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type='np' , ) _lowerCamelCase : Any = output.images _lowerCamelCase : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCamelCase : int = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
96
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = 10 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = [1, 2, 3, 4] UpperCamelCase__ :Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCamelCase__ , UpperCamelCase__ :int = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = '''''' UpperCamelCase__ , UpperCamelCase__ :List[str] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCamelCase__ , UpperCamelCase__ :Tuple = process_story(UpperCamelCase_ ) UpperCamelCase__ :Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :str = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = torch.tensor([1, 2, 3, 4] ) UpperCamelCase__ :Optional[int] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase__ :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase__ :Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = 101 UpperCamelCase__ :List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase__ :Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase__ :Any = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
"""simple docstring""" def a_ ( lowerCamelCase ): UpperCAmelCase__ = [0] * len(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): # use last results for better performance - dynamic programming UpperCAmelCase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase__ = j return prefix_result def a_ ( lowerCamelCase ): return max(prefix_function(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase : List[str] = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" def A_ ( A__ , A__=100 , A__=" " ) -> List[str]: a__ : List[Any] = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def A_ ( A__ ) -> dict: a__ , a__ : Tuple = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else '' ) texts.append(A__ ) return {"title": titles, "text": texts} def A_ ( A__ , A__ , A__ ) -> dict: a__ : Optional[int] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids'] a__ : List[Any] = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def A_ ( A__ , A__ , A__ , ) -> Dict: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a__ : Optional[int] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a__ : Any = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings a__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) a__ : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a__ : Union[str, Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space a__ : str = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset a__ : Any = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a__ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=A__ ) # And save the index a__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : """simple docstring""" __A : str = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __A : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __A : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __A : Optional[str] = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class A__ : """simple docstring""" __A : Optional[int] = field( default=__UpperCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __A : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class A__ : """simple docstring""" __A : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase : Any = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
99
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return getitem, k def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return setitem, k, v def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return delitem, k def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ): '''simple docstring''' try: return fun(lowerCAmelCase__ , *lowerCAmelCase__ ), None except Exception as e: return None, e lowercase__ :Dict = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) lowercase__ :Optional[int] = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] lowercase__ :Optional[Any] = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] lowercase__ :Dict = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] lowercase__ :Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase__ :List[str] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = HashMap(initial_block_size=4 ) lowercase = {} for _, (fun, *args) in enumerate(lowerCAmelCase__ ): lowercase , lowercase = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) lowercase , lowercase = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) assert my_res == py_res assert str(lowerCAmelCase__ ) == str(lowerCAmelCase__ ) assert set(lowerCAmelCase__ ) == set(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ): '''simple docstring''' def is_public(lowerCAmelCase__ ) -> bool: return not name.startswith('''_''' ) lowercase = {name for name in dir({} ) if is_public(lowerCAmelCase__ )} lowercase = {name for name in dir(HashMap() ) if is_public(lowerCAmelCase__ )} assert dict_public_names > hash_public_names
101
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : Any = logging.get_logger(__name__) A__ : List[str] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): _a = '''dinat''' _a = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[int] , A_ : Union[str, Any]=4 , A_ : Optional[Any]=3 , A_ : int=6_4 , A_ : Optional[int]=[3, 4, 6, 5] , A_ : str=[2, 4, 8, 1_6] , A_ : List[str]=7 , A_ : Any=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , A_ : Any=3.0 , A_ : Optional[Any]=True , A_ : Dict=0.0 , A_ : Tuple=0.0 , A_ : Tuple=0.1 , A_ : List[str]="gelu" , A_ : Optional[int]=0.02 , A_ : Dict=1e-5 , A_ : List[Any]=0.0 , A_ : List[str]=None , A_ : Union[str, Any]=None , **A_ : Optional[int] , ): super().__init__(**A_) lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[Any] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : List[Any] = len(A_) lowerCAmelCase_ : Union[str, Any] = num_heads lowerCAmelCase_ : Dict = kernel_size lowerCAmelCase_ : str = dilations lowerCAmelCase_ : Optional[Any] = mlp_ratio lowerCAmelCase_ : List[Any] = qkv_bias lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : int = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : Tuple = int(embed_dim * 2 ** (len(A_) - 1)) lowerCAmelCase_ : Union[str, Any] = layer_scale_init_value lowerCAmelCase_ : Dict = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(A_) + 1)] lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names)
103
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : NestedDataStructureLike[PathLike] ,lowercase__ : Optional[NamedSplit] = None ,lowercase__ : Optional[Features] = None ,lowercase__ : str = None ,lowercase__ : bool = False ,lowercase__ : bool = False ,lowercase__ : Optional[int] = None ,**lowercase__ : Optional[int] ,): super().__init__( lowercase__ ,split=lowercase__ ,features=lowercase__ ,cache_dir=lowercase__ ,keep_in_memory=lowercase__ ,streaming=lowercase__ ,num_proc=lowercase__ ,**lowercase__ ,) __lowercase = path_or_paths if isinstance(lowercase__ ,lowercase__ ) else {self.split: path_or_paths} __lowercase = Text( cache_dir=lowercase__ ,data_files=lowercase__ ,features=lowercase__ ,**lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Build iterable dataset if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=lowercase__ ,download_mode=lowercase__ ,verification_mode=lowercase__ ,base_path=lowercase__ ,num_proc=self.num_proc ,) __lowercase = self.builder.as_dataset( split=self.split ,verification_mode=lowercase__ ,in_memory=self.keep_in_memory ) return dataset
104
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> Optional[int]: a : List[str] = str(id_ ) a : Optional[Any] = None a : Tuple = None a : str = [] a : Any = {} # {vertex:distance} def __lt__( self , lowerCAmelCase__ ) -> Any: return self.key < other.key def __repr__( self ) -> Optional[Any]: return self.id def __a ( self , lowerCAmelCase__ ) -> Any: self.neighbors.append(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Optional[Any] = weight def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Union[str, Any] ) ->str: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowercase ) graph[b - 1].add_edge(graph[a - 1] , _lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->list: '''simple docstring''' a : int = [] for u in graph: a : List[str] = math.inf a : int = None a : str = 0 a : Union[str, Any] = graph[:] while q: a : List[Any] = min(_lowercase ) q.remove(_lowercase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): a : List[Any] = u a : Optional[int] = u.edges[v.id] for i in range(1 , len(_lowercase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Vertex ) ->Iterator[tuple]: '''simple docstring''' for u in graph: a : str = math.inf a : Dict = None a : Dict = 0 a : List[Any] = list(_lowercase ) hq.heapify(_lowercase ) while h: a : Dict = hq.heappop(_lowercase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): a : Dict = u a : Optional[Any] = u.edges[v.id] hq.heapify(_lowercase ) for i in range(1 , len(_lowercase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
105
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Any = 0 if start < end: lowerCAmelCase__ : str = randint(A_ , A_ ) lowerCAmelCase__ : Optional[int] = a[end] lowerCAmelCase__ : str = a[pivot] lowerCAmelCase__ : Union[str, Any] = temp lowerCAmelCase__ ,lowerCAmelCase__ : int = _in_place_partition(A_ , A_ , A_ ) count += _in_place_quick_sort(A_ , A_ , p - 1 ) count += _in_place_quick_sort(A_ , p + 1 , A_ ) return count def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = randint(A_ , A_ ) lowerCAmelCase__ : List[Any] = a[end] lowerCAmelCase__ : Optional[Any] = a[pivot] lowerCAmelCase__ : Union[str, Any] = temp lowerCAmelCase__ : Dict = start - 1 for index in range(A_ , A_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ : Optional[Any] = new_pivot_index + 1 lowerCAmelCase__ : Tuple = a[new_pivot_index] lowerCAmelCase__ : Any = a[index] lowerCAmelCase__ : List[Any] = temp lowerCAmelCase__ : Any = a[new_pivot_index + 1] lowerCAmelCase__ : Optional[int] = a[end] lowerCAmelCase__ : int = temp return new_pivot_index + 1, count __UpperCamelCase : List[str] = TemporaryFile() __UpperCamelCase : int = 1_0_0 # 1000 elements are to be sorted __UpperCamelCase , __UpperCamelCase : Optional[int] = 0, 1 # mean and standard deviation __UpperCamelCase : Dict = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __UpperCamelCase : Optional[int] = np.load(outfile) __UpperCamelCase : List[str] = len(M) - 1 __UpperCamelCase : Union[str, Any] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
106
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Dict = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class snake_case__ : """simple docstring""" def __init__( self : str , __lowerCamelCase : int = 14 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) a = primes[group]["prime"] a = primes[group]["generator"] a = int(hexlify(urandom(32 ) ) , base=16 ) def __UpperCAmelCase ( self : Optional[int] ) -> str: return hex(self.__private_key )[2:] def __UpperCAmelCase ( self : List[Any] ) -> str: a = pow(self.generator , self.__private_key , self.prime ) return hex(__lowerCamelCase )[2:] def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ) -> str: a = int(__lowerCamelCase , base=16 ) if not self.is_valid_public_key(__lowerCamelCase ): raise ValueError("Invalid public key" ) a = pow(__lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1 ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 14 ) -> str: a = int(__lowerCamelCase , base=16 ) a = int(__lowerCamelCase , base=16 ) a = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Invalid public key" ) a = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
107
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" a : Optional[datasets.Features] =None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" a : Tuple =PandasConfig def lowercase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): lowerCAmelCase : List[Any] = data_files if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : List[str] = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : List[Any] = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"files": files} ) ) return splits def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : Union[str, Any] = table_cast(snake_case__ , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self , snake_case__ ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ , "rb" ) as f: lowerCAmelCase : int = pa.Table.from_pandas(pd.read_pickle(snake_case__ ) ) yield i, self._cast_table(snake_case__ )
108
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: Any = logging.get_logger(__name__) # pylint: disable=invalid-name A: Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any=8 ): UpperCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase : Optional[int] = latents.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> str: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase : int = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = self._execution_device UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.scheduler.timesteps UpperCAmelCase : Optional[int] = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Optional[int] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent UpperCAmelCase : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Any = {"""image_embeds""": image_embeds} UpperCAmelCase : Dict = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : List[str] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : Dict = variance_pred.chunk(2 ) UpperCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Optional[int] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing UpperCAmelCase : str = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : Optional[int] = image.clamp(0 , 1 ) UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
109
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=99 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : Union[str, Any]=36 , __lowerCAmelCase : str=6 , __lowerCAmelCase : str=6 , __lowerCAmelCase : List[Any]=6 , __lowerCAmelCase : Union[str, Any]=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=5_12 , __lowerCAmelCase : int=16 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : int=0.0_2 , __lowerCAmelCase : int=3 , __lowerCAmelCase : int=4 , __lowerCAmelCase : str=None , ) -> List[str]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : Optional[Any] ) -> Dict: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : int ) -> Dict: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a_ ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" A__ = AlbertModel(config=_A ) model.to(_A ) model.eval() A__ = model(_A , attention_mask=_A , token_type_ids=_A ) A__ = model(_A , token_type_ids=_A ) A__ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> Dict: """simple docstring""" A__ = AlbertForPreTraining(config=_A ) model.to(_A ) model.eval() A__ = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" A__ = AlbertForMaskedLM(config=_A ) model.to(_A ) model.eval() A__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = AlbertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() A__ = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" A__ = self.num_labels A__ = AlbertForSequenceClassification(_A ) model.to(_A ) model.eval() A__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" A__ = self.num_labels A__ = AlbertForTokenClassification(config=_A ) model.to(_A ) model.eval() A__ = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.num_choices A__ = AlbertForMultipleChoice(config=_A ) model.to(_A ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase : Optional[Any] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : int = True def a_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=False ) -> Tuple: """simple docstring""" A__ = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class in get_values(_A ): A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def a_ ( self : Optional[Any] ) -> int: """simple docstring""" A__ = AlbertModelTester(self ) A__ = ConfigTester(self , config_class=_A , hidden_size=37 ) def a_ ( self : int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : int ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def a_ ( self : Optional[int] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def a_ ( self : Any ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def a_ ( self : str ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def a_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*_A ) @slow def a_ ( self : List[str] ) -> int: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AlbertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class A (unittest.TestCase ): '''simple docstring''' @slow def a_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = AlbertModel.from_pretrained("""albert-base-v2""" ) A__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(_A , attention_mask=_A )[0] A__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _A ) A__ = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) )
274
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _lowercase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = None _SCREAMING_SNAKE_CASE : Any = None @property def a ( self : List[Any] ) -> str: return self.feat_extract_tester.prepare_feat_extract_dict() def a ( self : int ) -> int: __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_A , """feature_size""" ) ) self.assertTrue(hasattr(_A , """sampling_rate""" ) ) self.assertTrue(hasattr(_A , """padding_value""" ) ) def a ( self : Tuple ) -> Tuple: __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a ( self : Optional[Any] ) -> Dict: __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) __lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str=False ) -> Tuple: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : List[str] ): __lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1e-3 ): return False return True __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = self.feat_extract_tester.seq_length_diff __lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff __lowerCAmelCase = self.feat_extract_tester.min_seq_length __lowerCAmelCase = self.feat_extract_tester.batch_size __lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowerCAmelCase = feat_extract.pad(_A , padding=_A ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""np""" ) __lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_A ): feat_extract.pad(_A , padding="""max_length""" )[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=_A , return_tensors="""np""" ) __lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase = feat_extract.pad(_A , pad_to_multiple_of=10 ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , pad_to_multiple_of=10 ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_A ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_A , return_tensors="""np""" , ) __lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) __lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Tuple: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE__ : List[Any] ): __lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1e-3 ): return False return True __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_A ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) __lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to smallest with np __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_A , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) __lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to middle __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_A , return_tensors="""np""" , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_A ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) __lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding="""longest""" , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding="""longest""" , truncation=_A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_A ): feat_extract.pad(_A , padding="""max_length""" , truncation=_A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase = 12 __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , truncation=_A , ) __lowerCAmelCase = input_a[input_name] __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , ) __lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) def a ( self : Any ) -> List[str]: self._check_padding(numpify=_A ) def a ( self : Optional[Any] ) -> int: self._check_padding(numpify=_A ) def a ( self : List[Any] ) -> Dict: self._check_truncation(numpify=_A ) def a ( self : Tuple ) -> Any: self._check_truncation(numpify=_A ) @require_torch def a ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""np""" )[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def a ( self : List[Any] ) -> Tuple: __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""np""" )[input_name] __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = self.feat_extract_dict __lowerCAmelCase = True __lowerCAmelCase = self.feature_extraction_class(**_A ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = [len(_A ) for x in speech_inputs] __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = feat_extract.pad(_A , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def a ( self : int ) -> Dict: __lowerCAmelCase = self.feat_extract_dict __lowerCAmelCase = True __lowerCAmelCase = self.feature_extraction_class(**_A ) __lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase = [len(_A ) for x in speech_inputs] __lowerCAmelCase = feat_extract.model_input_names[0] __lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) __lowerCAmelCase = min(_A ) __lowerCAmelCase = feat_extract.pad( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
229
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
def a ( A__ : int = 1000 ) -> List[str]: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
205
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> Optional[int]: snake_case_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
347
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): """simple docstring""" for attribute in key.split("." ): lowerCAmelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCAmelCase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase_ = value elif weight_type == "weight_g": lowerCAmelCase_ = value elif weight_type == "weight_v": lowerCAmelCase_ = value elif weight_type == "bias": lowerCAmelCase_ = value else: lowerCAmelCase_ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = fairseq_model.state_dict() lowerCAmelCase_ = hf_model.feature_extractor lowerCAmelCase_ = hf_model.adapter for name, value in fairseq_dict.items(): lowerCAmelCase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase_ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase_ = True if "*" in mapped_key: lowerCAmelCase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowerCAmelCase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowerCAmelCase_ = "weight_g" elif "weight_v" in name: lowerCAmelCase_ = "weight_v" elif "bias" in name: lowerCAmelCase_ = "bias" elif "weight" in name: lowerCAmelCase_ = "weight" else: lowerCAmelCase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" lowerCAmelCase_ = full_name.split("conv_layers." )[-1] lowerCAmelCase_ = name.split("." ) lowerCAmelCase_ = int(items[0] ) lowerCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): """simple docstring""" lowerCAmelCase_ = full_name.split("adaptor." )[-1] lowerCAmelCase_ = name.split("." ) if items[1].isdigit(): lowerCAmelCase_ = int(items[1] ) else: lowerCAmelCase_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCAmelCase_ = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCAmelCase_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCAmelCase_ = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCAmelCase_ = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCAmelCase_ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCAmelCase_ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" lowerCAmelCase_ = WavaVecaConfig.from_pretrained( __lowerCamelCase , add_adapter=__lowerCamelCase , adapter_stride=__lowerCamelCase , adapter_kernel_size=__lowerCamelCase , use_auth_token=__lowerCamelCase , output_hidden_size=__lowerCamelCase , ) lowerCAmelCase_ = MBartConfig.from_pretrained(__lowerCamelCase ) # load model lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowerCAmelCase_ = model[0].eval() # load feature extractor lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , use_auth_token=__lowerCamelCase ) # set weights for wav2vec2 encoder lowerCAmelCase_ = WavaVecaModel(__lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) # load decoder weights lowerCAmelCase_ = MBartForCausalLM(__lowerCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase_ = SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) lowerCAmelCase_ = False lowerCAmelCase_ = MBartaaTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) lowerCAmelCase_ = hf_wavavec.config.to_dict() lowerCAmelCase_ = tokenizer.pad_token_id lowerCAmelCase_ = tokenizer.bos_token_id lowerCAmelCase_ = tokenizer.eos_token_id lowerCAmelCase_ = "mbart50" lowerCAmelCase_ = "wav2vec2" lowerCAmelCase_ = tokenizer.eos_token_id lowerCAmelCase_ = 250004 lowerCAmelCase_ = tokenizer.eos_token_id lowerCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config") _A = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
231
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase : Tuple = 16 lowercase : Tuple = 32 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] = 16 , _lowerCamelCase : str = "bert-base-cased") -> Optional[Any]: '''simple docstring''' __UpperCamelCase : int = AutoTokenizer.from_pretrained(__lowerCamelCase) __UpperCamelCase : str = load_dataset("glue" , "mrpc") def tokenize_function(_lowerCamelCase : str): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCamelCase , max_length=__lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__lowerCamelCase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase : str = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_lowerCamelCase : List[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="max_length" , max_length=128 , return_tensors="pt") return tokenizer.pad(__lowerCamelCase , padding="longest" , return_tensors="pt") # Instantiate dataloaders. __UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase) __UpperCamelCase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any) -> Any: '''simple docstring''' model.eval() __UpperCamelCase : Optional[int] = 0 for step, batch in enumerate(__lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __UpperCamelCase : Tuple = model(**__lowerCamelCase) __UpperCamelCase : str = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times __UpperCamelCase , __UpperCamelCase : str = accelerator.gather( (predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase) - 1: __UpperCamelCase : List[str] = predictions[: len(eval_dataloader.dataset) - samples_seen] __UpperCamelCase : Optional[Any] = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) __UpperCamelCase : str = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase : Union[str, Any] = config["lr"] __UpperCamelCase : List[str] = int(config["num_epochs"]) __UpperCamelCase : Optional[int] = int(config["seed"]) __UpperCamelCase : Union[str, Any] = int(config["batch_size"]) __UpperCamelCase : Dict = args.model_name_or_path set_seed(__lowerCamelCase) __UpperCamelCase , __UpperCamelCase : Optional[int] = get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase) # Instantiate optimizer __UpperCamelCase : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase : List[Any] = optimizer_cls(params=model.parameters() , lr=__lowerCamelCase) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __UpperCamelCase : str = 1 __UpperCamelCase : List[str] = (len(__lowerCamelCase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase : Tuple = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: __UpperCamelCase : Dict = DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # We need to keep track of how many total steps we have iterated over __UpperCamelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : Union[str, Any] = evaluate.load("glue" , "mrpc") __UpperCamelCase : Optional[Any] = num_epochs if args.partial_train_epoch is not None: __UpperCamelCase : Tuple = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) __UpperCamelCase : Union[str, Any] = args.resume_from_checkpoint.split("epoch_")[1] __UpperCamelCase : Tuple = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __UpperCamelCase : Optional[Any] = int(__lowerCamelCase) + 1 __UpperCamelCase : List[str] = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) accelerator.print("resumed checkpoint performance:" , __lowerCamelCase) accelerator.print("resumed checkpoint\'s scheduler\'s lr:" , lr_scheduler.get_lr()[0]) accelerator.print("resumed optimizers\'s lr:" , optimizer.param_groups[0]["lr"]) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json') , "r") as f: __UpperCamelCase : Optional[Any] = json.load(__lowerCamelCase) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __UpperCamelCase : List[Any] = {} for epoch in range(__lowerCamelCase , __lowerCamelCase): model.train() for step, batch in enumerate(__lowerCamelCase): __UpperCamelCase : Dict = model(**__lowerCamelCase) __UpperCamelCase : int = outputs.loss __UpperCamelCase : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __UpperCamelCase : Tuple = F'epoch_{epoch}' __UpperCamelCase : List[Any] = os.path.join(args.output_dir , __lowerCamelCase) accelerator.save_state(__lowerCamelCase) __UpperCamelCase : List[str] = evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) __UpperCamelCase : Tuple = accuracy __UpperCamelCase : Union[str, Any] = lr_scheduler.get_lr()[0] __UpperCamelCase : Union[str, Any] = optimizer.param_groups[0]["lr"] __UpperCamelCase : Tuple = epoch __UpperCamelCase : Optional[int] = overall_step accelerator.print(F'epoch {epoch}:' , __lowerCamelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json') , "w") as f: json.dump(__lowerCamelCase , __lowerCamelCase) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path" , type=__lowerCamelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCamelCase , ) parser.add_argument( "--output_dir" , type=__lowerCamelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__lowerCamelCase , default=__lowerCamelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__lowerCamelCase , default=__lowerCamelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__lowerCamelCase , default=2 , help="Number of train epochs." , ) __UpperCamelCase : Optional[Any] = parser.parse_args() __UpperCamelCase : Tuple = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__lowerCamelCase , __lowerCamelCase) if __name__ == "__main__": main()
232
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = 'Hello world! cécé herlolip' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: snake_case : Any = FairseqRobertaModel.from_pretrained(__lowerCamelCase ) roberta.eval() # disable dropout snake_case : List[Any] = roberta.model.encoder.sentence_encoder snake_case : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case : str = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" ,__lowerCamelCase ) snake_case : Dict = XLMRobertaXLForSequenceClassification(__lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(__lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings snake_case : List[str] = roberta_sent_encoder.embed_tokens.weight snake_case : Any = roberta_sent_encoder.embed_positions.weight snake_case : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case : Union[str, Any] = model.roberta.encoder.layer[i] snake_case : List[str] = roberta_sent_encoder.layers[i] snake_case : Optional[int] = layer.attention snake_case : int = roberta_layer.self_attn_layer_norm.weight snake_case : Union[str, Any] = roberta_layer.self_attn_layer_norm.bias # self attention snake_case : List[Any] = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case : Any = roberta_layer.self_attn.q_proj.weight snake_case : Tuple = roberta_layer.self_attn.q_proj.bias snake_case : List[str] = roberta_layer.self_attn.k_proj.weight snake_case : Dict = roberta_layer.self_attn.k_proj.bias snake_case : List[Any] = roberta_layer.self_attn.v_proj.weight snake_case : str = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case : str = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case : Any = roberta_layer.self_attn.out_proj.weight snake_case : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case : List[str] = roberta_layer.final_layer_norm.weight snake_case : Dict = roberta_layer.final_layer_norm.bias # intermediate snake_case : str = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case : Optional[Any] = roberta_layer.fca.weight snake_case : str = roberta_layer.fca.bias # output snake_case : List[str] = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case : Optional[int] = roberta_layer.fca.weight snake_case : List[str] = roberta_layer.fca.bias # end of layer if classification_head: snake_case : Tuple = roberta.model.classification_heads["""mnli"""].dense.weight snake_case : Dict = roberta.model.classification_heads["""mnli"""].dense.bias snake_case : Any = roberta.model.classification_heads["""mnli"""].out_proj.weight snake_case : Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head snake_case : List[str] = roberta.model.encoder.lm_head.dense.weight snake_case : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias snake_case : int = roberta.model.encoder.lm_head.layer_norm.weight snake_case : List[str] = roberta.model.encoder.lm_head.layer_norm.bias snake_case : List[str] = roberta.model.encoder.lm_head.weight snake_case : Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case : Union[str, Any] = roberta.encode(__lowerCamelCase ).unsqueeze(0 ) # batch of size 1 snake_case : str = model(__lowerCamelCase )[0] if classification_head: snake_case : Tuple = roberta.model.classification_heads["""mnli"""](roberta.extract_features(__lowerCamelCase ) ) else: snake_case : Union[str, Any] = roberta.model(__lowerCamelCase )[0] print(our_output.shape ,their_output.shape ) snake_case : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 snake_case : Optional[int] = torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1E-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(__lowerCamelCase ).mkdir(parents=__lowerCamelCase ,exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
124
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n''' lowerCAmelCase__ = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n''' lowerCAmelCase__ = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n''' def _A ( A__ , A__ , A__=False , A__=False , A__=True , A__=False , A__="dummy_doc" ): """simple docstring""" __lowercase = {doc: key_lines} __lowercase = {doc: sys_lines} __lowercase = {} __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase , __lowercase = reader.get_doc_mentions(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) __lowercase , __lowercase = reader.get_doc_mentions(__lowerCamelCase , sys_doc_lines[doc] , __lowerCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) if remove_nested: __lowercase , __lowercase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowercase , __lowercase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowercase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) __lowercase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) __lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = get_coref_infos(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowercase = {} __lowercase = 0 __lowercase = 0 for name, metric in metrics: __lowercase , __lowercase , __lowercase = evaluator.evaluate_documents(__lowerCamelCase , __lowerCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} ) logger.info( name.ljust(10 ) , F"Recall: {recall * 100:.2f}" , F" Precision: {precision * 100:.2f}" , F" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: __lowercase = (conll / 3) * 100 logger.info(F"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def _A ( A__ ): """simple docstring""" __lowercase = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: __lowercase = line.split()[5] if not parse_col == "-": __lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) ,codebase_urls=['''https://github.com/ns-moosavi/coval'''] ,reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] ,) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[Any]=True ,lowercase__ : Dict=False ,lowercase__ : int=False ,lowercase__ : Optional[int]=False ): __lowercase = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __lowercase = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowercase = evaluate( key_lines=_A ,sys_lines=_A ,metrics=_A ,NP_only=_A ,remove_nested=_A ,keep_singletons=_A ,min_span=_A ,) return score
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase = 2 class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , *, # begin keyword-only arguments _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : List[Any]="<pad>" , _lowerCAmelCase : Optional[int]="</s>" , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Any=None , ): '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase =bos, unk, pad, eos __lowercase =[] __lowercase =[] __lowercase ={} __lowercase =self.add_symbol(_A) __lowercase =self.add_symbol(_A) __lowercase =self.add_symbol(_A) __lowercase =self.add_symbol(_A) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A) __lowercase =len(self.symbols) def __eq__( self : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.indices == other.indices def __getitem__( self : Union[str, Any] , _lowerCAmelCase : int): '''simple docstring''' if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : List[str]): '''simple docstring''' return len(self.symbols) def __contains__( self : List[str] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' return sym in self.indices @classmethod def __lowerCamelCase ( cls : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =cls() d.add_from_file(_A) return d def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int=1 , _lowerCAmelCase : int=False): '''simple docstring''' if word in self.indices and not overwrite: __lowercase =self.indices[word] __lowercase =self.count[idx] + n return idx else: __lowercase =len(self.symbols) __lowercase =idx self.symbols.append(_A) self.count.append(_A) return idx def __lowerCamelCase ( self : Dict , _lowerCAmelCase : int): '''simple docstring''' return 0 def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : str): '''simple docstring''' if isinstance(_A , _A): try: with open(_A , 'r' , encoding='utf-8') as fd: self.add_from_file(_A) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_A)) return __lowercase =f.readlines() __lowercase =self._load_meta(_A) for line in lines[indices_start_line:]: try: __lowercase , __lowercase =line.rstrip().rsplit(' ' , 1) if field == "#fairseq:overwrite": __lowercase =True __lowercase , __lowercase =line.rsplit(' ' , 1) else: __lowercase =False __lowercase =int(_A) __lowercase =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_A)) self.add_symbol(_A , n=_A , overwrite=_A) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'') def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =dict((re.sub(r'@@$' , '' , __lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , __lowerCamelCase ), v) for k, v in d.items() ) __lowercase ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] __lowercase =d[k] # restore return da def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if not os.path.exists(__lowerCamelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowercase =os.path.join(__lowerCamelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) __lowercase =torch.load(__lowerCamelCase , map_location='cpu' ) __lowercase =chkpt['cfg']['model'] # dicts __lowercase =os.path.join(__lowerCamelCase , 'dict.txt' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) __lowercase =Dictionary.load(__lowerCamelCase ) __lowercase =rewrite_dict_keys(src_dict.indices ) __lowercase =len(__lowerCamelCase ) __lowercase =os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # merges_file (bpecodes) __lowercase =os.path.join(__lowerCamelCase , 'bpecodes' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) __lowercase =os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) # model config __lowercase =os.path.join(__lowerCamelCase , 'config.json' ) __lowercase ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # tokenizer config __lowercase =os.path.join(__lowerCamelCase , __lowerCamelCase ) __lowercase ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # model __lowercase =chkpt['model'] # remove unneeded keys __lowercase =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) __lowercase =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowercase =model_state_dict.pop(__lowerCamelCase ) else: __lowercase =model_state_dict.pop(__lowerCamelCase ) __lowercase =BioGptConfig.from_pretrained(__lowerCamelCase ) __lowercase =BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save __lowercase =os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) print('Conversion is done!' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
166
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' class a_ : def __init__( self , snake_case_ ): _lowerCAmelCase : int = n _lowerCAmelCase : List[Any] = [None] * self.n _lowerCAmelCase : Optional[int] = 0 # index of the first element _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 def __len__( self ): return self.size def __UpperCamelCase ( self ): return self.size == 0 def __UpperCamelCase ( self ): return False if self.is_empty() else self.array[self.front] def __UpperCamelCase ( self , snake_case_ ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) _lowerCAmelCase : str = data _lowerCAmelCase : Tuple = (self.rear + 1) % self.n self.size += 1 return self def __UpperCamelCase ( self ): if self.size == 0: raise Exception("""UNDERFLOW""" ) _lowerCAmelCase : Optional[Any] = self.array[self.front] _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
309
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0