code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase :List[str] = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[Any] = ["""DeiTFeatureExtractor"""] _lowerCAmelCase :Union[str, Any] = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Dict = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :int = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCAmelCase :Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
251
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCAmelCase :Optional[Any] = """Create a default config file for Accelerate with only a few flags set.""" def __lowerCAmelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Path(a_ ) path.parent.mkdir(parents=a_ , exist_ok=a_ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False SCREAMING_SNAKE_CASE : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : str = num_gpus SCREAMING_SNAKE_CASE : Dict = False if num_gpus > 1: SCREAMING_SNAKE_CASE : List[str] = 'MULTI_GPU' else: SCREAMING_SNAKE_CASE : Optional[int] = 'NO' elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : List[Any] = num_xpus SCREAMING_SNAKE_CASE : Optional[int] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : List[Any] = 'MULTI_XPU' else: SCREAMING_SNAKE_CASE : List[Any] = 'NO' elif is_npu_available(): SCREAMING_SNAKE_CASE : List[str] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Any = num_npus SCREAMING_SNAKE_CASE : Dict = False if num_npus > 1: SCREAMING_SNAKE_CASE : Any = 'MULTI_NPU' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'NO' else: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 'NO' SCREAMING_SNAKE_CASE : Any = ClusterConfig(**a_ ) config.to_json_file(a_ ) return path def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser('default' , parents=a_ , help=a_ , formatter_class=a_ ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=a_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=a_ ) return parser def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
251
1
'''simple docstring''' import os from pathlib import Path def __UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' _a = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } _a = F"{src_lang}-{tgt_lang}" _a = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _a = os.path.join(__lowerCamelCase , "README.md" ) print(F"Generating {path}" ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(__lowerCamelCase ) # make sure we are under the root of the project lowercase__ = Path(__file__).resolve().parent.parent.parent lowercase__ = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase__ = model_name.split("-") lowercase__ = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
707
'''simple docstring''' from math import factorial, pi def __UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : int = 30 ) -> float: '''simple docstring''' if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) _a = float(__lowerCamelCase ) _a = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowerCamelCase ) ) def __UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : int = 30 ) -> float: '''simple docstring''' if not isinstance(__lowerCamelCase , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) _a = float(__lowerCamelCase ) _a = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
276
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase( __a : NDArray[floataa] , __a : NDArray[floataa] , __a : list[int] , __a : int , ): a__ , a__ =coefficient_matrix.shape a__ , a__ =constant_matrix.shape if rowsa != colsa: a__ =f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__a ) if colsa != 1: a__ =f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__a ) if rowsa != rowsa: a__ =( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__a ) if len(__a ) != rowsa: a__ =( 'Number of initial values must be equal to number of rows in coefficient ' f"""matrix but received {len(__a )} and {rowsa}""" ) raise ValueError(__a ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) a__ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) a__ , a__ =table.shape strictly_diagonally_dominant(__a ) # Iterates the whole matrix for given number of times for _ in range(__a ): a__ =[] for row in range(__a ): a__ =0 for col in range(__a ): if col == row: a__ =table[row][col] elif col == cols - 1: a__ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a__ =(temp + val) / denom new_val.append(__a ) a__ =new_val return [float(__a ) for i in new_val] def _lowercase( __a : NDArray[floataa] ): a__ , a__ =table.shape a__ =True for i in range(0 , __a ): a__ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
20
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCAmelCase__ = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname ,a_ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(a_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowerCAmelCase__ = self.get_image_processor(do_normalize=a_ ,padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(a_ ,return_tensors='np' ) lowerCAmelCase__ = processor(images=a_ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = processor(text=a_ ) lowerCAmelCase__ = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(a_ ): processor() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(a_ ) lowerCAmelCase__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
193
0
from __future__ import annotations from typing import Any class __snake_case ( _A ): pass class __snake_case : def __init__( self , _A): SCREAMING_SNAKE_CASE_ = data SCREAMING_SNAKE_CASE_ = None def __iter__( self): SCREAMING_SNAKE_CASE_ = self SCREAMING_SNAKE_CASE_ = [] while node: if node in visited: raise ContainsLoopError visited.append(__lowerCamelCase) yield node.data SCREAMING_SNAKE_CASE_ = node.next_node @property def lowerCAmelCase__ ( self): try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCamelCase__ : Tuple = Node(1) UpperCamelCase__ : Optional[Any] = Node(2) UpperCamelCase__ : Dict = Node(3) UpperCamelCase__ : str = Node(4) print(root_node.has_loop) # False UpperCamelCase__ : Optional[int] = root_node.next_node print(root_node.has_loop) # True UpperCamelCase__ : Union[str, Any] = Node(5) UpperCamelCase__ : Dict = Node(6) UpperCamelCase__ : Optional[int] = Node(5) UpperCamelCase__ : Dict = Node(6) print(root_node.has_loop) # False UpperCamelCase__ : Any = Node(1) print(root_node.has_loop) # False
717
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __snake_case ( lowerCAmelCase__ ): __lowerCAmelCase : torch.FloatTensor class __snake_case ( lowerCAmelCase__ , lowerCAmelCase__ ): @register_to_config def __init__( self , _A = 3 , _A = 3 , _A = ("DownEncoderBlock2D",) , _A = ("UpDecoderBlock2D",) , _A = (64,) , _A = 1 , _A = "silu" , _A = 3 , _A = 32 , _A = 256 , _A = 32 , _A = None , _A = 0.1_8_2_1_5 , _A = "group" , ): super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE_ = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) SCREAMING_SNAKE_CASE_ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE_ = nn.Convad(_A , _A , 1) SCREAMING_SNAKE_CASE_ = VectorQuantizer(_A , _A , beta=0.2_5 , remap=_A , sane_index_shape=_A) SCREAMING_SNAKE_CASE_ = nn.Convad(_A , _A , 1) # pass init params to Decoder SCREAMING_SNAKE_CASE_ = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , norm_type=_A , ) @apply_forward_hook def lowerCAmelCase__ ( self , _A , _A = True): SCREAMING_SNAKE_CASE_ = self.encoder(_A) SCREAMING_SNAKE_CASE_ = self.quant_conv(_A) if not return_dict: return (h,) return VQEncoderOutput(latents=_A) @apply_forward_hook def lowerCAmelCase__ ( self , _A , _A = False , _A = True): # also go through quantization layer if not force_not_quantize: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.quantize(_A) else: SCREAMING_SNAKE_CASE_ = h SCREAMING_SNAKE_CASE_ = self.post_quant_conv(_A) SCREAMING_SNAKE_CASE_ = self.decoder(_A , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=_A) def lowerCAmelCase__ ( self , _A , _A = True): SCREAMING_SNAKE_CASE_ = sample SCREAMING_SNAKE_CASE_ = self.encode(_A).latents SCREAMING_SNAKE_CASE_ = self.decode(_A).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A)
620
0
"""simple docstring""" import os from pathlib import Path def a_ ( ): '''simple docstring''' from torch.utils.cpp_extension import load lowercase__ : Optional[Any] = Path(__snake_case ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowercase__ : int = [ root / filename for filename in [ """vision.cpp""", os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , __snake_case , with_cuda=__snake_case , extra_include_paths=[str(__snake_case )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
599
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence"""), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence""") , id="""references"""), }) , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE , hypotheses=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE) }
88
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = BarthezTokenizer lowerCamelCase__ = BarthezTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A ( self : List[str] ) -> Union[str, Any]: super().setUp() UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__snake_case ) UpperCAmelCase : Any = tokenizer def A ( self : str ) -> List[str]: UpperCAmelCase : Any = '''<pad>''' UpperCAmelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def A ( self : List[Any] ) -> Any: UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__snake_case ) , 101122 ) def A ( self : int ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase : List[Any] = [0, 57, 3018, 70307, 91, 2] UpperCAmelCase : List[Any] = self.tokenizer( __snake_case , max_length=len(__snake_case ) , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) def A ( self : List[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : Tuple = '''I was born in 92000, and this is falsé.''' UpperCAmelCase : Tuple = tokenizer.tokenize(__snake_case ) UpperCAmelCase : int = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : str = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : Dict = tokenizer.encode(__snake_case ) UpperCAmelCase : str = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def A ( self : str ) -> Optional[Any]: # fmt: off UpperCAmelCase : Tuple = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCAmelCase : Tuple = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__snake_case , )
713
'''simple docstring''' UpperCamelCase__: dict[tuple[int, int, int], int] = {} def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase : int = _calculate(days - 1 , _lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase : Optional[Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase : Tuple = _calculate(days - 1 , _lowerCAmelCase , 0 ) UpperCAmelCase : str = state_late + state_absent + state_ontime UpperCAmelCase : List[Any] = prizestrings return prizestrings def snake_case_ ( _lowerCAmelCase : int = 30 ) -> int: return _calculate(_lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
528
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=[1, 2, 1] , _UpperCAmelCase=[2, 2, 4] , _UpperCAmelCase=2 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=8 , _UpperCAmelCase=["stage1", "stage2", "stage3"] , _UpperCAmelCase=[1, 2, 3] , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Dict = batch_size __A : Any = image_size __A : List[str] = patch_size __A : List[str] = num_channels __A : Any = embed_dim __A : Dict = depths __A : List[Any] = num_heads __A : str = window_size __A : Union[str, Any] = mlp_ratio __A : str = qkv_bias __A : Dict = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : int = drop_path_rate __A : str = hidden_act __A : str = use_absolute_embeddings __A : str = patch_norm __A : Dict = layer_norm_eps __A : List[str] = initializer_range __A : str = is_training __A : Union[str, Any] = scope __A : int = use_labels __A : Any = type_sequence_label_size __A : List[str] = encoder_stride __A : str = out_features __A : int = out_indices def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : Optional[int] = None if self.use_labels: __A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskFormerSwinModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Any = model(_UpperCAmelCase) __A : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskFormerSwinBackbone(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : List[Any] = model(_UpperCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase): __A : Optional[int] = ['stem'] __A : Dict = MaskFormerSwinBackbone(config=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() __A ,__A ,__A : int = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = MaskFormerSwinModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' )) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase) @unittest.skip('Swin does not use inputs_embeds') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip('Swin does not support feedforward chunking') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = model_class(_UpperCAmelCase) __A : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : str = [*signature.parameters.keys()] __A : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[int] = outputs.hidden_states __A : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # Swin has a different seq_length __A : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __A : List[Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[Any] = 3 __A : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __A : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __A : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __A : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase): __A : Any = 0 return t def check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase={}): with torch.no_grad(): __A : Dict = model(**_UpperCAmelCase , return_dict=_UpperCAmelCase , **_UpperCAmelCase) __A : Union[str, Any] = model(**_UpperCAmelCase , return_dict=_UpperCAmelCase , **_UpperCAmelCase).to_tuple() def recursive_check(_UpperCAmelCase , _UpperCAmelCase): if isinstance(_UpperCAmelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase , _UpperCAmelCase): recursive_check(_UpperCAmelCase , _UpperCAmelCase) elif isinstance(_UpperCAmelCase , _UpperCAmelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(_UpperCAmelCase , _UpperCAmelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase) , set_nan_tensor_to_zero(_UpperCAmelCase) , atol=1e-5) , msg=( 'Tuple and dict output are not equal. Difference:' F' {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:' F' {torch.isnan(_UpperCAmelCase).any()} and `inf`: {torch.isinf(_UpperCAmelCase)}. Dict has' F' `nan`: {torch.isnan(_UpperCAmelCase).any()} and `inf`: {torch.isinf(_UpperCAmelCase)}.' ) , ) recursive_check(_UpperCAmelCase , _UpperCAmelCase) for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) __A : Dict = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {'output_hidden_states': True}) __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) __A : str = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {'output_hidden_states': True}) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase , a__ ): lowerCAmelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase = MaskFormerSwinConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = MaskFormerSwinModelTester(self) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __A : Optional[int] = backbone_class(_UpperCAmelCase) backbone.to(_UpperCAmelCase) backbone.eval() __A : Tuple = backbone(**_UpperCAmelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _UpperCAmelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True __A : Dict = backbone(**_UpperCAmelCase , output_hidden_states=_UpperCAmelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __A ,__A ,__A : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: __A : Union[str, Any] = backbone(**_UpperCAmelCase , output_attentions=_UpperCAmelCase) self.assertIsNotNone(outputs.attentions)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _A ( __UpperCAmelCase ): UpperCamelCase__ : Dict = ComputeEnvironment.AMAZON_SAGEMAKER UpperCamelCase__ : int = True UpperCamelCase__ : Dict = '''ml.p3.2xlarge''' UpperCamelCase__ : List[Any] = '''accelerate_sagemaker_execution_role''' UpperCamelCase__ : int = '''hf-sm''' UpperCamelCase__ : List[Any] = '''us-east-1''' UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : List[str] = '''accelerate-sagemaker-1''' UpperCamelCase__ : Optional[int] = '''1.6''' UpperCamelCase__ : List[str] = '''4.4''' UpperCamelCase__ : List[str] = '''train.py''' UpperCamelCase__ : Tuple = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] UpperCamelCase__ : Optional[int] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _A ( unittest.TestCase ): def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , __SCREAMING_SNAKE_CASE) assert isinstance(converted_args['''do_train'''] , __SCREAMING_SNAKE_CASE) assert isinstance(converted_args['''epochs'''] , __SCREAMING_SNAKE_CASE) assert isinstance(converted_args['''learning_rate'''] , __SCREAMING_SNAKE_CASE) assert isinstance(converted_args['''max_steps'''] , __SCREAMING_SNAKE_CASE) with pytest.raises(__SCREAMING_SNAKE_CASE): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
60
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case :Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : List[str] = GPTSwaTokenizer UpperCamelCase__ : Dict = False UpperCamelCase__ : int = True UpperCamelCase__ : List[Any] = False def _lowerCamelCase ( self : List[Any]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = '''This is a test''' __a = '''This is a test''' return input_text, output_text def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''<s>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(__SCREAMING_SNAKE_CASE) , 2_000) def _lowerCamelCase ( self : Dict): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = tokenizer.tokenize('''This is a test''') self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , [465, 287, 265, 631, 842]) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __a = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) self.assertListEqual( __SCREAMING_SNAKE_CASE , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def _lowerCamelCase ( self : Any): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __a = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertListEqual(tokenizer.encode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # Test that decode_fast returns the input text for text, token_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(tokenizer.decode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __a = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=__SCREAMING_SNAKE_CASE , )
60
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __lowerCamelCase = "sshleifer/mar_enro_6_3_student" class _lowercase ( __UpperCAmelCase ): def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=UpperCamelCase_ , ) __magic_name__ = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def lowerCAmelCase__ ( self ): MarianMTModel.from_pretrained(UpperCamelCase_ ) @slow @require_torch_gpu def lowerCAmelCase__ ( self ): __magic_name__ = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __magic_name__ = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __magic_name__ = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __magic_name__ = bash_script.replace(UpperCamelCase_ , str(UpperCamelCase_ ) ) __magic_name__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __magic_name__ = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __magic_name__ = ['''finetune.py'''] + bash_script.split() + args with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): __magic_name__ = argparse.ArgumentParser() __magic_name__ = pl.Trainer.add_argparse_args(UpperCamelCase_ ) __magic_name__ = SummarizationModule.add_model_specific_args(UpperCamelCase_ , os.getcwd() ) __magic_name__ = parser.parse_args() __magic_name__ = main(UpperCamelCase_ ) # Check metrics __magic_name__ = load_json(model.metrics_save_path ) __magic_name__ = metrics['''val'''][0] __magic_name__ = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , UpperCamelCase_ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __magic_name__ = os.listdir(UpperCamelCase_ ) __magic_name__ = [x for x in contents if x.endswith('''.ckpt''' )][0] __magic_name__ = os.path.join(args.output_dir , UpperCamelCase_ ) __magic_name__ = torch.load(UpperCamelCase_ , map_location='''cpu''' ) __magic_name__ = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __magic_name__ = {os.path.basename(UpperCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class _lowercase ( __UpperCAmelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowerCAmelCase__ ( self ): __magic_name__ = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' __magic_name__ = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __magic_name__ = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __magic_name__ = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __magic_name__ = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __magic_name__ = bash_script.replace(UpperCamelCase_ , str(UpperCamelCase_ ) ) __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = bash_script.replace('''--fp16''' , '''''' ) __magic_name__ = 6 __magic_name__ = ( ['''distillation.py'''] + bash_script.split() + [ f'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', f'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): __magic_name__ = argparse.ArgumentParser() __magic_name__ = pl.Trainer.add_argparse_args(UpperCamelCase_ ) __magic_name__ = SummarizationDistiller.add_model_specific_args(UpperCamelCase_ , os.getcwd() ) __magic_name__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __magic_name__ = distill_main(UpperCamelCase_ ) # Check metrics __magic_name__ = load_json(model.metrics_save_path ) __magic_name__ = metrics['''val'''][0] __magic_name__ = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , UpperCamelCase_ ) # check lightning ckpt can be loaded and has a reasonable statedict __magic_name__ = os.listdir(UpperCamelCase_ ) __magic_name__ = [x for x in contents if x.endswith('''.ckpt''' )][0] __magic_name__ = os.path.join(args.output_dir , UpperCamelCase_ ) __magic_name__ = torch.load(UpperCamelCase_ , map_location='''cpu''' ) __magic_name__ = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __magic_name__ = {os.path.basename(UpperCamelCase_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
490
"""simple docstring""" def lowercase ( __UpperCamelCase = 10**12 ) -> int: __magic_name__ = 1 __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
490
1
from statistics import mean, stdev def __UpperCamelCase ( _A , _A = 3 ): lowerCAmelCase_ = min(_A ) lowerCAmelCase_ = max(_A ) # normalize data return [round((x - x_min) / (x_max - x_min) , _A ) for x in data] def __UpperCamelCase ( _A , _A = 3 ): lowerCAmelCase_ = mean(_A ) lowerCAmelCase_ = stdev(_A ) # standardize data return [round((x - mu) / (sigma) , _A ) for x in data]
325
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _A ): lowerCAmelCase_ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase_ = 4 lowerCAmelCase_ = 48 lowerCAmelCase_ = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ = [6, 6, 6, 6] lowerCAmelCase_ = 60 lowerCAmelCase_ = [6, 6, 6, 6] lowerCAmelCase_ = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ = 4 lowerCAmelCase_ = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 lowerCAmelCase_ = 126 lowerCAmelCase_ = 7 lowerCAmelCase_ = 2_5_5.0 lowerCAmelCase_ = '''''' return config def __UpperCamelCase ( _A , _A ): if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: lowerCAmelCase_ = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: lowerCAmelCase_ = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: lowerCAmelCase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowerCAmelCase_ = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowerCAmelCase_ = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowerCAmelCase_ = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowerCAmelCase_ = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "conv_first" in name: lowerCAmelCase_ = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase_ = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase_ = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: lowerCAmelCase_ = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: lowerCAmelCase_ = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) lowerCAmelCase_ = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase_ = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) lowerCAmelCase_ = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: lowerCAmelCase_ = '''swin2sr.''' + name return name def __UpperCamelCase ( _A , _A ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(_A ) if "qkv" in key: lowerCAmelCase_ = key.split('''.''' ) lowerCAmelCase_ = int(key_split[1] ) lowerCAmelCase_ = int(key_split[4] ) lowerCAmelCase_ = config.embed_dim if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] pass else: lowerCAmelCase_ = val return orig_state_dict def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = get_config(_A ) lowerCAmelCase_ = SwinaSRForImageSuperResolution(_A ) model.eval() lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' ) lowerCAmelCase_ = convert_state_dict(_A , _A ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(_A , strict=_A ) if len(_A ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(_A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values lowerCAmelCase_ = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) lowerCAmelCase_ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase_ = 126 if '''Jpeg''' in checkpoint_url else 256 lowerCAmelCase_ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = transforms(_A ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase_ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase_ = model(_A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase_ = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase_ = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _A , atol=1E-3 ) print('''Looks ok!''' ) lowerCAmelCase_ = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } lowerCAmelCase_ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
325
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase_ : bool , lowerCamelCase_ : bool ): def run_func(lowerCamelCase_ : str ): @wraps(lowerCamelCase_ ) def run_in_eager_mode(*lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): return func(*lowerCamelCase_ , **lowerCamelCase_ ) @wraps(lowerCamelCase_ ) @tf.function(experimental_compile=lowerCamelCase_ ) def run_in_graph_mode(*lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ): return func(*lowerCamelCase_ , **lowerCamelCase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __a : List[str] = random.Random() __a : Optional[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : TensorFlowBenchmarkArguments __SCREAMING_SNAKE_CASE : PretrainedConfig __SCREAMING_SNAKE_CASE : str = "TensorFlow" @property def __lowerCAmelCase ( self : int ): '''simple docstring''' return tf.__version__ def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : int = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __a : Optional[int] = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_speed(_inference ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Tuple = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __a : Optional[int] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_speed(_train ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ ) __a : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __a : Optional[Any] = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_memory(_inference ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ ) __a : Tuple = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __a : List[Any] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._measure_memory(_train ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : str = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __a : Any = ( hasattr(SCREAMING_SNAKE_CASE__ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __a : Optional[Any] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __a : List[Any] = __import__('transformers' , fromlist=[model_class] ) __a : Dict = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Any = model_cls(SCREAMING_SNAKE_CASE__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __a : Optional[int] = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ ) # encoder-decoder has vocab size saved differently __a : List[str] = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , 'vocab_size' ) else config.encoder.vocab_size __a : Optional[Any] = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) __a : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Optional[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __a : Optional[int] = ( hasattr(SCREAMING_SNAKE_CASE__ , 'architectures' ) and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __a : List[str] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __a : Dict = __import__('transformers' , fromlist=[model_class] ) __a : str = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Tuple = model_cls(SCREAMING_SNAKE_CASE__ ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __a : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ ) # encoder-decoder has vocab size saved differently __a : int = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , 'vocab_size' ) else config.encoder.vocab_size __a : Tuple = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __a : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0] __a : List[str] = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __a : Tuple = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0] __a : Tuple = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables ) return gradients __a : Optional[int] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(SCREAMING_SNAKE_CASE__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __a : Optional[Any] = timeit.repeat( SCREAMING_SNAKE_CASE__ , repeat=self.args.repeat , number=1_0 , ) return min(SCREAMING_SNAKE_CASE__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Callable[[], None] ): '''simple docstring''' logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) __a : Any = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) __a : Any = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() __a : Tuple = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __a : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = meminfo.used __a : Dict = Memory(SCREAMING_SNAKE_CASE__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) __a : Any = None else: __a : Optional[Any] = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE__ ) __a : Any = Memory(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else memory_bytes if self.args.trace_memory_line_by_line: __a : Any = stop_memory_tracing(SCREAMING_SNAKE_CASE__ ) if memory is None: __a : Any = summary.total else: __a : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
47
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): __magic_name__ = StableDiffusionPanoramaPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self : Optional[int] ) -> int: torch.manual_seed(0 ) snake_case : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) snake_case : Tuple = DDIMScheduler() torch.manual_seed(0 ) snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case : int = CLIPTextModel(_lowercase ) snake_case : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowercase ( self : List[str] , _lowercase : int , _lowercase : Dict=0 ) -> Optional[int]: snake_case : Union[str, Any] = torch.manual_seed(_lowercase ) snake_case : str = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowercase ( self : str ) -> List[str]: snake_case : Any = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.get_dummy_components() snake_case : Any = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : List[Any] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Optional[Any] = self.get_dummy_inputs(_lowercase ) snake_case : Union[str, Any] = sd_pipe(**_lowercase ).images snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : List[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : int ) -> Union[str, Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowercase ( self : Tuple ) -> Tuple: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def __lowercase ( self : Any ) -> List[Any]: snake_case : Any = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] = self.get_dummy_components() snake_case : Tuple = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : Tuple = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : List[str] = self.get_dummy_inputs(_lowercase ) snake_case : int = "french fries" snake_case : Union[str, Any] = sd_pipe(**_lowercase , negative_prompt=_lowercase ) snake_case : str = output.images snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : str ) -> Any: snake_case : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : List[Any] = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : int = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Tuple = self.get_dummy_inputs(_lowercase ) snake_case : str = sd_pipe(**_lowercase , view_batch_size=2 ) snake_case : Optional[Any] = output.images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : int ) -> Optional[Any]: snake_case : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : List[str] = self.get_dummy_components() snake_case : Any = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) snake_case : List[str] = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : List[str] = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : List[Any] = self.get_dummy_inputs(_lowercase ) snake_case : Optional[Any] = sd_pipe(**_lowercase ).images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Tuple = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : Tuple ) -> Union[str, Any]: snake_case : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Optional[int] = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=_lowercase ) snake_case : Dict = StableDiffusionPanoramaPipeline(**_lowercase ) snake_case : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Dict = self.get_dummy_inputs(_lowercase ) snake_case : Optional[int] = sd_pipe(**_lowercase ).images snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _a ( unittest.TestCase): def __lowercase ( self : Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict , _lowercase : Any=0 ) -> Optional[Any]: snake_case : Any = torch.manual_seed(_lowercase ) snake_case : Any = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: snake_case : List[Any] = "stabilityai/stable-diffusion-2-base" snake_case : Dict = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : str = self.get_inputs() snake_case : List[Any] = pipe(**_lowercase ).images snake_case : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case : List[str] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __lowercase ( self : Tuple ) -> List[str]: snake_case : List[str] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=_lowercase ) snake_case : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : Dict = self.get_inputs() snake_case : int = pipe(**_lowercase ).images snake_case : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) snake_case : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowercase ( self : str ) -> Any: snake_case : Any = 0 def callback_fn(_lowercase : int , _lowercase : int , _lowercase : torch.FloatTensor ) -> None: snake_case : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case : int = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) snake_case : Tuple = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case : Dict = False snake_case : List[Any] = "stabilityai/stable-diffusion-2-base" snake_case : List[str] = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) snake_case : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case : Tuple = self.get_inputs() pipe(**_lowercase , callback=_lowercase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase ( self : Any ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : Optional[int] = "stabilityai/stable-diffusion-2-base" snake_case : Tuple = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) snake_case : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) snake_case : Tuple = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Any = self.get_inputs() snake_case : Optional[int] = pipe(**_lowercase ) snake_case : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
449
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase : Optional[Any] = parse(importlib.metadata.version("""torch""")) def A_ ( A__ , A__ , A__ ) -> Any: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) a__ : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(A__ , A__ ): a__ : Optional[int] = parse(importlib.metadata.version(A__ ) ) return operation(A__ , parse(A__ ) ) def A_ ( A__ , A__ ) -> int: return compare_versions(A__ , A__ , A__ )
706
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase : Dict = random.Random() if is_torch_available(): import torch def A_ ( A__ , A__=1.0 , A__=None , A__=None ) -> Dict: if rng is None: a__ : Optional[int] = global_rng a__ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=400 , lowercase=2000 , lowercase=1 , lowercase=0.0 , lowercase=1_6000 , lowercase=True , lowercase=True , ) -> str: '''simple docstring''' a__ : List[str] = parent a__ : int = batch_size a__ : Optional[Any] = min_seq_length a__ : List[str] = max_seq_length a__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ : List[Any] = feature_size a__ : int = padding_value a__ : List[Any] = sampling_rate a__ : Optional[Any] = return_attention_mask a__ : int = do_normalize def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowercase ( self , lowercase=False , lowercase=False) -> Tuple: '''simple docstring''' def _flatten(lowercase): return list(itertools.chain(*lowercase)) if equal_length: a__ : Tuple = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size a__ : int = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: a__ : Tuple = [np.asarray(lowercase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : str = ASTFeatureExtractor def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = ASTFeatureExtractionTester(self) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 a__ : Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] a__ : Optional[Any] = [np.asarray(lowercase) for speech_input in speech_inputs] # Test not batched input a__ : str = feat_extract(speech_inputs[0] , return_tensors='np').input_values a__ : Optional[int] = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test batched a__ : int = feat_extract(lowercase , padding=lowercase , return_tensors='np').input_values a__ : Any = feat_extract(lowercase , padding=lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test 2-D numpy arrays are batched. a__ : Optional[Any] = [floats_list((1, x))[0] for x in (800, 800, 800)] a__ : Optional[Any] = np.asarray(lowercase) a__ : Any = feat_extract(lowercase , return_tensors='np').input_values a__ : Optional[int] = feat_extract(lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) @require_torch def __lowercase ( self) -> int: '''simple docstring''' import torch a__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__ : Optional[Any] = np.random.rand(100).astype(np.floataa) a__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) a__ : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' from datasets import load_dataset a__ : Tuple = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech a__ : List[str] = ds.sort('id').select(range(lowercase))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69]) # fmt: on a__ : Any = self._load_datasamples(1) a__ : Any = ASTFeatureExtractor() a__ : int = feature_extractor(lowercase , return_tensors='pt').input_values self.assertEquals(input_values.shape , (1, 1024, 128)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowercase , atol=1e-4))
392
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''roformer''' def __init__( self ,lowerCamelCase_=50000 ,lowerCamelCase_=None ,lowerCamelCase_=768 ,lowerCamelCase_=12 ,lowerCamelCase_=12 ,lowerCamelCase_=3072 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1536 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1e-12 ,lowerCamelCase_=0 ,lowerCamelCase_=False ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Any: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : str = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : str = rotary_value UpperCAmelCase__ : Dict = use_cache class _lowercase ( lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} UpperCAmelCase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
614
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : str = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
614
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] = 0 )->list: _lowerCAmelCase = length or len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
285
from typing import Any def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Creates data structures and fill initial step UpperCamelCase__ : dict = {} UpperCamelCase__ : dict = {} for state in states_space: UpperCamelCase__ : Optional[int] = observations_space[0] UpperCamelCase__ : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCamelCase__ ) ): UpperCamelCase__ : str = observations_space[o] UpperCamelCase__ : Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ : int = '''''' UpperCamelCase__ : List[str] = -1 for k_state in states_space: UpperCamelCase__ : Union[str, Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ : Tuple = probability UpperCamelCase__ : Union[str, Any] = k_state # Update probabilities and pointers dicts UpperCamelCase__ : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Optional[Any] = arg_max # The final observation UpperCamelCase__ : List[str] = observations_space[len(UpperCamelCase__ ) - 1] # argmax for given final observation UpperCamelCase__ : Dict = '''''' UpperCamelCase__ : Tuple = -1 for k_state in states_space: UpperCamelCase__ : Any = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ : List[str] = probability UpperCamelCase__ : Tuple = k_state UpperCamelCase__ : Any = arg_max # Process pointers backwards UpperCamelCase__ : List[Any] = last_state UpperCamelCase__ : int = [] for o in range(len(UpperCamelCase__ ) - 1 , -1 , -1 ): result.append(UpperCamelCase__ ) UpperCamelCase__ : int = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_not_empty( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _validate_lists(UpperCamelCase__ , UpperCamelCase__ ) _validate_dicts( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_list(UpperCamelCase__ , '''observations_space''' ) _validate_list(UpperCamelCase__ , '''states_space''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list''' raise ValueError(UpperCamelCase__ ) else: for x in _object: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list of strings''' raise ValueError(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_dict(UpperCamelCase__ , '''initial_probabilities''' , UpperCamelCase__ ) _validate_nested_dict(UpperCamelCase__ , '''transition_probabilities''' ) _validate_nested_dict(UpperCamelCase__ , '''emission_probabilities''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_dict(_object , UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values(): _validate_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[str] = f'''{var_name} must be a dict''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object ): UpperCamelCase__ : Dict = f'''{var_name} all keys must be strings''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values() ): UpperCamelCase__ : Optional[Any] = '''nested dictionary ''' if nested else '''''' UpperCamelCase__ : Optional[Any] = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
285
1
import math class snake_case_ : '''simple docstring''' def __init__( self : int , __magic_name__ : Dict=0 ) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 lowerCamelCase_ : Dict = n lowerCamelCase_ : Union[str, Any] = [ [math.inf for j in range(0 , __magic_name__ )] for i in range(0 , __magic_name__ ) ] # adjacency matrix for weight lowerCamelCase_ : Tuple = [ [math.inf for j in range(0 , __magic_name__ )] for i in range(0 , __magic_name__ ) ] # dp[i][j] stores minimum distance from i to j def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple ) -> List[Any]: lowerCamelCase_ : Optional[int] = w def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCamelCase_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] ) -> Optional[Any]: return self.dp[u][v] if __name__ == "__main__": snake_case_ : Union[str, Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
706
from collections.abc import Generator from math import sin def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" if len(__UpperCAmelCase ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __a ( __UpperCAmelCase : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:] lowerCamelCase_ : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = b"" for char in message: bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" ) lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512] lowerCamelCase_ : Any = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" ) lowerCamelCase_ : Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = preprocess(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ : List[str] = 0X67_452_301 lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89 lowerCamelCase_ : str = 0X98_BAD_CFE lowerCamelCase_ : Optional[int] = 0X10_325_476 lowerCamelCase_ : Union[str, Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = aa lowerCamelCase_ : List[str] = ba lowerCamelCase_ : Optional[int] = ca lowerCamelCase_ : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ : Dict = d ^ (b & (c ^ d)) lowerCamelCase_ : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ : Any = c ^ (d & (b ^ c)) lowerCamelCase_ : List[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ : List[Any] = b ^ c ^ d lowerCamelCase_ : int = (3 * i + 5) % 16 else: lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase )) lowerCamelCase_ : int = (7 * i) % 16 lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ : Union[str, Any] = d lowerCamelCase_ : Optional[int] = c lowerCamelCase_ : Union[str, Any] = b lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
253
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __A =datasets.logging.get_logger(__name__) __A ='''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' __A ='''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' __A =''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCamelCase__ , sys_doc_lines[doc] , lowerCamelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCamelCase__ , key_doc_lines[doc] , lowerCamelCase__ , lowerCamelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCamelCase__ , lowerCamelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCamelCase__ , lowerCamelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=True , lowercase=False , lowercase=False , lowercase=False ) -> Union[str, Any]: lowerCamelCase_ = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(lowercase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=lowercase , sys_lines=lowercase , metrics=lowercase , NP_only=lowercase , remove_nested=lowercase , keep_singletons=lowercase , min_span=lowercase , ) return score
463
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __A ='''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): def __init__( self , lowercase = " " ) -> List[str]: lowerCamelCase_ = sentence_delimiter def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: return list(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = [] for sent_idx, sentence in enumerate(lowercase ): chars.extend(self.process_string(lowercase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase ) - 1: chars.append(self.sentence_delimiter ) return chars __A =tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __A =tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __A ='''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __A ='''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __A =''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> List[str]: if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(lowercase , lowercase ): lowerCamelCase_ = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
463
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ = """1""" SCREAMING_SNAKE_CASE__ = """f32le""" SCREAMING_SNAKE_CASE__ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE__ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error SCREAMING_SNAKE_CASE__ = output_stream[0] SCREAMING_SNAKE_CASE__ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: Any = "f32le" , ): SCREAMING_SNAKE_CASE__ = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ = """1""" if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) SCREAMING_SNAKE_CASE__ = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE__ = """alsa""" SCREAMING_SNAKE_CASE__ = """default""" elif system == "Darwin": SCREAMING_SNAKE_CASE__ = """avfoundation""" SCREAMING_SNAKE_CASE__ = """:0""" elif system == "Windows": SCREAMING_SNAKE_CASE__ = """dshow""" SCREAMING_SNAKE_CASE__ = """default""" SCREAMING_SNAKE_CASE__ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] SCREAMING_SNAKE_CASE__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE__ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Dict , UpperCamelCase__: List[str] = None , UpperCamelCase__: List[Any] = None , UpperCamelCase__: Union[str, Any] = "f32le" , ): if stream_chunk_s is not None: SCREAMING_SNAKE_CASE__ = stream_chunk_s else: SCREAMING_SNAKE_CASE__ = chunk_length_s SCREAMING_SNAKE_CASE__ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ = np.intaa SCREAMING_SNAKE_CASE__ = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ = np.floataa SCREAMING_SNAKE_CASE__ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: SCREAMING_SNAKE_CASE__ = chunk_length_s / 6 SCREAMING_SNAKE_CASE__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): SCREAMING_SNAKE_CASE__ = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ = datetime.datetime.now() SCREAMING_SNAKE_CASE__ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE__ = np.frombuffer(item["""raw"""] , dtype=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) SCREAMING_SNAKE_CASE__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: Dict = False ): SCREAMING_SNAKE_CASE__ = B"""""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) SCREAMING_SNAKE_CASE__ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: SCREAMING_SNAKE_CASE__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE__ = (_stride_left, stride_right) SCREAMING_SNAKE_CASE__ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: SCREAMING_SNAKE_CASE__ = False yield item SCREAMING_SNAKE_CASE__ = stride_left SCREAMING_SNAKE_CASE__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: SCREAMING_SNAKE_CASE__ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE__ = False yield item def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE__ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
701
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase_ = "nat" lowerCamelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :List[Any] , __A :Optional[Any]=4 , __A :Any=3 , __A :Optional[int]=64 , __A :Optional[int]=[3, 4, 6, 5] , __A :Union[str, Any]=[2, 4, 8, 16] , __A :Optional[Any]=7 , __A :Optional[Any]=3.0 , __A :List[Any]=True , __A :int=0.0 , __A :Dict=0.0 , __A :Optional[Any]=0.1 , __A :str="gelu" , __A :Optional[Any]=0.0_2 , __A :Optional[int]=1E-5 , __A :Optional[int]=0.0 , __A :Optional[Any]=None , __A :Union[str, Any]=None , **__A :Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = len(__A ) SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = kernel_size SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(__A ) - 1) ) SCREAMING_SNAKE_CASE__ = layer_scale_init_value SCREAMING_SNAKE_CASE__ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
59
0
import math import os import sys def lowercase ( __A : str ) -> str: '''simple docstring''' snake_case : Dict = """""" try: with open(_lowerCamelCase , """rb""" ) as binary_file: snake_case : Tuple = binary_file.read() for dat in data: snake_case : Optional[int] = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase ( __A : dict[str, str] , __A : str , __A : int , __A : str ) -> None: '''simple docstring''' lexicon.pop(_lowerCamelCase ) snake_case : Union[str, Any] = last_match_id if math.loga(_lowerCamelCase ).is_integer(): for curr_key in lexicon: snake_case : str = """0""" + lexicon[curr_key] snake_case : List[Any] = bin(_lowerCamelCase )[2:] def lowercase ( __A : str ) -> str: '''simple docstring''' snake_case : Union[str, Any] = {"""0""": """0""", """1""": """1"""} snake_case , snake_case : Optional[Any] = """""", """""" snake_case : Optional[int] = len(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case : Optional[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) index += 1 snake_case : Union[str, Any] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": snake_case : str = lexicon[curr_string] result += last_match_id return result def lowercase ( __A : str , __A : str ) -> str: '''simple docstring''' snake_case : Tuple = os.path.getsize(_lowerCamelCase ) snake_case : Optional[int] = bin(_lowerCamelCase )[2:] snake_case : Optional[int] = len(_lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase ( __A : str , __A : str ) -> None: '''simple docstring''' snake_case : List[str] = 8 try: with open(_lowerCamelCase , """wb""" ) as opened_file: snake_case : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_lowerCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase ( __A : str , __A : str ) -> None: '''simple docstring''' snake_case : Optional[Any] = read_file_binary(_lowerCamelCase ) snake_case : List[Any] = compress_data(_lowerCamelCase ) snake_case : Dict = add_file_length(_lowerCamelCase , _lowerCamelCase ) write_file_binary(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
36
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase_ : str = logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase) class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __snake_case = {} if "candidate_labels" in kwargs: __snake_case = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __snake_case = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="This is a photo of {}." ) -> Optional[Any]: '''simple docstring''' __snake_case = load_image(__SCREAMING_SNAKE_CASE ) __snake_case = self.image_processor(images=[image] , return_tensors=self.framework ) __snake_case = candidate_labels __snake_case = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __snake_case = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __snake_case = [text_inputs] return inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = model_inputs.pop('''candidate_labels''' ) __snake_case = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __snake_case = text_inputs[0] else: # Batching case. __snake_case = text_inputs[0][0] __snake_case = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __snake_case = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __snake_case = model_outputs.pop('''candidate_labels''' ) __snake_case = model_outputs['''logits'''][0] if self.framework == "pt": __snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) __snake_case = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = [scores] elif self.framework == "tf": __snake_case = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __snake_case = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __snake_case = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
24
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=a_ ): __lowerCAmelCase = ["transformers", "torch", "note_seq"] def __init__( self , *a_ , **a_ ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case_ ( cls , *a_ , **a_ ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case_ ( cls , *a_ , **a_ ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
370
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class snake_case_ ( a_ ): __lowerCAmelCase = "mra" def __init__( self , a_=5_0_2_6_5 , a_=7_6_8 , a_=1_2 , a_=1_2 , a_=3_0_7_2 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1 , a_=0.02 , a_=1e-5 , a_="absolute" , a_=4 , a_="full" , a_=0 , a_=0 , a_=1 , a_=0 , a_=2 , **a_ , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) a_ : Optional[int] = vocab_size a_ : Dict = max_position_embeddings a_ : str = hidden_size a_ : Optional[int] = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : Tuple = hidden_act a_ : List[Any] = hidden_dropout_prob a_ : List[str] = attention_probs_dropout_prob a_ : List[Any] = initializer_range a_ : Dict = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : List[str] = position_embedding_type a_ : Union[str, Any] = block_per_row a_ : Tuple = approx_mode a_ : Optional[Any] = initial_prior_first_n_blocks a_ : List[str] = initial_prior_diagonal_n_blocks
370
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=False ) -> Tuple: """simple docstring""" __UpperCAmelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): __UpperCAmelCase : str = "segformer.encoder." + key if key.startswith("backbone" ): __UpperCAmelCase : Union[str, Any] = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __UpperCAmelCase : str = key[key.find("patch_embed" ) + len("patch_embed" )] __UpperCAmelCase : Any = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(UpperCamelCase )-1}" ) if "norm" in key: __UpperCAmelCase : List[str] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __UpperCAmelCase : int = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] __UpperCAmelCase : Optional[Any] = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(UpperCamelCase )-1}" ) if "layer_norm1" in key: __UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: __UpperCAmelCase : Optional[int] = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 __UpperCAmelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] __UpperCAmelCase : List[str] = key.replace(f"block{idx}" , f"block.{int(UpperCamelCase )-1}" ) if "attn.q" in key: __UpperCAmelCase : List[str] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: __UpperCAmelCase : List[Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: __UpperCAmelCase : Union[str, Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: __UpperCAmelCase : int = key.replace("fc1" , "dense1" ) if "fc2" in key: __UpperCAmelCase : str = key.replace("fc2" , "dense2" ) if "linear_pred" in key: __UpperCAmelCase : Optional[int] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: __UpperCAmelCase : Tuple = key.replace("linear_fuse.conv" , "linear_fuse" ) __UpperCAmelCase : Tuple = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __UpperCAmelCase : Tuple = key[key.find("linear_c" ) + len("linear_c" )] __UpperCAmelCase : Any = key.replace(f"linear_c{idx}" , f"linear_c.{int(UpperCamelCase )-1}" ) if key.startswith("head" ): __UpperCAmelCase : Optional[int] = key.replace("head" , "classifier" ) __UpperCAmelCase : List[Any] = value return new_state_dict def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __UpperCAmelCase : Tuple = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) __UpperCAmelCase : Optional[int] = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict __UpperCAmelCase : str = kv_weight[ : config.hidden_sizes[i], : ] __UpperCAmelCase : List[str] = kv_bias[: config.hidden_sizes[i]] __UpperCAmelCase : int = kv_weight[ config.hidden_sizes[i] :, : ] __UpperCAmelCase : int = kv_bias[ config.hidden_sizes[i] : ] def _UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return image @torch.no_grad() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = SegformerConfig() __UpperCAmelCase : Optional[int] = False # set attributes based on model_name __UpperCAmelCase : Dict = "huggingface/label-files" if "segformer" in model_name: __UpperCAmelCase : Any = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: __UpperCAmelCase : Dict = 150 __UpperCAmelCase : Dict = "ade20k-id2label.json" __UpperCAmelCase : List[Any] = (1, 150, 128, 128) elif "city" in model_name: __UpperCAmelCase : Optional[int] = 19 __UpperCAmelCase : Optional[Any] = "cityscapes-id2label.json" __UpperCAmelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(f"Model {model_name} not supported" ) elif "mit" in model_name: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = model_name[4:6] __UpperCAmelCase : Tuple = 1000 __UpperCAmelCase : Any = "imagenet-1k-id2label.json" __UpperCAmelCase : List[str] = (1, 1000) else: raise ValueError(f"Model {model_name} not supported" ) # set config attributes __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) , "r" ) ) __UpperCAmelCase : Optional[Any] = {int(UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : List[Any] = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __UpperCAmelCase : Optional[int] = [64, 128, 320, 512] __UpperCAmelCase : Tuple = 256 elif size == "b2": __UpperCAmelCase : int = [64, 128, 320, 512] __UpperCAmelCase : List[str] = 768 __UpperCAmelCase : Optional[int] = [3, 4, 6, 3] elif size == "b3": __UpperCAmelCase : Tuple = [64, 128, 320, 512] __UpperCAmelCase : List[Any] = 768 __UpperCAmelCase : List[str] = [3, 4, 18, 3] elif size == "b4": __UpperCAmelCase : Any = [64, 128, 320, 512] __UpperCAmelCase : Dict = 768 __UpperCAmelCase : List[str] = [3, 8, 27, 3] elif size == "b5": __UpperCAmelCase : str = [64, 128, 320, 512] __UpperCAmelCase : List[Any] = 768 __UpperCAmelCase : List[str] = [3, 6, 40, 3] else: raise ValueError(f"Size {size} not supported" ) # load image processor (only resize + normalize) __UpperCAmelCase : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) # prepare image __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : str = image_processor(images=UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict if encoder_only: __UpperCAmelCase : int = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) ) else: __UpperCAmelCase : str = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys __UpperCAmelCase : int = rename_keys(UpperCamelCase , encoder_only=UpperCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase , UpperCamelCase ) # create HuggingFace model and load state dict if encoder_only: __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = SegformerForImageClassification(UpperCamelCase ) else: __UpperCAmelCase : Tuple = SegformerForSemanticSegmentation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # forward pass __UpperCAmelCase : str = model(UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __UpperCAmelCase : List[str] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __UpperCAmelCase : Any = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __UpperCAmelCase : Dict = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __UpperCAmelCase : str = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __UpperCAmelCase : List[Any] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __UpperCAmelCase : Dict = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __UpperCAmelCase : Optional[int] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __UpperCAmelCase : Any = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __UpperCAmelCase : Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __UpperCAmelCase : Dict = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __UpperCAmelCase : str = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __UpperCAmelCase : Tuple = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: __UpperCAmelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
77
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A_ : List[Any] =logging.get_logger(__name__) class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): """simple docstring""" a_ = feature_size a_ = sampling_rate a_ = padding_value a_ = kwargs.pop("""padding_side""" , """right""" ) a_ = kwargs.pop("""return_attention_mask""" , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) a_ = processed_features[self.model_input_names[0]] a_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_UpperCAmelCase ) == 0: if return_attention_mask: a_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a_ = required_input[0] if isinstance(_UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_UpperCAmelCase ): a_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(_UpperCAmelCase ): a_ = """tf""" elif is_torch_tensor(_UpperCAmelCase ): a_ = """pt""" elif isinstance(_UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): a_ = """np""" else: raise ValueError( f"type of {first_element} unknown: {type(_UpperCAmelCase )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a_ = to_numpy(_UpperCAmelCase ) else: a_ = [to_numpy(_UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy a_ = self._get_padding_strategies(padding=_UpperCAmelCase , max_length=_UpperCAmelCase ) a_ = processed_features[self.model_input_names[0]] a_ = len(_UpperCAmelCase ) if not all(len(_UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) a_ = [] for i in range(_UpperCAmelCase ): a_ = {k: v[i] for k, v in processed_features.items()} # truncation a_ = self._truncate( _UpperCAmelCase , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) truncated_inputs.append(_UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a_ = PaddingStrategy.MAX_LENGTH a_ = {} for i in range(_UpperCAmelCase ): # padding a_ = self._pad( truncated_inputs[i] , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: a_ = [] if value.dtype is np.dtype(np.floataa ): a_ = value.astype(np.floataa ) batch_outputs[key].append(_UpperCAmelCase ) return BatchFeature(_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" a_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a_ = len(_UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a_ = np.ones(len(_UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: a_ = max_length - len(_UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (0, difference) ) a_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) a_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) a_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = len(_UpperCAmelCase ) > max_length if needs_to_be_truncated: a_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a_ = processed_features["""attention_mask"""][:max_length] return processed_features def lowercase__ ( self , _UpperCAmelCase=False , _UpperCAmelCase=None ): """simple docstring""" if padding is not False: if padding is True: a_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = PaddingStrategy(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = padding else: a_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
483
0
"""simple docstring""" class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' pass class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' pass class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :int ) -> str: '''simple docstring''' a__ = [ [], [], [], ] def _UpperCamelCase ( self :int , __magic_name__ :int , __magic_name__ :int ) -> None: '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__magic_name__ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _UpperCamelCase ( self :Tuple ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self :str ) -> str: '''simple docstring''' return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :Any ) -> Optional[Any]: '''simple docstring''' a__ = [] def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :int ) -> None: '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__magic_name__ ) def _UpperCamelCase ( self :List[str] ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: a__ = min(self.queue ) self.queue.remove(__magic_name__ ) return data def __str__( self :Union[str, Any] ) -> str: '''simple docstring''' return str(self.queue ) def __snake_case ( ) -> Union[str, Any]: """simple docstring""" a__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __snake_case ( ) -> Tuple: """simple docstring""" a__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
158
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :List[str]=13 , __magic_name__ :int=30 , __magic_name__ :Optional[Any]=2 , __magic_name__ :Optional[int]=3 , __magic_name__ :List[str]=True , __magic_name__ :Any=True , __magic_name__ :Union[str, Any]=32 , __magic_name__ :List[str]=5 , __magic_name__ :Optional[int]=4 , __magic_name__ :Union[str, Any]=37 , __magic_name__ :str="gelu" , __magic_name__ :Tuple=0.1 , __magic_name__ :List[str]=0.1 , __magic_name__ :List[str]=10 , __magic_name__ :Union[str, Any]=0.02 , ) -> Union[str, Any]: '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def _UpperCamelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, pixel_values def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :Tuple , __magic_name__ :Dict ) -> List[str]: '''simple docstring''' a__ = FlaxViTModel(config=__magic_name__ ) a__ = model(__magic_name__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a__ = (self.image_size, self.image_size) a__ = (self.patch_size, self.patch_size) a__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _UpperCamelCase ( self :str , __magic_name__ :Optional[int] , __magic_name__ :List[str] ) -> Optional[Any]: '''simple docstring''' a__ = self.type_sequence_label_size a__ = FlaxViTForImageClassification(config=__magic_name__ ) a__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = FlaxViTForImageClassification(__magic_name__ ) a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__magic_name__ ) def _UpperCamelCase ( self :str ) -> str: '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : List[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _UpperCamelCase ( self :Dict ) -> None: '''simple docstring''' a__ = FlaxViTModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def _UpperCamelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _UpperCamelCase ( self :Any ) -> Dict: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def _UpperCamelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__magic_name__ ) a__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _UpperCamelCase ( self :str ) -> Optional[Any]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ = self._prepare_for_class(__magic_name__ , __magic_name__ ) a__ = model_class(__magic_name__ ) @jax.jit def model_jitted(__magic_name__ :Dict , **__magic_name__ :Dict ): return model(pixel_values=__magic_name__ , **__magic_name__ ) with self.subTest('''JIT Enabled''' ): a__ = model_jitted(**__magic_name__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): a__ = model_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: a__ = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) a__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__magic_name__ )
158
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase__ : str = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __a : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='pt' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : Any = text_classifier('This is great !' ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(['This is great !', 'This is bad'] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) ,[ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] ,) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier('This is great !' ,top_k=1 ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier('This is great !' ,return_all_scores=snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_classifier('This is great !' ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_classifier(['This is great !', 'Something else'] ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] ,) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(['This is great !', 'Something else'] ,return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] ,) @require_torch def snake_case ( self ): import torch SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='pt' ,device=torch.device('cpu' ) ,) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = pipeline( task='text-classification' ,model='hf-internal-testing/tiny-random-distilbert' ,framework='tf' ) SCREAMING_SNAKE_CASE_ : int = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = pipeline('text-classification' ) SCREAMING_SNAKE_CASE_ : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = pipeline('text-classification' ,framework='tf' ) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': 'POSITIVE', 'score': 0.988}] ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = TextClassificationPipeline(model=snake_case__ ,tokenizer=snake_case__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 SCREAMING_SNAKE_CASE_ : Dict = 'HuggingFace is in' SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier(snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['HuggingFace is in ', 'Paris is in France'] SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}, {'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ,) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format SCREAMING_SNAKE_CASE_ : Tuple = text_classifier(snake_case__ ,top_k=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case__ ) ,[[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] * N, [{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] * N] ,) SCREAMING_SNAKE_CASE_ : List[str] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) ,{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )} ,) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. SCREAMING_SNAKE_CASE_ : List[str] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(snake_case__ ): text_classifier(snake_case__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility SCREAMING_SNAKE_CASE_ : Tuple = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(snake_case__ ) ,[{'label': ANY(snake_case__ ), 'score': ANY(snake_case__ )}] ,) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
105
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case : def __init__(self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4] def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = len(self.first_signal ) SCREAMING_SNAKE_CASE_ = len(self.second_signal ) SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_ = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = deque(self.second_signal ) rotated_signal.rotate(SCREAMING_SNAKE_CASE_ ) for j, item in enumerate(SCREAMING_SNAKE_CASE_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_ = np.matmul(np.transpose(SCREAMING_SNAKE_CASE_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(SCREAMING_SNAKE_CASE_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
626
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase__ : str = "__DUMMY_TRANSFORMERS_USER__" UpperCamelCase__ : int = "Dummy User" UpperCamelCase__ : Optional[int] = "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" UpperCamelCase__ : Dict = "https://hub-ci.huggingface.co" UpperCamelCase__ : str = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCamelCase__ : Optional[Any] = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCamelCase__ : List[Any] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" monkeypatch.setattr('datasets.config.HF_ENDPOINT' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def _UpperCAmelCase ( ): """simple docstring""" return HfApi(endpoint=_SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : HfApi ): """simple docstring""" SCREAMING_SNAKE_CASE_ = HfFolder.get_token() HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" def _cleanup_repo(_SCREAMING_SNAKE_CASE : int ): hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" @contextmanager def _temporary_repo(_SCREAMING_SNAKE_CASE : Tuple ): try: yield repo_id finally: cleanup_repo(_SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : HfApi , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = f"""repo_txt_data-{int(time.time() * 1_0E3 )}""" SCREAMING_SNAKE_CASE_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=_SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : HfApi , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = f"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}""" SCREAMING_SNAKE_CASE_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=_SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : HfApi , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = f"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}""" SCREAMING_SNAKE_CASE_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=_SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
620
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCamelCase__ : Optional[int] = logging.getLogger(__name__) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : torch.nn.Module , _SCREAMING_SNAKE_CASE : BnbQuantizationConfig , _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , _SCREAMING_SNAKE_CASE : Optional[List[str]] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , _SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE_ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE_ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype SCREAMING_SNAKE_CASE_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE_ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = special_dtypes SCREAMING_SNAKE_CASE_ = no_split_module_classes SCREAMING_SNAKE_CASE_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE_ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = max_memory SCREAMING_SNAKE_CASE_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if modules_to_not_convert is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE_ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE_ = '.'.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE_ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE_ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" with init_empty_weights(): SCREAMING_SNAKE_CASE_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE_ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE_ = sum(_SCREAMING_SNAKE_CASE , [] ) SCREAMING_SNAKE_CASE_ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE_ = False if hasattr(_SCREAMING_SNAKE_CASE , 'base_model_prefix' ): SCREAMING_SNAKE_CASE_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE_ = list(model.named_children() ) SCREAMING_SNAKE_CASE_ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE_ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE_ = name.replace(_SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = param_name SCREAMING_SNAKE_CASE_ = model if "." in tensor_name: SCREAMING_SNAKE_CASE_ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE_ = new_module SCREAMING_SNAKE_CASE_ = splits[-1] # offload weights SCREAMING_SNAKE_CASE_ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'meta' , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
620
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase_ ( nn.Module ): __a : int __a : int __a : float = 0.0 __a : int = 1 __a : int = 1 __a : bool = True __a : bool = False __a : bool = False __a : bool = False __a : jnp.dtype = jnp.floataa def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : str = FlaxResnetBlockaD( in_channels=snake_case__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = resnets SCREAMING_SNAKE_CASE_ : List[Any] = attentions if self.add_downsample: SCREAMING_SNAKE_CASE_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=True ): SCREAMING_SNAKE_CASE_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): SCREAMING_SNAKE_CASE_ : Tuple = resnet(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = attn(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_ : List[Any] = self.downsamplers_a(snake_case__ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): __a : int __a : int __a : float = 0.0 __a : int = 1 __a : bool = True __a : jnp.dtype = jnp.floataa def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE_ : List[str] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : List[str] = FlaxResnetBlockaD( in_channels=snake_case__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = resnets if self.add_downsample: SCREAMING_SNAKE_CASE_ : Any = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,snake_case__ ,snake_case__ ,snake_case__=True ): SCREAMING_SNAKE_CASE_ : List[Any] = () for resnet in self.resnets: SCREAMING_SNAKE_CASE_ : List[Any] = resnet(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_ : List[str] = self.downsamplers_a(snake_case__ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): __a : int __a : int __a : int __a : float = 0.0 __a : int = 1 __a : int = 1 __a : bool = True __a : bool = False __a : bool = False __a : bool = False __a : jnp.dtype = jnp.floataa def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = resnets SCREAMING_SNAKE_CASE_ : Any = attentions if self.add_upsample: SCREAMING_SNAKE_CASE_ : List[str] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=True ): for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE_ : Union[str, Any] = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_ : Dict = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_ : Any = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = resnet(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = attn(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) if self.add_upsample: SCREAMING_SNAKE_CASE_ : Tuple = self.upsamplers_a(snake_case__ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): __a : int __a : int __a : int __a : float = 0.0 __a : int = 1 __a : bool = True __a : jnp.dtype = jnp.floataa def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_ : Any = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = resnets if self.add_upsample: SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=True ): for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE_ : List[str] = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_ : str = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = resnet(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) if self.add_upsample: SCREAMING_SNAKE_CASE_ : str = self.upsamplers_a(snake_case__ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): __a : int __a : float = 0.0 __a : int = 1 __a : int = 1 __a : bool = False __a : bool = False __a : jnp.dtype = jnp.floataa def snake_case ( self ): # there is always at least one resnet SCREAMING_SNAKE_CASE_ : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] SCREAMING_SNAKE_CASE_ : Tuple = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = resnets SCREAMING_SNAKE_CASE_ : Union[str, Any] = attentions def __call__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=True ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.resnets[0](snake_case__ ,snake_case__ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): SCREAMING_SNAKE_CASE_ : Tuple = attn(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = resnet(snake_case__ ,snake_case__ ,deterministic=snake_case__ ) return hidden_states
105
import math from datetime import datetime, timedelta def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : Union[str, Any] = year % 1_9 __a : int = year % 4 __a : Optional[int] = year % 7 __a : Dict = math.floor(year / 1_0_0 ) __a : Optional[Any] = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __a : Union[str, Any] = leap_day_inhibits / 4 __a : str = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __a : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __a : List[Any] = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __a : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase_ , 4 , 1_8 ) else: return datetime(lowerCamelCase_ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): SCREAMING_SNAKE_CASE__ = '''will be''' if year > datetime.now().year else '''was''' print(F"Easter in {year} {tense} {gauss_easter(year)}")
47
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __UpperCAmelCase ( __magic_name__="" )-> str: """simple docstring""" snake_case_ : Optional[Any] = tempfile.mkdtemp() return os.path.join(lowerCamelCase__ ,str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Optional[int] = AgentAudio(lowerCAmelCase__ ) snake_case_ : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) # Ensure that the file contains the same value as the original tensor snake_case_, snake_case_ : str = sf.read(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , torch.tensor(lowerCAmelCase__ ) , atol=1E-4 ) ) def _A ( self :Optional[Any] ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : int = get_new_path(suffix=".wav" ) sf.write(lowerCAmelCase__ , lowerCAmelCase__ , 16_000 ) snake_case_ : List[str] = AgentAudio(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase__ ) @require_vision @require_torch class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> Any: '''simple docstring''' snake_case_ : str = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : Optional[Any] = AgentImage(lowerCAmelCase__ ) snake_case_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def _A ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" snake_case_ : Dict = Image.open(lowerCAmelCase__ ) snake_case_ : Dict = AgentImage(lowerCAmelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def _A ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" snake_case_ : Optional[Any] = Image.open(lowerCAmelCase__ ) snake_case_ : Optional[Any] = AgentImage(lowerCAmelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = "Hey!" snake_case_ : Optional[int] = AgentText(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , agent_type.to_string() ) self.assertEqual(lowerCAmelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
721
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : str = FairseqRobertaModel.from_pretrained(__magic_name__ ) roberta.eval() # disable dropout snake_case_ : Dict = roberta.model.encoder.sentence_encoder snake_case_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: snake_case_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__magic_name__ ) snake_case_ : List[str] = XLMRobertaXLForSequenceClassification(__magic_name__ ) if classification_head else XLMRobertaXLForMaskedLM(__magic_name__ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case_ : List[Any] = roberta_sent_encoder.embed_tokens.weight snake_case_ : int = roberta_sent_encoder.embed_positions.weight snake_case_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case_ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case_ : BertLayer = model.roberta.encoder.layer[i] snake_case_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case_ : RobertaAttention = layer.attention snake_case_ : Dict = roberta_layer.self_attn_layer_norm.weight snake_case_ : Dict = roberta_layer.self_attn_layer_norm.bias # self attention snake_case_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case_ : Dict = roberta_layer.self_attn.q_proj.weight snake_case_ : Any = roberta_layer.self_attn.q_proj.bias snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight snake_case_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias snake_case_ : Optional[int] = roberta_layer.self_attn.v_proj.weight snake_case_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case_ : List[str] = roberta_layer.self_attn.out_proj.weight snake_case_ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case_ : int = roberta_layer.final_layer_norm.weight snake_case_ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : List[str] = roberta_layer.fca.weight snake_case_ : List[Any] = roberta_layer.fca.bias # output snake_case_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case_ : Any = roberta_layer.fca.weight snake_case_ : Any = roberta_layer.fca.bias # end of layer if classification_head: snake_case_ : int = roberta.model.classification_heads["mnli"].dense.weight snake_case_ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case_ : str = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight snake_case_ : int = roberta.model.encoder.lm_head.dense.bias snake_case_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case_ : Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias snake_case_ : int = roberta.model.encoder.lm_head.weight snake_case_ : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case_ : torch.Tensor = roberta.encode(__magic_name__ ).unsqueeze(0 ) # batch of size 1 snake_case_ : Union[str, Any] = model(__magic_name__ )[0] if classification_head: snake_case_ : Optional[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(__magic_name__ ) ) else: snake_case_ : List[str] = roberta.model(__magic_name__ )[0] print(our_output.shape ,their_output.shape ) snake_case_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case_ : Any = torch.allclose(__magic_name__ ,__magic_name__ ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__magic_name__ ).mkdir(parents=__magic_name__ ,exist_ok=__magic_name__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : Tuple = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
656
0
from math import loga def _lowercase ( __lowerCamelCase : int ) -> List[str]: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class A ( UpperCAmelCase ): def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = SMALL_MODEL_IDENTIFIER __UpperCAmelCase = '''pt''' __UpperCAmelCase = '''tf''' def snake_case__ ( self : int , __a : int ) -> Union[str, Any]: __UpperCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def snake_case__ ( self : Any , __a : Optional[int] ) -> Tuple: __UpperCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def snake_case__ ( self : Dict ) -> Dict: __UpperCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __UpperCAmelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __UpperCAmelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def snake_case__ ( self : Dict ) -> List[str]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __UpperCAmelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __UpperCAmelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __UpperCAmelCase = FeaturesManager.determine_framework(__a ) def snake_case__ ( self : str ) -> Union[str, Any]: __UpperCAmelCase = MagicMock(return_value=__a ) with patch('''transformers.onnx.features.is_tf_available''' , __a ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCAmelCase = MagicMock(return_value=__a ) with patch('''transformers.onnx.features.is_torch_available''' , __a ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __UpperCAmelCase = MagicMock(return_value=__a ) __UpperCAmelCase = MagicMock(return_value=__a ) with patch('''transformers.onnx.features.is_tf_available''' , __a ), patch( '''transformers.onnx.features.is_torch_available''' , __a ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __UpperCAmelCase = MagicMock(return_value=__a ) __UpperCAmelCase = MagicMock(return_value=__a ) with patch('''transformers.onnx.features.is_tf_available''' , __a ), patch( '''transformers.onnx.features.is_torch_available''' , __a ): with self.assertRaises(__a ): __UpperCAmelCase = FeaturesManager.determine_framework(self.test_model )
262
0
import csv import tweepy # Twitter API credentials snake_case = """""" snake_case = """""" snake_case = """""" snake_case = """""" def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> None: # authorize twitter, initialize tweepy _lowercase = tweepy.OAuthHandler(snake_case__ , snake_case__ ) auth.set_access_token(snake_case__ , snake_case__ ) _lowercase = tweepy.API(snake_case__ ) # initialize a list to hold all the tweepy Tweets _lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _lowercase = api.user_timeline(screen_name=snake_case__ , count=200 ) # save most recent tweets alltweets.extend(snake_case__ ) # save the id of the oldest tweet less one _lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(snake_case__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _lowercase = api.user_timeline( screen_name=snake_case__ , count=200 , max_id=snake_case__ ) # save most recent tweets alltweets.extend(snake_case__ ) # update the id of the oldest tweet less one _lowercase = alltweets[-1].id - 1 print(F"""...{len(snake_case__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _lowercase = csv.writer(snake_case__ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(snake_case__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
535
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE__ ( ) -> Generator[int, None, None]: _lowercase = {} _lowercase = 2 while True: _lowercase = factor_map.pop(snake_case__ , snake_case__ ) if factor: _lowercase = factor + prime while x in factor_map: x += factor _lowercase = factor else: _lowercase = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float = 1E10 ) -> int: _lowercase = sieve() _lowercase = 1 while True: _lowercase = next(snake_case__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case__ ) n += 2 if __name__ == "__main__": print(solution())
535
1
'''simple docstring''' import os def _A ( ): lowercase__ = os.path.join(os.path.dirname(lowercase__ ) , """num.txt""" ) with open(lowercase__ ) as file_hand: return str(sum(int(lowercase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
325
'''simple docstring''' from typing import Any class A : def __init__( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self ) -> str: '''simple docstring''' return F'''Node({self.data})''' class A : def __init__( self ) -> int: '''simple docstring''' lowercase__ = None def __iter__( self ) -> Any: '''simple docstring''' lowercase__ = self.head while node: yield node.data lowercase__ = node.next def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> str: '''simple docstring''' return "->".join([str(lowerCamelCase__ ) for item in self] ) def __getitem__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowercase__ = self.head for _ in range(lowerCamelCase__ ): lowercase__ = current.next lowercase__ = data def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowercase__ = Node(lowerCamelCase__ ) if self.head is None: lowercase__ = new_node elif index == 0: lowercase__ = self.head # link new_node to head lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node def A__ ( self ) -> None: # print every node data '''simple docstring''' print(self ) def A__ ( self ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowercase__ = self.head # default first node if index == 0: lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next return delete_node.data def A__ ( self ) -> bool: '''simple docstring''' return self.head is None def A__ ( self ) -> None: '''simple docstring''' lowercase__ = None lowercase__ = self.head while current: # Store the current node's next node. lowercase__ = current.next # Make the current node's next point backwards lowercase__ = prev # Make the previous node be the current node lowercase__ = current # Make the current node the next node (to progress iteration) lowercase__ = next_node # Return prev in order to put the head at the end lowercase__ = prev def _A ( ): lowercase__ = LinkedList() assert linked_list.is_empty() is True assert str(lowercase__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase__ ) == i linked_list.insert_nth(lowercase__ , i + 1 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase__ ) == 9 assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowercase__ ) == "->".join(str(lowercase__ ) for i in range(-8 , 1 ) ) def _A ( ): lowercase__ = [ -9, 100, Node(77345112 ), """dlrow olleH""", 7, 5555, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] lowercase__ = LinkedList() for i in test_input: linked_list.insert_tail(lowercase__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__ = linked_list.delete_head() assert result == -9 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__ = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__ = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase__ ) assert ( str(lowercase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _A ( ): from doctest import testmod testmod() lowercase__ = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(lowercase__ ) print("""\nReading/changing Node data using indexing:""" ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowercase__ = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(lowercase__ ) print(f'''length of linked_list is : {len(lowercase__ )}''' ) if __name__ == "__main__": main()
325
1
from math import factorial, pi def _lowerCAmelCase ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict = 30 ) -> float: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) A = float(__SCREAMING_SNAKE_CASE ) A = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( UpperCamelCase__: Dict , UpperCamelCase__: Any = 30 ) -> float: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) A = float(__SCREAMING_SNAKE_CASE ) A = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
701
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowercase : Any = datasets.load_iris() _lowercase : Tuple = np.array(data["data"]) _lowercase : int = np.array(data["target"]) _lowercase : int = data["target_names"] _lowercase , _lowercase , _lowercase , _lowercase : Any = train_test_split(X, y) def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Any ) -> List[Any]: """simple docstring""" return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) ) def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: List[Any] , UpperCamelCase__: int=5 ) -> Tuple: """simple docstring""" A = zip(UpperCamelCase__ , UpperCamelCase__ ) # List of distances of all points from the point to be classified A = [] for data_point in data: A = euclidean_distance(data_point[0] , UpperCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A = [i[1] for i in sorted(UpperCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A = Counter(UpperCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
546
0
def __lowercase ( snake_case ): """simple docstring""" if not head: return True # split the list to two parts __magic_name__ , __magic_name__ :List[str] = head.next, head while fast and fast.next: __magic_name__ :str = fast.next.next __magic_name__ :int = slow.next __magic_name__ :Optional[int] = slow.next __magic_name__ :Optional[Any] = None # Don't forget here! But forget still works! # reverse the second part __magic_name__ :Optional[int] = None while second: __magic_name__ :List[str] = second.next __magic_name__ :Dict = node __magic_name__ :Dict = second __magic_name__ :Union[str, Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __magic_name__ :int = node.next __magic_name__ :Dict = head.next return True def __lowercase ( snake_case ): """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __magic_name__ :Dict = head while fast and fast.next: __magic_name__ , __magic_name__ :Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack __magic_name__ :Union[str, Any] = [slow.val] while slow.next: __magic_name__ :List[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __magic_name__ :Optional[int] = cur.next return True def __lowercase ( snake_case ): """simple docstring""" if not head or not head.next: return True __magic_name__ :List[str] = {} __magic_name__ :Optional[Any] = 0 while head: if head.val in d: d[head.val].append(snake_case ) else: __magic_name__ :Optional[Any] = [pos] __magic_name__ :Optional[Any] = head.next pos += 1 __magic_name__ :Optional[int] = pos - 1 __magic_name__ :Union[str, Any] = 0 for v in d.values(): if len(snake_case ) % 2 != 0: middle += 1 else: __magic_name__ :int = 0 for i in range(0, len(snake_case ) ): if v[i] + v[len(snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowercase ( snake_case, snake_case ): """simple docstring""" assert isinstance(snake_case, snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = tmp_path / '''cache''' __magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case, keep_in_memory=snake_case ).read() _check_parquet_dataset(snake_case, snake_case ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[str] = tmp_path / '''cache''' __magic_name__ :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ :Tuple = features.copy() if features else default_expected_features __magic_name__ :Union[str, Any] = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ :int = ParquetDatasetReader(snake_case, features=snake_case, cache_dir=snake_case ).read() _check_parquet_dataset(snake_case, snake_case ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :str = tmp_path / '''cache''' __magic_name__ :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ :int = ParquetDatasetReader(snake_case, cache_dir=snake_case, split=snake_case ).read() _check_parquet_dataset(snake_case, snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" if issubclass(snake_case, snake_case ): __magic_name__ :Union[str, Any] = parquet_path elif issubclass(snake_case, snake_case ): __magic_name__ :Union[str, Any] = [parquet_path] __magic_name__ :Optional[int] = tmp_path / '''cache''' __magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ :str = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read() _check_parquet_dataset(snake_case, snake_case ) def __lowercase ( snake_case, snake_case, snake_case=("train",) ): """simple docstring""" assert isinstance(snake_case, snake_case ) for split in splits: __magic_name__ :Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Any = tmp_path / '''cache''' __magic_name__ :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ :Tuple = ParquetDatasetReader( {'''train''': parquet_path}, cache_dir=snake_case, keep_in_memory=snake_case ).read() _check_parquet_datasetdict(snake_case, snake_case ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = tmp_path / '''cache''' __magic_name__ :Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ :int = features.copy() if features else default_expected_features __magic_name__ :List[Any] = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ :Optional[int] = ParquetDatasetReader({'''train''': parquet_path}, features=snake_case, cache_dir=snake_case ).read() _check_parquet_datasetdict(snake_case, snake_case ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" if split: __magic_name__ :Dict = {split: parquet_path} else: __magic_name__ :Optional[int] = '''train''' __magic_name__ :Dict = {'''train''': parquet_path, '''test''': parquet_path} __magic_name__ :List[Any] = tmp_path / '''cache''' __magic_name__ :Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ :Optional[Any] = ParquetDatasetReader(snake_case, cache_dir=snake_case ).read() _check_parquet_datasetdict(snake_case, snake_case, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :str = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __magic_name__ :List[Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __magic_name__ :List[Any] = pf.read() assert dataset.data.table == output_table def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :List[str] = str(shared_datadir / '''test_image_rgb.jpg''' ) __magic_name__ :Tuple = {'''image''': [image_path]} __magic_name__ :List[Any] = Features({'''image''': Image()} ) __magic_name__ :Tuple = Dataset.from_dict(snake_case, features=snake_case ) __magic_name__ :Union[str, Any] = ParquetDatasetWriter(snake_case, tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __magic_name__ :List[str] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __magic_name__ :List[str] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ), streaming=snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''', [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def __lowercase ( snake_case, snake_case ): """simple docstring""" assert get_writer_batch_size(snake_case ) == expected
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """open-llama""" def __init__( self , lowercase=100000 , lowercase=4096 , lowercase=11008 , lowercase=32 , lowercase=32 , lowercase="silu" , lowercase=2048 , lowercase=0.02 , lowercase=1E-6 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=True , lowercase=None , **lowercase , ): _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : str = hidden_size _lowerCamelCase : int = intermediate_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Any = initializer_range _lowerCamelCase : List[Any] = rms_norm_eps _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : List[Any] = kwargs.pop( 'use_memorry_efficient_attention' , lowercase ) _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Any = attention_dropout_prob _lowerCamelCase : Any = use_stable_embedding _lowerCamelCase : Dict = shared_input_output_embedding _lowerCamelCase : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase , ) def A_ ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) _lowerCamelCase : Union[str, Any] = self.rope_scaling.get('type' , lowercase ) _lowerCamelCase : Optional[Any] = self.rope_scaling.get('factor' , lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowercase , lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
708
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets lowercase__ = datasets.logging.get_logger(__name__) lowercase__ = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ lowercase__ = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ lowercase__ = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def A_ ( self , lowercase ): if self.config_name == "default": _lowerCamelCase : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _lowerCamelCase : Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase=None , lowercase=False ): if gpus is None: _lowerCamelCase : Tuple = 1 if torch.cuda.is_available() else 0 _lowerCamelCase : List[Any] = {'src': sources, 'mt': predictions, 'ref': references} _lowerCamelCase : int = [dict(zip(lowercase , lowercase ) ) for t in zip(*data.values() )] _lowerCamelCase, _lowerCamelCase : List[str] = self.scorer.predict(lowercase , gpus=lowercase , progress_bar=lowercase ) return {"mean_score": mean_score, "scores": scores}
492
0
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : int = {"""vocab_file""": """vocab.txt"""} _a : List[str] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _a : Optional[int] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = collections.OrderedDict() with open(lowercase , """r""" , encoding="""utf-8""" ) as reader: __lowerCAmelCase = reader.readlines() for index, token in enumerate(lowercase ): __lowerCAmelCase = token.rstrip("""\n""" ) __lowerCAmelCase = index return vocab class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE=2_00 ): '''simple docstring''' __lowerCAmelCase = vocab __lowerCAmelCase = unk_token __lowerCAmelCase = max_input_chars_per_word def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = list(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase = 0 __lowerCAmelCase = [] while start < len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = None while start < end: __lowerCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = end return sub_tokens class _UpperCAmelCase ( lowerCAmelCase_ ): a : Dict =VOCAB_FILES_NAMES a : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["""input_ids""", """attention_mask"""] a : Union[str, Any] =False def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<d>",__SCREAMING_SNAKE_CASE="</d>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="</n>",__SCREAMING_SNAKE_CASE="</_>",__SCREAMING_SNAKE_CASE="left",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' requires_backends(self,["""jieba"""] ) super().__init__( bod_token=__SCREAMING_SNAKE_CASE,eod_token=__SCREAMING_SNAKE_CASE,bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,line_token=__SCREAMING_SNAKE_CASE,space_token=__SCREAMING_SNAKE_CASE,padding_side=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = bod_token __lowerCAmelCase = eod_token __lowerCAmelCase = load_vocab(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.encoder[space_token] __lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder,unk_token=self.unk_token ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder[self.bod_token] @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder[self.eod_token] @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder["\n"] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self ): '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] for x in jieba.cut(__SCREAMING_SNAKE_CASE,cut_all=__SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) ) return output_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [i for i in token_ids if i >= 0] __lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return token in self.encoder def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "".join(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.encoder.get(__SCREAMING_SNAKE_CASE,self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.decoder.get(__SCREAMING_SNAKE_CASE,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if os.path.isdir(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __lowerCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory __lowerCAmelCase = 0 if " " in self.encoder: __lowerCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] __lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items(),key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) with open(__SCREAMING_SNAKE_CASE,"""w""",encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
689
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: # load base model __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __lowerCAmelCase = load_file(lowercase ) __lowerCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.text_encoder else: __lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __lowerCAmelCase = pipeline.unet # find the target layer __lowerCAmelCase = layer_infos.pop(0 ) while len(lowercase ) > -1: try: __lowerCAmelCase = curr_layer.__getattr__(lowercase ) if len(lowercase ) > 0: __lowerCAmelCase = layer_infos.pop(0 ) elif len(lowercase ) == 0: break except Exception: if len(lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __lowerCAmelCase = layer_infos.pop(0 ) __lowerCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase ) else: pair_keys.append(lowercase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: __lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) __lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ) # update visited list for item in pair_keys: visited.append(lowercase ) return pipeline if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _a : Optional[int] = parser.parse_args() _a : Dict = args.base_model_path _a : Optional[Any] = args.checkpoint_path _a : Union[str, Any] = args.dump_path _a : Optional[int] = args.lora_prefix_unet _a : int = args.lora_prefix_text_encoder _a : str = args.alpha _a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _a : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
689
1
"""simple docstring""" import numpy as np def A_ ( __lowercase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
395
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def A_ ( __lowercase , __lowercase , __lowercase , __lowercase=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: UpperCamelCase_ : Dict =os.path.abspath(__lowercase ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) UpperCamelCase_ : List[Any] =torch.load(__lowercase , map_location='cpu' ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) UpperCamelCase_ : str =convert_pytorch_state_dict_to_flax(__lowercase , __lowercase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase_ : str =convert_pytorch_sharded_state_dict_to_flax(__lowercase , __lowercase ) return flax_state_dict def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , ): def is_key_or_prefix_key_in_dict(__lowercase ) -> bool: return len(set(__lowercase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase_ : Any =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase_ : Union[str, Any] =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase_ : Optional[int] =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase_ : Union[str, Any] =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowercase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase_ : Tuple =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowercase ): UpperCamelCase_ : List[Any] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase_ : Optional[Any] =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowercase ): UpperCamelCase_ : Union[str, Any] =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase_ : Any =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase_ : Optional[int] =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase_ : Dict =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase_ : int =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase_ : List[str] =pt_tuple_key[-2] + '_v' if name is not None: UpperCamelCase_ : Optional[int] =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A_ ( __lowercase , __lowercase ): # convert pytorch tensor to numpy UpperCamelCase_ : Optional[Any] ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase_ : Any =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase_ : Dict =flax_model.params['params'] else: UpperCamelCase_ : Union[str, Any] =flax_model.params UpperCamelCase_ : Optional[Any] =flatten_dict(__lowercase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase_ : Any =flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(__lowercase ) UpperCamelCase_ : Optional[Any] ={} UpperCamelCase_ : str =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase_ : Optional[Any] =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase_ : str =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary UpperCamelCase_ : Dict =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : str =pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase_ , UpperCamelCase_ : Tuple =rename_key_and_reshape_tensor( __lowercase , __lowercase , __lowercase , __lowercase ) # add model prefix if necessary UpperCamelCase_ : str =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : List[Any] =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase_ : str =jnp.asarray(__lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowercase , __lowercase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase_ : str =jnp.asarray(__lowercase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase_ : str =jnp.asarray(__lowercase ) return unflatten_dict(__lowercase ) def A_ ( __lowercase , __lowercase ): import torch # Load the index UpperCamelCase_ : List[str] ={} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase_ : Dict =torch.load(__lowercase ) UpperCamelCase_ : Tuple ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase_ : Optional[int] =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase_ : Union[str, Any] =flax_model.params['params'] UpperCamelCase_ : str =flatten_dict(__lowercase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: UpperCamelCase_ : Optional[Any] =flax_model.params UpperCamelCase_ : Union[str, Any] =flatten_dict(__lowercase ) UpperCamelCase_ : List[str] =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) UpperCamelCase_ : Any =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase_ : str =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary UpperCamelCase_ : Optional[Any] =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : Optional[int] =pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase_ , UpperCamelCase_ : Tuple =rename_key_and_reshape_tensor( __lowercase , __lowercase , __lowercase , __lowercase ) # add model prefix if necessary UpperCamelCase_ : Tuple =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : int =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase_ : Union[str, Any] =jnp.asarray(__lowercase ) continue if "var" in flax_key[-1]: UpperCamelCase_ : Optional[int] =jnp.asarray(__lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowercase , __lowercase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase_ : Dict =jnp.asarray(__lowercase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase_ : int =jnp.asarray(__lowercase ) return unflatten_dict(__lowercase ) def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : str =os.path.abspath(__lowercase ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class UpperCamelCase_ : Any =getattr(__lowercase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(__lowercase , 'rb' ) as state_f: try: UpperCamelCase_ : Any =from_bytes(__lowercase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowercase , __lowercase ) def A_ ( __lowercase , __lowercase ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights UpperCamelCase_ : List[Any] =flatten_dict(jax.tree_util.tree_map(lambda __lowercase : x.dtype == jnp.bfloataa , __lowercase ) ).values() if any(__lowercase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) UpperCamelCase_ : List[Any] =jax.tree_util.tree_map( lambda __lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowercase ) UpperCamelCase_ : str =flatten_dict(__lowercase ) UpperCamelCase_ : Union[str, Any] =pt_model.state_dict() UpperCamelCase_ : int =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) UpperCamelCase_ : Optional[int] =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase_ : Tuple =[] UpperCamelCase_ : Tuple =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase_ : str =flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase_ : Tuple ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase_ : Union[str, Any] =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase_ : int =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowercase ) not in pt_model_dict: # conv layer UpperCamelCase_ : Union[str, Any] =flax_key_tuple[:-1] + ('weight',) UpperCamelCase_ : Optional[int] =jnp.transpose(__lowercase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowercase ) not in pt_model_dict: # linear layer UpperCamelCase_ : str =flax_key_tuple[:-1] + ('weight',) UpperCamelCase_ : List[Any] =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase_ : Optional[Any] =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase_ : int =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: UpperCamelCase_ : int =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: UpperCamelCase_ : Optional[Any] ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase_ : Any ='.'.join(__lowercase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase_ : Optional[Any] ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase_ : List[Any] =key.split('.' ) UpperCamelCase_ : Optional[Any] =None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase_ : Optional[int] =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase_ : Optional[int] =key_components[-2] + '_v' if name is not None: UpperCamelCase_ : str =key_components[:-3] + [name] UpperCamelCase_ : int ='.'.join(__lowercase ) UpperCamelCase_ : int =key if flax_key in special_pt_names: UpperCamelCase_ : str =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict UpperCamelCase_ : Any =np.asarray(__lowercase ) if not isinstance(__lowercase , np.ndarray ) else flax_tensor UpperCamelCase_ : Any =torch.from_numpy(__lowercase ) # remove from missing keys missing_keys.remove(__lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowercase ) pt_model.load_state_dict(__lowercase ) # re-transform missing_keys to list UpperCamelCase_ : Tuple =list(__lowercase ) if len(__lowercase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowercase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
395
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = ['input_features', 'is_longer'] def __init__( self : Optional[int] , a : Dict=64 , a : Optional[int]=48_000 , a : Optional[Any]=480 , a : int=10 , a : Optional[Any]=1_024 , a : Union[str, Any]=0.0 , a : str=False , a : float = 0 , a : float = 14_000 , a : int = None , a : str = "fusion" , a : str = "repeatpad" , **a : Dict , )-> int: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , return_attention_mask=a , **a , ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm=a , mel_scale='htk' , ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict[str, Any]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def SCREAMING_SNAKE_CASE_ ( self : str , a : np.array , a : Optional[np.array] = None )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=a , log_mel='dB' , ) return log_mel_spectrogram.T def SCREAMING_SNAKE_CASE_ ( self : Any , a : Union[str, Any] , a : str , a : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( a , size=[chunk_frames, 64] , mode='bilinear' , align_corners=a ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def SCREAMING_SNAKE_CASE_ ( self : Any , a : np.array , a : Dict , a : List[str] , a : str )-> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(a ) - max_length lowercase__ = np.random.randint(0 , overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(a , self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel] , axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(a , a , a ) lowercase__ = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(a ) ) lowercase__ = np.stack(np.tile(a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(a ) ) lowercase__ = np.stack(np.tile(a , a ) ) lowercase__ = np.pad(a , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(a , self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowercase__ = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : str = None , a : Optional[str] = None , a : Optional[int] = None , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , **a : List[str] , )-> BatchFeature: """simple docstring""" lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(a )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(a , max_length if max_length else self.nb_max_samples , a , a ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(a ) is_longer.append(a ) if truncation == "fusion" and sum(a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0 , len(a ) ) lowercase__ = True if isinstance(input_mel[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {'input_features': input_mel, 'is_longer': is_longer} lowercase__ = BatchFeature(a ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(a ) return input_features
235
import random def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = a[left_index] lowercase__ = left_index + 1 for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ): if a[j] < pivot: lowercase__ , lowercase__ = a[i], a[j] i += 1 lowercase__ , lowercase__ = a[i - 1], a[left_index] return i - 1 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if left < right: lowercase__ = random.randint(_SCREAMING_SNAKE_CASE , right - 1 ) lowercase__ , lowercase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__ = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) quick_sort_random( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( _SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def __UpperCamelCase () -> Optional[Any]: lowercase__ = input('Enter numbers separated by a comma:\n' ).strip() lowercase__ = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(',' )] quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
235
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase ) class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : int ) ->List[str]: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , '''decord''' ) self.check_model_type(UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=None ) ->str: UpperCAmelCase_ = {} if frame_sampling_rate is not None: UpperCAmelCase_ = frame_sampling_rate if num_frames is not None: UpperCAmelCase_ = num_frames UpperCAmelCase_ = {} if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict , UpperCAmelCase__ : Union[str, List[str]] , **UpperCAmelCase__ : int ) ->int: return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=1 ) ->str: if num_frames is None: UpperCAmelCase_ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): UpperCAmelCase_ = BytesIO(requests.get(UpperCAmelCase__ ).content ) UpperCAmelCase_ = VideoReader(UpperCAmelCase__ ) videoreader.seek(0 ) UpperCAmelCase_ = 0 UpperCAmelCase_ = num_frames * frame_sampling_rate - 1 UpperCAmelCase_ = np.linspace(UpperCAmelCase__ , UpperCAmelCase__ , num=UpperCAmelCase__ , dtype=np.intaa ) UpperCAmelCase_ = videoreader.get_batch(UpperCAmelCase__ ).asnumpy() UpperCAmelCase_ = list(UpperCAmelCase__ ) UpperCAmelCase_ = self.image_processor(UpperCAmelCase__ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self : List[str] , UpperCAmelCase__ : List[str] ) ->Tuple: UpperCAmelCase_ = self.model(**UpperCAmelCase__ ) return model_outputs def lowerCAmelCase__ ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=5 ) ->Tuple: if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(UpperCAmelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__ )]
43
'''simple docstring''' from collections.abc import Callable def __lowerCamelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ): '''simple docstring''' UpperCAmelCase_ = a UpperCAmelCase_ = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCAmelCase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: UpperCAmelCase_ = mid else: UpperCAmelCase_ = mid UpperCAmelCase_ = start + (end - start) / 2.0 return mid def __lowerCamelCase ( _UpperCamelCase : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
43
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase: Any =logging.getLogger(__name__) @dataclass class lowerCamelCase__ : __UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"""help""": """Whether tp freeze the encoder."""} ) __UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCamelCase__ : __UpperCAmelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __UpperCAmelCase = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __UpperCAmelCase = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __UpperCAmelCase = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __UpperCAmelCase = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __UpperCAmelCase = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"""help""": """Source language id for translation."""} ) __UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"""help""": """Target language id for translation."""} ) __UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"""help""": """# num_beams to use for evaluation."""} ) __UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __snake_case ( __A ,__A ,__A ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,F'''{split}_results.json''' ) ) def __snake_case ( ) -> Dict: lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase : List[Any] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowercase : List[str] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowercase : str = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf=""".ckpt""" in model_args.model_name_or_path ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase : str = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase : Dict = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase : List[str] = SeqaSeqDataset # Get datasets lowercase : List[Any] = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""train""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_train else None ) lowercase : int = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""val""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""test""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_predict else None ) # Initialize our Trainer lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task ,SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) lowercase : Union[str, Any] = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_args=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,) lowercase : List[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase : Dict = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase : List[str] = train_result.metrics lowercase : List[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase : List[Any] = trainer.evaluate(metric_key_prefix="""val""" ) lowercase : int = data_args.n_val lowercase : Union[str, Any] = round(metrics["""val_loss"""] ,4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase : Tuple = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ ,metric_key_prefix="""test""" ) lowercase : Optional[Any] = test_output.metrics lowercase : int = data_args.n_test if trainer.is_world_process_zero(): lowercase : List[Any] = round(metrics["""test_loss"""] ,4 ) handle_metrics("""test""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: lowercase : Union[str, Any] = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) lowercase : str = lmap(str.strip ,SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""all_results.json""" ) ) return all_metrics def __snake_case ( __A ) -> Tuple: main() if __name__ == "__main__": main()
607
from timeit import timeit lowerCamelCase = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] =0 _lowerCamelCase : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : List[str] =len(SCREAMING_SNAKE_CASE__ ) // 2 _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] =F'''all({name}(key) is value for key, value in test_data.items())''' _lowerCamelCase : List[Any] =F'''from __main__ import test_data, {name}''' _lowerCamelCase : Any =500_000 _lowerCamelCase : Dict =timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
464
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class a__ : """simple docstring""" def __init__( self :int ): lowercase = {} def __UpperCAmelCase ( self :Optional[int] , lowercase__ :Optional[int] ): lowercase = {} def __UpperCAmelCase ( self :int , lowercase__ :Optional[Any] , lowercase__ :int , lowercase__ :Tuple ): if nodea not in self.connections: self.add_node(lowercase__ ) if nodea not in self.connections: self.add_node(lowercase__ ) lowercase = probability def __UpperCAmelCase ( self :List[str] ): return list(self.connections ) def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :int ): lowercase = 0 lowercase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase = Counter(graph.get_nodes() ) lowercase = start for _ in range(SCREAMING_SNAKE_CASE__ ): lowercase = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
704
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( _snake_case , unittest.TestCase ): """simple docstring""" A__ : List[Any] = XLNetTokenizer A__ : str = XLNetTokenizerFast A__ : str = True A__ : int = True def __UpperCAmelCase ( self :Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing lowercase = XLNetTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self :List[str] ): lowercase = '<s>' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCAmelCase ( self :Optional[int] ): lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(lowercase__ ) , 1006 ) def __UpperCAmelCase ( self :Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __UpperCAmelCase ( self :Dict ): lowercase = XLNetTokenizer(lowercase__ , keep_accents=lowercase__ ) lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [285, 46, 10, 170, 382] ) lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __UpperCAmelCase ( self :Optional[int] ): lowercase = XLNetTokenizer(lowercase__ , do_lower_case=lowercase__ ) lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def __UpperCAmelCase ( self :Dict ): lowercase = XLNetTokenizer(lowercase__ , do_lower_case=lowercase__ ) lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def __UpperCAmelCase ( self :Optional[int] ): lowercase = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) lowercase = tokenizer.encode('sequence builders' , add_special_tokens=lowercase__ ) lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase__ ) lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __UpperCAmelCase ( self :Dict ): # fmt: off lowercase = {'input_ids': [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
314
0
'''simple docstring''' UpperCAmelCase__ : str = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} UpperCAmelCase__ : Any = ["a", "b", "c", "d", "e"] def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = start # add current to visited visited.append(UpperCamelCase_ ) lowerCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): for vertice in vertices: if vertice not in visited: lowerCAmelCase__ = topological_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase__ : Dict = topological_sort("a", [], []) print(sort)
48
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Tuple = "" else: _lowerCamelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Tuple = in_proj_bias[: config.hidden_size] _lowerCamelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Dict = val def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase : str = 8 # set labels if required if not base_model: _lowerCamelCase : str = 1000 _lowerCamelCase : Any = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase : int = 384 _lowerCamelCase : str = 1536 _lowerCamelCase : List[str] = 12 _lowerCamelCase : Optional[int] = 6 # load original model from torch hub _lowerCamelCase : Union[str, Any] = torch.hub.load("facebookresearch/dino:main" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[str] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: _lowerCamelCase : Optional[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: _lowerCamelCase : Union[str, Any] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase : Tuple = ViTImageProcessor() _lowerCamelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Dict = encoding["pixel_values"] _lowerCamelCase : int = model(_lowerCamelCase ) if base_model: _lowerCamelCase : List[str] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCamelCase : Tuple = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _lowerCAmelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if len(_UpperCAmelCase ) < k or k < 0: raise ValueError('Invalid Input' ) lowerCamelCase__ : Tuple = sum(array[:k] ) for i in range(len(_UpperCAmelCase ) - k ): lowerCamelCase__ : List[Any] = current_sum - array[i] + array[i + k] lowerCamelCase__ : List[Any] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCAmelCase : Tuple = [randint(-10_00, 10_00) for i in range(1_00)] _UpperCAmelCase : List[str] = randint(0, 1_10) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
188
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> int: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : Dict = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase ) , torch_builtin(UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase ) , gelu_new(UpperCAmelCase ) ) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : str = get_activation('gelu' ) lowerCamelCase__ : Tuple = get_activation('gelu_10' ) lowerCamelCase__ : Tuple = torch_builtin(UpperCAmelCase ) lowerCamelCase__ : List[str] = geluaa(UpperCAmelCase ) lowerCamelCase__ : Tuple = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ) -> List[str]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(UpperCAmelCase ): get_activation('bogus' ) with self.assertRaises(UpperCAmelCase ): get_activation(UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : str = acta.a
188
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__(self : List[Any], __UpperCAmelCase : Any, __UpperCAmelCase : Optional[Any]=13, __UpperCAmelCase : Optional[Any]=10, __UpperCAmelCase : int=3, __UpperCAmelCase : int=2, __UpperCAmelCase : Optional[Any]=2, __UpperCAmelCase : Dict=2, __UpperCAmelCase : str=True, __UpperCAmelCase : List[str]=True, __UpperCAmelCase : List[Any]=32, __UpperCAmelCase : Tuple=5, __UpperCAmelCase : Optional[int]=4, __UpperCAmelCase : List[str]=37, __UpperCAmelCase : Any="gelu", __UpperCAmelCase : Optional[int]=0.1, __UpperCAmelCase : Any=0.1, __UpperCAmelCase : str=10, __UpperCAmelCase : Any=0.02, __UpperCAmelCase : Optional[Any]=0.9, __UpperCAmelCase : List[str]=None, ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Any = tubelet_size SCREAMING_SNAKE_CASE : str = num_frames SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = mask_ratio SCREAMING_SNAKE_CASE : Dict = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE : Tuple = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE : Tuple = int(mask_ratio * self.seq_length ) def lowercase__ (self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def lowercase__ (self : Any ) -> Optional[Any]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) def lowercase__ (self : int, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = VideoMAEModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ (self : List[str], __UpperCAmelCase : str, __UpperCAmelCase : List[Any], __UpperCAmelCase : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = VideoMAEForPreTraining(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones((self.num_masks,) ) SCREAMING_SNAKE_CASE : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : List[Any] = mask.expand(self.batch_size, -1 ).bool() SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_, lowerCamelCase_ ) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE : Dict = mask.sum().item() SCREAMING_SNAKE_CASE : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( a__, a__, unittest.TestCase ): __magic_name__ : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __magic_name__ : Tuple = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __magic_name__ : Optional[Any] = False __magic_name__ : str = False __magic_name__ : Any = False __magic_name__ : Dict = False def lowercase__ (self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = VideoMAEModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=37 ) def lowercase__ (self : List[str], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : Any=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(lowerCamelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : Tuple = torch.ones((self.model_tester.num_masks,) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : List[Any] = mask.expand(self.model_tester.batch_size, -1 ).bool() SCREAMING_SNAKE_CASE : str = bool_masked_pos.to(lowerCamelCase_ ) if return_labels: if model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase_ ) return inputs_dict def lowercase__ (self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowercase__ (self : str ) -> str: """simple docstring""" pass def lowercase__ (self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def lowercase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def lowercase__ (self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase__ (self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) @slow def lowercase__ (self : List[str] ) -> Any: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = VideoMAEModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase__ (self : Dict ) -> Tuple: """simple docstring""" if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) self.assertEqual(out_len + 1, len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def lowercase__ (self : Dict ) -> Dict: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Tuple, __UpperCAmelCase : List[str], __UpperCAmelCase : List[str] ): SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = outputs.hidden_states SCREAMING_SNAKE_CASE : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : Tuple = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ (self : int ) -> int: """simple docstring""" pass def __lowercase (): SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE : Any = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowercase__ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ (self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_video() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_, return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : int = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.3669, -0.0688, -0.2421] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def lowercase__ (self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Tuple = prepare_video() SCREAMING_SNAKE_CASE : int = image_processor(lowerCamelCase_, return_tensors='''pt''' ).to(lowerCamelCase_ ) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE : int = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=lowerCamelCase_ ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase_, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.5142], device=lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase_, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=lowerCamelCase_ ).to( lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.tensor(torch.tensor([0.6469] ), device=lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.loss, lowerCamelCase_, atol=1e-4 ) )
507
'''simple docstring''' def _snake_case ( A ) -> int: if n == 1 or not isinstance(A , A ): return 0 elif n == 2: return 1 else: lowerCAmelCase__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _snake_case ( A ) -> int: lowerCAmelCase__ = 0 lowerCAmelCase__ = 2 while digits < n: index += 1 lowerCAmelCase__ = len(str(fibonacci(A ) ) ) return index def _snake_case ( A = 1000 ) -> int: return fibonacci_digits_index(A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
90
0
'''simple docstring''' import datasets from .evaluate import evaluate __snake_case = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" __snake_case = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" __snake_case = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : Dict , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} UpperCamelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] UpperCamelCase = evaluate(dataset=__A , predictions=__A ) return score
714
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __snake_case = 3 def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" print("""Generating primitive root of p""" ) while True: UpperCamelCase = random.randrange(3 , SCREAMING_SNAKE_CASE_ ) if pow(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ ) == 1: continue if pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) == 1: continue return g def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" print("""Generating prime p...""" ) UpperCamelCase = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) # select large prime number. UpperCamelCase = primitive_root(SCREAMING_SNAKE_CASE_ ) # one primitive root on modulo p. UpperCamelCase = random.randrange(3 , SCREAMING_SNAKE_CASE_ ) # private_key -> have to be greater than 2 for safety. UpperCamelCase = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = (key_size, e_a, e_a, p) UpperCamelCase = (key_size, d) return public_key, private_key def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() UpperCamelCase , UpperCamelCase = generate_key(SCREAMING_SNAKE_CASE_ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , """w""" ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , """w""" ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def _lowercase ( ): """simple docstring""" print("""Making key files...""" ) make_key_files("""elgamal""" , 2_048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
181
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase = 128_022 UpperCamelCase = 128_028 @require_sentencepiece class _a ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[Any] = MaMaaaTokenizer lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : int = True def __UpperCAmelCase( self ): super().setUp() __A : str = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __A : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __A : Any = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __A : Dict = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase( self , **__UpperCAmelCase ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): return ( "This is a test", "This is a test", ) def __UpperCAmelCase( self ): __A : Union[str, Any] = "</s>" __A : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = self.get_tokenizer() __A : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(__UpperCAmelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): __A : Any = self.get_tokenizer() __A : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2, 3, 4, 5, 6] , ) __A : int = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __A : List[str] = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , "This is a test" ) @slow def __UpperCAmelCase( self ): # fmt: off __A : int = {"input_ids": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[str] = """facebook/m2m100_418M""" lowerCamelCase_ : List[Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCamelCase_ : Dict = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCamelCase_ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def __UpperCAmelCase( cls ): __A : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __A : Union[str, Any] = 1 return cls def __UpperCAmelCase( self ): self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def __UpperCAmelCase( self ): __A : Union[str, Any] = self.tokenizer.get_vocab() self.assertEqual(len(__UpperCAmelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[Any] = "en" __A : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def __UpperCAmelCase( self ): self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) # fmt: off __A : Tuple = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on __A : Optional[int] = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __A : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = tempfile.mkdtemp() __A : Optional[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__UpperCAmelCase ) __A : str = MaMaaaTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.lang_token_to_id , __UpperCAmelCase ) @require_torch def __UpperCAmelCase( self ): __A : List[Any] = "en" __A : Dict = "fr" __A : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt" ) __A : Tuple = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __A : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __UpperCAmelCase( self ): __A : Optional[Any] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __A : List[Any] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __UpperCAmelCase( self ): __A : Optional[Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __A : List[str] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __UpperCAmelCase( self ): __A : Dict = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
520
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: UpperCamelCase = json.load(f) @require_torch class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self , __UpperCAmelCase ): return FSMTTokenizer.from_pretrained(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : str = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __A : int = F"facebook/wmt19-{pair}" __A : Any = self.get_tokenizer(__UpperCAmelCase ) __A : Optional[int] = self.get_model(__UpperCAmelCase ) __A : Optional[int] = bleu_data[pair]["src"] __A : Optional[int] = bleu_data[pair]["tgt"] __A : List[Any] = tokenizer(__UpperCAmelCase , return_tensors="pt" , truncation=__UpperCAmelCase , padding="longest" ).to(__UpperCAmelCase ) __A : Dict = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __A : Optional[Any] = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) __A : str = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) self.assertGreaterEqual(scores["bleu"] , __UpperCAmelCase )
520
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''vit_msn''' def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-06 , lowerCAmelCase_=224 , lowerCAmelCase_=16 , lowerCAmelCase_=3 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> str: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
541
from collections import deque from .hash_table import HashTable class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase_ ) _snake_case = self.values[key] def lowerCAmelCase ( self ) -> Optional[int]: return ( sum(self.charge_factor - len(lowerCAmelCase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase_ ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase_ , lowerCAmelCase_ )
541
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCamelCase__ : int = None lowerCamelCase__ : Any = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = '''▁''' lowerCamelCase__ : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowerCamelCase__ : Optional[int] = { '''google/pegasus-xsum''': 5_12, } class _UpperCAmelCase ( __a): __a : List[Any] = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Any = PegasusTokenizer __a : int = ["""input_ids""", """attention_mask"""] def __init__( self , _A=None , _A=None , _A="<pad>" , _A="</s>" , _A="<unk>" , _A="<mask_2>" , _A="<mask_1>" , _A=None , _A=1_03 , **_A , ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(a_ , a_ ): raise TypeError( f'''additional_special_tokens should be of type {type(a_ )}, but is''' f''' {type(a_ )}''' ) _UpperCAmelCase : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(a_ ) , self.offset - 1 ) ] if len(set(a_ ) ) != len(a_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _UpperCAmelCase : Optional[Any] = additional_special_tokens_extended else: _UpperCAmelCase : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( a_ , tokenizer_file=a_ , pad_token=a_ , eos_token=a_ , unk_token=a_ , mask_token=a_ , mask_token_sent=a_ , offset=a_ , additional_special_tokens=a_ , **a_ , ) _UpperCAmelCase : str = vocab_file _UpperCAmelCase : List[str] = False if not self.vocab_file else True def __snake_case ( self , _A ) -> Any: '''simple docstring''' _UpperCAmelCase : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def __snake_case ( self , _A , _A = None , _A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(a_ ) elif token_ids_a is None: return self._special_token_mask(a_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __snake_case ( self , _A , _A=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self , _A , _A = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
238
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = '▁' a = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a = { 'facebook/m2m100_418M': 1_024, } # fmt: off a = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class a_ ( snake_case ): UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = ["""input_ids""", """attention_mask"""] UpperCAmelCase : List[int] = [] UpperCAmelCase : List[int] = [] def __init__( self : int , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Optional[Any]=None , a_ : str=None , a_ : Tuple="<s>" , a_ : int="</s>" , a_ : int="</s>" , a_ : Any="<pad>" , a_ : Union[str, Any]="<unk>" , a_ : Optional[Any]="m2m100" , a_ : Optional[Dict[str, Any]] = None , a_ : Dict=8 , **a_ : Union[str, Any] , ) -> None: snake_case: Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs snake_case: Union[str, Any] =language_codes snake_case: Optional[int] =FAIRSEQ_LANGUAGE_CODES[language_codes] snake_case: Dict ={lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} snake_case: Optional[int] =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a_ ) for lang_code in fairseq_language_code if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , ) snake_case: int =vocab_file snake_case: int =load_json(a_ ) snake_case: Tuple ={v: k for k, v in self.encoder.items()} snake_case: Any =spm_file snake_case: int =load_spm(a_ , self.sp_model_kwargs ) snake_case: List[Any] =len(self.encoder ) snake_case: Optional[Any] ={ self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ ) } snake_case: List[str] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )} snake_case: int ={v: k for k, v in self.lang_token_to_id.items()} snake_case: Any =src_lang if src_lang is not None else 'en' snake_case: Optional[int] =tgt_lang snake_case: Optional[int] =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) snake_case: str =num_madeup_words @property def UpperCamelCase ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase ( self : Optional[int] ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase ( self : List[Any] , a_ : str ) -> None: snake_case: Optional[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self : Optional[int] , a_ : str ) -> List[str]: return self.sp_model.encode(a_ , out_type=a_ ) def UpperCamelCase ( self : List[Any] , a_ : Optional[int] ) -> Union[str, Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a_ , self.encoder[self.unk_token] ) def UpperCamelCase ( self : str , a_ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a_ , self.unk_token ) def UpperCamelCase ( self : int , a_ : Optional[Any] ) -> Tuple: snake_case: List[Any] =[] snake_case: List[str] ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token snake_case: Optional[Any] =[] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def UpperCamelCase ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) snake_case: List[Any] =[1] * len(self.prefix_tokens ) snake_case: Optional[int] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def UpperCamelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self : Any ) -> Dict: snake_case: List[str] ={self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: snake_case: Optional[int] =self.__dict__.copy() snake_case: List[Any] =None return state def __setstate__( self : int , a_ : Dict ) -> None: snake_case: Any =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Optional[int] ={} snake_case: List[str] =load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase ( self : str , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: snake_case: Tuple =Path(a_ ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) snake_case: Union[str, Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) snake_case: List[Any] =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , a_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a_ ) elif not os.path.isfile(self.spm_file ): with open(a_ , 'wb' ) as fi: snake_case: Any =self.sp_model.serialized_model_proto() fi.write(a_ ) return (str(a_ ), str(a_ )) def UpperCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : str = "en" , a_ : Optional[List[str]] = None , a_ : str = "ro" , **a_ : List[str] , ) -> BatchEncoding: snake_case: List[str] =src_lang snake_case: Optional[int] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def UpperCamelCase ( self : Union[str, Any] , a_ : int , a_ : Optional[str] , a_ : Optional[str] , **a_ : Union[str, Any] ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) snake_case: List[str] =src_lang snake_case: List[str] =self(a_ , add_special_tokens=a_ , **a_ ) snake_case: List[Any] =self.get_lang_id(a_ ) snake_case: List[str] =tgt_lang_id return inputs def UpperCamelCase ( self : str ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self : Dict ) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self : List[str] , a_ : str ) -> None: snake_case: Optional[Any] =self.get_lang_token(a_ ) snake_case: Optional[Any] =self.lang_token_to_id[lang_token] snake_case: Optional[Any] =[self.cur_lang_id] snake_case: Optional[int] =[self.eos_token_id] def UpperCamelCase ( self : Optional[int] , a_ : str ) -> None: snake_case: Dict =self.get_lang_token(a_ ) snake_case: Tuple =self.lang_token_to_id[lang_token] snake_case: Optional[int] =[self.cur_lang_id] snake_case: List[str] =[self.eos_token_id] def UpperCamelCase ( self : Union[str, Any] , a_ : str ) -> str: return self.lang_code_to_token[lang] def UpperCamelCase ( self : int , a_ : str ) -> int: snake_case: Union[str, Any] =self.get_lang_token(a_ ) return self.lang_token_to_id[lang_token] def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" snake_case: Dict =sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def a_ ( __UpperCAmelCase ) -> Union[Dict, List]: """simple docstring""" with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: """simple docstring""" with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
350
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] A_ = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] A_ = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): A_ = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
479
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase : lowercase = LEDConfig lowercase = {} lowercase = 'gelu' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : str=2 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=20 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any=4 , ) -> str: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = eos_token_id lowercase = pad_token_id lowercase = bos_token_id lowercase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowercase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowercase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __a ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowercase = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase = tf.concat( [tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , ) lowercase = global_attention_mask return config, inputs_dict def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' lowercase = TFLEDModel(config=__lowerCamelCase ).get_decoder() lowercase = inputs_dict['''input_ids'''] lowercase = input_ids[:1, :] lowercase = inputs_dict['''attention_mask'''][:1, :] lowercase = 1 # first forward pass lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) lowercase ,lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase = output_from_no_past[:, -3:, random_slice_idx] lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, )-> str: """simple docstring""" if attention_mask is None: lowercase = tf.cast(tf.math.not_equal(UpperCAmelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase ( _A , _A , unittest.TestCase ): lowercase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def __a ( self : Dict ) -> int: '''simple docstring''' lowercase = TFLEDModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCamelCase ) def __a ( self : Optional[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : List[str] ) -> Any: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __a ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = tf.zeros_like(inputs_dict['''attention_mask'''] ) lowercase = 2 lowercase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) lowercase = True lowercase = self.model_tester.seq_length lowercase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCamelCase : int ): lowercase = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Optional[Any] ): lowercase = [t.numpy() for t in outputs.encoder_attentions] lowercase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = False lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __a ( self : Dict ) -> str: '''simple docstring''' pass def __a ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def __UpperCAmelCase ( UpperCAmelCase )-> Optional[Any]: """simple docstring""" return tf.constant(UpperCAmelCase, dtype=tf.intaa ) A_ = 1e-4 @slow @require_tf class __lowercase ( unittest.TestCase ): def __a ( self : List[Any] ) -> str: '''simple docstring''' lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) lowercase = model(**__lowerCamelCase )[0] lowercase = (1, 10_24, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here lowercase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 ) def __a ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) lowercase = model(**__lowerCamelCase )[0] lowercase = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here lowercase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 , rtol=1E-3 )
479
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) A__ : Optional[str] =field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size for training."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) A__ : Optional[float] =field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) A__ : Optional[int] =field( default=1_0_0_0_0 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) A__ : Optional[float] =field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) A__ : Optional[str] =field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) A__ : Optional[int] =field( default=7_5_0 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) A__ : Optional[int] =field( default=1_6 , metadata={"""help""": """Number of gradient accumulation steps."""} ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) A__ : Optional[int] =field(default=5_0_0_0_0 , metadata={"""help""": """Maximum number of training steps."""} ) A__ : Optional[int] =field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ : Optional[int] =field(default=1_0_2_4 , metadata={"""help""": """Sequence lengths used for training."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Training seed."""} ) A__ : Optional[int] =field( default=1_0_2_4 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) A__ : Optional[str] =field( default=_UpperCAmelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) A__ : Optional[int] =field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ : Optional[int] =field(default=1_0_2_4 , metadata={"""help""": """Length of sequences to be evaluated."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ : Optional[int] =field(default=_UpperCAmelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) A__ : Optional[int] =field( default=_UpperCAmelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) A__ : Optional[float] =field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) A__ : Optional[int] =field(default=2_5_6 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) A__ : Optional[int] =field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) A__ : Optional[float] =field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) A__ : Optional[int] =field(default=1_0 , metadata={"""help""": """Number of generations to run in parallel."""} ) A__ : Optional[int] =field( default=2_0_0 , metadata={"""help""": """Number of completions to generate for each sample."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) A__ : Optional[str] =field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) A__ : Optional[str] =field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) A__ : Optional[int] =field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase__ : A__ : Optional[int] =field( default=_UpperCAmelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) A__ : Optional[str] =field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) A__ : Optional[str] =field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) A__ : Optional[int] =field( default=1_0_0_0_0_0 , metadata={"""help""": """Number of files to save per JSON output file."""} ) A__ : Optional[str] =field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ : Optional[float] =field( default=1_0_0_0 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=1_0_0 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) A__ : Optional[float] =field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) A__ : Optional[str] =field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) A__ : Optional[str] =field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ : Optional[int] =field(default=2_0_0_0_0_0 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) A__ : Optional[int] =field( default=3_2_7_6_8 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) A__ : Optional[str] =field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) A__ : Optional[str] =field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) A__ : Optional[int] =field(default=_UpperCAmelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) A__ : Optional[str] =field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
472
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case_ ( A_ : Union[str, Any], A_ : Optional[int]=7 ): '''simple docstring''' _lowerCamelCase : Optional[int] = None if token is not None: _lowerCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _lowerCamelCase : Any = "636036" _lowerCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _lowerCamelCase : Dict = requests.get(lowercase_, headers=lowercase_ ).json() return result["workflow_runs"] def snake_case_ ( A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _lowerCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _lowerCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def snake_case_ ( A_ : str, A_ : List[str], A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _lowerCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_, token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _lowerCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_, artifact_url=lowercase_, output_dir=lowercase_, token=lowercase_ ) def snake_case_ ( A_ : str, A_ : Dict, A_ : int ): '''simple docstring''' get_last_daily_ci_artifacts(lowercase_, lowercase_, lowercase_ ) _lowerCamelCase : Dict = {} for artifact_name in artifact_names: _lowerCamelCase : Union[str, Any] = os.path.join(lowercase_, F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _lowerCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _lowerCamelCase : int = f.read().decode('''UTF-8''' ) return results
707
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def snake_case_ ( A_ : Optional[int], A_ : int, A_ : int=8 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( _lowercase): def __init__( self : List[str] , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : DDPMScheduler , __lowerCAmelCase : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) _lowerCamelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): """simple docstring""" if latents is None: _lowerCamelCase : Optional[int] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _lowerCamelCase : Any = latents.to(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowerCamelCase : Tuple = torch.device(f'''cuda:{gpu_id}''' ) _lowerCamelCase : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _lowerCamelCase : Optional[int] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase , _lowerCamelCase : List[str] = cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Optional[int] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): """simple docstring""" _lowerCamelCase : int = self._execution_device _lowerCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[Any] = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Dict = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[str] = torch.cat(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : int = hint.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Tuple = self.movq.config.latent_channels _lowerCamelCase , _lowerCamelCase : List[Any] = downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) # create initial latent _lowerCamelCase : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : int = {'''image_embeds''': image_embeds, '''hint''': hint} _lowerCamelCase : List[str] = self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.chunk(2 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = variance_pred.chunk(2 ) _lowerCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase , _lowerCamelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _lowerCamelCase : Union[str, Any] = image * 0.5 + 0.5 _lowerCamelCase : List[Any] = image.clamp(0 , 1 ) _lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase : Union[str, Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
598
0
'''simple docstring''' def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = nums.pop(0 ) lowerCamelCase__ = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def A__ ( __lowerCAmelCase : List[Any] ): def backtrack(__lowerCAmelCase : Optional[int] ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ = nums[i], nums[start] backtrack(start + 1 ) lowerCamelCase__ , lowerCamelCase__ = nums[i], nums[start] # backtrack lowerCamelCase__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCamelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
50
'''simple docstring''' from torch import nn class A ( nn.Module ): def __init__( self , snake_case_ , snake_case_ ) -> List[Any]: super().__init__() _a = class_size _a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _a = nn.Linear(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _a = self.mlp(snake_case_ ) return logits
131
0
'''simple docstring''' import logging from transformers import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "bertabs" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=512 , UpperCamelCase__=6 , UpperCamelCase__=512 , UpperCamelCase__=8 , UpperCamelCase__=512 , UpperCamelCase__=0.2 , UpperCamelCase__=6 , UpperCamelCase__=768 , UpperCamelCase__=8 , UpperCamelCase__=2048 , UpperCamelCase__=0.2 , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = max_pos A_ = enc_layers A_ = enc_hidden_size A_ = enc_heads A_ = enc_ff_size A_ = enc_dropout A_ = dec_layers A_ = dec_hidden_size A_ = dec_heads A_ = dec_ff_size A_ = dec_dropout
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : str = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
515
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =GPTSanJapaneseTokenizer __lowerCamelCase : List[Any] =False __lowerCamelCase : List[str] ={'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase_ ( self : str ): '''simple docstring''' super().setUp() # fmt: off __a = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __a = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowercase ) ) def UpperCamelCase_ ( self : Dict , **__lowercase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __a = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a , __a = self.get_input_output_texts(__lowercase ) __a = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __a = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、世界。 こんばんは、㔺界。""" __a = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids without special tokens __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids with special tokens __a = tokens + [tokenizer.unk_token] __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __a = """こんにちは、、、、世界。こんばんは、、、、世界。""" __a = tokenizer.encode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = """こんにちは、世界。こんばんは、世界。😀""" __a = tokenizer.encode(prefix_text + input_text ) __a = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __a = tokenizer.encode(__lowercase , prefix_text=__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = [1] + [0] * (len_prefix + len_text + 1) __a = [1] * (len_prefix + len_text + 1) + [0] __a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __a = tokenizer(prefix_text + input_text ).token_type_ids __a = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __a = tokenizer(__lowercase , prefix_text=__lowercase ).token_type_ids self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = tokenizer.encode("""あンいワ""" ) __a = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __a = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertNotEqual(__lowercase , __lowercase ) self.assertNotEqual(__lowercase , __lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __a = tokenizer(__lowercase , padding=__lowercase ) __a = tokenizer.batch_encode_plus(__lowercase , padding=__lowercase ) # fmt: off __a = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowercase ) self.assertListEqual(x_token.token_type_ids , __lowercase ) self.assertListEqual(x_token.attention_mask , __lowercase ) self.assertListEqual(x_token_a.input_ids , __lowercase ) self.assertListEqual(x_token_a.token_type_ids , __lowercase ) self.assertListEqual(x_token_a.attention_mask , __lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # tokenizer has no padding token pass
225
0
import os import re import shutil import sys import tempfile import unittest import black __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowercase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" A_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) A_ = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase__ , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" A_ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=None ) -> Any: """simple docstring""" A_ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A_ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result A_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) A_ = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) A_ = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(lowerCamelCase__ , '''w''' , newline='''\n''' ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ , '''r''' ) as f: self.assertTrue(f.read() , lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , lowerCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , lowerCamelCase__ ) , ) # Copy consistency with a really long name A_ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , lowerCamelCase__ , lowerCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , lowerCamelCase__ , overwrite_result=re.sub('''Bert''' , '''TestModel''' , lowerCamelCase__ ) , ) def UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" A_ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) A_ ,A_ = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['''format_model_list'''] ) self.assertFalse(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) A_ ,A_ = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase__ ) A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) A_ ,A_ = check_copies.convert_to_localized_md( lowerCamelCase__ , lowerCamelCase__ , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
712
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __lowercase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A_ = '''lm_head''' A_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: A_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A_ = True if "*" in mapped_key: A_ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] A_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: A_ = '''weight_g''' elif "weight_v" in name: A_ = '''weight_v''' elif "bias" in name: A_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ = '''weight''' else: A_ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = full_name.split('''conv_layers.''' )[-1] A_ = name.split('''.''' ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: A_ = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: A_ = UniSpeechConfig() if is_finetuned: if dict_path: A_ = Dictionary.load_from_json(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) A_ = target_dict.indices # fairseq has the <pad> and <s> switched A_ = 42 A_ = 43 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) A_ = True if config.feat_extract_norm == '''layer''' else False A_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) A_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) A_ = UniSpeechForCTC(SCREAMING_SNAKE_CASE ) else: A_ = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: A_ ,A_ ,A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: A_ ,A_ ,A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowercase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
563
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCAmelCase , ) UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCAmelCase : Union[str, Any] = CLIPTextModel(_lowerCAmelCase ) UpperCAmelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self : List[Any] , lowercase : Any , lowercase : List[Any]=0 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase : Tuple = torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : str = StableDiffusionInpaintPipeline(**_lowerCAmelCase ) UpperCAmelCase : Dict = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(_lowerCAmelCase ) UpperCAmelCase : int = sd_pipe(**_lowerCAmelCase ).images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Dict = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCAmelCase : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase : int = StableDiffusionInpaintPipeline.from_pretrained(_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase : Any = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Tuple = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCAmelCase : Dict = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase : Any = StableDiffusionInpaintPipeline.from_pretrained( _lowerCAmelCase , torch_dtype=torch.floataa , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase : Union[str, Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase : str = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __lowerCAmelCase ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase : Any = PNDMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) UpperCAmelCase : int = StableDiffusionInpaintPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , scheduler=_lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase : Union[str, Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
595
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = 0 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE: Optional[Any] = Path(_lowerCAmelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE: List[str] = Path(_lowerCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCAmelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE: Dict = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE: int = Path(_lowerCAmelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE: Tuple = Path(_lowerCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCAmelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE: str = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE: int = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE: Any = Path(_lowerCAmelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE: Optional[Any] = Path(_lowerCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE: Any = AutoImageProcessor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE: List[str] = CLIPImageProcessor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE: int = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE: Optional[int] = Path(_lowerCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCAmelCase , '''w''' ) , ) __SCREAMING_SNAKE_CASE: int = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE: Tuple = AutoImageProcessor.from_pretrained('''clip-base''' ) def snake_case_ ( self ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE: Dict = AutoImageProcessor.from_pretrained(_lowerCAmelCase , revision='''aaaaaa''' ) def snake_case_ ( self ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE: int = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def snake_case_ ( self ): """simple docstring""" with self.assertRaises(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = AutoImageProcessor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def snake_case_ ( self ): """simple docstring""" try: AutoConfig.register('''custom''' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE: Optional[int] = Path(_lowerCAmelCase ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE: Union[str, Any] = Path(_lowerCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowerCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowerCAmelCase , '''w''' ) ) __SCREAMING_SNAKE_CASE: List[str] = CustomImageProcessor.from_pretrained(_lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ): """simple docstring""" class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = True try: AutoConfig.register('''custom''' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE: str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE: Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE: Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_lowerCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
202
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = LayoutLMTokenizer A__ : Dict = LayoutLMTokenizerFast A__ : Union[str, Any] = True A__ : List[Any] = True def A__ ( self: Union[str, Any] ) -> Any: super().setUp() UpperCAmelCase_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase_ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: str ) -> List[str]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ = """UNwant\u00E9d,running""" UpperCAmelCase_ = """unwanted, running""" return input_text, output_text def A__ ( self: str ) -> Tuple: UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase_ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[7, 4, 5, 10, 8, 9] ) def A__ ( self: int ) -> Tuple: pass
700
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def lowerCamelCase_ ( _a : Optional[int] ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
322
0
from ...configuration_utils import PretrainedConfig __A = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'tapas' def __init__( self : Any , __SCREAMING_SNAKE_CASE : Tuple=30522 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1024 , __SCREAMING_SNAKE_CASE : int=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : int=1e-12 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Dict=10.0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : List[str]=1.0 , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : List[Any]=1.0 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="ratio" , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : int=64 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> int: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_sizes __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps # Fine-tuning task hyperparameters __UpperCAmelCase =positive_label_weight __UpperCAmelCase =num_aggregation_labels __UpperCAmelCase =aggregation_loss_weight __UpperCAmelCase =use_answer_as_supervision __UpperCAmelCase =answer_loss_importance __UpperCAmelCase =use_normalized_answer_loss __UpperCAmelCase =huber_loss_delta __UpperCAmelCase =temperature __UpperCAmelCase =aggregation_temperature __UpperCAmelCase =use_gumbel_for_cells __UpperCAmelCase =use_gumbel_for_aggregation __UpperCAmelCase =average_approximation_function __UpperCAmelCase =cell_selection_preference __UpperCAmelCase =answer_loss_cutoff __UpperCAmelCase =max_num_rows __UpperCAmelCase =max_num_columns __UpperCAmelCase =average_logits_per_cell __UpperCAmelCase =select_one_column __UpperCAmelCase =allow_empty_column_selection __UpperCAmelCase =init_cell_selection_weights_to_zero __UpperCAmelCase =reset_position_index_per_cell __UpperCAmelCase =disable_per_token_loss # Aggregation hyperparameters __UpperCAmelCase =aggregation_labels __UpperCAmelCase =no_aggregation_label_index if isinstance(self.aggregation_labels , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
68
import re def __UpperCamelCase ( _A ): lowerCAmelCase_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(_A , _A ) ) if __name__ == "__main__": _A = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
431
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('''only integers accepted as input''' ) else: lowercase__ : int = str(abs(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : Optional[int] = [list(SCREAMING_SNAKE_CASE_ ) for char in range(len(SCREAMING_SNAKE_CASE_ ) )] for index in range(len(SCREAMING_SNAKE_CASE_ ) ): num_transpositions[index].pop(SCREAMING_SNAKE_CASE_ ) return max( int(''''''.join(list(SCREAMING_SNAKE_CASE_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
700
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = "tokenizer_file" SCREAMING_SNAKE_CASE = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _lowerCAmelCase( self ) -> Dict: super().setUp() lowercase__ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase__ : Dict = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase__ : List[Any] = tokenizer.batch_encode_plus(__lowerCAmelCase )['''input_ids'''] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase=6 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : str = '''This is a simple input''' lowercase__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ : Dict = ('''This is a simple input''', '''This is a pair''') lowercase__ : List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase__ : List[str] = None # Hotfixing padding = None self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = self.get_rust_tokenizer() lowercase__ : Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__lowerCAmelCase ) lowercase__ : Optional[Any] = next(iter(__lowerCAmelCase ) )['''premise'''] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : str = list(map(tokenizer.encode , __lowerCAmelCase ) ) lowercase__ : List[str] = [tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) for x in output_tokens] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
428
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=True , UpperCAmelCase_="pt" ) ->List[Any]: snake_case__ = {'add_prefix_space': True} if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not line.startswith(' ' ) else {} snake_case__ = padding_side return tokenizer( [line] , max_length=__UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , ) ->Tuple: snake_case__ = input_ids.ne(__UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( _snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="train" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="" , ) -> Optional[Any]: super().__init__() snake_case__ = Path(UpperCamelCase_ ).joinpath(type_path + '.source' ) snake_case__ = Path(UpperCamelCase_ ).joinpath(type_path + '.target' ) snake_case__ = self.get_char_lens(self.src_file ) snake_case__ = max_source_length snake_case__ = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case__ = tokenizer snake_case__ = prefix if n_obs is not None: snake_case__ = self.src_lens[:n_obs] snake_case__ = src_lang snake_case__ = tgt_lang def __len__( self ) -> Optional[int]: return len(self.src_lens ) def __getitem__( self , UpperCamelCase_ ) -> str: snake_case__ = index + 1 # linecache starts at 1 snake_case__ = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase_ ).rstrip('\n' ) snake_case__ = linecache.getline(str(self.tgt_file ) , UpperCamelCase_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer ) snake_case__ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer snake_case__ = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_source_length , 'right' ) snake_case__ = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_target_length , 'right' ) snake_case__ = source_inputs['input_ids'].squeeze() snake_case__ = target_inputs['input_ids'].squeeze() snake_case__ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _snake_case ( UpperCamelCase_ ) -> str: return [len(UpperCamelCase_ ) for x in Path(UpperCamelCase_ ).open().readlines()] def _snake_case ( self , UpperCamelCase_ ) -> List[str]: snake_case__ = torch.stack([x['input_ids'] for x in batch] ) snake_case__ = torch.stack([x['attention_mask'] for x in batch] ) snake_case__ = torch.stack([x['decoder_input_ids'] for x in batch] ) snake_case__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) snake_case__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) snake_case__ = trim_batch(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ , snake_case__ = trim_batch(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ ) snake_case__ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch a__ : Any = getLogger(__name__) def __lowerCamelCase ( UpperCAmelCase_ ) ->Optional[Any]: return list(itertools.chain.from_iterable(__UpperCAmelCase ) ) def __lowerCamelCase ( UpperCAmelCase_ ) ->None: snake_case__ = get_git_info() save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'git_log.json' ) ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=4 , **UpperCAmelCase_ ) ->Union[str, Any]: with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ ) ->Dict: with open(__UpperCAmelCase ) as f: return json.load(__UpperCAmelCase ) def __lowerCamelCase ( ) ->List[str]: snake_case__ = git.Repo(search_parent_directories=__UpperCAmelCase ) snake_case__ = { 'repo_id': str(__UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List: return list(map(__UpperCAmelCase , __UpperCAmelCase ) ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: with open(__UpperCAmelCase , 'wb' ) as f: return pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ ) ->str: def remove_articles(UpperCAmelCase_ ): return re.sub(R'\b(a|an|the)\b' , ' ' , __UpperCAmelCase ) def white_space_fix(UpperCAmelCase_ ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ ): snake_case__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: snake_case__ = normalize_answer(__UpperCAmelCase ).split() snake_case__ = normalize_answer(__UpperCAmelCase ).split() snake_case__ = Counter(__UpperCAmelCase ) & Counter(__UpperCAmelCase ) snake_case__ = sum(common.values() ) if num_same == 0: return 0 snake_case__ = 1.0 * num_same / len(__UpperCAmelCase ) snake_case__ = 1.0 * num_same / len(__UpperCAmelCase ) snake_case__ = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->str: return normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) snake_case__ = 0 for hypo, pred in zip(__UpperCAmelCase , __UpperCAmelCase ): em += exact_match_score(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: em /= len(__UpperCAmelCase ) return {"em": em} def __lowerCamelCase ( UpperCAmelCase_ ) ->Optional[Any]: return model_prefix.startswith('rag' ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: snake_case__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case__ = 'dropout_rate' for p in extra_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and not hasattr(__UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) continue snake_case__ = p if hasattr(__UpperCAmelCase , __UpperCAmelCase ) else equivalent_param[p] setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) return hparams, config
368
'''simple docstring''' import os from math import logaa def __magic_name__ ( __UpperCAmelCase = "base_exp.txt" ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(map(__UpperCAmelCase , line.split(""",""" ) ) ) if x * logaa(__UpperCAmelCase ) > largest: __SCREAMING_SNAKE_CASE = x * logaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = i + 1 return result if __name__ == "__main__": print(solution())
109
0
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __magic_name__ ( __UpperCAmelCase ): '''simple docstring''' snake_case_ = prime_factors(snake_case__ ) if is_square_free(snake_case__ ): return -1 if len(snake_case__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __magic_name__ ( ) -> List[str]: '''simple docstring''' snake_case_ = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } snake_case_ = Dataset.from_dict(__UpperCAmelCase ) return dataset class a ( _lowerCamelCase ): def A_ ( self : Optional[int] ): snake_case_ = get_dataset() snake_case_ = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A_ ( self : Tuple ): snake_case_ = get_dataset() snake_case_ ,snake_case_ = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowercase_ )
593
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : Any = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
445
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch snake_case : Dict = random.Random() def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=None ): """simple docstring""" if rng is None: a :str = global_rng a :List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=80 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase="hann_window" , _lowerCamelCase=80 , _lowerCamelCase=7600 , _lowerCamelCase=1e-10 , _lowerCamelCase=True , ): a :Tuple = parent a :Optional[int] = batch_size a :Tuple = min_seq_length a :List[Any] = max_seq_length a :str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a :Optional[int] = feature_size a :List[Any] = padding_value a :Dict = sampling_rate a :Union[str, Any] = do_normalize a :str = num_mel_bins a :Tuple = hop_length a :Optional[int] = win_length a :Any = win_function a :Dict = fmin a :Optional[int] = fmax a :Optional[Any] = mel_floor a :Dict = return_attention_mask def SCREAMING_SNAKE_CASE__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ): def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: a :List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a :str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a :Dict = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ): if equal_length: a :Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a :Optional[int] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a :Optional[int] = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Union[str, Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input a :List[str] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values a :int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched a :Tuple = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values a :str = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] a :List[Any] = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a :int = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors='''np''' ) a :List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Tuple = range(800 , 1400 , 200 ) a :Dict = [floats_list((1, x) )[0] for x in lengths] a :List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] a :Any = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a :Tuple = feat_extract(_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase ) a :Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Optional[int] = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) a :str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Any = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) a :List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) a :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :str = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) a :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Any = np.random.rand(100 ).astype(np.floataa ) a :Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a :Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a :str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus a :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Tuple = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test feature size a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a :List[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values a :Any = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched a :str = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values a :Union[str, Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a :Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] a :Optional[int] = np.asarray(_lowerCamelCase ) a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() a :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) a :Any = feat_extract.model_input_names[0] a :List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCamelCase ) == len(_lowerCamelCase ) for x, y in zip(_lowerCamelCase , processed_features[input_name] ) ) ) a :Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase ) a :Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) a :Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: a :Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase ) a :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) a :List[Any] = feat_extract.model_input_names[0] a :List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) a :Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: a :List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.feature_extraction_class(**self.feat_extract_dict ) a :str = self.feat_extract_tester.prepare_inputs_for_target() a :Optional[int] = feat_extract.model_input_names[0] a :str = BatchFeature({input_name: speech_inputs} ) a :Dict = feat_extract.num_mel_bins # hack! a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' )[input_name] a :List[str] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feat_extract_dict a :Any = True a :Union[str, Any] = self.feature_extraction_class(**_lowerCamelCase ) a :int = self.feat_extract_tester.prepare_inputs_for_target() a :Dict = [len(_lowerCamelCase ) for x in speech_inputs] a :List[Any] = feat_extract.model_input_names[0] a :Optional[int] = BatchFeature({input_name: speech_inputs} ) a :List[Any] = feat_extract.num_mel_bins # hack! a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.feat_extract_dict a :str = True a :Any = self.feature_extraction_class(**_lowerCamelCase ) a :Any = self.feat_extract_tester.prepare_inputs_for_target() a :Dict = [len(_lowerCamelCase ) for x in speech_inputs] a :Tuple = feat_extract.model_input_names[0] a :int = BatchFeature({input_name: speech_inputs} ) a :Optional[Any] = min(_lowerCamelCase ) a :Dict = feat_extract.num_mel_bins # hack! a :Dict = feat_extract.pad( _lowerCamelCase , padding='''max_length''' , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): from datasets import load_dataset a :List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a :List[str] = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :Dict = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on a :List[Any] = self._load_datasamples(1 ) a :Any = SpeechTaFeatureExtractor() a :Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCamelCase , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :str = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on a :int = self._load_datasamples(1 ) a :int = SpeechTaFeatureExtractor() a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
445
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.0_2 , _a=["stage2", "stage3", "stage4"] , _a=3 , _a=None , ): lowercase : Union[str, Any] = parent lowercase : List[str] = batch_size lowercase : Optional[int] = image_size lowercase : Optional[int] = num_channels lowercase : str = num_stages lowercase : Union[str, Any] = hidden_sizes lowercase : List[str] = depths lowercase : str = is_training lowercase : int = use_labels lowercase : str = intermediate_size lowercase : Optional[int] = hidden_act lowercase : str = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : int = out_features lowercase : Tuple = num_labels lowercase : Union[str, Any] = scope lowercase : str = num_stages def __magic_name__ ( self ): lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int = None if self.use_labels: lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __magic_name__ ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_a , loss_ignore_index=255 , num_labels=self.num_labels , ) def __magic_name__ ( self , _a , _a , _a ): lowercase : Optional[int] = UperNetForSemanticSegmentation(config=_a ) model.to(_a ) model.eval() lowercase : Union[str, Any] = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self ): lowercase : List[str] = self.prepare_config_and_inputs() ( lowercase ) : Dict = config_and_inputs lowercase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () __lowerCAmelCase = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __magic_name__ ( self ): lowercase : List[str] = UperNetModelTester(self ) lowercase : Optional[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __magic_name__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ): return def __magic_name__ ( self ): lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] = model_class(_a ) lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Any = [*signature.parameters.keys()] lowercase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __magic_name__ ( self ): pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __magic_name__ ( self ): pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self ): pass @unittest.skip(reason="UperNet does not have a base model" ) def __magic_name__ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __magic_name__ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): def check_hidden_states_output(_a , _a , _a ): lowercase : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowercase : int = model(**self._prepare_for_class(_a , _a ) ) lowercase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : int = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : int = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Dict = True check_hidden_states_output(_a , _a , _a ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : List[str] = _config_zero_init(_a ) lowercase : str = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowercase : List[str] = model_class(config=_a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __magic_name__ ( self ): pass @slow def __magic_name__ ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = UperNetForSemanticSegmentation.from_pretrained(_a ) self.assertIsNotNone(_a ) def __magic_name__ ( ) -> List[str]: lowercase : Optional[int] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) lowercase : List[str] = Image.open(__snake_case ).convert("RGB" ) return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) lowercase : str = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_a ) lowercase : List[str] = prepare_img() lowercase : Tuple = processor(images=_a , return_tensors="pt" ).to(_a ) with torch.no_grad(): lowercase : Optional[Any] = model(**_a ) lowercase : Optional[int] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _a ) lowercase : Tuple = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1E-4 ) ) def __magic_name__ ( self ): lowercase : int = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) lowercase : Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_a ) lowercase : Union[str, Any] = prepare_img() lowercase : Dict = processor(images=_a , return_tensors="pt" ).to(_a ) with torch.no_grad(): lowercase : List[Any] = model(**_a ) lowercase : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _a ) lowercase : List[str] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1E-4 ) )
718
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _A : List[Any] = """""" _A : Dict = """""" _A : Optional[Any] = """""" _A : Dict = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: lowercase , lowercase : List[Any] = get_dataset(__snake_case , __snake_case ) print("Processing..." ) lowercase , lowercase , lowercase : Tuple = update_image_and_anno(__snake_case , __snake_case , __snake_case ) for index, image in enumerate(__snake_case ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase : Tuple = random_chars(32 ) lowercase : Optional[int] = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] lowercase : Optional[Any] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__snake_case )} with {file_name}""" ) lowercase : List[Any] = [] for anno in new_annos[index]: lowercase : Union[str, Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__snake_case ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __magic_name__ ( __snake_case : str , __snake_case : str ) -> tuple[list, list]: lowercase : Dict = [] lowercase : int = [] for label_file in glob.glob(os.path.join(__snake_case , "*.txt" ) ): lowercase : Any = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__snake_case ) as in_file: lowercase : Union[str, Any] = in_file.readlines() lowercase : Tuple = os.path.join(__snake_case , f"""{label_name}.jpg""" ) lowercase : str = [] for obj_list in obj_lists: lowercase : Any = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def __magic_name__ ( __snake_case : list , __snake_case : list , __snake_case : int = 1 ) -> tuple[list, list, list]: lowercase : List[Any] = [] lowercase : Tuple = [] lowercase : Optional[Any] = [] for idx in range(len(__snake_case ) ): lowercase : int = [] lowercase : List[Any] = img_list[idx] path_list.append(__snake_case ) lowercase : List[str] = anno_list[idx] lowercase : List[Any] = cva.imread(__snake_case ) if flip_type == 1: lowercase : Any = cva.flip(__snake_case , __snake_case ) for bbox in img_annos: lowercase : str = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowercase : Tuple = cva.flip(__snake_case , __snake_case ) for bbox in img_annos: lowercase : List[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__snake_case ) new_imgs_list.append(__snake_case ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __snake_case : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" lowercase : str = ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print("""DONE ✅""")
518
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _A = logging.get_logger("transformers.models.speecht5") def lowercase (_snake_case ,_snake_case ,_snake_case ) -> str: '''simple docstring''' hf_model.apply_weight_norm() __UpperCamelCase = checkpoint["input_conv.weight_g"] __UpperCamelCase = checkpoint["input_conv.weight_v"] __UpperCamelCase = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __UpperCamelCase = checkpoint[f"""upsamples.{i}.1.weight_g"""] __UpperCamelCase = checkpoint[f"""upsamples.{i}.1.weight_v"""] __UpperCamelCase = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] __UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] __UpperCamelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] __UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] __UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] __UpperCamelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] __UpperCamelCase = checkpoint["output_conv.1.weight_g"] __UpperCamelCase = checkpoint["output_conv.1.weight_v"] __UpperCamelCase = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,) -> Optional[int]: '''simple docstring''' if config_path is not None: __UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(_snake_case ) else: __UpperCamelCase = SpeechTaHifiGanConfig() __UpperCamelCase = SpeechTaHifiGan(_snake_case ) __UpperCamelCase = torch.load(_snake_case ) load_weights(orig_checkpoint["model"]["generator"] ,_snake_case ,_snake_case ) __UpperCamelCase = np.load(_snake_case ) __UpperCamelCase = stats[0].reshape(-1 ) __UpperCamelCase = stats[1].reshape(-1 ) __UpperCamelCase = torch.from_numpy(_snake_case ).float() __UpperCamelCase = torch.from_numpy(_snake_case ).float() model.save_pretrained(_snake_case ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _A = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
505
"""simple docstring""" def lowercase (_snake_case ) -> str: '''simple docstring''' if isinstance(_snake_case ,_snake_case ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_snake_case ,_snake_case ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __UpperCamelCase = False if num < 0: __UpperCamelCase = True __UpperCamelCase = -num __UpperCamelCase = [] while num > 0: binary.insert(0 ,num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_snake_case ) for e in binary ) return "0b" + "".join(str(_snake_case ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
505
1
'''simple docstring''' from PIL import Image def _SCREAMING_SNAKE_CASE( snake_case_ : Image , snake_case_ : float ) ->Image: '''simple docstring''' def brightness(snake_case_ : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(snake_case_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 lowerCamelCase__ = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
411
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ) -> None: '''simple docstring''' warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
411
1
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def a_ ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCamelCase : Dict =terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowercase__ , id=lowercase__ )
464
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A ( __UpperCAmelCase ): lowerCamelCase : Union[str, Any] = """ctrl""" lowerCamelCase : Optional[int] = ["""past_key_values"""] lowerCamelCase : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=246_534 , lowerCamelCase__=256 , lowerCamelCase__=1_280 , lowerCamelCase__=8_192 , lowerCamelCase__=48 , lowerCamelCase__=16 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-6 , lowerCamelCase__=0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = dff lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache super().__init__(**lowerCamelCase__ )
325
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class snake_case ( datasets.BuilderConfig ): __magic_name__ = None class snake_case ( datasets.ArrowBasedBuilder ): __magic_name__ = PandasConfig def lowerCamelCase__ ( self : int ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self : Union[str, Any] , A : Any ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A , (str, list, tuple) ): a : List[str] = data_files if isinstance(A , A ): a : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Tuple = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] a : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(A , A ): a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Optional[int] = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A , gen_kwargs={'files': files} ) ) return splits def lowerCamelCase__ ( self : List[str] , A : pa.Table ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a : Tuple = table_cast(A , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self : Dict , A : Union[str, Any] ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(A ) ): with open(A , 'rb' ) as f: a : Optional[int] = pa.Table.from_pandas(pd.read_pickle(A ) ) yield i, self._cast_table(A )
118
"""simple docstring""" from __future__ import annotations def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
118
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) A : int = 'hf-internal-testing/tiny-random-bert' A : Optional[int] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') A : Tuple = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , """refs""" , """main""" ) ) as f: lowercase__ = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """snapshots""" , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__ = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__ = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="""9b8c223""" ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """snapshots""" , _UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid model identifier""" ): lowercase__ = cached_file("""tiny-random-bert""" , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid git identifier""" ): lowercase__ = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="""aaaa""" ) with self.assertRaisesRegex(_UpperCAmelCase , """does not appear to have a file named""" ): lowercase__ = cached_file(_UpperCAmelCase , """conf""" ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(_UpperCAmelCase , """does not appear to have a file named""" ): lowercase__ = cached_file(_UpperCAmelCase , """conf""" ) with open(os.path.join(_UpperCAmelCase , """refs""" , """main""" ) ) as f: lowercase__ = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """.no_exist""" , _UpperCAmelCase , """conf""" ) ) ) lowercase__ = cached_file(_UpperCAmelCase , """conf""" , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__ = cached_file(_UpperCAmelCase , """conf""" , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__ = mock.Mock() lowercase__ = 500 lowercase__ = {} lowercase__ = HTTPError lowercase__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_UpperCAmelCase ) as mock_head: lowercase__ = cached_file(_UpperCAmelCase , """conf""" , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) def lowerCamelCase__ (self : int ) -> int: """simple docstring""" self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _UpperCAmelCase , revision="""ahaha""" ) lowercase__ = get_file_from_repo("""bert-base-cased""" , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__ = json.loads(open(_UpperCAmelCase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = Path(_UpperCAmelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , """a.txt""" ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , """b.txt""" ) )
15
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a_ :List[str] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int, _snake_case : Union[str, Any], _snake_case : List[str]=7, _snake_case : int=3, _snake_case : List[Any]=1_8, _snake_case : List[str]=3_0, _snake_case : str=4_0_0, _snake_case : Optional[Any]=None, _snake_case : Dict=True, _snake_case : str=True, _snake_case : Union[str, Any]=None, ) ->str: snake_case__ : int = size if size is not None else {'height': 2_0, 'width': 2_0} snake_case__ : Optional[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = num_channels snake_case__ : List[str] = image_size snake_case__ : List[str] = min_resolution snake_case__ : int = max_resolution snake_case__ : Union[str, Any] = size snake_case__ : Tuple = do_normalize snake_case__ : List[str] = do_convert_rgb snake_case__ : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case__ : Tuple = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowercase_ ( self : str ) ->int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ : List[Any] = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : str ) ->str: snake_case__ : Optional[int] = PixaStructImageProcessingTester(self ) @property def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[str] = self.image_processor_tester.prepare_dummy_image() snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) snake_case__ : Optional[int] = 2_0_4_8 snake_case__ : Optional[int] = image_processor(_snake_case, return_tensors='pt', max_patches=_snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) ) def lowercase_ ( self : Tuple ) ->Dict: # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Any = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[str] ) ->Optional[Any]: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ : Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_snake_case ): snake_case__ : int = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches snake_case__ : Optional[Any] = 'Hello' snake_case__ : Dict = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : List[Any] = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : Any ) ->int: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) snake_case__ : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[Any] ) ->List[Any]: # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : int = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : Union[str, Any] = PixaStructImageProcessingTester(self, num_channels=4 ) snake_case__ : int = 3 @property def lowercase_ ( self : Optional[Any] ) ->List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : Optional[int] ) ->str: # Initialize image_processor snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Any = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
478
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __a: Tuple = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[int] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __a: List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
402
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a: List[str] = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __a: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
402
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: PreTrainedTokenizer , lowerCAmelCase: int , lowerCAmelCase: Optional[int] = None , ) -> Optional[Any]: _UpperCAmelCase : Dict = {} if train_file is not None: _UpperCAmelCase : Dict = [train_file] if eval_file is not None: _UpperCAmelCase : int = [eval_file] if test_file is not None: _UpperCAmelCase : Dict = [test_file] _UpperCAmelCase : Tuple = datasets.load_dataset("csv" , data_files=lowerCAmelCase ) _UpperCAmelCase : Any = list(ds[list(files.keys() )[0]].features.keys() ) _UpperCAmelCase : List[str] = features_name.pop(lowerCAmelCase ) _UpperCAmelCase : List[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) _UpperCAmelCase : Union[str, Any] = {label: i for i, label in enumerate(lowerCAmelCase )} _UpperCAmelCase : Tuple = tokenizer.model_input_names _UpperCAmelCase : List[str] = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): _UpperCAmelCase : Optional[Any] = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) , batched=lowerCAmelCase , ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): _UpperCAmelCase : Optional[Any] = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) , batched=lowerCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _UpperCAmelCase : int = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _UpperCAmelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _UpperCAmelCase : int = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : str = labelaid[ex[label_name]] yield (d, label) _UpperCAmelCase : List[str] = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _UpperCAmelCase : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _UpperCAmelCase : List[Any] = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _UpperCAmelCase : int = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _UpperCAmelCase : Union[str, Any] = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _UpperCAmelCase : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class a : _lowercase = field(metadata={"help": "Which column contains the label"} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "The path of the training file"} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "The path of the development file"} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "The path of the test file"} ) _lowercase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class a : _lowercase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowercase = field( default=UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowercase = field(default=UpperCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _UpperCAmelCase : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase: EvalPrediction ) -> Dict: _UpperCAmelCase : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _UpperCAmelCase : List[str] = TFTrainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , compute_metrics=lowerCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Union[str, Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : str = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowerCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
300
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] ) -> bool: _UpperCAmelCase : int = len(lowerCAmelCase ) # We need to create solution object to save path. _UpperCAmelCase : List[Any] = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] _UpperCAmelCase : Tuple = run_maze(lowerCAmelCase , 0 , 0 , lowerCAmelCase ) if solved: print("\n".join(str(lowerCAmelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[list[int]] ) -> bool: _UpperCAmelCase : str = len(lowerCAmelCase ) # Final check point. if i == j == (size - 1): _UpperCAmelCase : Tuple = 1 return True _UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase : Tuple = 1 # check for directions if ( run_maze(lowerCAmelCase , i + 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j + 1 , lowerCAmelCase ) or run_maze(lowerCAmelCase , i - 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j - 1 , lowerCAmelCase ) ): return True _UpperCAmelCase : Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
300
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py SCREAMING_SNAKE_CASE__ : Tuple = '''.''' if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = [] with open(doctest_file_path) as fp: for line in fp: SCREAMING_SNAKE_CASE__ : int = line.strip() SCREAMING_SNAKE_CASE__ : str = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: SCREAMING_SNAKE_CASE__ : Dict = '''\n'''.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
581
'''simple docstring''' import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ : List[Any] = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): def _lowercase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case__ =np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in predictions] ) snake_case__ =np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in references] ) else: snake_case__ =np.asarray(_UpperCAmelCase ) snake_case__ =np.asarray(_UpperCAmelCase ) if ignore_case: snake_case__ =np.char.lower(_UpperCAmelCase ) snake_case__ =np.char.lower(_UpperCAmelCase ) if ignore_punctuation: snake_case__ =string.punctuation.maketrans('' , '' , string.punctuation ) snake_case__ =np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) snake_case__ =np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) if ignore_numbers: snake_case__ =string.digits.maketrans('' , '' , string.digits ) snake_case__ =np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) snake_case__ =np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) snake_case__ =predictions == references return {"exact_match": np.mean(_UpperCAmelCase ) * 100}
581
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCAmelCase ( UpperCamelCase_ ): if len(__UpperCamelCase ) <= 1: return arr, 0 __SCREAMING_SNAKE_CASE = len(__UpperCamelCase ) // 2 __SCREAMING_SNAKE_CASE = arr[0:mid] __SCREAMING_SNAKE_CASE = arr[mid:] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = count_inversions_recursive(__UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = count_inversions_recursive(__UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) __SCREAMING_SNAKE_CASE = inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __SCREAMING_SNAKE_CASE = count_inversions_bf(__UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __SCREAMING_SNAKE_CASE = count_inversions_bf(__UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) # an empty list should also have zero inversions __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = count_inversions_bf(__UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , __UpperCamelCase ) if __name__ == "__main__": main()
155
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case : Optional[Any] = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field(default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __A = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" if self.train_file is not None: snake_case_ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 4_2 __A = True __A = None __A = None def __call__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = 'label' if 'label' in features[0].keys() else 'labels' snake_case_ = [feature.pop(__UpperCamelCase ) for feature in features] snake_case_ = len(__UpperCamelCase ) snake_case_ = len(features[0]['input_ids'] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*__UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten snake_case_ = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def a(): '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] snake_case_ = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [f"""ending{i}""" for i in range(4 )] snake_case_ = 'sent1' snake_case_ = 'sent2' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out snake_case_ = list(chain(*lowercase__ ) ) snake_case_ = list(chain(*lowercase__ ) ) # Tokenize snake_case_ = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case_ = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): snake_case_ = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case_ = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): snake_case_ = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): snake_case_ , snake_case_ = eval_predictions snake_case_ = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('train' , lowercase__ ) trainer.save_metrics('train' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) snake_case_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
715
from collections import defaultdict def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = first_str.lower().strip() snake_case_ = second_str.lower().strip() # Remove whitespace snake_case_ = first_str.replace(' ' , '' ) snake_case_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 snake_case_ = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A = input('Enter the first string ').strip() A = input('Enter the second string ').strip() A = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
46
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = tempfile.mkdtemp() # fmt: off __lowerCamelCase : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase : str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowerCamelCase : str = {'unk_token': '<unk>'} __lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Union[str, Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = self.get_rust_tokenizer() __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : List[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Tuple = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : str = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = 'lower newer' __lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = 'lower newer' __lowerCamelCase : Optional[Any] = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : int = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : List[str] = self.prepare_image_inputs() __lowerCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
13
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Dict = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Any = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Tuple = FlaxRobertaModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'bert-base is not a local folder and is not a valid model identifier' ): _UpperCamelCase : int = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained(lowerCamelCase__ ,revision='aaaaaa' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' ,): _UpperCamelCase : List[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase__ ,'Use `from_pt=True` to load this model' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
195
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = CTRLTokenizer A: Any = False A: Optional[int] = False def UpperCAmelCase__ ( self : List[str] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Tuple = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] UpperCamelCase__ : Any = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : int = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] UpperCamelCase__ : int = {'''unk_token''': '''<unk>'''} UpperCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : int , **lowerCamelCase__ : Dict ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''adapt react readapt apt''' UpperCamelCase__ : Tuple = '''adapt react readapt apt''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Optional[int] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ : Optional[int] = '''adapt react readapt apt''' UpperCamelCase__ : List[Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = tokens + [tokenizer.unk_token] UpperCamelCase__ : int = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
106
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __UpperCamelCase : int = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __UpperCamelCase : int = "▁" class __magic_name__ ( __lowerCAmelCase): A: Tuple = VOCAB_FILES_NAMES A: Optional[int] = PRETRAINED_VOCAB_FILES_MAP A: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple="<s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : Optional[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : int="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' UpperCamelCase__ : str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token UpperCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase__ : Any = vocab_file UpperCamelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) UpperCamelCase__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCamelCase__ : Tuple = len(self.sp_model ) - 1 UpperCamelCase__ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] UpperCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : List[str] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Any = '''''' UpperCamelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase__ : str = True UpperCamelCase__ : Tuple = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase__ : Any = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = self.__dict__.copy() UpperCamelCase__ : int = None return state def __setstate__( self : Tuple , lowerCamelCase__ : Any ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Any = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase__ : int = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
106
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _lowerCamelCase : Union[str, Any] = """scheduler_config.json""" class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = 5 @dataclass class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = SCHEDULER_CONFIG_NAME UpperCAmelCase__ = ['''dtype'''] UpperCAmelCase__ = [] UpperCAmelCase__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , UpperCAmelCase__ : Dict[str, Any] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : int=False , **UpperCAmelCase__ : Union[str, Any] , ) ->Union[str, Any]: '''simple docstring''' A__ , A__ = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase__ , subfolder=UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ , A__ = cls.from_config(UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__ , **UpperCAmelCase__) if hasattr(UpperCAmelCase__ , '''create_state''') and getattr(UpperCAmelCase__ , '''has_state''' , UpperCAmelCase__): A__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Union[str, os.PathLike] , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : Optional[Any]) ->List[Any]: '''simple docstring''' self.save_config(save_directory=UpperCAmelCase__ , push_to_hub=UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE ( cls : int) ->Dict: '''simple docstring''' A__ = list(set([cls.__name__] + cls._compatibles)) A__ = importlib.import_module(__name__.split('''.''')[0]) A__ = [ getattr(UpperCAmelCase__ , UpperCAmelCase__) for c in compatible_classes_str if hasattr(UpperCAmelCase__ , UpperCAmelCase__) ] return compatible_classes def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> jnp.ndarray: """simple docstring""" assert len(lowercase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase_ ) - x.ndim) ) , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=0.9_99 , lowercase_=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(lowercase_ ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 A__ = [] for i in range(lowercase_ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase_ ) / alpha_bar(lowercase_ ) , lowercase_ ) ) return jnp.array(lowercase_ , dtype=lowercase_ ) @flax.struct.dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : List[str]) ->Any: '''simple docstring''' A__ = scheduler.config if config.trained_betas is not None: A__ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype) elif config.beta_schedule == "linear": A__ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""") A__ = 1.0 - betas A__ = jnp.cumprod(UpperCAmelCase__ , axis=0) return cls( alphas=UpperCAmelCase__ , betas=UpperCAmelCase__ , alphas_cumprod=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = state.alphas_cumprod A__ = alphas_cumprod[timesteps] ** 0.5 A__ = sqrt_alpha_prod.flatten() A__ = broadcast_to_shape_from_left(lowercase_ , original_samples.shape ) A__ = (1 - alphas_cumprod[timesteps]) ** 0.5 A__ = sqrt_one_minus_alpha_prod.flatten() A__ = broadcast_to_shape_from_left(lowercase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ , A__ = get_sqrt_alpha_prod(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ , A__ = get_sqrt_alpha_prod(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
87
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = order # a_{0} ... a_{k} UpperCamelCase__ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCamelCase__ : Any = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCamelCase__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] UpperCamelCase__ : Tuple = [0.0] * self.order def __UpperCamelCase ( self : int , UpperCAmelCase_ : list[float] , UpperCAmelCase_ : list[float]): if len(UpperCAmelCase_) < self.order: UpperCamelCase__ : Any = [1.0, *a_coeffs] if len(UpperCAmelCase_) != self.order + 1: UpperCamelCase__ : List[Any] = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(UpperCAmelCase_)}' ) raise ValueError(UpperCAmelCase_) if len(UpperCAmelCase_) != self.order + 1: UpperCamelCase__ : Dict = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(UpperCAmelCase_)}' ) raise ValueError(UpperCAmelCase_) UpperCamelCase__ : List[str] = a_coeffs UpperCamelCase__ : Any = b_coeffs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : float): UpperCamelCase__ : Optional[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCamelCase__ : Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCamelCase__ : Any = self.input_history[:-1] UpperCamelCase__ : Optional[int] = self.output_history[:-1] UpperCamelCase__ : Dict = sample UpperCamelCase__ : Any = result return result
596
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Dict ): debug_launcher(test_script.main ) def lowerCamelCase ( self :Union[str, Any] ): debug_launcher(test_ops.main )
524
"""simple docstring""" def A__ ( UpperCamelCase , UpperCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(UpperCamelCase ) * abs(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
524
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = (DDIMParallelScheduler,) lowerCamelCase_ = (("eta", 0.0), ("num_inference_steps", 50)) def _snake_case ( self :List[Any] , **__A :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**__A ) return config def _snake_case ( self :int , **__A :List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__A ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE__ = model(__A , __A ) SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , __A ).prev_sample return sample def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__A ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _snake_case ( self :int ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def _snake_case ( self :Any ) -> Any: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def _snake_case ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def _snake_case ( self :Optional[int] ) -> List[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__A ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def _snake_case ( self :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def _snake_case ( self :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0 scheduler.set_timesteps(__A ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE__ = samplea.shape[0] SCREAMING_SNAKE_CASE__ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.arange(__A )[0:3, None].repeat(1 , __A ) SCREAMING_SNAKE_CASE__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE__ = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def _snake_case ( self :Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def _snake_case ( self :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
6
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
282
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None ): """simple docstring""" super().__init__() lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : int = max_length lowerCAmelCase : List[str] = vocab lowerCAmelCase : Tuple = merges lowerCAmelCase : Optional[Any] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [" ".join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase : Optional[int] = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ ): """simple docstring""" return cls(**snake_case__ ) def lowercase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Any = self.tf_tokenizer(snake_case__ ) lowerCAmelCase : Union[str, Any] = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase : str = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase , lowerCAmelCase : str = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
from collections import deque from .hash_table import HashTable class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , *a__ : List[Any] , **a__ : Union[str, Any] ): """simple docstring""" super().__init__(*a__ , **a__ ) def a (self : str , a__ : Dict , a__ : Optional[Any] ): """simple docstring""" __snake_case = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(a__ ) __snake_case = self.values[key] def a (self : Dict ): """simple docstring""" return ( sum(self.charge_factor - len(a__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def a (self : Tuple , a__ : Union[str, Any] , a__ : Optional[Any]=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(a__ ) == 0 ): return key return super()._collision_resolution(a__ , a__ )
592
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : Any ) -> Tuple: # initialize config if "resnet-50" in model_name: __snake_case = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: __snake_case = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) __snake_case = DetrConfig(use_timm_backbone=snake_case_ , backbone_config=snake_case_ ) # set label attributes __snake_case = '''panoptic''' in model_name if is_panoptic: __snake_case = 250 else: __snake_case = 91 __snake_case = '''huggingface/label-files''' __snake_case = '''coco-detection-id2label.json''' __snake_case = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __snake_case = {int(snake_case_ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase__ ( snake_case_ : Dict ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : int ) -> str: __snake_case = state_dict.pop(snake_case_ ) __snake_case = val def lowerCamelCase__ ( snake_case_ : int , snake_case_ : List[Any]=False ) -> List[str]: __snake_case = '''''' if is_panoptic: __snake_case = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __snake_case = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:256, :] __snake_case = in_proj_bias[:256] __snake_case = in_proj_weight[256:512, :] __snake_case = in_proj_bias[256:512] __snake_case = in_proj_weight[-256:, :] __snake_case = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __snake_case = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __snake_case = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:256, :] __snake_case = in_proj_bias[:256] __snake_case = in_proj_weight[256:512, :] __snake_case = in_proj_bias[256:512] __snake_case = in_proj_weight[-256:, :] __snake_case = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __snake_case = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __snake_case = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __snake_case = in_proj_weight_cross_attn[:256, :] __snake_case = in_proj_bias_cross_attn[:256] __snake_case = in_proj_weight_cross_attn[256:512, :] __snake_case = in_proj_bias_cross_attn[256:512] __snake_case = in_proj_weight_cross_attn[-256:, :] __snake_case = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( ) -> int: __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : str=None , snake_case_ : Dict=False ) -> Dict: __snake_case , __snake_case = get_detr_config(snake_case_ ) # load original model from torch hub __snake_case = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f"""Converting model {model_name}...""" ) __snake_case = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=snake_case_ ).eval() __snake_case = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case_ ): if is_panoptic: __snake_case = '''detr.''' + src rename_key(snake_case_ , snake_case_ , snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __snake_case = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __snake_case = state_dict.pop(snake_case_ ) __snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __snake_case = state_dict.pop(snake_case_ ) __snake_case = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __snake_case = state_dict.pop(snake_case_ ) __snake_case = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __snake_case = state_dict.pop(snake_case_ ) __snake_case = val # finally, create HuggingFace model and load state dict __snake_case = DetrForSegmentation(snake_case_ ) if is_panoptic else DetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # verify our conversion on an image __snake_case = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __snake_case = DetrImageProcessor(format=snake_case_ ) __snake_case = processor(images=prepare_img() , return_tensors='''pt''' ) __snake_case = encoding['''pixel_values'''] __snake_case = detr(snake_case_ ) __snake_case = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') snake_case_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
592
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowercase__ :Optional[int] , lowercase__ :Optional[Any]=13 , lowercase__ :List[Any]=7 , lowercase__ :Dict=True , lowercase__ :Union[str, Any]=True , lowercase__ :Tuple=True , lowercase__ :Optional[Any]=True , lowercase__ :Any=99 , lowercase__ :List[Any]=32 , lowercase__ :List[Any]=5 , lowercase__ :Dict=4 , lowercase__ :str=37 , lowercase__ :Optional[int]="gelu" , lowercase__ :Optional[int]=0.1 , lowercase__ :List[str]=0.1 , lowercase__ :Any=512 , lowercase__ :Any=16 , lowercase__ :int=2 , lowercase__ :Tuple=0.02 , lowercase__ :Optional[int]=4 , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def __UpperCAmelCase ( self :Any ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Tuple ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class a__ ( _snake_case , unittest.TestCase ): """simple docstring""" A__ : str = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :Optional[Any] ): lowercase = FlaxAlbertModelTester(self ) @slow def __UpperCAmelCase ( self :Any ): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained('albert-base-v2' ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase__ ) @require_flax class a__ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self :List[str] ): lowercase = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowercase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase = model(lowercase__ , attention_mask=lowercase__ )[0] lowercase = (1, 11, 768) self.assertEqual(output.shape , lowercase__ ) lowercase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1E-4 ) )
700
from __future__ import annotations import os from collections.abc import Mapping __magic_name__ = tuple[int, int] class a__ : """simple docstring""" def __init__( self :List[Any] , lowercase__ :set[int] , lowercase__ :Mapping[EdgeT, int] ): lowercase = vertices lowercase = { (min(lowercase__ ), max(lowercase__ )): weight for edge, weight in edges.items() } def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :EdgeT , lowercase__ :int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase = weight def __UpperCAmelCase ( self :str ): lowercase = Graph({min(self.vertices )} , {} ) lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase = edge lowercase = weight subgraph.add_edge(lowercase__ , lowercase__ ) return subgraph def __snake_case ( _UpperCAmelCase = "p107_network.txt" ): """simple docstring""" lowercase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase = {} lowercase = 42 lowercase = 42 lowercase = 42 with open(_UpperCAmelCase ) as f: lowercase = f.read().strip().split('\n' ) lowercase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowercase = int(adjaceny_matrix[edgea][edgea] ) lowercase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowercase = graph.prims_algorithm() lowercase = sum(graph.edges.values() ) lowercase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
314
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : List[str] = '''▁''' __lowercase : str = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __lowercase : List[str] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __lowercase : Union[str, Any] = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __lowercase : List[Any] = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __lowercase : Optional[int] = {'''mustc''': MUSTC_LANGS} class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = MAX_MODEL_INPUT_SIZES __lowerCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[int] = [] def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_="<s>" ,SCREAMING_SNAKE_CASE_="</s>" ,SCREAMING_SNAKE_CASE_="<pad>" ,SCREAMING_SNAKE_CASE_="<unk>" ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ ,eos_token=SCREAMING_SNAKE_CASE_ ,unk_token=SCREAMING_SNAKE_CASE_ ,pad_token=SCREAMING_SNAKE_CASE_ ,do_upper_case=SCREAMING_SNAKE_CASE_ ,do_lower_case=SCREAMING_SNAKE_CASE_ ,tgt_lang=SCREAMING_SNAKE_CASE_ ,lang_codes=SCREAMING_SNAKE_CASE_ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE_ ,) snake_case : Optional[int] = do_upper_case snake_case : Optional[Any] = do_lower_case snake_case : Optional[Any] = load_json(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = {v: k for k, v in self.encoder.items()} snake_case : Tuple = spm_file snake_case : Optional[Any] = load_spm(SCREAMING_SNAKE_CASE_ ,self.sp_model_kwargs ) if lang_codes is not None: snake_case : List[Any] = lang_codes snake_case : str = LANGUAGES[lang_codes] snake_case : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] snake_case : List[str] = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} snake_case : Dict = self.lang_tokens snake_case : Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case : str = {} @property def snake_case_ ( self ): '''simple docstring''' return len(self.encoder ) @property def snake_case_ ( self ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = self.lang_code_to_id[tgt_lang] snake_case : Union[str, Any] = [lang_code_id] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE_ ,out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ ,self.encoder[self.unk_token] ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ,self.unk_token ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = [] snake_case : int = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case : Tuple = self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case : Optional[int] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) snake_case : str = self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ ,token_ids_a=SCREAMING_SNAKE_CASE_ ,already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) snake_case : Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' snake_case : Tuple = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case : List[str] = {} snake_case : Dict = load_spm(self.spm_file ,self.sp_model_kwargs ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Union[str, Any] = Path(SCREAMING_SNAKE_CASE_ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" snake_case : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) snake_case : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder ,SCREAMING_SNAKE_CASE_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.spm_file ): with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as fi: snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (str(SCREAMING_SNAKE_CASE_ ), str(SCREAMING_SNAKE_CASE_ )) def lowercase ( __A : str , __A : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' snake_case : Optional[int] = sentencepiece.SentencePieceProcessor(**__A ) spm.Load(str(__A ) ) return spm def lowercase ( __A : str ) -> Union[Dict, List]: '''simple docstring''' with open(__A , """r""" ) as f: return json.load(__A ) def lowercase ( __A : str , __A : str ) -> None: '''simple docstring''' with open(__A , """w""" ) as f: json.dump(__A , __A , indent=2 )
36
'''simple docstring''' import random from typing import Any def a_ ( _lowerCAmelCase ) -> list[Any]: for _ in range(len(_lowerCAmelCase ) ): __lowerCamelCase : Optional[Any] = random.randint(0 ,len(_lowerCAmelCase ) - 1 ) __lowerCamelCase : str = random.randint(0 ,len(_lowerCAmelCase ) - 1 ) __lowerCamelCase ,__lowerCamelCase : List[Any] = data[b], data[a] return data if __name__ == "__main__": _UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] _UpperCamelCase = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
459
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" _A = CycleDiffusionPipeline _A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _A = PipelineTesterMixin.required_optional_params - {"latents"} _A = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _A = IMAGE_TO_IMAGE_IMAGE_PARAMS _A = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) A =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=10_00 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) A =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A =CLIPTextModel(snake_case__ ) A =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _a ( self : List[Any] , snake_case__ : str , snake_case__ : Dict=0 ): """simple docstring""" A =floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) A =image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): A =torch.manual_seed(snake_case__ ) else: A =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) A ={ "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def _a ( self : Optional[Any] ): """simple docstring""" A ="cpu" # ensure determinism for the device-dependent torch.Generator A =self.get_dummy_components() A =CycleDiffusionPipeline(**snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =self.get_dummy_inputs(snake_case__ ) A =pipe(**snake_case__ ) A =output.images A =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A =np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _a ( self : int ): """simple docstring""" A =self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case__ , "half" ): A =module.half() A =CycleDiffusionPipeline(**snake_case__ ) A =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) A =self.get_dummy_inputs(snake_case__ ) A =pipe(**snake_case__ ) A =output.images A =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A =np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a ( self : List[Any] ): """simple docstring""" return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def _a ( self : Union[str, Any] ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _a ( self : List[str] ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a ( self : str ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : List[str] ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" def _a ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : int ): """simple docstring""" A =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) A =init_image.resize((5_12, 5_12) ) A ="CompVis/stable-diffusion-v1-4" A =DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) A =CycleDiffusionPipeline.from_pretrained( snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() A ="A black colored car" A ="A blue colored car" A =torch.manual_seed(0 ) A =pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type="np" , ) A =output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a ( self : Dict ): """simple docstring""" A =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) A =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) A =init_image.resize((5_12, 5_12) ) A ="CompVis/stable-diffusion-v1-4" A =DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) A =CycleDiffusionPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() A ="A black colored car" A ="A blue colored car" A =torch.manual_seed(0 ) A =pipe( prompt=snake_case__ , source_prompt=snake_case__ , image=snake_case__ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case__ , output_type="np" , ) A =output.images assert np.abs(image - expected_image ).max() < 2E-2
689
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: """simple docstring""" _A = 42 _A = None _A = None __a = namedtuple("""CoinsDistribResult""", """moves excess""") def UpperCamelCase_ ( a_ ) ->int: if root is None: return 0 # Validation def count_nodes(a_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a_ ) != count_coins(a_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(a_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A , A =get_distrib(node.left ) A , A =get_distrib(node.right ) A =1 - left_distrib_excess A =1 - right_distrib_excess A =( left_distrib_moves + right_distrib_moves + abs(a_ ) + abs(a_ ) ) A =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_ ) return get_distrib(a_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
689
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = MgpstrTokenizer snake_case__ = False snake_case__ = {} snake_case__ = False def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase = 'tester' UpperCamelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): UpperCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) UpperCamelCase = tokenizer.encode([special_token] , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase = tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertTrue(special_token not in decoded ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): UpperCamelCase , UpperCamelCase = self.get_input_output_texts(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertNotEqual(len(_SCREAMING_SNAKE_CASE ) , 0 ) UpperCamelCase = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(text_a.replace(' ' , '' ) , _SCREAMING_SNAKE_CASE ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass
280
def lowercase__ ( _UpperCamelCase) -> Any: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator UpperCamelCase = len(_UpperCamelCase) if (len(_UpperCamelCase) > 7) else 7 # Print table header for output print( 'Symbol'.center(8) , 'Stack'.center(_UpperCamelCase) , 'Postfix'.center(_UpperCamelCase) , sep=' | ' , ) print('-' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCamelCase) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCamelCase) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCamelCase) == 0: stack.append(_UpperCamelCase) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCamelCase) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(_UpperCamelCase) # push x to stack print( x.center(8) , (''.join(_UpperCamelCase)).ljust(_UpperCamelCase) , (''.join(_UpperCamelCase)).ljust(_UpperCamelCase) , sep=' | ' , ) # Output in tabular format while len(_UpperCamelCase) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ' '.center(8) , (''.join(_UpperCamelCase)).ljust(_UpperCamelCase) , (''.join(_UpperCamelCase)).ljust(_UpperCamelCase) , sep=' | ' , ) # Output in tabular format return "".join(_UpperCamelCase) # return Postfix as str def lowercase__ ( _UpperCamelCase) -> Optional[Any]: """simple docstring""" UpperCamelCase = list(infix[::-1]) # reverse the infix equation for i in range(len(_UpperCamelCase)): if infix[i] == "(": UpperCamelCase = ')' # change "(" to ")" elif infix[i] == ")": UpperCamelCase = '(' # change ")" to "(" return (infix_2_postfix(''.join(_UpperCamelCase)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __magic_name__ : int = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __magic_name__ : Optional[Any] = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
280
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = """albert""" def __init__( self : int , __UpperCamelCase : int=30_000 , __UpperCamelCase : Optional[int]=128 , __UpperCamelCase : Dict=4_096 , __UpperCamelCase : str=12 , __UpperCamelCase : List[Any]=1 , __UpperCamelCase : List[Any]=64 , __UpperCamelCase : Any=16_384 , __UpperCamelCase : Any=1 , __UpperCamelCase : Dict="gelu_new" , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : List[Any]=512 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Optional[Any]=0.02 , __UpperCamelCase : List[str]=1e-1_2 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Dict="absolute" , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : int=3 , **__UpperCamelCase : str , ): super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = inner_group_num _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = position_embedding_type class __SCREAMING_SNAKE_CASE ( lowercase): @property def UpperCAmelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
721
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "▁" __lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase = { "facebook/xglm-564M": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[str] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Any , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
129
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) != len(lowercase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case : Union[str, Any] = [p / w for p, w in zip(lowercase ,lowercase )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case : str = sorted(lowercase ) # declaring useful variables snake_case : Optional[Any] = len(lowercase ) snake_case : Union[str, Any] = 0 snake_case : Optional[int] = 0 snake_case : str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case : List[Any] = sorted_profit_by_weight[length - i - 1] snake_case : Any = profit_by_weight.index(lowercase ) snake_case : int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCamelCase : Union[str, Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCamelCase : Dict = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCamelCase : Any = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
587
lowerCamelCase : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase : List[str] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCamelCase : Dict = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: assert len(str(lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case : int = year // 100 snake_case : Dict = (5 * (century % 4) + 2) % 7 snake_case : Optional[Any] = year % 100 snake_case : Any = centurian % 12 snake_case : List[Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case : Union[str, Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case : Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
587
1
'''simple docstring''' def UpperCamelCase_ ( A__ : int ): '''simple docstring''' assert isinstance(A__ , A__ ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: lowerCAmelCase_ : Any = f'The input value of [n={number}] has to be > 0' raise ValueError(A__ ) else: lowerCAmelCase_ : Optional[int] = sylvester(number - 1 ) lowerCAmelCase_ : Dict = num - 1 lowerCAmelCase_ : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
717
'''simple docstring''' from itertools import count def UpperCamelCase_ ( A__ : int = 50 ): '''simple docstring''' lowerCAmelCase_ : Any = [1] * min_block_length for n in count(A__ ): fill_count_functions.append(1 ) for block_length in range(A__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
398
0
from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase__ ( _a : int = 2_00_00_00 ): snake_case_ : list[int] = [0] snake_case_ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case_ : int = 0 # the area corresponding to the grid that gives the product closest to target snake_case_ : int = 0 # an estimate of b, using the quadratic formula snake_case_ : float # the largest integer less than b_estimate snake_case_ : int # the largest integer less than b_estimate snake_case_ : int # the triangle number corresponding to b_floor snake_case_ : int # the triangle number corresponding to b_ceil snake_case_ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case_ : Optional[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case_ : List[str] = floor(_a ) snake_case_ : Any = ceil(_a ) snake_case_ : Tuple = triangle_numbers[b_floor] snake_case_ : Any = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case_ : Union[str, Any] = triangle_b_first_guess * triangle_a snake_case_ : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case_ : str = triangle_b_second_guess * triangle_a snake_case_ : Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
568
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } lowercase : List[str] = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } lowercase : int = { '''vinai/phobert-base''': 2_56, '''vinai/phobert-large''': 2_56, } def lowerCAmelCase__ ( _a : List[str] ): snake_case_ : str = set() snake_case_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : List[Any] = char snake_case_ : Any = set(_a ) return pairs class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = vocab_file snake_case_ : Any = merges_file snake_case_ : Any = {} snake_case_ : Union[str, Any] = 0 snake_case_ : Union[str, Any] = 1 snake_case_ : Optional[int] = 2 snake_case_ : Optional[int] = 3 self.add_from_file(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: snake_case_ : List[Any] = merges_handle.read().split("\n" )[:-1] snake_case_ : Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] snake_case_ : List[str] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Optional[Any] = {} def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] snake_case_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ) -> Dict: return len(self.encoder ) def _lowerCAmelCase ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if token in self.cache: return self.cache[token] snake_case_ : List[Any] = tuple(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case_ : str = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case_ : List[str] = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : Dict = bigram snake_case_ : Any = [] snake_case_ : Any = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: snake_case_ : List[str] = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Optional[Any] = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Union[str, Any] = tuple(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: snake_case_ : List[Any] = get_pairs(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = "@@ ".join(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = word[:-4] snake_case_ : Union[str, Any] = word return word def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ : List[Any] = [] snake_case_ : str = re.findall(r"\S+\n?" , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : Any = " ".join(_SCREAMING_SNAKE_CASE ).replace("@@ " , "" ).strip() return out_string def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Optional[int] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , _SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as fd: self.add_from_file(_SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return snake_case_ : Dict = f.readlines() for lineTmp in lines: snake_case_ : Tuple = lineTmp.strip() snake_case_ : Dict = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) snake_case_ : Optional[Any] = line[:idx] snake_case_ : List[Any] = len(self.encoder )
568
1
'''simple docstring''' from typing import Any import numpy as np def _lowerCAmelCase ( lowercase : np.ndarray ) ->bool: """simple docstring""" return np.array_equal(lowercase , matrix.conjugate().T ) def _lowerCAmelCase ( lowercase : np.ndarray , lowercase : np.ndarray ) ->Any: """simple docstring""" lowercase__ = v.conjugate().T lowercase__ = v_star.dot(lowercase ) assert isinstance(lowercase , np.ndarray ) return (v_star_dot.dot(lowercase )) / (v_star.dot(lowercase )) def _lowerCAmelCase ( ) ->None: """simple docstring""" lowercase__ = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase ), F'''{a} is not hermitian.''' print(rayleigh_quotient(lowercase , lowercase ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase ), F'''{a} is not hermitian.''' assert rayleigh_quotient(lowercase , lowercase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
318
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __A ( a ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
318
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> int: '''simple docstring''' lowerCAmelCase__ = RemBertConfig.from_json_file(UpperCamelCase_ ) print("Building PyTorch model from configuration: {}".format(str(UpperCamelCase_ ) ) ) lowerCAmelCase__ = RemBertModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print("Save PyTorch model to {}".format(UpperCamelCase_ ) ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
48
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Any =False @skip_mps class UpperCamelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[int] = StableDiffusionAttendAndExcitePipeline _a : Union[str, Any] = False _a : Dict = TEXT_TO_IMAGE_PARAMS _a : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls : Tuple ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : Tuple ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) lowerCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCamelCase_ : Any = CLIPTextModel(lowerCamelCase ) lowerCamelCase_ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=0 ): if str(lowerCamelCase ).startswith('mps' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase ) else: lowerCamelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase_ : Dict = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __a ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] = 'cpu' lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : List[str] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase_ : List[Any] = self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase_ : List[str] = pipe(**lowerCamelCase ).images lowerCamelCase_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ : Dict = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __a ( self : Tuple ): super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : List[str] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : Optional[Any] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self : Tuple ): super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): @classmethod def __a ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : List[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(51 ) lowerCamelCase_ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ : List[Any] = 'a painting of an elephant with glasses' lowerCamelCase_ : Tuple = [5, 7] lowerCamelCase_ : List[str] = pipe( prompt=lowerCamelCase , token_indices=lowerCamelCase , guidance_scale=7.5 , generator=lowerCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
364
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Tuple = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
590
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Optional[int] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
590
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _snake_case = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() _snake_case = '''|'''.join(sys.argv[1:]) _snake_case = re.compile(Rf'^({joined_dirs}).*?\.py$') _snake_case = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
580
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __snake_case ( ): """simple docstring""" _lowerCAmelCase = 9 _lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCAmelCase = kruskal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE )
580
1
from math import sqrt def lowerCAmelCase_ ( A_ = 1_00_00_00): UpperCamelCase__: Tuple = 0 UpperCamelCase__: Any = 0 UpperCamelCase__: List[Any] = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer(): num_cuboids += ( min(UpperCAmelCase__ ,sum_shortest_sides // 2) - max(1 ,sum_shortest_sides - max_cuboid_size) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"{solution() = }")
715
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__: Union[str, Any] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowerCAmelCase_ ( A_ ,A_=None): require_version(deps[pkg] ,A_)
221
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =42 _lowerCamelCase =None _lowerCamelCase =None a__ : str = namedtuple('CoinsDistribResult', 'moves excess') def __snake_case ( SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE_ ) != count_coins(SCREAMING_SNAKE_CASE_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase, UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase, UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return get_distrib(SCREAMING_SNAKE_CASE_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") __snake_case = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case = sorted(arg_to_scheduler.keys()) __snake_case = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _lowerCAmelCase ( pl.LightningModule ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="base" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase__ ) snake_case : Tuple = 0 snake_case : List[str] = Path(self.hparams.output_dir ) snake_case : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: snake_case : int = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase__ , **UpperCamelCase__ , ) else: snake_case : PretrainedConfig = config snake_case : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase__ , UpperCamelCase__ ): assert hasattr(self.config , UpperCamelCase__ ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , UpperCamelCase__ , getattr(self.hparams , UpperCamelCase__ ) ) if tokenizer is None: snake_case : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase__ , ) else: snake_case : PreTrainedTokenizer = tokenizer snake_case : List[str] = MODEL_MODES[mode] if model is None: snake_case : Union[str, Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase__ , ) else: snake_case : List[Any] = model def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.model_type.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = arg_to_scheduler[self.hparams.lr_scheduler] snake_case : Any = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) snake_case : List[str] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.model snake_case : Tuple = ["bias", "LayerNorm.weight"] snake_case : Any = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: snake_case : Optional[int] = Adafactor( UpperCamelCase__ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase__ , relative_step=UpperCamelCase__ ) else: snake_case : Optional[Any] = AdamW( UpperCamelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) snake_case : Any = optimizer snake_case : List[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.validation_step(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.validation_end(UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores snake_case : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if stage == "test": snake_case : Dict = len(self.test_dataloader().dataset ) else: snake_case : str = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) snake_case : Dict = len(self.train_dataloader().dataset ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> int: '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return self.train_loader def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( UpperCamelCase__ , list(filter(UpperCamelCase__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' snake_case : str = self.output_dir.joinpath("best_tfmr" ) snake_case : int = self.step_count self.model.save_pretrained(UpperCamelCase__ ) self.tokenizer.save_pretrained(UpperCamelCase__ ) @staticmethod def lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=UpperCamelCase__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "cache" ) , type=UpperCamelCase__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=UpperCamelCase__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=UpperCamelCase__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=UpperCamelCase__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=UpperCamelCase__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=UpperCamelCase__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=UpperCamelCase__ , metavar=UpperCamelCase__ , type=UpperCamelCase__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCamelCase__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=UpperCamelCase__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=UpperCamelCase__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=UpperCamelCase__ ) parser.add_argument("--train_batch_size" , default=32 , type=UpperCamelCase__ ) parser.add_argument("--eval_batch_size" , default=32 , type=UpperCamelCase__ ) parser.add_argument("--adafactor" , action="store_true" ) class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase__ ) class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : List[str] = trainer.lr_schedulers[0]["scheduler"] snake_case : str = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' rank_zero_info("***** Validation results *****" ) snake_case : List[str] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' rank_zero_info("***** Test results *****" ) snake_case : Dict = trainer.callback_metrics # Log and save results to file snake_case : Union[str, Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(UpperCamelCase__ , "w" ) as writer: for key in sorted(UpperCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(lowercase ).parent / "test_run" / "model_checkpoints" ) , type=lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=lowercase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=lowercase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=lowercase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=lowercase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(lowercase ).parent / "test_run" / "dummy-train-data" ) , type=lowercase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __lowerCAmelCase ( lowercase : BaseTransformer , lowercase : argparse.Namespace , lowercase : Any=None , lowercase : List[str]=True , lowercase : List[Any]=[] , lowercase : Any=None , lowercase : Optional[int]=None , **lowercase : List[Any] , ) -> Tuple: """simple docstring""" pl.seed_everything(args.seed ) # init model snake_case : Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowercase ) # add custom checkpoints if checkpoint_callback is None: snake_case : int = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowercase ) if logging_callback is None: snake_case : Tuple = LoggingCallback() snake_case : str = {} if args.fpaa: snake_case : Union[str, Any] = 16 if args.gpus > 1: snake_case : List[str] = "auto" snake_case : int = "ddp" snake_case : Dict = args.accumulate_grad_batches snake_case : Tuple = None snake_case : Any = "auto" snake_case : int = pl.Trainer.from_argparse_args( lowercase , weights_summary=lowercase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowercase , val_check_interval=1 , num_sanity_val_steps=2 , **lowercase , ) if args.do_train: trainer.fit(lowercase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
178
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any=13 , lowerCamelCase_ : str=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : int=30 , lowerCamelCase_ : Optional[int]=4_00 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Any: __a = size if size is not None else {"""height""": 18, """width""": 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std def lowerCAmelCase_ ( self : str ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): A_ : Union[str, Any] = ViTImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Any ) -> str: __a = EfficientFormerImageProcessorTester(self ) @property def lowerCAmelCase_ ( self : int ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[Any] ) -> List[str]: __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCAmelCase_ ( self : Dict ) -> Tuple: pass def lowerCAmelCase_ ( self : Tuple ) -> Optional[int]: # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : int ) -> int: # Initialize image_processor __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input __a = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched __a = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
710
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __A = logging.get_logger(__name__) # General docstring __A = """RegNetConfig""" # Base docstring __A = """facebook/regnet-y-040""" __A = [1, 10_88, 7, 7] # Image classification docstring __A = """facebook/regnet-y-040""" __A = """tabby, tabby cat""" __A = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[str] = "relu" , **lowerCamelCase_ : Union[str, Any] , ) -> Tuple: super().__init__(**lowerCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __a = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=lowerCamelCase_ , strides=lowerCamelCase_ , padding="""VALID""" , groups=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="""convolution""" , ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __a = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] ) -> Optional[Any]: __a = self.convolution(self.padding(lowerCamelCase_ ) ) __a = self.normalization(lowerCamelCase_ ) __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : Tuple ) -> List[Any]: super().__init__(**lowerCamelCase_ ) __a = config.num_channels __a = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : Tuple ) -> List[str]: __a = shape_list(lowerCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __a = tf.transpose(lowerCamelCase_ , perm=(0, 2, 3, 1) ) __a = self.embedder(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : Optional[int] ) -> Any: super().__init__(**lowerCamelCase_ ) __a = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=1 , strides=lowerCamelCase_ , use_bias=lowerCamelCase_ , name="""convolution""" ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(lowerCamelCase_ ) , training=lowerCamelCase_ ) class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , **lowerCamelCase_ : List[Any] ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="""pooler""" ) __a = [ tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCAmelCase_ ( self : int , lowerCamelCase_ : Dict ) -> int: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __a = self.pooler(lowerCamelCase_ ) for layer_module in self.attention: __a = layer_module(lowerCamelCase_ ) __a = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[int] ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __a = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="""layer.2""" ), ] __a = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : List[str] ) -> Tuple: __a = hidden_state for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) __a = self.shortcut(lowerCamelCase_ ) hidden_state += residual __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[Any] ) -> Dict: super().__init__(**lowerCamelCase_ ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __a = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name="""layer.3""" ), ] __a = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: __a = hidden_state for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) __a = self.shortcut(lowerCamelCase_ ) hidden_state += residual __a = self.activation(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[str] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : List[Any] ) -> Optional[int]: super().__init__(**lowerCamelCase_ ) __a = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __a = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , name="""layers.0""" ), *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : List[str] ) -> int: for layer_module in self.layers: __a = layer_module(lowerCamelCase_ ) return hidden_state class a ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : Any ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) __a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __a = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ) -> TFBaseModelOutputWithNoAttention: __a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __a = hidden_states + (hidden_state,) __a = stage_module(lowerCamelCase_ ) if output_hidden_states: __a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) @keras_serializable class a ( tf.keras.layers.Layer ): A_ : str = RegNetConfig def __init__( self : List[str] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ) -> Tuple: super().__init__(**lowerCamelCase_ ) __a = config __a = TFRegNetEmbeddings(lowerCamelCase_ , name="""embedder""" ) __a = TFRegNetEncoder(lowerCamelCase_ , name="""encoder""" ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name="""pooler""" ) @unpack_inputs def lowerCAmelCase_ ( self : Union[str, Any] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.embedder(lowerCamelCase_ , training=lowerCamelCase_ ) __a = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase_ ) # Change to NCHW output format have uniformity in the modules __a = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) __a = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __a = tuple([tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( A_ ): A_ : str = RegNetConfig A_ : Tuple = '''regnet''' A_ : Tuple = '''pixel_values''' @property def lowerCAmelCase_ ( self : Union[str, Any] ) -> Dict: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} __A = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ __A = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A_ , ) class a ( A_ ): def __init__( self : Tuple , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ) -> List[str]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) __a = TFRegNetMainLayer(lowerCamelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self : str , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Any=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( pixel_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A_ , ) class a ( A_ , A_ ): def __init__( self : int , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Tuple ) -> Union[str, Any]: super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) __a = config.num_labels __a = TFRegNetMainLayer(lowerCamelCase_ , name="""regnet""" ) # classification head __a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self : int , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[int]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) __a = outputs.pooler_output if return_dict else outputs[1] __a = self.classifier[0](lowerCamelCase_ ) __a = self.classifier[1](lowerCamelCase_ ) __a = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase_ , logits=lowerCamelCase_ ) if not return_dict: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
173
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=3 ,UpperCamelCase=4 ,UpperCamelCase=None ,) -> Dict: snake_case__ :Any = parent snake_case__ :List[str] = batch_size snake_case__ :int = seq_length snake_case__ :Optional[int] = is_training snake_case__ :Any = use_input_mask snake_case__ :str = use_token_type_ids snake_case__ :Dict = use_labels snake_case__ :Any = vocab_size snake_case__ :List[str] = hidden_size snake_case__ :Tuple = num_hidden_layers snake_case__ :Dict = num_attention_heads snake_case__ :Optional[Any] = intermediate_size snake_case__ :List[Any] = hidden_act snake_case__ :Optional[Any] = hidden_dropout_prob snake_case__ :Tuple = attention_probs_dropout_prob snake_case__ :str = max_position_embeddings snake_case__ :int = type_vocab_size snake_case__ :List[Any] = type_sequence_label_size snake_case__ :Optional[int] = initializer_range snake_case__ :Any = num_labels snake_case__ :List[str] = num_choices snake_case__ :str = scope def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :str = None if self.use_input_mask: snake_case__ :int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :List[str] = None if self.use_token_type_ids: snake_case__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ :Union[str, Any] = None snake_case__ :Union[str, Any] = None snake_case__ :Union[str, Any] = None if self.use_labels: snake_case__ :int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ :List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self ) -> Optional[int]: return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCamelCase ,initializer_range=self.initializer_range ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> str: snake_case__ :Union[str, Any] = NystromformerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Union[str, Any] = model(UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ) snake_case__ :Dict = model(UpperCamelCase ,token_type_ids=UpperCamelCase ) snake_case__ :List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Dict = NystromformerForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :int = model(UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Tuple = NystromformerForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[Any] = model( UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,start_positions=UpperCamelCase ,end_positions=UpperCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[Any] = self.num_labels snake_case__ :int = NystromformerForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = model(UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :Tuple = self.num_labels snake_case__ :int = NystromformerForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[int] = model(UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :List[str] = self.num_choices snake_case__ :List[str] = NystromformerForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :Tuple = model( UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :Any = config_and_inputs snake_case__ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _A , _A , unittest.TestCase ): _A = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _A = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Any = NystromformerModelTester(self ) snake_case__ :Tuple = ConfigTester(self ,config_class=UpperCamelCase ,hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ :Any = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :Dict = NystromformerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Tuple = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ :Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case__ :List[Any] = model(UpperCamelCase )[0] snake_case__ :Tuple = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,UpperCamelCase ) snake_case__ :Optional[int] = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,UpperCamelCase ,atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = "the [MASK] of Belgium is Brussels" snake_case__ :Any = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ :Any = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ :Optional[Any] = tokenizer(UpperCamelCase ,return_tensors="pt" ) with torch.no_grad(): snake_case__ :str = model(encoding.input_ids ).logits snake_case__ :Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase ) ,"capital" )
241
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : int = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
241
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor a = logging.get_logger(__name__) class __a ( _snake_case ): def __init__( self : Optional[Any] ,*lowerCamelCase : List[str] ,**lowerCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" ,lowerCamelCase ,) super().__init__(*lowerCamelCase ,**lowerCamelCase )
13
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase_ : Dict = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } UpperCamelCase_ : Tuple = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : str = BartTokenizer def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="replace" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> List[Any]: super().__init__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,errors=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ,trim_offsets=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,_SCREAMING_SNAKE_CASE ) != add_prefix_space: _snake_case = getattr(_SCREAMING_SNAKE_CASE ,pre_tok_state.pop("type" ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**_SCREAMING_SNAKE_CASE ) _snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _snake_case = "post_processor" _snake_case = getattr(self.backend_tokenizer ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state["sep"] ) if "cls" in state: _snake_case = tuple(state["cls"] ) _snake_case = False if state.get("add_prefix_space" ,_SCREAMING_SNAKE_CASE ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get("trim_offsets" ,_SCREAMING_SNAKE_CASE ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(_SCREAMING_SNAKE_CASE ,state.pop("type" ) ) _snake_case = component_class(**_SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else value _snake_case = value def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> BatchEncoding: _snake_case = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> BatchEncoding: _snake_case = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE ,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Tuple: _snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
185
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCamelCase_ : Optional[int] = object() # For specifying empty leaf dict `{}` UpperCamelCase_ : Optional[int] = object() def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] ) -> Optional[Any]: """simple docstring""" _snake_case = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): _snake_case = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def __a ( _UpperCamelCase: Optional[Any] ) -> Union[str, Any]: """simple docstring""" def replace(_UpperCamelCase: Tuple , _UpperCamelCase: List[str] ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def __a ( ) -> Any: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , _UpperCamelCase )), (("transformer", "wte", "embedding"), P("mp" , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( _UpperCamelCase: Union[str, Any] ) -> Any: """simple docstring""" _snake_case = _get_partition_rules() _snake_case = _replacement_rules(_UpperCamelCase ) _snake_case = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} _snake_case = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
185
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case = BigBirdConfig.from_json_file(_lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: __snake_case = BigBirdForQuestionAnswering(_lowerCAmelCase ) else: __snake_case = BigBirdForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_lowerCAmelCase , _lowerCAmelCase , is_trivia_qa=_lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) A : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
473
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A : Any = logging.get_logger(__name__) class UpperCamelCase( _a ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ) -> None: '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
473
1
def UpperCAmelCase_ ( __UpperCAmelCase : list[list] ) -> list[list]: SCREAMING_SNAKE_CASE_ = current_set.copy() for row_index, row in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = row[0] for column_index, column in enumerate(__UpperCAmelCase ): if magnitude == 0: SCREAMING_SNAKE_CASE_ = column continue SCREAMING_SNAKE_CASE_ = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ = current_set[0] SCREAMING_SNAKE_CASE_ = [first_row] SCREAMING_SNAKE_CASE_ = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__UpperCAmelCase ) continue for column_index in range(len(__UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ = final_set[0] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ = simplify(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = resultant return final_set def UpperCAmelCase_ ( __UpperCAmelCase : list[list] ) -> list: if len(__UpperCAmelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) + 1 if any(len(__UpperCAmelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(__UpperCAmelCase , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(__UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ = data_set.copy() SCREAMING_SNAKE_CASE_ = [] for row_index, row in enumerate(__UpperCAmelCase ): if 0 not in row: SCREAMING_SNAKE_CASE_ = data_set.pop(__UpperCAmelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = data_set.copy() SCREAMING_SNAKE_CASE_ = simplify(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = simplified[::-1] SCREAMING_SNAKE_CASE_ = [] for row in simplified: SCREAMING_SNAKE_CASE_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ = row.copy()[: len(__UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__UpperCAmelCase ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ = temp_row[1::] SCREAMING_SNAKE_CASE_ = temp_row[::-1] for column_index, column in enumerate(__UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] for item in solutions: final.append(float(round(__UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : List[str] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowercase = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } lowercase = { '''169M''': 768, '''430M''': 1_024, '''1B5''': 2_048, '''3B''': 2_560, '''7B''': 4_096, '''14B''': 5_120, } def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' a_ =list(state_dict.keys() ) for name in state_dict_keys: a_ =state_dict.pop(lowercase__ ) # emb -> embedding if name.startswith("emb." ): a_ =name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): a_ =name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention a_ =re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , lowercase__ ) # ffn -> feed_forward a_ =re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , lowercase__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): a_ =name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): a_ =name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): a_ =name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": a_ ="rwkv." + name a_ =weight return state_dict def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=None ): '''simple docstring''' if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) a_ =5_0_2_7_7 a_ =AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: a_ =PreTrainedTokenizerFast(tokenizer_file=lowercase__ ) a_ =len(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) # 2. Build the config a_ =list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: a_ =candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) a_ =RwkvConfig( vocab_size=lowercase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase__ ) # 3. Download model file then convert state_dict a_ =hf_hub_download(lowercase__ , lowercase__ ) a_ =torch.load(lowercase__ , map_location="cpu" ) a_ =convert_state_dict(lowercase__ ) # 4. Split in shards and save a_ , a_ =shard_checkpoint(lowercase__ ) for shard_file, shard in shards.items(): torch.save(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) if index is not None: a_ =os.path.join(lowercase__ , lowercase__ ) # Save the index as well with open(lowercase__ , "w" , encoding="utf-8" ) as f: a_ =json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + "\n" f.write(lowercase__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) a_ =list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: a_ =torch.load(os.path.join(lowercase__ , lowercase__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase__ , lowercase__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) a_ =AutoModelForCausalLM.from_pretrained(lowercase__ ) model.push_to_hub(lowercase__ , max_shard_size="2GB" ) tokenizer.push_to_hub(lowercase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowercase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
717
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a_ =torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 a_ =model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple a_ =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a_ =logits[0, masked_index, :] a_ =logits.softmax(dim=0 ) a_ , a_ =prob.topk(k=lowercase__ , dim=0 ) a_ =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) a_ =tokenizer.mask_token a_ =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a_ =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ = os.path.abspath(UpperCAmelCase ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model SCREAMING_SNAKE_CASE_ = tf.train.list_variables(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") SCREAMING_SNAKE_CASE_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' SCREAMING_SNAKE_CASE_ = name[1:] # figure out how many levels deep the name is SCREAMING_SNAKE_CASE_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(UpperCAmelCase ) # read data SCREAMING_SNAKE_CASE_ = tf.train.load_variable(UpperCAmelCase ,UpperCAmelCase ) names.append('''/'''.join(UpperCAmelCase ) ) arrays.append(UpperCAmelCase ) logger.info(f'''Read a total of {len(UpperCAmelCase ):,} layers''' ) # Sanity check if len(set(UpperCAmelCase ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(UpperCAmelCase ) )})''' ) SCREAMING_SNAKE_CASE_ = list(set(UpperCAmelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = full_name.split('''/''' ) SCREAMING_SNAKE_CASE_ = model SCREAMING_SNAKE_CASE_ = [] for i, m_name in enumerate(UpperCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): SCREAMING_SNAKE_CASE_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''embeddings''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''encoder''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''layer''' ) SCREAMING_SNAKE_CASE_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''pooler''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''token_type_embeddings''' ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''attention''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''attention''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''output''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''attention''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''output''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''output''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''output''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''intermediate''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) SCREAMING_SNAKE_CASE_ = getattr(UpperCAmelCase ,'''weight''' ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary SCREAMING_SNAKE_CASE_ = '''.'''.join(UpperCAmelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' ,UpperCAmelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: SCREAMING_SNAKE_CASE_ = array.transpose() if pointer.shape == array.shape: SCREAMING_SNAKE_CASE_ = torch.from_numpy(UpperCAmelCase ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> Optional[Any]: '''simple docstring''' logger.info(f'''Loading model based on config from {config_path}...''' ) SCREAMING_SNAKE_CASE_ = BertConfig.from_json_file(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = BertModel(UpperCAmelCase ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() ,UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) A_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
393
def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE_ = len(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0] * n for i in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = y_points[i] for i in range(2 ,UpperCAmelCase ): for j in range(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
393
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=32 , _snake_case=2 , _snake_case=3 , _snake_case=16 , _snake_case=[32, 64, 128] , _snake_case=[1, 2, 1] , _snake_case=[2, 2, 4] , _snake_case=2 , _snake_case=2.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=True , _snake_case=0.02 , _snake_case=1e-5 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=10 , _snake_case=8 , _snake_case=["stage1", "stage2"] , _snake_case=[1, 2] , ) -> List[str]: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Optional[Any] = embed_dim UpperCAmelCase_ : str = hidden_sizes UpperCAmelCase_ : Any = depths UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[Any] = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[Any] = use_absolute_embeddings UpperCAmelCase_ : int = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Any = out_features UpperCAmelCase_ : Any = out_indices def _snake_case ( self) -> int: UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self) -> Optional[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Union[str, Any]: UpperCAmelCase_ : Tuple = FocalNetModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Optional[int] = model(_snake_case) UpperCAmelCase_ : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) UpperCAmelCase_ : Dict = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = FocalNetBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Union[str, Any] = FocalNetBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Optional[int] = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Any: UpperCAmelCase_ : int = FocalNetForMaskedImageModeling(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Optional[Any] = model(_snake_case) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[Any] = FocalNetForMaskedImageModeling(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ : Optional[int] = model(_snake_case) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> int: UpperCAmelCase_ : str = self.type_sequence_label_size UpperCAmelCase_ : str = FocalNetForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[Any] = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : int = FocalNetForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ : Optional[int] = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _snake_case ( self) -> Optional[int]: UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs UpperCAmelCase_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( a_, a_, unittest.TestCase ): _lowerCamelCase : Any= ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _lowerCamelCase : int= ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : int= False _lowerCamelCase : Any= False _lowerCamelCase : Optional[Any]= False _lowerCamelCase : Optional[Any]= False _lowerCamelCase : Any= False def _snake_case ( self) -> List[str]: UpperCAmelCase_ : Union[str, Any] = FocalNetModelTester(self) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_snake_case , embed_dim=37 , has_text_modality=_snake_case) def _snake_case ( self) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self) -> str: return def _snake_case ( self) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def _snake_case ( self) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case) def _snake_case ( self) -> List[Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case) def _snake_case ( self) -> Any: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='FocalNet does not use inputs_embeds') def _snake_case ( self) -> int: pass @unittest.skip(reason='FocalNet does not use feedforward chunking') def _snake_case ( self) -> Optional[int]: pass def _snake_case ( self) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Any = model_class(_snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear)) def _snake_case ( self) -> str: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(_snake_case) UpperCAmelCase_ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case) def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case) -> List[str]: UpperCAmelCase_ : str = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ : List[Any] = outputs.hidden_states UpperCAmelCase_ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(_snake_case) , _snake_case) # FocalNet has a different seq_length UpperCAmelCase_ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase_ : Any = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[int] = ( reshaped_hidden_states[0].view(_snake_case , _snake_case , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case) def _snake_case ( self) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width)) @slow def _snake_case ( self) -> Tuple: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = FocalNetModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def _snake_case ( self) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(_snake_case) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=_snake_case) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): @cached_property def _snake_case ( self) -> List[Any]: # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny') if is_vision_available() else None @slow def _snake_case ( self) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny').to(_snake_case) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCAmelCase_ : Any = image_processor(images=_snake_case , return_tensors='pt').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_snake_case) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_166, -0.4_368, 0.2_191]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class lowercase ( a_, unittest.TestCase ): _lowerCamelCase : List[Any]= (FocalNetBackbone,) if is_torch_available() else () _lowerCamelCase : List[Any]= FocalNetConfig _lowerCamelCase : List[str]= False def _snake_case ( self) -> str: UpperCAmelCase_ : Optional[Any] = FocalNetModelTester(self)
471
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class lowercase ( a_ ): _lowerCamelCase : Any= "gptsan-japanese" _lowerCamelCase : List[Any]= [ "past_key_values", ] _lowerCamelCase : Tuple= { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _snake_case=3_6000 , _snake_case=1280 , _snake_case=1024 , _snake_case=8192 , _snake_case=4096 , _snake_case=128 , _snake_case=10 , _snake_case=0 , _snake_case=16 , _snake_case=16 , _snake_case=128 , _snake_case=0.0 , _snake_case=1e-5 , _snake_case=False , _snake_case=0.0 , _snake_case="float32" , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=0.002 , _snake_case=False , _snake_case=True , _snake_case=3_5998 , _snake_case=3_5995 , _snake_case=3_5999 , **_snake_case , ) -> Optional[int]: UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Any = d_model UpperCAmelCase_ : int = d_ff UpperCAmelCase_ : Tuple = d_ext UpperCAmelCase_ : Tuple = d_spout UpperCAmelCase_ : List[Any] = num_switch_layers UpperCAmelCase_ : Tuple = num_ext_layers UpperCAmelCase_ : Optional[int] = num_switch_layers + num_ext_layers UpperCAmelCase_ : Tuple = num_heads UpperCAmelCase_ : List[str] = num_experts UpperCAmelCase_ : List[str] = expert_capacity UpperCAmelCase_ : Optional[int] = dropout_rate UpperCAmelCase_ : List[Any] = layer_norm_epsilon UpperCAmelCase_ : Any = router_bias UpperCAmelCase_ : Optional[Any] = router_jitter_noise UpperCAmelCase_ : str = router_dtype UpperCAmelCase_ : List[str] = router_ignore_padding_tokens UpperCAmelCase_ : Optional[int] = output_hidden_states UpperCAmelCase_ : Union[str, Any] = output_attentions UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : Optional[int] = output_router_logits UpperCAmelCase_ : List[str] = use_cache super().__init__( separator_token_id=_snake_case , pad_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , )
471
1