code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A__ ( __lowerCamelCase ): return 1 / (1 + np.exp(-z )) def A__ ( __lowerCamelCase, __lowerCamelCase ): return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=7_00_00 ): SCREAMING_SNAKE_CASE_ = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = sigmoid_function(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(x.T, h - y ) / y.size SCREAMING_SNAKE_CASE_ = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = sigmoid_function(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = cost_function(__lowerCamelCase, __lowerCamelCase ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __UpperCAmelCase = datasets.load_iris() __UpperCAmelCase = iris.data[:, :2] __UpperCAmelCase = (iris.target != 0) * 1 __UpperCAmelCase = 0.1 __UpperCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def A__ ( __lowerCamelCase ): return sigmoid_function( np.dot(__lowerCamelCase, __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __UpperCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] __UpperCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
299
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["ConditionalDetrFeatureExtractor"] __UpperCAmelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __UpperCAmelCase = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __UpperCAmelCase = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __UpperCAmelCase = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A__ ( __lowerCamelCase, __lowerCamelCase ): return float((preds == labels).mean() ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="binary" ): SCREAMING_SNAKE_CASE_ = simple_accuracy(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = float(fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase, average=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} for id_pred, label in zip(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' SCREAMING_SNAKE_CASE_ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: SCREAMING_SNAKE_CASE_ = [(pred, label)] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] for question, preds_labels in question_map.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = zip(*__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = fa_score(y_true=__lowerCamelCase, y_pred=__lowerCamelCase, average='''macro''' ) fas.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = int(sum(pred == label for pred, label in preds_labels ) == len(__lowerCamelCase ) ) ems.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = float(sum(__lowerCamelCase ) / len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = sum(__lowerCamelCase ) / len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = float(fa_score(y_true=__lowerCamelCase, y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> List[str]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def _UpperCamelCase ( self ) -> List[str]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def _UpperCamelCase ( self , _A , _A ) -> int: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_A , _A )} elif self.config_name == "cb": return acc_and_fa(_A , _A , fa_avg='''macro''' ) elif self.config_name == "record": SCREAMING_SNAKE_CASE_ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] SCREAMING_SNAKE_CASE_ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_A , _A )[0] elif self.config_name == "multirc": return evaluate_multirc(_A , _A ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_A , _A )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
299
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
1
def A__ ( __lowerCamelCase = 10_00 ): return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCAmelCase = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __UpperCAmelCase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __UpperCAmelCase = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __UpperCAmelCase = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __UpperCAmelCase = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __UpperCAmelCase = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''', __lowerCamelCase ) return [m.group(0 ) for m in matches] def A__ ( ): SCREAMING_SNAKE_CASE_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = { config.replace('''Config''', '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. SCREAMING_SNAKE_CASE_ = collections.defaultdict(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = collections.defaultdict(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = collections.defaultdict(__lowerCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = None if _re_tf_models.match(__lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE_ = tf_models SCREAMING_SNAKE_CASE_ = _re_tf_models.match(__lowerCamelCase ).groups()[0] elif _re_flax_models.match(__lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE_ = flax_models SCREAMING_SNAKE_CASE_ = _re_flax_models.match(__lowerCamelCase ).groups()[0] elif _re_pt_models.match(__lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE_ = pt_models SCREAMING_SNAKE_CASE_ = _re_pt_models.match(__lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(__lowerCamelCase ) > 0: if attr_name in model_prefix_to_model_type: SCREAMING_SNAKE_CASE_ = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE_ = ''''''.join(camel_case_split(__lowerCamelCase )[:-1] ) SCREAMING_SNAKE_CASE_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) SCREAMING_SNAKE_CASE_ = list(__lowerCamelCase ) all_models.sort() SCREAMING_SNAKE_CASE_ = {'''model_type''': all_models} SCREAMING_SNAKE_CASE_ = [pt_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ = [tf_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure SCREAMING_SNAKE_CASE_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. SCREAMING_SNAKE_CASE_ = '''AutoTokenizer''' SCREAMING_SNAKE_CASE_ = [processors[t] for t in all_models] return pd.DataFrame(__lowerCamelCase ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: SCREAMING_SNAKE_CASE_ = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] SCREAMING_SNAKE_CASE_ = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(__lowerCamelCase, __lowerCamelCase ): continue # First extract all model_names SCREAMING_SNAKE_CASE_ = [] for name in getattr(__lowerCamelCase, __lowerCamelCase ).values(): if isinstance(__lowerCamelCase, __lowerCamelCase ): model_names.append(__lowerCamelCase ) else: model_names.extend(list(__lowerCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = get_frameworks_table() SCREAMING_SNAKE_CASE_ = Dataset.from_pandas(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = hf_hub_download( '''huggingface/transformers-metadata''', '''pipeline_tags.json''', repo_type='''dataset''', token=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Dataset.from_json(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__lowerCamelCase ) ) } SCREAMING_SNAKE_CASE_ = update_pipeline_and_auto_class_table(__lowerCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. SCREAMING_SNAKE_CASE_ = sorted(table.keys() ) SCREAMING_SNAKE_CASE_ = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) SCREAMING_SNAKE_CASE_ = Dataset.from_pandas(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowerCamelCase, '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(__lowerCamelCase, '''pipeline_tags.json''' ) ) if commit_sha is not None: SCREAMING_SNAKE_CASE_ = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: SCREAMING_SNAKE_CASE_ = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''', folder_path=__lowerCamelCase, repo_type='''dataset''', token=__lowerCamelCase, commit_message=__lowerCamelCase, ) def A__ ( ): SCREAMING_SNAKE_CASE_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} SCREAMING_SNAKE_CASE_ = transformers_module.pipelines.SUPPORTED_TASKS SCREAMING_SNAKE_CASE_ = [] for key in pipeline_tasks: if key not in in_table: SCREAMING_SNAKE_CASE_ = pipeline_tasks[key]['''pt'''] if isinstance(__lowerCamelCase, (list, tuple) ): SCREAMING_SNAKE_CASE_ = model[0] SCREAMING_SNAKE_CASE_ = model.__name__ if model not in in_table.values(): missing.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = ''', '''.join(__lowerCamelCase ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __UpperCAmelCase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCAmelCase = logging.get_logger(__name__) def A__ ( __lowerCamelCase, __lowerCamelCase ): try: with open(__lowerCamelCase, '''rb''' ) as flax_state_f: SCREAMING_SNAKE_CASE_ = from_bytes(__lowerCamelCase, flax_state_f.read() ) except UnpicklingError as e: try: with open(__lowerCamelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCamelCase, __lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa, __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = flatten_dict(__lowerCamelCase, sep='''.''' ) SCREAMING_SNAKE_CASE_ = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ = jnp.transpose(__lowerCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['''weight'''] SCREAMING_SNAKE_CASE_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = ( flax_key_tuple_string.replace('''_0''', '''.0''' ) .replace('''_1''', '''.1''' ) .replace('''_2''', '''.2''' ) .replace('''_3''', '''.3''' ) .replace('''_4''', '''.4''' ) .replace('''_5''', '''.5''' ) .replace('''_6''', '''.6''' ) .replace('''_7''', '''.7''' ) .replace('''_8''', '''.8''' ) .replace('''_9''', '''.9''' ) ) SCREAMING_SNAKE_CASE_ = '''.'''.join(__lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase, np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__lowerCamelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) return pt_model
299
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
1
__UpperCAmelCase = range(2, 20 + 1) __UpperCAmelCase = [10**k for k in range(ks[-1] + 1)] __UpperCAmelCase = {} def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = sum(a_i[j] for j in range(__lowerCamelCase, len(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE_ = sum(a_i[j] * base[j] for j in range(min(len(__lowerCamelCase ), __lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 0 SCREAMING_SNAKE_CASE_ = n - i SCREAMING_SNAKE_CASE_ = memo.get(__lowerCamelCase ) if sub_memo is not None: SCREAMING_SNAKE_CASE_ = sub_memo.get(__lowerCamelCase ) if jumps is not None and len(__lowerCamelCase ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_ = -1 for _k in range(len(__lowerCamelCase ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_ = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_ = diff + c for j in range(min(__lowerCamelCase, len(__lowerCamelCase ) ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__lowerCamelCase, 10 ) if new_c > 0: add(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = [] else: SCREAMING_SNAKE_CASE_ = {c: []} SCREAMING_SNAKE_CASE_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = next_term(__lowerCamelCase, k - 1, i + dn, __lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = compute(__lowerCamelCase, __lowerCamelCase, i + dn, __lowerCamelCase ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_ = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_ = 0 while j < len(__lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__lowerCamelCase, (diff, dn, k) ) return (diff, dn) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if i >= n: return 0, i if k > len(__lowerCamelCase ): a_i.extend([0 for _ in range(k - len(__lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 0, 0 for j in range(len(__lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_ = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_ = 0 for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = a_i[j] + addend SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__lowerCamelCase, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return diff, i - start_i def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for j in range(__lowerCamelCase, len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__lowerCamelCase, 10 ) SCREAMING_SNAKE_CASE_ = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_ = s SCREAMING_SNAKE_CASE_ = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__lowerCamelCase, 10 ) digits.append(__lowerCamelCase ) def A__ ( __lowerCamelCase = 10**15 ): SCREAMING_SNAKE_CASE_ = [1] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 while True: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = next_term(__lowerCamelCase, 20, i + dn, __lowerCamelCase ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_ = 0 for j in range(len(__lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
299
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
1
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A , _A , _A=0.0 , _A = None , _A = "geglu" , _A = None , _A = False , _A = False , _A = False , _A = False , _A = True , _A = "layer_norm" , _A = False , ) -> Any: super().__init__() SCREAMING_SNAKE_CASE_ = only_cross_attention SCREAMING_SNAKE_CASE_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' SCREAMING_SNAKE_CASE_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE_ = AdaLayerNorm(_A , _A ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE_ = AdaLayerNormZero(_A , _A ) else: SCREAMING_SNAKE_CASE_ = nn.LayerNorm(_A , elementwise_affine=_A ) SCREAMING_SNAKE_CASE_ = Attention( query_dim=_A , heads=_A , dim_head=_A , dropout=_A , bias=_A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. SCREAMING_SNAKE_CASE_ = ( AdaLayerNorm(_A , _A ) if self.use_ada_layer_norm else nn.LayerNorm(_A , elementwise_affine=_A ) ) SCREAMING_SNAKE_CASE_ = Attention( query_dim=_A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_A , dim_head=_A , dropout=_A , bias=_A , upcast_attention=_A , ) # is self-attn if encoder_hidden_states is none else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # 3. Feed-forward SCREAMING_SNAKE_CASE_ = nn.LayerNorm(_A , elementwise_affine=_A ) SCREAMING_SNAKE_CASE_ = FeedForward(_A , dropout=_A , activation_fn=_A , final_dropout=_A ) # let chunk size default to None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0 def _UpperCamelCase ( self , _A , _A ) -> int: # Sets chunk feed-forward SCREAMING_SNAKE_CASE_ = chunk_size SCREAMING_SNAKE_CASE_ = dim def _UpperCamelCase ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE_ = self.norma(_A , _A ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.norma( _A , _A , _A , hidden_dtype=hidden_states.dtype ) else: SCREAMING_SNAKE_CASE_ = self.norma(_A ) SCREAMING_SNAKE_CASE_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} SCREAMING_SNAKE_CASE_ = self.attna( _A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_A , **_A , ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE_ = gate_msa.unsqueeze(1 ) * attn_output SCREAMING_SNAKE_CASE_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: SCREAMING_SNAKE_CASE_ = ( self.norma(_A , _A ) if self.use_ada_layer_norm else self.norma(_A ) ) SCREAMING_SNAKE_CASE_ = self.attna( _A , encoder_hidden_states=_A , attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = attn_output + hidden_states # 3. Feed-forward SCREAMING_SNAKE_CASE_ = self.norma(_A ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) SCREAMING_SNAKE_CASE_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size SCREAMING_SNAKE_CASE_ = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: SCREAMING_SNAKE_CASE_ = self.ff(_A ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE_ = gate_mlp.unsqueeze(1 ) * ff_output SCREAMING_SNAKE_CASE_ = ff_output + hidden_states return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A = None , _A = 4 , _A = 0.0 , _A = "geglu" , _A = False , ) -> Any: super().__init__() SCREAMING_SNAKE_CASE_ = int(dim * mult ) SCREAMING_SNAKE_CASE_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": SCREAMING_SNAKE_CASE_ = GELU(_A , _A ) if activation_fn == "gelu-approximate": SCREAMING_SNAKE_CASE_ = GELU(_A , _A , approximate='''tanh''' ) elif activation_fn == "geglu": SCREAMING_SNAKE_CASE_ = GEGLU(_A , _A ) elif activation_fn == "geglu-approximate": SCREAMING_SNAKE_CASE_ = ApproximateGELU(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A , _A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def _UpperCamelCase ( self , _A ) -> List[Any]: for module in self.net: SCREAMING_SNAKE_CASE_ = module(_A ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A , _A = "none" ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(_A , _A ) SCREAMING_SNAKE_CASE_ = approximate def _UpperCamelCase ( self , _A ) -> List[str]: if gate.device.type != "mps": return F.gelu(_A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.proj(_A ) SCREAMING_SNAKE_CASE_ = self.gelu(_A ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(_A , dim_out * 2 ) def _UpperCamelCase ( self , _A ) -> Dict: if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.proj(_A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_A ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A ) -> int: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(_A , _A ) def _UpperCamelCase ( self , _A ) -> str: SCREAMING_SNAKE_CASE_ = self.proj(_A ) return x * torch.sigmoid(1.702 * x ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = nn.Linear(_A , embedding_dim * 2 ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(_A , elementwise_affine=_A ) def _UpperCamelCase ( self , _A , _A ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.linear(self.silu(self.emb(_A ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.chunk(_A , 2 ) SCREAMING_SNAKE_CASE_ = self.norm(_A ) * (1 + scale) + shift return x class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A ) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE_ = CombinedTimestepLabelEmbeddings(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = nn.Linear(_A , 6 * embedding_dim , bias=_A ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(_A , elementwise_affine=_A , eps=1E-6 ) def _UpperCamelCase ( self , _A , _A , _A , _A=None ) -> Dict: SCREAMING_SNAKE_CASE_ = self.linear(self.silu(self.emb(_A , _A , hidden_dtype=_A ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = emb.chunk(6 , dim=1 ) SCREAMING_SNAKE_CASE_ = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , _A , _A , _A , _A = None , _A = 1E-5 ) -> Any: super().__init__() SCREAMING_SNAKE_CASE_ = num_groups SCREAMING_SNAKE_CASE_ = eps if act_fn is None: SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = get_activation(_A ) SCREAMING_SNAKE_CASE_ = nn.Linear(_A , out_dim * 2 ) def _UpperCamelCase ( self , _A , _A ) -> Union[str, Any]: if self.act: SCREAMING_SNAKE_CASE_ = self.act(_A ) SCREAMING_SNAKE_CASE_ = self.linear(_A ) SCREAMING_SNAKE_CASE_ = emb[:, :, None, None] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = emb.chunk(2 , dim=1 ) SCREAMING_SNAKE_CASE_ = F.group_norm(_A , self.num_groups , eps=self.eps ) SCREAMING_SNAKE_CASE_ = x * (1 + scale) + shift return x
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A__ ( __lowerCamelCase, __lowerCamelCase ): for tf_name, hf_name in patterns: SCREAMING_SNAKE_CASE_ = k.replace(__lowerCamelCase, __lowerCamelCase ) return k def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = BigBirdPegasusConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch_model.state_dict() SCREAMING_SNAKE_CASE_ = {} # separating decoder weights SCREAMING_SNAKE_CASE_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} SCREAMING_SNAKE_CASE_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): SCREAMING_SNAKE_CASE_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue SCREAMING_SNAKE_CASE_ = DECODER_PATTERNS SCREAMING_SNAKE_CASE_ = rename_state_dict_key(__lowerCamelCase, __lowerCamelCase ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): SCREAMING_SNAKE_CASE_ = v.T SCREAMING_SNAKE_CASE_ = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): SCREAMING_SNAKE_CASE_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue SCREAMING_SNAKE_CASE_ = REMAINING_PATTERNS SCREAMING_SNAKE_CASE_ = rename_state_dict_key(__lowerCamelCase, __lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): SCREAMING_SNAKE_CASE_ = v.T SCREAMING_SNAKE_CASE_ = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' SCREAMING_SNAKE_CASE_ = mapping['''model.embed_positions.weight'''] SCREAMING_SNAKE_CASE_ = mapping.pop('''model.embed_positions.weight''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch_model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = tf.train.list_variables(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = ['''global_step'''] for name, shape in tqdm(__lowerCamelCase, desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE_ = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ = tf.train.load_variable(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = array return tf_weights def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = get_tf_weights_as_numpy(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = convert_bigbird_pegasus(__lowerCamelCase, __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
__UpperCAmelCase = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
299
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
1
import numpy as np def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 1E-12, __lowerCamelCase = 1_00, ): assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1E12 while not convergence: # Multiple matrix by the vector. SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, __lowerCamelCase ) # Normalize the resulting output vector. SCREAMING_SNAKE_CASE_ = w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) SCREAMING_SNAKE_CASE_ = vector.conj().T if is_complex else vector.T SCREAMING_SNAKE_CASE_ = np.dot(__lowerCamelCase, np.dot(__lowerCamelCase, __lowerCamelCase ) ) # Check convergence. SCREAMING_SNAKE_CASE_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = lambda_ if is_complex: SCREAMING_SNAKE_CASE_ = np.real(lambda_ ) return lambda_, vector def A__ ( ): SCREAMING_SNAKE_CASE_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) SCREAMING_SNAKE_CASE_ = np.array([41, 4, 20] ) SCREAMING_SNAKE_CASE_ = real_input_matrix.astype(np.complexaaa ) SCREAMING_SNAKE_CASE_ = np.triu(1j * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T SCREAMING_SNAKE_CASE_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": SCREAMING_SNAKE_CASE_ = real_input_matrix SCREAMING_SNAKE_CASE_ = real_vector elif problem_type == "complex": SCREAMING_SNAKE_CASE_ = complex_input_matrix SCREAMING_SNAKE_CASE_ = complex_vector # Our implementation. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = power_iteration(__lowerCamelCase, __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. SCREAMING_SNAKE_CASE_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. SCREAMING_SNAKE_CASE_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
299
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
1
from __future__ import annotations def A__ ( __lowerCamelCase, __lowerCamelCase = None ): SCREAMING_SNAKE_CASE_ = word_bank or [] # create a table SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) + 1 SCREAMING_SNAKE_CASE_ = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value SCREAMING_SNAKE_CASE_ = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: SCREAMING_SNAKE_CASE_ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
299
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
1
def A__ ( __lowerCamelCase = 1_00_00_00 ): SCREAMING_SNAKE_CASE_ = set(range(3, __lowerCamelCase, 2 ) ) primes.add(2 ) for p in range(3, __lowerCamelCase, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, __lowerCamelCase, __lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE_ = [float(__lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(__lowerCamelCase, limit + 1, __lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
299
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ProphetNetTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Dict: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = '''unwanted, running''' return input_text, output_text def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_A ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _UpperCamelCase ( self ) -> str: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
299
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, ): if config_name_or_path is None: SCREAMING_SNAKE_CASE_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ = RagConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = gen_config SCREAMING_SNAKE_CASE_ = question_encoder_config SCREAMING_SNAKE_CASE_ = model_class.from_pretrained_question_encoder_generator( __lowerCamelCase, __lowerCamelCase, config=__lowerCamelCase ) rag_model.save_pretrained(__lowerCamelCase ) # Sanity check. model_class.from_pretrained(__lowerCamelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
299
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
1
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
1
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> List[str]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> List[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> List[str]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> Any: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> List[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> str: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> int: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Optional[int]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> Any: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "transformers", "onnx"] def __init__( self , *_A , **_A ) -> Optional[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Optional[int]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
1
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1, 1 SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = fa + fa SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = fa, f index += 1 for _ in str(__lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = "src/diffusers" __UpperCAmelCase = "." # This is to make sure the diffusers module imported is the one in the repo. __UpperCAmelCase = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) __UpperCAmelCase = spec.loader.load_module() def A__ ( __lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''', __lowerCamelCase ) is not None def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = object_name.split('''.''' ) SCREAMING_SNAKE_CASE_ = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE_ = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, F'''{module}.py''' ) ): i += 1 if i < len(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(__lowerCamelCase, F'''{module}.py''' ), '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE_ = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ = lines[start_index:line_index] return "".join(__lowerCamelCase ) __UpperCAmelCase = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") __UpperCAmelCase = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") __UpperCAmelCase = re.compile(R"<FILL\s+[^>]*>") def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = code.split('''\n''' ) SCREAMING_SNAKE_CASE_ = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(r'''^(\s*)\S''', lines[idx] ).groups()[0] return "" def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE_ = F'''class Bla:\n{code}''' SCREAMING_SNAKE_CASE_ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_19, preview=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = style_docstrings_in_code(__lowerCamelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def A__ ( __lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = search.groups() SCREAMING_SNAKE_CASE_ = find_code_in_diffusers(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = get_indent(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE_ = theoretical_indent SCREAMING_SNAKE_CASE_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE_ = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break SCREAMING_SNAKE_CASE_ = lines[line_index] SCREAMING_SNAKE_CASE_ = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(F'''^{indent}# End copy''', __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ = lines[start_index:line_index] SCREAMING_SNAKE_CASE_ = ''''''.join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE_ = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__lowerCamelCase ) is None] SCREAMING_SNAKE_CASE_ = '''\n'''.join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = replace_pattern.replace('''with''', '''''' ).split(''',''' ) SCREAMING_SNAKE_CASE_ = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pattern.groups() SCREAMING_SNAKE_CASE_ = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE_ = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE_ = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE_ = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE_ = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(__lowerCamelCase ) return diffs def A__ ( __lowerCamelCase = False ): SCREAMING_SNAKE_CASE_ = glob.glob(os.path.join(__lowerCamelCase, '''**/*.py''' ), recursive=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [] for filename in all_files: SCREAMING_SNAKE_CASE_ = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = '''\n'''.join(__lowerCamelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
299
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
1
from math import factorial __UpperCAmelCase = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCamelCase ) ) def A__ ( __lowerCamelCase = 60, __lowerCamelCase = 1_00_00_00 ): if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length SCREAMING_SNAKE_CASE_ = 0 # the cached sizes of the previous chains SCREAMING_SNAKE_CASE_ = {} for start_chain_element in range(1, __lowerCamelCase ): # The temporary set will contain the elements of the chain SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. SCREAMING_SNAKE_CASE_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCamelCase ) chain_set_length += 1 SCREAMING_SNAKE_CASE_ = digit_factorial_sum(__lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] SCREAMING_SNAKE_CASE_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=18 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=None , _A=True , ) -> List[Any]: SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 20} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_flip_channel_order def _UpperCamelCase ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =MobileViTImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = MobileViTImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_flip_channel_order''' ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCamelCase ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
from math import ceil def A__ ( __lowerCamelCase = 10_01 ): SCREAMING_SNAKE_CASE_ = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE_ = 2 * i + 1 SCREAMING_SNAKE_CASE_ = 2 * i SCREAMING_SNAKE_CASE_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
from pathlib import Path import fire from tqdm import tqdm def A__ ( __lowerCamelCase="ro", __lowerCamelCase="en", __lowerCamelCase="wmt16", __lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) SCREAMING_SNAKE_CASE_ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) SCREAMING_SNAKE_CASE_ = datasets.load_dataset(__lowerCamelCase, __lowerCamelCase ) if save_dir is None: SCREAMING_SNAKE_CASE_ = F'''{dataset}-{pair}''' SCREAMING_SNAKE_CASE_ = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets SCREAMING_SNAKE_CASE_ = '''val''' if split == '''validation''' else split SCREAMING_SNAKE_CASE_ = save_dir.joinpath(F'''{fn}.source''' ) SCREAMING_SNAKE_CASE_ = save_dir.joinpath(F'''{fn}.target''' ) SCREAMING_SNAKE_CASE_ = src_path.open('''w+''' ) SCREAMING_SNAKE_CASE_ = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): SCREAMING_SNAKE_CASE_ = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="markuplm" def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.02 , _A=1E-12 , _A=0 , _A=0 , _A=2 , _A=256 , _A=1024 , _A=216 , _A=1001 , _A=32 , _A=50 , _A="absolute" , _A=True , _A=None , **_A , ) -> Union[str, Any]: super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout # additional properties SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE_ = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE_ = tag_pad_id SCREAMING_SNAKE_CASE_ = subs_pad_id SCREAMING_SNAKE_CASE_ = xpath_unit_hidden_size
299
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
1
def A__ ( __lowerCamelCase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) # No of vertices in graph SCREAMING_SNAKE_CASE_ = [0] * n SCREAMING_SNAKE_CASE_ = [False] * n def dfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, id_ ) SCREAMING_SNAKE_CASE_ = min(low[at], low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge SCREAMING_SNAKE_CASE_ = min(low[at], low[to] ) SCREAMING_SNAKE_CASE_ = [] for i in range(__lowerCamelCase ): if not visited[i]: dfs(__lowerCamelCase, -1, __lowerCamelCase, id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
299
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =42 # [batch_size x 3] UpperCAmelCase_ =42 # [batch_size x 3] UpperCAmelCase_ =42 # [batch_size x 3] UpperCAmelCase_ =42 # [batch_size x 3] UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def _UpperCamelCase ( self ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _UpperCamelCase ( self ) -> Dict: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _UpperCamelCase ( self ) -> List[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _UpperCamelCase ( self ) -> torch.Tensor: SCREAMING_SNAKE_CASE_ = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE_ = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ = self.shape SCREAMING_SNAKE_CASE_ = int(np.prod(_A ) ) SCREAMING_SNAKE_CASE_ = self.get_image_coords() SCREAMING_SNAKE_CASE_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE_ = self.get_camera_rays(_A ) SCREAMING_SNAKE_CASE_ = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _UpperCamelCase ( self , _A ) -> torch.Tensor: SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE_ = coords.view(_A , -1 , 2 ) SCREAMING_SNAKE_CASE_ = self.resolution() SCREAMING_SNAKE_CASE_ = self.fov() SCREAMING_SNAKE_CASE_ = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE_ = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE_ = fracs.view(_A , -1 , 2 ) SCREAMING_SNAKE_CASE_ = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE_ = directions / directions.norm(dim=-1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def _UpperCamelCase ( self , _A , _A ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for theta in np.linspace(0, 2 * np.pi, num=20 ): SCREAMING_SNAKE_CASE_ = np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE_ = -z * 4 SCREAMING_SNAKE_CASE_ = np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] ) SCREAMING_SNAKE_CASE_ = np.cross(__lowerCamelCase, __lowerCamelCase ) origins.append(__lowerCamelCase ) xs.append(__lowerCamelCase ) ys.append(__lowerCamelCase ) zs.append(__lowerCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCamelCase, axis=0 ) ).float(), x=torch.from_numpy(np.stack(__lowerCamelCase, axis=0 ) ).float(), y=torch.from_numpy(np.stack(__lowerCamelCase, axis=0 ) ).float(), z=torch.from_numpy(np.stack(__lowerCamelCase, axis=0 ) ).float(), width=__lowerCamelCase, height=__lowerCamelCase, x_fov=0.7, y_fov=0.7, shape=(1, len(__lowerCamelCase )), )
299
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } __UpperCAmelCase = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off __UpperCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =VOCAB_FILES_NAMES UpperCAmelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ =["input_ids", "attention_mask"] UpperCAmelCase_ =[] UpperCAmelCase_ =[] def __init__( self , _A , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A = None , _A=None , **_A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) SCREAMING_SNAKE_CASE_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = len(self.sp_model ) SCREAMING_SNAKE_CASE_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE_ = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCamelCase ( self ) -> Union[str, Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCamelCase ( self ) -> str: return self._src_lang @src_lang.setter def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self , _A , _A = None , _A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def _UpperCamelCase ( self , _A , _A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self , _A , _A = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self , _A , _A , _A , _A , **_A ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) SCREAMING_SNAKE_CASE_ = self.convert_tokens_to_ids(_A ) SCREAMING_SNAKE_CASE_ = tgt_lang_id return inputs def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , _A ) -> List[str]: return self.sp_model.encode(_A , out_type=_A ) def _UpperCamelCase ( self , _A ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , _A ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def _UpperCamelCase ( self , _A , _A = None ) -> Tuple[str]: if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def _UpperCamelCase ( self , _A , _A = "en_XX" , _A = None , _A = "ro_RO" , **_A , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _UpperCamelCase ( self ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code] def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code]
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
from math import pi, sqrt def A__ ( __lowerCamelCase ): if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A__ ( ): assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = 1.0 while num: __UpperCAmelCase = float(input("Gamma of: ")) print(F"""gamma({num}) = {gamma(num)}""") print("\nEnter 0 to exit...")
299
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =MvpTokenizer UpperCAmelCase_ =MvpTokenizerFast UpperCAmelCase_ =True UpperCAmelCase_ =filter_roberta_detectors def _UpperCamelCase ( self ) -> Any: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] SCREAMING_SNAKE_CASE_ = dict(zip(_A , range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE_ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def _UpperCamelCase ( self , **_A ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , **_A ) -> Any: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self ) -> Tuple: return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE_ = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) # Test that special tokens are reset @require_torch def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def _UpperCamelCase ( self ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = inputs['''input_ids'''] SCREAMING_SNAKE_CASE_ = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = '''A, <mask> AllenNLP sentence.''' SCREAMING_SNAKE_CASE_ = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
from __future__ import annotations def A__ ( __lowerCamelCase ): if not nums: raise ValueError('''List is empty''' ) return sum(__lowerCamelCase ) / len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
299
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =StableDiffusionInstructPixaPixPipeline UpperCAmelCase_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCAmelCase_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ =IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = '''french fries''' SCREAMING_SNAKE_CASE_ = sd_pipe(**_A , negative_prompt=_A ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = [inputs['''prompt''']] * 2 SCREAMING_SNAKE_CASE_ = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE_ = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) SCREAMING_SNAKE_CASE_ = image / 2 + 0.5 SCREAMING_SNAKE_CASE_ = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline(**_A ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(do_resize=_A , do_normalize=_A ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) )[0] SCREAMING_SNAKE_CASE_ = components['''vae'''] SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE_ = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE_ = pipe(**_A )[0] SCREAMING_SNAKE_CASE_ = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self , _A=0 ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) SCREAMING_SNAKE_CASE_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 0 def callback_fn(_A , _A , _A ) -> None: SCREAMING_SNAKE_CASE_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _UpperCamelCase ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = self.get_inputs() SCREAMING_SNAKE_CASE_ = pipe(**_A ) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = inputs['''image'''].resize((504, 504) ) SCREAMING_SNAKE_CASE_ = '''timbrooks/instruct-pix2pix''' SCREAMING_SNAKE_CASE_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = pipe(**_A ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
299
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCAmelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCAmelCase = [0, 25, 50] __UpperCAmelCase = [25, 50, 75] __UpperCAmelCase = fuzz.membership.trimf(X, abca) __UpperCAmelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCAmelCase = np.ones(75) __UpperCAmelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCAmelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCAmelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCAmelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
299
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = analyze_text(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE_ = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE_ = single_char_strings[ch] SCREAMING_SNAKE_CASE_ = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string SCREAMING_SNAKE_CASE_ = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE_ = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE_ = two_char_strings[sequence] SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Counter() # type: ignore SCREAMING_SNAKE_CASE_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A__ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
1
import baseaa def A__ ( __lowerCamelCase ): return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( __lowerCamelCase ): return baseaa.baadecode(__lowerCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": __UpperCAmelCase = "Hello World!" __UpperCAmelCase = baseaa_encode(test) print(encoded) __UpperCAmelCase = baseaa_decode(encoded) print(decoded)
299
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
1
from __future__ import annotations import math def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) ) def A__ ( ): SCREAMING_SNAKE_CASE_ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE_ = math.log(len(__lowerCamelCase ), 2 ) print(F'''Optimal value : {minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger("transformers.models.speecht5") __UpperCAmelCase = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __UpperCAmelCase = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __UpperCAmelCase = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __UpperCAmelCase = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __UpperCAmelCase = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __UpperCAmelCase = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __UpperCAmelCase = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __UpperCAmelCase = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __UpperCAmelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase = [] __UpperCAmelCase = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE_ = getattr(__lowerCamelCase, __lowerCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_ = getattr(__lowerCamelCase, __lowerCamelCase ).shape else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE_ = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE_ = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def A__ ( __lowerCamelCase, __lowerCamelCase ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] if task == "s2t": SCREAMING_SNAKE_CASE_ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE_ = MAPPING_S2T SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_S2T elif task == "t2s": SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = MAPPING_T2S SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_T2S elif task == "s2s": SCREAMING_SNAKE_CASE_ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE_ = MAPPING_S2S SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCamelCase, __lowerCamelCase ): logger.info(F'''{name} was ignored''' ) continue SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, hf_model.config.feat_extract_norm == '''group''', ) SCREAMING_SNAKE_CASE_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = key.split('''.*.''' ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(__lowerCamelCase )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace('''*''', __lowerCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE_ = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE_ = '''weight''' elif "running_mean" in name: SCREAMING_SNAKE_CASE_ = '''running_mean''' elif "running_var" in name: SCREAMING_SNAKE_CASE_ = '''running_var''' elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE_ = '''num_batches_tracked''' else: SCREAMING_SNAKE_CASE_ = None set_recursively(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE_ = name.split('''.''' ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if config_path is not None: SCREAMING_SNAKE_CASE_ = SpeechTaConfig.from_pretrained(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = SpeechTaConfig() if task == "s2t": SCREAMING_SNAKE_CASE_ = config.max_text_positions SCREAMING_SNAKE_CASE_ = SpeechTaForSpeechToText(__lowerCamelCase ) elif task == "t2s": SCREAMING_SNAKE_CASE_ = 18_76 SCREAMING_SNAKE_CASE_ = 6_00 SCREAMING_SNAKE_CASE_ = config.max_speech_positions SCREAMING_SNAKE_CASE_ = SpeechTaForTextToSpeech(__lowerCamelCase ) elif task == "s2s": SCREAMING_SNAKE_CASE_ = 18_76 SCREAMING_SNAKE_CASE_ = config.max_speech_positions SCREAMING_SNAKE_CASE_ = SpeechTaForSpeechToSpeech(__lowerCamelCase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: SCREAMING_SNAKE_CASE_ = SpeechTaTokenizer(__lowerCamelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken('''<mask>''', lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = SpeechTaProcessor(tokenizer=__lowerCamelCase, feature_extractor=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], __lowerCamelCase, __lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(__lowerCamelCase ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __UpperCAmelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =PegasusConfig UpperCAmelCase_ ={} UpperCAmelCase_ ="gelu" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ) -> str: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_pegasus_inputs_dict(_A , _A , _A ) return config, inputs_dict def _UpperCamelCase ( self , _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_A ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['''input_ids'''] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) SCREAMING_SNAKE_CASE_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) SCREAMING_SNAKE_CASE_ = model.decode(_A , _A ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _UpperCamelCase ( self , _A , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_A ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['''input_ids'''] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) SCREAMING_SNAKE_CASE_ = model.decode(_A , _A , decoder_attention_mask=_A ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = np.not_equal(__lowerCamelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCAmelCase_ =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCAmelCase_ =True UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = FlaxPegasusModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A ) def _UpperCamelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def encode_jitted(_A , _A=None , **_A ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = encode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) SCREAMING_SNAKE_CASE_ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_A , _A , _A ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = decode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self ) -> int: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=_A ) SCREAMING_SNAKE_CASE_ = np.ones((1, 1) ) SCREAMING_SNAKE_CASE_ = model(_A ) self.assertIsNotNone(_A ) @slow def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) SCREAMING_SNAKE_CASE_ = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) SCREAMING_SNAKE_CASE_ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] SCREAMING_SNAKE_CASE_ = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] SCREAMING_SNAKE_CASE_ = tokenizer(_A , return_tensors='''np''' , truncation=_A , max_length=512 , padding=_A ) SCREAMING_SNAKE_CASE_ = model.generate(**_A , num_beams=2 ).sequences SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_A , skip_special_tokens=_A ) assert tgt_text == decoded
299
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
1
def A__ ( __lowerCamelCase ): if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__lowerCamelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
def A__ ( __lowerCamelCase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
299
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCAmelCase = 2 class UpperCamelCase__ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments _A="<s>" , _A="<pad>" , _A="</s>" , _A="<unk>" , _A=None , ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = bos, unk, pad, eos SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = self.add_symbol(_A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A ) SCREAMING_SNAKE_CASE_ = len(self.symbols ) def __eq__( self , _A ) -> Optional[Any]: return self.indices == other.indices def __getitem__( self , _A ) -> Optional[int]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , _A ) -> str: return sym in self.indices @classmethod def _UpperCamelCase ( cls , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = cls() d.add_from_file(_A ) return d def _UpperCamelCase ( self , _A , _A=1 , _A=False ) -> int: if word in self.indices and not overwrite: SCREAMING_SNAKE_CASE_ = self.indices[word] SCREAMING_SNAKE_CASE_ = self.count[idx] + n return idx else: SCREAMING_SNAKE_CASE_ = len(self.symbols ) SCREAMING_SNAKE_CASE_ = idx self.symbols.append(_A ) self.count.append(_A ) return idx def _UpperCamelCase ( self , _A ) -> int: return 0 def _UpperCamelCase ( self , _A ) -> Any: if isinstance(_A , _A ): try: with open(_A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_A ) ) return SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = self._load_meta(_A ) for line in lines[indices_start_line:]: try: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = line.rsplit(''' ''' , 1 ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = int(_A ) SCREAMING_SNAKE_CASE_ = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_A ) ) self.add_symbol(_A , n=_A , overwrite=_A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def A__ ( __lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE_ = dict((re.sub(r'''@@$''', '''''', __lowerCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', __lowerCamelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE_ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] SCREAMING_SNAKE_CASE_ = d[k] # restore return da def A__ ( __lowerCamelCase, __lowerCamelCase ): # prep if not os.path.exists(__lowerCamelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''checkpoint.pt''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = chkpt['''cfg''']['''model'''] # dicts SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''dict.txt''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = Dictionary.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, VOCAB_FILES_NAMES['''vocab_file'''] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''bpecodes''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(__lowerCamelCase, __lowerCamelCase ) # model config SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''config.json''' ) SCREAMING_SNAKE_CASE_ = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(__lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase, ensure_ascii=__lowerCamelCase, indent=__lowerCamelCase ) ) # model SCREAMING_SNAKE_CASE_ = chkpt['''model'''] # remove unneeded keys SCREAMING_SNAKE_CASE_ = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): SCREAMING_SNAKE_CASE_ = model_state_dict.pop(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = model_state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BioGptConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, __lowerCamelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCamelCase, __lowerCamelCase ) print('''Conversion is done!''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
def A__ ( __lowerCamelCase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): """simple docstring""" UpperCAmelCase_ =0 UpperCAmelCase_ =1 @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="generated" def __init__( self , *_A , **_A ) -> Union[str, Any]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _UpperCamelCase ( self , _A=None , _A=None , _A=None , _A=None , _A=None , _A=None , **_A , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = {} if truncation is not None: SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = generate_kwargs SCREAMING_SNAKE_CASE_ = {} if return_tensors is not None and return_type is None: SCREAMING_SNAKE_CASE_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: SCREAMING_SNAKE_CASE_ = return_type if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE_ = clean_up_tokenization_spaces if stop_sequence is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) SCREAMING_SNAKE_CASE_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCamelCase ( self , _A , _A , _A ) -> int: return True def _UpperCamelCase ( self , *_A , _A ) -> str: SCREAMING_SNAKE_CASE_ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) SCREAMING_SNAKE_CASE_ = ([prefix + arg for arg in args[0]],) SCREAMING_SNAKE_CASE_ = True elif isinstance(args[0] , _A ): SCREAMING_SNAKE_CASE_ = (prefix + args[0],) SCREAMING_SNAKE_CASE_ = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *_A , **_A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def _UpperCamelCase ( self , _A , _A=TruncationStrategy.DO_NOT_TRUNCATE , **_A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def _UpperCamelCase ( self , _A , **_A ) -> List[str]: if self.framework == "pt": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_inputs['''input_ids'''].shape elif self.framework == "tf": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tf.shape(model_inputs['''input_ids'''] ).numpy() SCREAMING_SNAKE_CASE_ = generate_kwargs.get('''min_length''' , self.model.config.min_length ) SCREAMING_SNAKE_CASE_ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) SCREAMING_SNAKE_CASE_ = self.model.generate(**_A , **_A ) SCREAMING_SNAKE_CASE_ = output_ids.shape[0] if self.framework == "pt": SCREAMING_SNAKE_CASE_ = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE_ = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _UpperCamelCase ( self , _A , _A=ReturnType.TEXT , _A=False ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: SCREAMING_SNAKE_CASE_ = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: SCREAMING_SNAKE_CASE_ = { F'''{self.return_name}_text''': self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summary" def __call__( self , *_A , **_A ) -> Any: return super().__call__(*_A , **_A ) def _UpperCamelCase ( self , _A , _A , _A ) -> bool: if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" def _UpperCamelCase ( self , _A , _A , _A ) -> int: if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def _UpperCamelCase ( self , *_A , _A=TruncationStrategy.DO_NOT_TRUNCATE , _A=None , _A=None ) -> List[str]: if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def _UpperCamelCase ( self , _A=None , _A=None , **_A ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super()._sanitize_parameters(**_A ) if src_lang is not None: SCREAMING_SNAKE_CASE_ = src_lang if tgt_lang is not None: SCREAMING_SNAKE_CASE_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. SCREAMING_SNAKE_CASE_ = kwargs.get('''task''' , self.task ) SCREAMING_SNAKE_CASE_ = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY SCREAMING_SNAKE_CASE_ = items[1] SCREAMING_SNAKE_CASE_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *_A , **_A ) -> Optional[int]: return super().__call__(*_A , **_A )
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A=sys.maxsize ) -> str: SCREAMING_SNAKE_CASE_ = '''bilinear''' SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = short_edge_length def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [] for img in imgs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE_ = size * 1.0 / min(_A , _A ) if h < w: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = size, scale * w else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = scale * h, size if max(_A , _A ) > self.max_size: SCREAMING_SNAKE_CASE_ = self.max_size * 1.0 / max(_A , _A ) SCREAMING_SNAKE_CASE_ = newh * scale SCREAMING_SNAKE_CASE_ = neww * scale SCREAMING_SNAKE_CASE_ = int(neww + 0.5 ) SCREAMING_SNAKE_CASE_ = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE_ = Image.fromarray(_A ) SCREAMING_SNAKE_CASE_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE_ = np.asarray(_A ) else: SCREAMING_SNAKE_CASE_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE_ = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A ).squeeze(0 ) img_augs.append(_A ) return img_augs class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> int: SCREAMING_SNAKE_CASE_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE_ = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE_ = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE_ = cfg.PAD_VALUE SCREAMING_SNAKE_CASE_ = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE_ = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) SCREAMING_SNAKE_CASE_ = lambda _A : (x - self.pixel_mean) / self.pixel_std def _UpperCamelCase ( self , _A ) -> str: SCREAMING_SNAKE_CASE_ = tuple(max(_A ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE_ = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE_ = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A ) ] return torch.stack(_A ), torch.tensor(_A ) def __call__( self , _A , _A=False ) -> Optional[Any]: with torch.no_grad(): if not isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [images] if single_image: assert len(_A ) == 1 for i in range(len(_A ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_A , images.pop(_A ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge SCREAMING_SNAKE_CASE_ = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE_ = self.aug(_A ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE_ = [self.normalizer(_A ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.pad(_A ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE_ = torch.true_divide(_A , _A ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def A__ ( __lowerCamelCase, __lowerCamelCase ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def A__ ( __lowerCamelCase, __lowerCamelCase ): assert torch.isfinite(__lowerCamelCase ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = box_size tensor[:, 0].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 1].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 2].clamp_(min=0, max=__lowerCamelCase ) tensor[:, 3].clamp_(min=0, max=__lowerCamelCase )
299
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
299
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = 0 @slow def _UpperCamelCase ( self ) -> Union[str, Any]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _UpperCamelCase ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def _UpperCamelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> int: with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def _UpperCamelCase ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def _UpperCamelCase ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def _UpperCamelCase ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE_ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def _UpperCamelCase ( self ) -> Dict: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> str: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE_ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE_ = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def _UpperCamelCase ( self ) -> Tuple: try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) SCREAMING_SNAKE_CASE_ = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _UpperCamelCase ( self ) -> List[Any]: try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def _UpperCamelCase ( self ) -> List[str]: class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =False class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =NewTokenizer UpperCAmelCase_ =False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _UpperCamelCase ( self ) -> List[Any]: with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''bert-base''' ) def _UpperCamelCase ( self ) -> Tuple: with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def _UpperCamelCase ( self ) -> Optional[int]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] __UpperCAmelCase = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location='''cpu''' ) return sd def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=rename_keys_prefix ): SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE_ = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE_ = new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE_ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE_ = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase ): assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE_ = '''pretraining''' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 5_12} SCREAMING_SNAKE_CASE_ = '''multichoice''' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 20_48} SCREAMING_SNAKE_CASE_ = '''vqa_advanced''' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} SCREAMING_SNAKE_CASE_ = '''vqa''' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } SCREAMING_SNAKE_CASE_ = '''nlvr''' SCREAMING_SNAKE_CASE_ = VisualBertConfig(**__lowerCamelCase ) # Load State Dict SCREAMING_SNAKE_CASE_ = load_state_dict(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = get_new_dict(__lowerCamelCase, __lowerCamelCase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE_ = VisualBertForPreTraining(__lowerCamelCase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE_ = VisualBertForQuestionAnswering(__lowerCamelCase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE_ = VisualBertForVisualReasoning(__lowerCamelCase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE_ = VisualBertForMultipleChoice(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
299
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
1
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =MobileBertTokenizer UpperCAmelCase_ =MobileBertTokenizerFast UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =filter_non_english UpperCAmelCase_ ="google/mobilebert-uncased" def _UpperCamelCase ( self ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = '''unwanted, running''' return input_text, output_text def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def _UpperCamelCase ( self ) -> str: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing SCREAMING_SNAKE_CASE_ = self.get_tokenizer(do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer(do_lower_case=_A ) SCREAMING_SNAKE_CASE_ = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE_ = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(_A ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _UpperCamelCase ( self ) -> Any: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _UpperCamelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE_ = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) SCREAMING_SNAKE_CASE_ = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False SCREAMING_SNAKE_CASE_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = ['''的''', '''人''', '''有'''] SCREAMING_SNAKE_CASE_ = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = tokenizer_r.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_r.convert_ids_to_tokens(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE_ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
299
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
1
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_A ).to(_A ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE_ = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids SCREAMING_SNAKE_CASE_ = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss SCREAMING_SNAKE_CASE_ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
299
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =TextToVideoSDPipeline UpperCAmelCase_ =TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCAmelCase_ =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> Optional[int]: if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = TextToVideoSDPipeline(**_A ) SCREAMING_SNAKE_CASE_ = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = '''np''' SCREAMING_SNAKE_CASE_ = sd_pipe(**_A ).frames SCREAMING_SNAKE_CASE_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Optional[int]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCamelCase ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCamelCase ( self ) -> Tuple: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCamelCase ( self ) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: return super().test_progress_bar() @slow @skip_mps class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) SCREAMING_SNAKE_CASE_ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) SCREAMING_SNAKE_CASE_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ = pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE_ = '''Spiderman is surfing''' SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe(_A , generator=_A , num_inference_steps=25 , output_type='''pt''' ).frames SCREAMING_SNAKE_CASE_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) SCREAMING_SNAKE_CASE_ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) SCREAMING_SNAKE_CASE_ = pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE_ = '''Spiderman is surfing''' SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe(_A , generator=_A , num_inference_steps=2 , output_type='''pt''' ).frames SCREAMING_SNAKE_CASE_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
299
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") __UpperCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase_ =field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase_ =field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) UpperCAmelCase_ =field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE_ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE_ = self.validation_dir SCREAMING_SNAKE_CASE_ = data_files if data_files else None @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__SCREAMING_SNAKE_CASE )} , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) UpperCAmelCase_ =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase_ =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) UpperCAmelCase_ =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Stride to use for the encoder."} , ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A=192 , _A=32 , _A=4 , _A=0.6 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = mask_patch_size SCREAMING_SNAKE_CASE_ = model_patch_size SCREAMING_SNAKE_CASE_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) SCREAMING_SNAKE_CASE_ = self.input_size // self.mask_patch_size SCREAMING_SNAKE_CASE_ = self.mask_patch_size // self.model_patch_size SCREAMING_SNAKE_CASE_ = self.rand_size**2 SCREAMING_SNAKE_CASE_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = np.random.permutation(self.token_count )[: self.mask_count] SCREAMING_SNAKE_CASE_ = np.zeros(self.token_count , dtype=_A ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = mask.reshape((self.rand_size, self.rand_size) ) SCREAMING_SNAKE_CASE_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.stack([example['''pixel_values'''] for example in examples] ) SCREAMING_SNAKE_CASE_ = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''', __lowerCamelCase, __lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. SCREAMING_SNAKE_CASE_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __lowerCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ = ds['''train'''].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ = split['''train'''] SCREAMING_SNAKE_CASE_ = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.config_name_or_path, **__lowerCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowerCamelCase, '''decoder_type''' ): SCREAMING_SNAKE_CASE_ = '''simmim''' # adapt config SCREAMING_SNAKE_CASE_ = model_args.image_size if model_args.image_size is not None else config.image_size SCREAMING_SNAKE_CASE_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size SCREAMING_SNAKE_CASE_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **__lowerCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } SCREAMING_SNAKE_CASE_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('''Training new model from scratch''' ) SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_config(__lowerCamelCase ) if training_args.do_train: SCREAMING_SNAKE_CASE_ = ds['''train'''].column_names else: SCREAMING_SNAKE_CASE_ = ds['''validation'''].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE_ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE_ = '''image''' elif "img" in column_names: SCREAMING_SNAKE_CASE_ = '''img''' else: SCREAMING_SNAKE_CASE_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py SCREAMING_SNAKE_CASE_ = Compose( [ Lambda(lambda __lowerCamelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator SCREAMING_SNAKE_CASE_ = MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] SCREAMING_SNAKE_CASE_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Initialize our trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=ds['''train'''] if training_args.do_train else None, eval_dataset=ds['''validation'''] if training_args.do_eval else None, tokenizer=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ = last_checkpoint SCREAMING_SNAKE_CASE_ = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ = trainer.evaluate() trainer.log_metrics('''eval''', __lowerCamelCase ) trainer.save_metrics('''eval''', __lowerCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) if __name__ == "__main__": main()
299
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =(DDPMParallelScheduler,) def _UpperCamelCase ( self , **_A ) -> Dict: SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_A ) return config def _UpperCamelCase ( self ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def _UpperCamelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def _UpperCamelCase ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def _UpperCamelCase ( self ) -> List[str]: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def _UpperCamelCase ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def _UpperCamelCase ( self ) -> Tuple: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = len(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ = samplea.shape[0] SCREAMING_SNAKE_CASE_ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.arange(_A )[0:3, None].repeat(1 , _A ) SCREAMING_SNAKE_CASE_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_A ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = len(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(_A , _A ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step(_A , _A , _A , generator=_A ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_A ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = len(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(_A , _A ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step(_A , _A , _A , generator=_A ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_A ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: SCREAMING_SNAKE_CASE_ = -1 else: SCREAMING_SNAKE_CASE_ = timesteps[i + 1] SCREAMING_SNAKE_CASE_ = scheduler.previous_timestep(_A ) SCREAMING_SNAKE_CASE_ = prev_t.item() self.assertEqual(_A , _A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE_ = len(_A ) with self.assertRaises(_A , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_A ) SCREAMING_SNAKE_CASE_ = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_A )
299
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def A__ ( __lowerCamelCase, __lowerCamelCase = 16, __lowerCamelCase = "bert-base-cased" ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=__lowerCamelCase, max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __lowerCamelCase, batched=__lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase, padding='''max_length''', max_length=1_28, return_tensors='''pt''' ) return tokenizer.pad(__lowerCamelCase, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['''train'''], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets['''validation'''], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): model.eval() SCREAMING_SNAKE_CASE_ = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase, references=__lowerCamelCase, ) SCREAMING_SNAKE_CASE_ = metric.compute() return eval_metric["accuracy"] def A__ ( __lowerCamelCase, __lowerCamelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config['''lr'''] SCREAMING_SNAKE_CASE_ = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE_ = int(config['''seed'''] ) SCREAMING_SNAKE_CASE_ = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE_ = args.model_name_or_path set_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_dataloaders(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase, return_dict=__lowerCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE_ = optimizer_cls(params=model.parameters(), lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = (len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase, num_warmup_steps=0, num_training_steps=__lowerCamelCase, ) else: SCREAMING_SNAKE_CASE_ = DummyScheduler(__lowerCamelCase, total_num_steps=__lowerCamelCase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE_ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = evaluate.load('''glue''', '''mrpc''' ) SCREAMING_SNAKE_CASE_ = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE_ = args.resume_from_checkpoint.split('''epoch_''' )[1] SCREAMING_SNAKE_CASE_ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) + 1 SCREAMING_SNAKE_CASE_ = evaluation_loop(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) accelerator.print('''resumed checkpoint performance:''', __lowerCamelCase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir, F'''state_{starting_epoch-1}.json''' ), '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(__lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE_ = {} for epoch in range(__lowerCamelCase, __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.loss SCREAMING_SNAKE_CASE_ = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE_ = F'''epoch_{epoch}''' SCREAMING_SNAKE_CASE_ = os.path.join(args.output_dir, __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = evaluation_loop(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = accuracy SCREAMING_SNAKE_CASE_ = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE_ = optimizer.param_groups[0]['''lr'''] SCREAMING_SNAKE_CASE_ = epoch SCREAMING_SNAKE_CASE_ = overall_step accelerator.print(F'''epoch {epoch}:''', __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F'''state_{epoch}.json''' ), '''w''' ) as f: json.dump(__lowerCamelCase, __lowerCamelCase ) def A__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''', type=__lowerCamelCase, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=__lowerCamelCase, ) parser.add_argument( '''--output_dir''', type=__lowerCamelCase, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', ) parser.add_argument( '''--resume_from_checkpoint''', type=__lowerCamelCase, default=__lowerCamelCase, help='''If the training should continue from a checkpoint folder.''', ) parser.add_argument( '''--partial_train_epoch''', type=__lowerCamelCase, default=__lowerCamelCase, help='''If passed, the training will stop after this number of epochs.''', ) parser.add_argument( '''--num_epochs''', type=__lowerCamelCase, default=2, help='''Number of train epochs.''', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": main()
299
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
299
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCAmelCase = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE_ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_A ) , torch_builtin(_A ) ) ) self.assertFalse(torch.allclose(gelu_python(_A ) , gelu_new(_A ) ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE_ = get_activation('''gelu''' ) SCREAMING_SNAKE_CASE_ = get_activation('''gelu_10''' ) SCREAMING_SNAKE_CASE_ = torch_builtin(_A ) SCREAMING_SNAKE_CASE_ = geluaa(_A ) SCREAMING_SNAKE_CASE_ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_A ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _UpperCamelCase ( self ) -> int: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_A ): get_activation('''bogus''' ) with self.assertRaises(_A ): get_activation(_A ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = get_activation('''gelu''' ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_A ): SCREAMING_SNAKE_CASE_ = acta.a
299
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __UpperCAmelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __UpperCAmelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def A__ ( __lowerCamelCase, __lowerCamelCase ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def A__ ( __lowerCamelCase, __lowerCamelCase ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase, __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def A__ ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''', number=1_00_00, globals=globals(), ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''', number=1_00_00, globals=globals(), ) ) benchmark()
299
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
1
import requests def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''Content-Type''': '''application/json'''} SCREAMING_SNAKE_CASE_ = requests.post(__lowerCamelCase, json={'''text''': message_body}, headers=__lowerCamelCase ) if response.status_code != 2_00: SCREAMING_SNAKE_CASE_ = ( '''Request to slack returned an error ''' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowerCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
299
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = n SCREAMING_SNAKE_CASE_ = [None] * self.n SCREAMING_SNAKE_CASE_ = 0 # index of the first element SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 def __len__( self ) -> int: return self.size def _UpperCamelCase ( self ) -> bool: return self.size == 0 def _UpperCamelCase ( self ) -> Optional[int]: return False if self.is_empty() else self.array[self.front] def _UpperCamelCase ( self , _A ) -> Optional[Any]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) SCREAMING_SNAKE_CASE_ = data SCREAMING_SNAKE_CASE_ = (self.rear + 1) % self.n self.size += 1 return self def _UpperCamelCase ( self ) -> int: if self.size == 0: raise Exception('''UNDERFLOW''' ) SCREAMING_SNAKE_CASE_ = self.array[self.front] SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = (self.front + 1) % self.n self.size -= 1 return temp
299
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =None UpperCAmelCase_ =None @property def _UpperCamelCase ( self ) -> str: return self.feat_extract_tester.prepare_feat_extract_dict() def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_A , '''feature_size''' ) ) self.assertTrue(hasattr(_A , '''sampling_rate''' ) ) self.assertTrue(hasattr(_A , '''padding_value''' ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _UpperCamelCase ( self , _A=False ) -> Tuple: def _inputs_have_equal_length(_A ): SCREAMING_SNAKE_CASE_ = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A , _A ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(all(len(_A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) SCREAMING_SNAKE_CASE_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def _UpperCamelCase ( self , _A=False ) -> Tuple: def _inputs_have_equal_length(_A ): SCREAMING_SNAKE_CASE_ = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A , _A ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to middle SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A , return_tensors='''np''' , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' , truncation=_A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE_ = 12 SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , truncation=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , ) SCREAMING_SNAKE_CASE_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) def _UpperCamelCase ( self ) -> List[str]: self._check_padding(numpify=_A ) def _UpperCamelCase ( self ) -> int: self._check_padding(numpify=_A ) def _UpperCamelCase ( self ) -> Dict: self._check_truncation(numpify=_A ) def _UpperCamelCase ( self ) -> Any: self._check_truncation(numpify=_A ) @require_torch def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_A ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = [len(_A ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_A ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE_ = [len(_A ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_A ) SCREAMING_SNAKE_CASE_ = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
299
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
1
def A__ ( __lowerCamelCase, __lowerCamelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE_ = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ = str(bin(__lowerCamelCase ) )[2:] SCREAMING_SNAKE_CASE_ = max(len(__lowerCamelCase ), len(__lowerCamelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ), b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
299
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
1
def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE_ = _modexpt(__lowerCamelCase, exponent // 2, __lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCamelCase, exponent - 1, __lowerCamelCase )) % modulo_value def A__ ( __lowerCamelCase = 17_77, __lowerCamelCase = 18_55, __lowerCamelCase = 8 ): SCREAMING_SNAKE_CASE_ = base for _ in range(1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = _modexpt(__lowerCamelCase, __lowerCamelCase, 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
299
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 10_24 SCREAMING_SNAKE_CASE_ = 40_96 SCREAMING_SNAKE_CASE_ = 24 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = [5, 11, 17, 23] SCREAMING_SNAKE_CASE_ = [2_56, 5_12, 10_24, 10_24] SCREAMING_SNAKE_CASE_ = (1, 3_84, 3_84) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 1_50 SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(cached_download(hf_hub_url(__lowerCamelCase, __lowerCamelCase, repo_type='''dataset''' ) ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = [1, 1_50, 4_80, 4_80] return config, expected_shape def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def A__ ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('''patch_embed''', '''patch_embeddings''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE_ = name.replace('''proj''', '''projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: SCREAMING_SNAKE_CASE_ = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: SCREAMING_SNAKE_CASE_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE_ = name.replace(F'''refinenet{layer_idx}''', F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''bn''', '''batch_norm''' ) if "head" in name: SCREAMING_SNAKE_CASE_ = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: SCREAMING_SNAKE_CASE_ = name.replace('''auxlayer''', '''auxiliary_head.head''' ) return name def A__ ( __lowerCamelCase, __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def A__ ( ): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__lowerCamelCase, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase, __lowerCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = DPTForSemanticSegmentation(__lowerCamelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE_ = 4_80 if '''ade''' in checkpoint_url else 3_84 SCREAMING_SNAKE_CASE_ = DPTImageProcessor(size=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(__lowerCamelCase, return_tensors='''pt''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__lowerCamelCase ).logits if '''ade''' in checkpoint_url else model(**__lowerCamelCase ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE_ = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3], __lowerCamelCase, atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], __lowerCamelCase ) ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=__lowerCamelCase, ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCamelCase, __lowerCamelCase ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=__lowerCamelCase, ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) __UpperCAmelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
299
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
1
from collections.abc import Iterable from typing import Any class UpperCamelCase__ : """simple docstring""" def __init__( self , _A = None ) -> Dict: SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A = None ) -> Tuple: SCREAMING_SNAKE_CASE_ = root def __str__( self ) -> str: return str(self.root ) def _UpperCamelCase ( self , _A , _A ) -> None: if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE_ = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children SCREAMING_SNAKE_CASE_ = new_children else: SCREAMING_SNAKE_CASE_ = new_children else: SCREAMING_SNAKE_CASE_ = new_children def _UpperCamelCase ( self , _A ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def _UpperCamelCase ( self ) -> bool: return self.root is None def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = Node(_A ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE_ = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE_ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE_ = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE_ = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE_ = new_node break else: SCREAMING_SNAKE_CASE_ = parent_node.right SCREAMING_SNAKE_CASE_ = parent_node def _UpperCamelCase ( self , *_A ) -> None: for value in values: self.__insert(_A ) def _UpperCamelCase ( self , _A ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: SCREAMING_SNAKE_CASE_ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE_ = node.left if value < node.value else node.right return node def _UpperCamelCase ( self , _A = None ) -> Node | None: if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE_ = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE_ = node.right return node def _UpperCamelCase ( self , _A = None ) -> Node | None: if node is None: SCREAMING_SNAKE_CASE_ = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE_ = self.root while node.left is not None: SCREAMING_SNAKE_CASE_ = node.left return node def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: SCREAMING_SNAKE_CASE_ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE_ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _UpperCamelCase ( self , _A ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _UpperCamelCase ( self , _A=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _UpperCamelCase ( self , _A , _A ) -> None: if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] if curr_node is not None: SCREAMING_SNAKE_CASE_ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def A__ ( ): SCREAMING_SNAKE_CASE_ = (8, 3, 6, 1, 10, 14, 13, 4, 7) SCREAMING_SNAKE_CASE_ = BinarySearchTree() for i in testlist: t.insert(__lowerCamelCase ) # Prints all the elements of the list in order traversal print(__lowerCamelCase ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''', t.get_max().value ) # type: ignore print('''Min Value: ''', t.get_min().value ) # type: ignore for i in testlist: t.remove(__lowerCamelCase ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def A__ ( __lowerCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('''env''' ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=__lowerCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=__lowerCamelCase ) return parser def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.__version__ SCREAMING_SNAKE_CASE_ = torch.cuda.is_available() SCREAMING_SNAKE_CASE_ = is_xpu_available() SCREAMING_SNAKE_CASE_ = is_npu_available() SCREAMING_SNAKE_CASE_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = load_config_from_file(args.config_file ).to_dict() SCREAMING_SNAKE_CASE_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(__lowerCamelCase ), '''PyTorch NPU available''': str(__lowerCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) SCREAMING_SNAKE_CASE_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else F'''\t{accelerate_config}''' ) print(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = accelerate_config return info def A__ ( ): SCREAMING_SNAKE_CASE_ = env_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() env_command(__lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
299
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
1
__UpperCAmelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
from collections.abc import Sequence from queue import Queue class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A , _A , _A=None , _A=None ) -> int: SCREAMING_SNAKE_CASE_ = start SCREAMING_SNAKE_CASE_ = end SCREAMING_SNAKE_CASE_ = val SCREAMING_SNAKE_CASE_ = (start + end) // 2 SCREAMING_SNAKE_CASE_ = left SCREAMING_SNAKE_CASE_ = right def __repr__( self ) -> Optional[int]: return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> str: SCREAMING_SNAKE_CASE_ = collection SCREAMING_SNAKE_CASE_ = function if self.collection: SCREAMING_SNAKE_CASE_ = self._build_tree(0 , len(_A ) - 1 ) def _UpperCamelCase ( self , _A , _A ) -> List[Any]: self._update_tree(self.root , _A , _A ) def _UpperCamelCase ( self , _A , _A ) -> Any: return self._query_range(self.root , _A , _A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: if start == end: return SegmentTreeNode(_A , _A , self.collection[start] ) SCREAMING_SNAKE_CASE_ = (start + end) // 2 SCREAMING_SNAKE_CASE_ = self._build_tree(_A , _A ) SCREAMING_SNAKE_CASE_ = self._build_tree(mid + 1 , _A ) return SegmentTreeNode(_A , _A , self.fn(left.val , right.val ) , _A , _A ) def _UpperCamelCase ( self , _A , _A , _A ) -> List[str]: if node.start == i and node.end == i: SCREAMING_SNAKE_CASE_ = val return if i <= node.mid: self._update_tree(node.left , _A , _A ) else: self._update_tree(node.right , _A , _A ) SCREAMING_SNAKE_CASE_ = self.fn(node.left.val , node.right.val ) def _UpperCamelCase ( self , _A , _A , _A ) -> List[str]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _A , _A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _A , node.mid ) , self._query_range(node.right , node.mid + 1 , _A ) , ) else: # range in right child tree return self._query_range(node.right , _A , _A ) def _UpperCamelCase ( self ) -> List[Any]: if self.root is not None: SCREAMING_SNAKE_CASE_ = Queue() queue.put(self.root ) while not queue.empty(): SCREAMING_SNAKE_CASE_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) __UpperCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
299
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
1
from __future__ import annotations __UpperCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1, __lowerCamelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__lowerCamelCase ) return result def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__lowerCamelCase ) return result def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCAmelCase = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
299
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase_ : '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = '''gelu''' def __init__( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=20 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=1 , __UpperCAmelCase : str=0 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) ->Dict: """simple docstring""" a = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def _a ( a :int , a :List[str] , a :Optional[int] , a :str=None , a :Optional[Any]=None , a :List[str]=None , a :Tuple=None , a :List[Any]=None , ) -> Optional[int]: if attention_mask is None: a = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = TFBlenderbotSmallModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __snake_case = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.tokenizer(self.src_text , return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(snake_case_ , 2 ) - pow(snake_case_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(snake_case_ , 2 ) - pow(snake_case_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(snake_case_ , 2 ) + pow(snake_case_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
1
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ (self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = self.dummy_uncond_unet lowercase__ = ScoreSdeVeScheduler() lowercase__ = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase ).images lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase , return_dict=UpperCamelCase )[ 0 ] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = '''google/ncsnpp-church-256''' lowercase__ = UNetaDModel.from_pretrained(UpperCamelCase ) lowercase__ = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase ) lowercase__ = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=UpperCamelCase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
2
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" A : Any = size if size is not None else {'''height''': 20, '''width''': 20} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : str = image_size A : List[Any] = min_resolution A : Optional[int] = max_resolution A : Union[str, Any] = size A : Tuple = do_normalize A : Tuple = do_convert_rgb A : Union[str, Any] = [512, 1024, 2048, 4096] A : Optional[int] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __lowerCAmelCase ( self ) -> str: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : str = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' A : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[int] = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.image_processor_tester.prepare_dummy_image() A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) A : int = 2048 A : Tuple = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 A : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches A : Any = '''Hello''' A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) A : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : str = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Dict = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = PixaStructImageProcessingTester(self , num_channels=4 ) A : Optional[Any] = 3 @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : int = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) set_seed(770) __snake_case ={ """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __snake_case ={ """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __snake_case =os.path.dirname(os.path.abspath(__file__)) __snake_case =os.path.join(os.path.expanduser("""~"""), """.cache""") __snake_case =os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ): lowerCAmelCase = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def a_ ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]="text" ): if model_type == "text": lowerCAmelCase = BarkSemanticModel lowerCAmelCase = BarkSemanticConfig lowerCAmelCase = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase = BarkCoarseModel lowerCAmelCase = BarkCoarseConfig lowerCAmelCase = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase = BarkFineModel lowerCAmelCase = BarkFineConfig lowerCAmelCase = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase = f'''{model_type}_small''' if use_small else model_type lowerCAmelCase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack lowerCAmelCase = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase = model_args['vocab_size'] lowerCAmelCase = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase = model_args.pop('n_head' ) lowerCAmelCase = model_args.pop('n_embd' ) lowerCAmelCase = model_args.pop('n_layer' ) lowerCAmelCase = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase = ModelClass(config=lowerCamelCase ) lowerCAmelCase = GenerationConfigClass() lowerCAmelCase = model_generation_config lowerCAmelCase = checkpoint['model'] # fixup checkpoint lowerCAmelCase = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) lowerCAmelCase = state_dict.pop(lowerCamelCase ) lowerCAmelCase = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCamelCase ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) lowerCAmelCase = model.num_parameters(exclude_embeddings=lowerCamelCase ) lowerCAmelCase = checkpoint['best_val_loss'].item() logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[str]=False , lowerCamelCase : Union[str, Any]="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase = 'cpu' # do conversion on cpu lowerCAmelCase = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) lowerCAmelCase = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model lowerCAmelCase = _bark_load_model(lowerCamelCase , 'cpu' , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": lowerCAmelCase = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase = 5 lowerCAmelCase = 10 if model_type in ["text", "coarse"]: lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase = bark_model(lowerCamelCase )[0] lowerCAmelCase = model(lowerCamelCase ) # take last logits lowerCAmelCase = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase = 3 lowerCAmelCase = 8 lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = bark_model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def a_ ( lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str , ): lowerCAmelCase = os.path.join(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase = BarkSemanticModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = BarkCoarseModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = BarkFineModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase = BarkModel(lowerCamelCase ) lowerCAmelCase = semantic lowerCAmelCase = coarseAcoustic lowerCAmelCase = fineAcoustic lowerCAmelCase = codec lowerCAmelCase = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __snake_case =parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
4
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="Wav2Vec2FeatureExtractor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A , _A ) -> Dict: super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False @classmethod def _UpperCamelCase ( cls , _A , **_A ) -> List[str]: try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''raw_speech''' ) else: SCREAMING_SNAKE_CASE_ = kwargs.pop('''audio''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''sampling_rate''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''input_features''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE_ = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE_ = labels['''input_ids'''] return input_features def _UpperCamelCase ( self , *_A , **_A ) -> Any: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> Optional[Any]: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.feature_extractor SCREAMING_SNAKE_CASE_ = False
299
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase__ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCamelCase__ ( unittest.TestCase): @classmethod def __A (cls ) -> List[str]: _lowercase =TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def __A (cls ) -> Dict: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __A (self ) -> Dict: _lowercase =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='''test-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def __A (self ) -> Optional[Any]: _lowercase =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def __A (self ) -> str: CustomConfig.register_for_auto_class() _lowercase =CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) _lowercase =AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: _lowercase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowercase =c.n_embd + 1 # int _lowercase =c.resid_pdrop + 1.0 # float _lowercase =not c.scale_attn_weights # bool _lowercase =c.summary_type + '''foo''' # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(UpperCAmelCase , c.summary_type , '''mismatch for key: summary_type''' ) def __A (self ) -> Union[str, Any]: _lowercase =PretrainedConfig() _lowercase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) _lowercase =[key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f" {', '.join(UpperCAmelCase )}." ) def __A (self ) -> Optional[int]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(UpperCAmelCase ) def __A (self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowercase =mock.Mock() _lowercase =5_0_0 _lowercase ={} _lowercase =HTTPError _lowercase ={} # Download this model to make sure it's in the cache. _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __A (self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 _lowercase =BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __A (self ) -> Any: _lowercase =AutoConfig.from_pretrained('''bert-base-cased''' ) _lowercase =['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) _lowercase =2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowercase =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowercase =['''config.42.0.0.json'''] _lowercase =7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , '''config.4.0.0.json''' ) , os.path.join(UpperCAmelCase , '''config.42.0.0.json''' ) ) _lowercase =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def __A (self ) -> List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowercase ='''hf-internal-testing/test-two-configs''' import transformers as new_transformers _lowercase ='''v4.0.0''' _lowercase , _lowercase =new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowercase ='''v3.0.0''' _lowercase =old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
5
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __UpperCAmelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = test_results.split(''' ''' ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_ = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''', __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): SCREAMING_SNAKE_CASE_ = line SCREAMING_SNAKE_CASE_ = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = title SCREAMING_SNAKE_CASE_ = doc_test_results['''time_spent'''].split(''',''' )[0] SCREAMING_SNAKE_CASE_ = doc_test_results['''success'''] SCREAMING_SNAKE_CASE_ = doc_test_results['''failures'''] SCREAMING_SNAKE_CASE_ = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_ = doc_test_results @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self._time_spent] SCREAMING_SNAKE_CASE_ = 0 for time in time_spent: SCREAMING_SNAKE_CASE_ = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_A )}h{int(_A )}m{int(_A )}s''' @property def _UpperCamelCase ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = 40 SCREAMING_SNAKE_CASE_ = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A )} SCREAMING_SNAKE_CASE_ = '''''' for category, failures in category_failures.items(): if len(_A ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_A ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_A ) @staticmethod def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_A )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def _UpperCamelCase ( self ) -> Optional[int]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) SCREAMING_SNAKE_CASE_ = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' SCREAMING_SNAKE_CASE_ = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def _UpperCamelCase ( self , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = '''''' for key, value in failures.items(): SCREAMING_SNAKE_CASE_ = value[:200] + ''' [Truncated]''' if len(_A ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' SCREAMING_SNAKE_CASE_ = job_name SCREAMING_SNAKE_CASE_ = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: SCREAMING_SNAKE_CASE_ = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCamelCase ( self ) -> int: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) SCREAMING_SNAKE_CASE_ = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) SCREAMING_SNAKE_CASE_ = sorted(self.doc_test_results.items() , key=lambda _A : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): SCREAMING_SNAKE_CASE_ = F'''*Num failures* :{len(job_result["failed"] )} \n''' SCREAMING_SNAKE_CASE_ = job_result['''failures'''] SCREAMING_SNAKE_CASE_ = self.get_reply_blocks(_A , _A , _A , text=_A ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def A__ ( ): SCREAMING_SNAKE_CASE_ = os.environ['''GITHUB_RUN_ID'''] SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__lowerCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) SCREAMING_SNAKE_CASE_ = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''', __lowerCamelCase ) return {} def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} if os.path.exists(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = os.listdir(__lowerCamelCase ) for file in files: try: with open(os.path.join(__lowerCamelCase, __lowerCamelCase ), encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCamelCase, __lowerCamelCase )}.''' ) from e return _artifact def A__ ( ): class UpperCamelCase__ : """simple docstring""" def __init__( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = [] def __str__( self ) -> int: return self.name def _UpperCamelCase ( self , _A ) -> Tuple: self.paths.append({'''name''': self.name, '''path''': path} ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = filter(os.path.isdir, os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_ = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_ = Artifact(__lowerCamelCase ) _available_artifacts[artifact_name].add_path(__lowerCamelCase ) return _available_artifacts if __name__ == "__main__": __UpperCAmelCase = get_job_links() __UpperCAmelCase = retrieve_available_artifacts() __UpperCAmelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __UpperCAmelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __UpperCAmelCase = github_actions_job_links.get("run_doctests") __UpperCAmelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __UpperCAmelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = handle_test_results(artifact["stats"]) __UpperCAmelCase = failed __UpperCAmelCase = success __UpperCAmelCase = time_spent[1:-1] + ", " __UpperCAmelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __UpperCAmelCase = line.replace("FAILED ", "") __UpperCAmelCase = line.split()[0].replace("\n", "") if "::" in line: __UpperCAmelCase , __UpperCAmelCase = line.split("::") else: __UpperCAmelCase , __UpperCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __UpperCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __UpperCAmelCase = all_failures[test] if test in all_failures else "N/A" __UpperCAmelCase = failure break __UpperCAmelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
299
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A : str = logging.get_logger(__name__) A : Tuple = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class __A( a ): snake_case_ = '''marian''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _snake_case=58_101 , _snake_case=None , _snake_case=1_024 , _snake_case=12 , _snake_case=4_096 , _snake_case=16 , _snake_case=12 , _snake_case=4_096 , _snake_case=16 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case="gelu" , _snake_case=1_024 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=58_100 , _snake_case=False , _snake_case=58_100 , _snake_case=0 , _snake_case=0 , _snake_case=True , **_snake_case , ) -> List[str]: '''simple docstring''' __a = vocab_size __a = decoder_vocab_size or vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = share_encoder_decoder_embeddings super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , ) class __A( a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __a = {0: '''batch'''} __a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __a = {0: '''batch''', 1: '''decoder_sequence'''} __a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __a , __a = self.num_layers for i in range(_snake_case ): __a = {0: '''batch''', 2: '''past_sequence + sequence'''} __a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __a = super().outputs else: __a = super(_snake_case , self ).outputs if self.use_past: __a , __a = self.num_layers for i in range(_snake_case ): __a = {0: '''batch''', 2: '''past_sequence + sequence'''} __a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: '''simple docstring''' __a = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Generate decoder inputs __a = seq_length if not self.use_past else 1 __a = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) __a = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __a = dict(**_snake_case , **_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape __a = common_inputs['''decoder_input_ids'''].shape[1] __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = decoder_seq_length + 3 __a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case , _snake_case )] , dim=1 ) __a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __a , __a = self.num_layers __a = min(_snake_case , _snake_case ) __a = max(_snake_case , _snake_case ) - min_num_layers __a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), ) ) # TODO: test this. __a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_snake_case , _snake_case ): common_inputs["past_key_values"].append((torch.zeros(_snake_case ), torch.zeros(_snake_case )) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: '''simple docstring''' __a = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __a = seqlen + 2 __a , __a = self.num_layers __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = common_inputs['''attention_mask'''].dtype __a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) __a = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(_snake_case ) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: '''simple docstring''' __a = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a = tokenizer.num_special_tokens_to_add(_snake_case ) __a = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence __a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __a = dict(tokenizer(_snake_case , return_tensors=_snake_case ) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) else: __a = self._generate_dummy_inputs_for_causal_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __a = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case ) else: __a = super(_snake_case , self )._flatten_past_key_values_( _snake_case , _snake_case , _snake_case , _snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
0
from torch import nn class A ( nn.Module ): """simple docstring""" def __init__( self : str,lowercase_ : List[Any],lowercase_ : List[Any] )-> Optional[Any]: '''simple docstring''' super().__init__() A__ = class_size A__ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) A__ = nn.Linear(lowercase_,lowercase_ ) def snake_case__ ( self : Union[str, Any],lowercase_ : List[str] )-> List[str]: '''simple docstring''' A__ = self.mlp(lowercase_ ) return logits
7
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = matrix[row][col] SCREAMING_SNAKE_CASE_ = vector[row][0] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase, __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE_ = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, __lowerCamelCase ): for row in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(__lowerCamelCase ) ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = [[0] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE_ = y_val SCREAMING_SNAKE_CASE_ = solve(__lowerCamelCase, __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def A__ ( __lowerCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( __lowerCamelCase = question_function, __lowerCamelCase = 10 ): SCREAMING_SNAKE_CASE_ = [func(__lowerCamelCase ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for poly in polynomials: SCREAMING_SNAKE_CASE_ = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
8
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''blip_2_vision_model''' def __init__( self :Dict , lowerCAmelCase__ :int=1_408 , lowerCAmelCase__ :str=6_144 , lowerCAmelCase__ :Union[str, Any]=39 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Any=224 , lowerCAmelCase__ :Optional[Any]=14 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Optional[int]=0.0_0001 , lowerCAmelCase__ :Union[str, Any]=0.0 , lowerCAmelCase__ :str=1E-1_0 , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :int , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = patch_size __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias @classmethod def __magic_name__( cls :int , lowerCAmelCase__ :Union[str, os.PathLike] , **lowerCAmelCase__ :Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __SCREAMING_SNAKE_CASE : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = '''blip_2_qformer''' def __init__( self :List[str] , lowerCAmelCase__ :Optional[Any]=30_522 , lowerCAmelCase__ :Tuple=768 , lowerCAmelCase__ :List[Any]=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Dict=3_072 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Tuple=512 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :str=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Dict="absolute" , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :List[Any]=1_408 , **lowerCAmelCase__ :int , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type __SCREAMING_SNAKE_CASE : Tuple = cross_attention_frequency __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_hidden_size @classmethod def __magic_name__( cls :Dict , lowerCAmelCase__ :Union[str, os.PathLike] , **lowerCAmelCase__ :Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __SCREAMING_SNAKE_CASE : Dict = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = '''blip-2''' SCREAMING_SNAKE_CASE__ : Any = True def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :str=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[str]=32 , **lowerCAmelCase__ :Optional[int] ) -> Optional[int]: super().__init__(**lowerCAmelCase__ ) if vision_config is None: __SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __SCREAMING_SNAKE_CASE : Optional[int] = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __SCREAMING_SNAKE_CASE : Optional[int] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = BlipaVisionConfig(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = BlipaQFormerConfig(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE : Tuple = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE : Any = num_query_tokens __SCREAMING_SNAKE_CASE : int = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 __SCREAMING_SNAKE_CASE : List[Any] = 0.02 @classmethod def __magic_name__( cls :Union[str, Any] , lowerCAmelCase__ :BlipaVisionConfig , lowerCAmelCase__ :BlipaQFormerConfig , lowerCAmelCase__ :PretrainedConfig , **lowerCAmelCase__ :int , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def __magic_name__( self :int ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : List[str] = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE : Dict = self.text_config.to_dict() __SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type return output
9
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["LayoutLMv2FeatureExtractor"] __UpperCAmelCase = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
299
0
def lowerCAmelCase_ ( __a = 10**9 ) -> int: """simple docstring""" lowerCamelCase__: str =1 lowerCamelCase__: Optional[int] =2 lowerCamelCase__: List[str] =0 lowerCamelCase__: Dict =0 lowerCamelCase__: Any =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCamelCase__: Optional[Any] =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'{solution() = }')
10
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) @property def _UpperCamelCase ( self ) -> Tuple: return (4, 32, 32) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) SCREAMING_SNAKE_CASE_ = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() SCREAMING_SNAKE_CASE_ = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1E-3 ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE_ = noise.to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-3 ) ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =UNetaDModel UpperCAmelCase_ ="sample" @property def _UpperCamelCase ( self , _A=(32, 32) ) -> int: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self ) -> List[str]: return (3, 32, 32) @property def _UpperCamelCase ( self ) -> List[Any]: return (3, 32, 32) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.dummy_input SCREAMING_SNAKE_CASE_ = floats_tensor((4, 3) + (256, 256) ).to(_A ) SCREAMING_SNAKE_CASE_ = noise SCREAMING_SNAKE_CASE_ = model(**_A ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (256, 256) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, num_channels) + sizes ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(batch_size * [1E-4] ).to(_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_A , _A ).sample SCREAMING_SNAKE_CASE_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) def _UpperCamelCase ( self ) -> Dict: # not required for this model pass
299
0
import math def lowerCamelCase__ ( A__ : float , A__ : float ): '''simple docstring''' return math.pow(A__ , 2 ) - a def lowerCamelCase__ ( A__ : float ): '''simple docstring''' return 2 * x def lowerCamelCase__ ( A__ : float ): '''simple docstring''' __lowerCamelCase = 2.0 while start <= a: __lowerCamelCase = math.pow(A__ , 2 ) return start def lowerCamelCase__ ( A__ : float , A__ : int = 9999 , A__ : float = 0.00_000_000_000_001 ): '''simple docstring''' if a < 0: raise ValueError("""math domain error""" ) __lowerCamelCase = get_initial_point(A__ ) for _ in range(A__ ): __lowerCamelCase = value __lowerCamelCase = value - fx(A__ , A__ ) / fx_derivative(A__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
12
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
from pathlib import Path import numpy as np from PIL import Image def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A_ ( _UpperCAmelCase ): return (gray > 1_27) & (gray <= 2_55) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros_like(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_: Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_: str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_: Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase : List[str] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowerCAmelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase : List[str] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase : Tuple = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
13
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["torch", "scipy"] def __init__( self , *_A , **_A ) -> Tuple: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Any: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''torch''', '''scipy'''] )
299
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' torch.manual_seed(0) A__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A__ = UNetaDConditionModel(**UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' torch.manual_seed(0) A__ = VQModel(**self.dummy_movq_kwargs) return model def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = self.dummy_unet A__ = self.dummy_movq A__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A__ = DDIMScheduler(**UpperCAmelCase__) A__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=0) ->Any: '''simple docstring''' A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( UpperCAmelCase__) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((256, 256)) # create hint A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__)) A__ = output.images A__ = pipe( **self.get_dummy_inputs(UpperCAmelCase__) , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') A__ = init_image.resize((512, 512)) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''') A__ = torch.from_numpy(np.array(UpperCAmelCase__)).float() / 255.0 A__ = hint.permute(2 , 0 , 1).unsqueeze(0) A__ = '''A robot, 4k photo''' A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(UpperCAmelCase__) A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa) A__ = pipeline.to(UpperCAmelCase__) pipeline.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device='''cpu''').manual_seed(0) A__ , A__ = pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.85 , generator=UpperCAmelCase__ , negative_prompt='''''' , ).to_tuple() A__ = pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__)
14
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetModel(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification(config=_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase_ =False UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE_ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> str: return def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCamelCase ( self ) -> Dict: pass def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _UpperCamelCase ( self ) -> Any: def check_hidden_states_output(_A , _A , _A ): SCREAMING_SNAKE_CASE_ = model_class(_A ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_A , _A ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_A , _A , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_A , _A ) SCREAMING_SNAKE_CASE_ = model_class(_A ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits SCREAMING_SNAKE_CASE_ = (1, 1000) self.assertEqual(outputs.logits.shape , _A ) SCREAMING_SNAKE_CASE_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
299
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): __A = tempfile.mkdtemp() __A = 5 # Realm tok __A = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,"realm_tokenizer" ) os.makedirs(A ,exist_ok=A ) __A = os.path.join(A ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A = os.path.join(self.tmpdirname ,"realm_block_records" ) os.makedirs(A ,exist_ok=A ) def UpperCamelCase_ ( self : int ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"realm_tokenizer" ) ) def UpperCamelCase_ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : int ): __A = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase_ ( self : Union[str, Any] ): __A = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def UpperCamelCase_ ( self : List[Any] ): __A = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] ,dtype=A ,) return block_records def UpperCamelCase_ ( self : Tuple ): __A = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3] ,dtype="long" ) __A = tokenizer(["Test question"] ).input_ids __A = tokenizer( ["the fourth"] ,add_special_tokens=A ,return_token_type_ids=A ,return_attention_mask=A ,).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( A ,A ,answer_ids=A ,max_length=A ,return_tensors="np" ) self.assertEqual(len(A ) ,2 ) self.assertEqual(len(A ) ,2 ) self.assertEqual(len(A ) ,2 ) self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] ,) def UpperCamelCase_ ( self : Dict ): __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3, 5] ,dtype="long" ) __A = tokenizer(["Test question"] ).input_ids __A = tokenizer( ["the fourth", "longer longer"] ,add_special_tokens=A ,return_token_type_ids=A ,return_attention_mask=A ,).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( A ,A ,answer_ids=A ,max_length=A ,return_tensors="np" ) self.assertEqual([False, True, True] ,A ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,A ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) # Test local path __A = retriever.from_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) self.assertEqual(retriever.block_records[0] ,B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: __A = os.path.join( os.path.join(self.tmpdirname ,"realm_block_records" ) ,_REALM_BLOCK_RECORDS_FILENAME ) __A = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] ,B"This is the first record" )
15
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __A ( A_ ): '''simple docstring''' @staticmethod @abstractmethod def UpperCAmelCase ( _snake_case : ArgumentParser ) -> Dict: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" raise NotImplementedError()
16
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
0
"""simple docstring""" def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
17
def A__ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
import argparse import os import re import packaging.version __lowerCamelCase : str = '''examples/''' __lowerCamelCase : Dict = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __lowerCamelCase : Tuple = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __lowerCamelCase : str = '''README.md''' def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : str = replace.replace("VERSION" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = re_pattern.sub(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" for folder, directories, fnames in os.walk(lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase , pattern="examples" ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not patch: update_version_in_examples(lowerCAmelCase ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE_ : Tuple = "1. Want to contribute a new model?" with open(lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE_ : Any = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCAmelCase ) def _snake_case ( ): """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Optional[int] = REPLACE_PATTERNS["init"][0].search(lowerCAmelCase ).groups()[0] return packaging.version.parse(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : int=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : str = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : Tuple = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : List[str] = input(f'Which version are you releasing? [{default_version}]' ) if len(lowerCAmelCase ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = default_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase , patch=lowerCAmelCase ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_version() SCREAMING_SNAKE_CASE_ : List[Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : int = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : Dict = input(f'Which version are we developing now? [{dev_version}]' ) if len(lowerCAmelCase ) == 0: SCREAMING_SNAKE_CASE_ : List[Any] = dev_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __lowerCamelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
18
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ByTaTokenizer UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ) -> List[str]: return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCamelCase ( self , **_A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _UpperCamelCase ( self , _A , _A=False , _A=20 , _A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) SCREAMING_SNAKE_CASE_ = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = '''Unicode €.''' SCREAMING_SNAKE_CASE_ = tokenizer(_A ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) SCREAMING_SNAKE_CASE_ = tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def _UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(_A ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCamelCase ( self ) -> int: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={ '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
import qiskit def _snake_case( SCREAMING_SNAKE_CASE__ = 2 ) -> qiskit.result.counts.Counts: lowercase : Any = qubits # Using Aer's simulator lowercase : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowercase : List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE__ ) ) , list(range(SCREAMING_SNAKE_CASE__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowercase : int = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
20
import math def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCamelCase ) def A__ ( __lowerCamelCase = 1 / 1_23_45 ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 3 while True: SCREAMING_SNAKE_CASE_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(__lowerCamelCase ) total_partitions += 1 if check_partition_perfect(__lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
299
0