code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase (_a , _a , unittest.TestCase ): _lowercase = IFImgaImgSuperResolutionPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case_ ( self: Any ): '''simple docstring''' return self._get_superresolution_dummy_components() def snake_case_ ( self: List[str],A_: int,A_: Union[str, Any]=0 ): '''simple docstring''' if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = floats_tensor((1, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, 3, 16, 16),rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: int ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda',reason='float16 requires CUDA' ) def snake_case_ ( self: str ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case_ ( self: Any ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case_ ( self: int ): '''simple docstring''' self._test_save_load_local() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2,)
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) __lowercase : Optional[int] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "luke" def __init__(self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=True , A=None , A=1 , A=0 , A=2 , **A , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = entity_vocab_size lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : str = entity_emb_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : int = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : Union[str, Any] = use_entity_aware_attention lowerCamelCase_ : Optional[Any] = classifier_dropout
422
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : dict ) -> str: """simple docstring""" snake_case = BeautifulSoup(requests.get(_UpperCamelCase , params=_UpperCamelCase ).content , 'html.parser' ) snake_case = soup.find('div' , attrs={'class': 'gs_ri'} ) snake_case = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2_018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
711
"""simple docstring""" import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE__ = KEYMAP["up"] SCREAMING_SNAKE_CASE__ = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ = ord(str(i)) def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": import msvcrt snake_case = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke snake_case = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) snake_case = chr(KEYMAP['esc'] ) except KeyError: snake_case = cha[1] else: snake_case = ch.decode(_UpperCamelCase ) else: snake_case = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case = sys.stdin.fileno() snake_case = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) snake_case = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" snake_case = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCamelCase : def __init__( self : Dict , UpperCamelCase : int , UpperCamelCase : Any=99 , UpperCamelCase : Union[str, Any]=13 , UpperCamelCase : Optional[Any]=7 , UpperCamelCase : List[str]=9 , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[str]=False , UpperCamelCase : str=32 , UpperCamelCase : str=5 , UpperCamelCase : Dict=4 , UpperCamelCase : Any=37 , UpperCamelCase : Any=8 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Tuple=0.002 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : List[str]=0 , UpperCamelCase : Dict=0 , UpperCamelCase : Any=None , UpperCamelCase : Tuple=None , ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : int = encoder_seq_length lowerCAmelCase__ : Any = decoder_seq_length # For common tests lowerCAmelCase__ : int = self.decoder_seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : Tuple = use_attention_mask lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Dict = d_ff lowerCAmelCase__ : Union[str, Any] = relative_attention_num_buckets lowerCAmelCase__ : str = dropout_rate lowerCAmelCase__ : Tuple = initializer_factor lowerCAmelCase__ : Dict = eos_token_id lowerCAmelCase__ : Optional[int] = pad_token_id lowerCAmelCase__ : Dict = decoder_start_token_id lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Tuple = decoder_layers def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Any=None , UpperCamelCase : str=None , UpperCamelCase : str=None , ) -> int: """simple docstring""" if attention_mask is None: lowerCAmelCase__ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[int] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: lowerCAmelCase__ : List[str] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : Optional[int] = self.get_config() lowerCAmelCase__ : Optional[int] = config.num_attention_heads lowerCAmelCase__ : Optional[Any] = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Any , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) lowerCAmelCase__ : List[Any] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) lowerCAmelCase__ : Dict = result.last_hidden_state lowerCAmelCase__ : List[Any] = result.past_key_values lowerCAmelCase__ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass lowerCAmelCase__ : str = model(UpperCamelCase , use_cache=UpperCamelCase ) lowerCAmelCase__ : Dict = model(UpperCamelCase ) lowerCAmelCase__ : str = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowerCAmelCase__ , lowerCAmelCase__ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Dict = model(UpperCamelCase )["""last_hidden_state"""] lowerCAmelCase__ : List[str] = model(UpperCamelCase , past_key_values=UpperCamelCase )["""last_hidden_state"""] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : int = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase__ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Any , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() lowerCAmelCase__ : List[str] = model(**UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class _lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): _lowerCamelCase :Tuple = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase :Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase :Dict = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase :Any = True _lowerCamelCase :List[Any] = False _lowerCamelCase :int = False _lowerCamelCase :str = True _lowerCamelCase :Dict = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase :List[Any] = [0.8, 0.9] def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Optional[int] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = config_and_inputs[0] lowerCAmelCase__ : Optional[Any] = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) lowerCAmelCase__ : int = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): lowerCAmelCase__ : List[Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase__ : Any = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase__ : List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=UpperCamelCase , legacy=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowerCAmelCase__ : Optional[Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase ).input_ids # fmt: off lowerCAmelCase__ : Tuple = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = model.generate(input_ids.to(UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowerCAmelCase__ : int = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
299
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _A = logging.getLogger(__name__) torch.set_grad_enabled(False) _A = """cuda""" if torch.cuda.is_available() else """cpu""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=" " ) -> List[str]: lowerCAmelCase__ : str = text.split(__UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )] def lowercase_ ( __UpperCAmelCase ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__UpperCAmelCase ): titles.append(title if title is not None else """""" ) texts.append(__UpperCAmelCase ) return {"title": titles, "text": texts} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict: lowerCAmelCase__ : str = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowerCAmelCase__ : Tuple = ctx_encoder(input_ids.to(device=__UpperCAmelCase ) , return_dict=__UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ : Dict = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ : Dict = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCAmelCase ) lowerCAmelCase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ : List[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ : Optional[Any] = dataset.map( partial(__UpperCAmelCase , ctx_encoder=__UpperCAmelCase , ctx_tokenizer=__UpperCAmelCase ) , batched=__UpperCAmelCase , batch_size=processing_args.batch_size , features=__UpperCAmelCase , ) # And finally save your dataset lowerCAmelCase__ : List[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCAmelCase ) # And save the index lowerCAmelCase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _lowerCamelCase : _lowerCamelCase :str = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) _lowerCamelCase :Optional[str] = field( default=a_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) _lowerCamelCase :str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) _lowerCamelCase :str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) _lowerCamelCase :Optional[str] = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _lowerCamelCase : _lowerCamelCase :Optional[int] = field( default=a_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) _lowerCamelCase :int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _lowerCamelCase : _lowerCamelCase :int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) _lowerCamelCase :int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _A = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _A , _A , _A = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _A = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
299
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __UpperCAmelCase = """pytorch_model.bin""" __UpperCAmelCase = """pytorch_model.bin.index.json""" __UpperCAmelCase = """adapter_config.json""" __UpperCAmelCase = """adapter_model.bin""" __UpperCAmelCase = """adapter_model.safetensors""" __UpperCAmelCase = """tf_model.h5""" __UpperCAmelCase = """tf_model.h5.index.json""" __UpperCAmelCase = """model.ckpt""" __UpperCAmelCase = """flax_model.msgpack""" __UpperCAmelCase = """flax_model.msgpack.index.json""" __UpperCAmelCase = """model.safetensors""" __UpperCAmelCase = """model.safetensors.index.json""" __UpperCAmelCase = """config.json""" __UpperCAmelCase = """preprocessor_config.json""" __UpperCAmelCase = FEATURE_EXTRACTOR_NAME __UpperCAmelCase = """generation_config.json""" __UpperCAmelCase = """modelcard.json""" __UpperCAmelCase = """▁""" __UpperCAmelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __UpperCAmelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __UpperCAmelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __UpperCAmelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def snake_case_ (__A : List[Any] ) -> Any: if version.parse(__A ) < version.parse(__A ): if "dev" in min_version: __lowerCAmelCase : Tuple = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: __lowerCAmelCase : Optional[int] = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
218
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } __UpperCAmelCase = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } __UpperCAmelCase = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def snake_case_ (__A : List[str] ) -> Optional[int]: __lowerCAmelCase : List[Any] = set() __lowerCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase : int = char __lowerCAmelCase : str = set(__A ) return pairs class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple =VOCAB_FILES_NAMES lowerCamelCase : str =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : List[str]="</s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Optional[Any]="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : Dict="<mask>" , **lowerCAmelCase : int , ) -> Dict: """simple docstring""" super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , **lowerCAmelCase , ) __lowerCAmelCase : int = vocab_file __lowerCAmelCase : int = merges_file __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : List[str] = 3 self.add_from_file(lowerCAmelCase ) __lowerCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: __lowerCAmelCase : Dict = merges_handle.read().split("""\n""" )[:-1] __lowerCAmelCase : Any = [tuple(merge.split()[:-1] ) for merge in merges] __lowerCAmelCase : Dict = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowerCAmelCase : int = {} def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : str = [self.cls_token_id] __lowerCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowerCAmelCase : str = [self.sep_token_id] __lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" if token in self.cache: return self.cache[token] __lowerCAmelCase : Union[str, Any] = tuple(lowerCAmelCase ) __lowerCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __lowerCAmelCase : Optional[Any] = get_pairs(lowerCAmelCase ) if not pairs: return token while True: __lowerCAmelCase : Optional[Any] = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase ,__lowerCAmelCase : int = bigram __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : List[Any] = 0 while i < len(lowerCAmelCase ): try: __lowerCAmelCase : Tuple = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase : Any = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase : Dict = tuple(lowerCAmelCase ) __lowerCAmelCase : List[Any] = new_word if len(lowerCAmelCase ) == 1: break else: __lowerCAmelCase : Dict = get_pairs(lowerCAmelCase ) __lowerCAmelCase : List[str] = """@@ """.join(lowerCAmelCase ) __lowerCAmelCase : Any = word[:-4] __lowerCAmelCase : int = word return word def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : str = re.findall(r"""\S+\n?""" , lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : int ) -> Any: """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = """ """.join(lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : List[Any] = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.merges_file , lowerCAmelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): try: with open(lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return __lowerCAmelCase : Union[str, Any] = f.readlines() for lineTmp in lines: __lowerCAmelCase : Optional[int] = lineTmp.strip() __lowerCAmelCase : str = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) __lowerCAmelCase : int = line[:idx] __lowerCAmelCase : List[Any] = len(self.encoder )
218
1
'''simple docstring''' a : List[Any] = [0, 2, 4, 6, 8] a : Any = [1, 3, 5, 7, 9] def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __snake_case = 0 for digit in range(10 ): __snake_case = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCAmelCase , _lowerCAmelCase ) return result __snake_case = 0 for digita in range(10 ): __snake_case = digita if (remainder + digita) % 2 == 0: __snake_case = ODD_DIGITS else: __snake_case = EVEN_DIGITS for digita in other_parity_digits: __snake_case = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCAmelCase , _lowerCAmelCase , ) return result def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] = 9 ) -> int: __snake_case = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCAmelCase , 0 , [0] * length , _lowerCAmelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
69
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" def get_matched_characters(__UpperCamelCase , __UpperCamelCase ) -> str: __A = [] __A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A = int(max(0 , i - limit ) ) __A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCamelCase ) __A = f'{_stra[0:_stra.index(__UpperCamelCase )]} {_stra[_stra.index(__UpperCamelCase ) + 1:]}' return "".join(__UpperCamelCase ) # matching characters __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = len(__UpperCamelCase ) # transposition __A = ( len([(ca, ca) for ca, ca in zip(__UpperCamelCase , __UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __A = 0.0 else: __A = ( 1 / 3 * ( match_count / len(__UpperCamelCase ) + match_count / len(__UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
215
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase = None ): """simple docstring""" if components is None: a_ = [] a_ = list(__UpperCamelCase ) def __len__( self ): """simple docstring""" return len(self.__components ) def __str__( self ): """simple docstring""" return "(" + ",".join(map(__UpperCamelCase , self.__components ) ) + ")" def __add__( self , _UpperCAmelCase ): """simple docstring""" a_ = len(self ) if size == len(__UpperCamelCase ): a_ = [self.__components[i] + other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self , _UpperCAmelCase ): """simple docstring""" a_ = len(self ) if size == len(__UpperCamelCase ): a_ = [self.__components[i] - other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , _UpperCAmelCase ): """simple docstring""" ... @overload def __mul__( self , _UpperCAmelCase ): """simple docstring""" ... def __mul__( self , _UpperCAmelCase ): """simple docstring""" if isinstance(__UpperCamelCase , (float, int) ): a_ = [c * other for c in self.__components] return Vector(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and len(self ) == len(__UpperCamelCase ): a_ = len(self ) a_ = [self.__components[i] * other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return sum(__UpperCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def lowercase__ ( self ): """simple docstring""" return Vector(self.__components ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) a_ = value def lowercase__ ( self ): """simple docstring""" if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) a_ = [c**2 for c in self.__components] return math.sqrt(sum(__UpperCamelCase ) ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = False ): """simple docstring""" a_ = self * other a_ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) return Vector([0] * dimension ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (isinstance(UpperCamelCase__ , UpperCamelCase__ )) a_ = [0] * dimension a_ = 1 return Vector(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (isinstance(UpperCamelCase__ , (int, float) )) ) return x * scalar + y def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" random.seed(UpperCamelCase__ ) a_ = [random.randint(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = matrix a_ = w a_ = h def __str__( self ): """simple docstring""" a_ = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _UpperCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): a_ = [] for i in range(self.__height ): a_ = [ self.__matrix[i][j] + other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , _UpperCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): a_ = [] for i in range(self.__height ): a_ = [ self.__matrix[i][j] - other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , _UpperCAmelCase ): """simple docstring""" ... @overload def __mul__( self , _UpperCAmelCase ): """simple docstring""" ... def __mul__( self , _UpperCAmelCase ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): # matrix-vector if len(__UpperCamelCase ) == self.__width: a_ = zero_vector(self.__height ) for i in range(self.__height ): a_ = [ self.__matrix[i][j] * other.component(__UpperCamelCase ) for j in range(self.__width ) ] ans.change_component(__UpperCamelCase , sum(__UpperCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__UpperCamelCase , (int, float) ): # matrix-scalar a_ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__UpperCamelCase , self.__width , self.__height ) return None def lowercase__ ( self ): """simple docstring""" return self.__height def lowercase__ ( self ): """simple docstring""" return self.__width def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: a_ = value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) a_ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__UpperCamelCase ) ): a_ = minor[i][:y] + minor[i][y + 1 :] return Matrix(__UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__UpperCamelCase , __UpperCamelCase ) else: raise Exception("""Indices out of bounds""" ) def lowercase__ ( self ): """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: a_ = [ self.__matrix[0][y] * self.cofactor(0 , __UpperCamelCase ) for y in range(self.__width ) ] return sum(__UpperCamelCase ) def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = [[0] * n for _ in range(UpperCamelCase__ )] return Matrix(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" random.seed(UpperCamelCase__ ) a_ = [ [random.randint(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ ) ] return Matrix(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
483
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
436
0
"""simple docstring""" from math import ceil, sqrt def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' lowercase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
197
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' if num <= 0: lowercase = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCAmelCase__ ) lowercase = [True] * (num + 1) lowercase = [] lowercase = 2 lowercase = int(math.sqrt(lowerCAmelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase__ ): if sieve[i] is True: lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
197
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _A : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a__ ( a_ ): def __init__( self , *_a , **_a ): super().__init__(*_a , **_a ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __magic_name__ ( self , _a=None ): lowercase : List[Any] = {} if top_k is not None: lowercase : Dict = top_k return {}, {}, postprocess_params def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __magic_name__ ( self , _a ): lowercase : int = load_image(_a ) lowercase : List[Any] = self.image_processor(images=_a , return_tensors=self.framework ) return model_inputs def __magic_name__ ( self , _a ): lowercase : Dict = self.model(**_a ) return model_outputs def __magic_name__ ( self , _a , _a=5 ): if top_k > self.model.config.num_labels: lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Tuple = probs.topk(_a ) elif self.framework == "tf": lowercase : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase : str = tf.math.top_k(_a , k=_a ) lowercase , lowercase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase : int = scores.tolist() lowercase : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_a , _a )]
361
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( a_ ): __lowerCAmelCase = (DDPMScheduler,) def __magic_name__ ( self , **_a ): lowercase : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_a ) return config def __magic_name__ ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __magic_name__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __magic_name__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __magic_name__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __magic_name__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __magic_name__ ( self ): self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __magic_name__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __magic_name__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) lowercase : Dict = len(_a ) lowercase : str = self.dummy_model() lowercase : Optional[int] = self.dummy_sample_deter lowercase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Optional[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : str = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : List[str] = pred_prev_sample lowercase : Dict = torch.sum(torch.abs(_a ) ) lowercase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase : int = scheduler_class(**_a ) lowercase : str = len(_a ) lowercase : Optional[int] = self.dummy_model() lowercase : List[str] = self.dummy_sample_deter lowercase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Union[str, Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : Dict = pred_prev_sample lowercase : str = torch.sum(torch.abs(_a ) ) lowercase : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Tuple = scheduler_class(**_a ) lowercase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) lowercase : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: lowercase : Any = -1 else: lowercase : Union[str, Any] = timesteps[i + 1] lowercase : Optional[int] = scheduler.previous_timestep(_a ) lowercase : Union[str, Any] = prev_t.item() self.assertEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_a ) lowercase : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_a ) def __magic_name__ ( self ): lowercase : Dict = self.scheduler_classes[0] lowercase : Union[str, Any] = self.get_scheduler_config() lowercase : Any = scheduler_class(**_a ) lowercase : int = [100, 87, 50, 1, 0] lowercase : Any = len(_a ) with self.assertRaises(_a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**_a ) lowercase : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_a )
361
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets lowercase = datasets.logging.get_logger(__name__) lowercase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ lowercase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ lowercase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE_ ( datasets.Metric): '''simple docstring''' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence"), "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def UpperCAmelCase ( self , lowerCamelCase__) -> Optional[int]: '''simple docstring''' if self.config_name == "default": snake_case__ : Tuple = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da")) else: snake_case__ : str = comet.load_from_checkpoint(comet.download_model(self.config_name)) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False) -> Union[str, Any]: '''simple docstring''' if gpus is None: snake_case__ : Dict = 1 if torch.cuda.is_available() else 0 snake_case__ : Any = {"src": sources, "mt": predictions, "ref": references} snake_case__ : Tuple = [dict(zip(UpperCamelCase__ , UpperCamelCase__)) for t in zip(*data.values())] snake_case__, snake_case__ : Union[str, Any] = self.scorer.predict(UpperCamelCase__ , gpus=UpperCamelCase__ , progress_bar=UpperCamelCase__) return {"mean_score": mean_score, "scores": scores}
711
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase = """\ Text data. Second line of data.""" lowercase = """file""" @pytest.fixture(scope="session" ) def A__ ( _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' snake_case__ : Any = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") snake_case__ : Optional[int] = bytes(_UpperCAmelCase , "utf-8" ) with zstd.open(_UpperCAmelCase , "wb" ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture def A__ ( _UpperCAmelCase : Dict ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , "w" ) as f: f.write(_UpperCAmelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' snake_case__ : str = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} snake_case__ : List[str] = input_paths[compression_format] snake_case__ : List[str] = tmp_path / "cache" snake_case__ : Tuple = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase ) snake_case__ : Any = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) with open(_UpperCAmelCase ) as f: snake_case__ : str = f.read() with open(_UpperCAmelCase ) as f: snake_case__ : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' snake_case__ : List[str] = "custom_cache" snake_case__ : Any = "custom_extracted_dir" snake_case__ : List[str] = tmp_path / "custom_extracted_path" if default_extracted: snake_case__ : Tuple = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _UpperCAmelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_UpperCAmelCase ) ) snake_case__ : Optional[int] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case__ : List[Any] = xz_file snake_case__ : Union[str, Any] = ( DownloadConfig(extract_compressed_file=_UpperCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase ) ) snake_case__ : List[Any] = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected def A__ ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = str(Path(_UpperCAmelCase ).resolve() ) assert cached_path(_UpperCAmelCase ) == text_file # relative path snake_case__ : List[str] = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCAmelCase ) == text_file def A__ ( _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) # relative path snake_case__ : Optional[int] = "./__missing_file__.txt" with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) def A__ ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' snake_case__ : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_UpperCAmelCase ) as f: snake_case__ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( ) -> Dict: '''simple docstring''' with pytest.raises(_UpperCAmelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' snake_case__ : int = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): http_get("https://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): ftp_get("ftp://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): fsspec_get("s3://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): fsspec_head("s3://huggingface.co" )
150
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase_ = 4 lowercase_ = 3 class __A ( A ): '''simple docstring''' pass def lowerCAmelCase (__A): """simple docstring""" for shard in shards: for i in range(__A): yield {"i": i, "shard": shard} def lowerCAmelCase (): """simple docstring""" _a = int(os.environ['''RANK''']) _a = int(os.environ['''WORLD_SIZE''']) _a = ArgumentParser() parser.add_argument('''--streaming''' , type=__A) parser.add_argument('''--local_rank''' , type=__A) parser.add_argument('''--num_workers''' , type=__A , default=0) _a = parser.parse_args() _a = args.streaming _a = args.num_workers _a = {'''shards''': [F'''shard_{shard_idx}''' for shard_idx in range(__A)]} _a = IterableDataset.from_generator(__A , gen_kwargs=__A) if not streaming: _a = Dataset.from_list(list(__A)) _a = split_dataset_by_node(__A , rank=__A , world_size=__A) _a = torch.utils.data.DataLoader(__A , num_workers=__A) _a = NUM_SHARDS * NUM_ITEMS_PER_SHARD _a = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) _a = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
11
"""simple docstring""" def __lowercase ( snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' def get_matched_characters(snake_case_ : str ,snake_case_ : str ) -> str: __A : Any = [] __A : Any = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A : Dict = int(max(0 ,i - limit ) ) __A : Tuple = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(snake_case_ ) __A : Any = F"""{_stra[0:_stra.index(snake_case_ )]} {_stra[_stra.index(snake_case_ ) + 1:]}""" return "".join(snake_case_ ) # matching characters __A : int = get_matched_characters(snake_case_ ,snake_case_ ) __A : Tuple = get_matched_characters(snake_case_ ,snake_case_ ) __A : str = len(snake_case_ ) # transposition __A : Dict = ( len([(ca, ca) for ca, ca in zip(snake_case_ ,snake_case_ ) if ca != ca] ) // 2 ) if not match_count: __A : List[str] = 0.0 else: __A : Tuple = ( 1 / 3 * ( match_count / len(snake_case_ ) + match_count / len(snake_case_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A : Tuple = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
177
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_A , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_A , '''num_attention_heads''' ) ) class lowerCamelCase_ : def __init__( self : Dict , _A : List[Any] , _A : Any=13 , _A : int=32 , _A : Optional[int]=2 , _A : Any=3 , _A : str=640 , _A : Any=4 , _A : Tuple="silu" , _A : Any=3 , _A : str=32 , _A : List[str]=0.1 , _A : str=0.1 , _A : Optional[Any]=0.1 , _A : int=0.0_2 , _A : List[str]=True , _A : str=True , _A : Tuple=10 , _A : Any=None , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Any = last_hidden_size UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Optional[int] = conv_kernel_size UpperCAmelCase__ : Dict = output_stride UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = classifier_dropout_prob UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : Optional[Any] = scope def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self : Optional[int] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self : int , _A : Any , _A : List[str] , _A : Any , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = MobileViTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Tuple , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Union[str, Any] = MobileViTForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] , _A : Optional[Any] , _A : str , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : Any = MobileViTForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase__ : List[str] = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = MobileViTModelTester(self ) UpperCAmelCase__ : str = MobileViTConfigTester(self , config_class=_A , has_text_modality=_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def lowercase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_A ) UpperCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(_A : str , _A : Optional[Any] , _A : Any ): UpperCAmelCase__ : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : List[Any] = outputs.hidden_states UpperCAmelCase__ : str = 5 self.assertEqual(len(_A ) , _A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase__ : int = 2 for i in range(len(_A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[str] = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = MobileViTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> str: UpperCAmelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(_A ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : Optional[int] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_A ) # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Optional[int] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase__ : Dict = model.to(_A ) UpperCAmelCase__ : str = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Any = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_A ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=_A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1e-4 ) ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase__ : List[str] = model.to(_A ) UpperCAmelCase__ : Any = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_A ) UpperCAmelCase__ : Optional[int] = outputs.logits.detach().cpu() UpperCAmelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(50, 60)] ) UpperCAmelCase__ : Any = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _A ) UpperCAmelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=_A ) UpperCAmelCase__ : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _A )
312
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCamelCase__ = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() UpperCamelCase__ = '''|'''.join(sys.argv[1:]) UpperCamelCase__ = re.compile(RF"""^({joined_dirs}).*?\.py$""") UpperCamelCase__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
312
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =PriorTransformer _snake_case ='''hidden_states''' @property def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Tuple=0 ) -> Tuple: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' return (4, 8) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ={ "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } UpperCAmelCase_ =self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ =self.model_class(**_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) if hasattr(_lowerCAmelCase , "set_default_attn_processor" ): model.set_default_attn_processor() UpperCAmelCase_ =self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] UpperCAmelCase_ =output[0, :5].flatten().cpu() print(_lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ =torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-2 ) ) @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: str=1 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Any=77 , _lowerCAmelCase: Optional[int]=0 ) -> str: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =batch_size UpperCAmelCase_ =embedding_dim UpperCAmelCase_ =num_embeddings UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_seed_input(seed=_lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase_ =sample[0, :8].flatten().cpu() print(_lowerCAmelCase ) UpperCAmelCase_ =torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 )
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
def lowerCamelCase__ ( _lowerCamelCase ) ->int: # noqa: E741 _UpperCAmelCase =len(_lowerCamelCase ) _UpperCAmelCase =0 _UpperCAmelCase =[0] * n _UpperCAmelCase =[False] * n _UpperCAmelCase =[False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if parent == root: out_edge_count += 1 _UpperCAmelCase =True _UpperCAmelCase =at for to in l[at]: if to == parent: pass elif not visited[to]: _UpperCAmelCase =dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _UpperCAmelCase =True # AP found via cycle if at == low[to]: _UpperCAmelCase =True else: _UpperCAmelCase =min(low[at] , _lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: _UpperCAmelCase =0 _UpperCAmelCase =dfs(_lowerCamelCase , _lowerCamelCase , -1 , _lowerCamelCase ) _UpperCAmelCase =out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph snake_case__ : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
717
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
592
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A : str = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = DebertaVaTokenizer lowerCamelCase__ : Union[str, Any] = DebertaVaTokenizerFast lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[Any] = True def lowercase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''this is a test''' SCREAMING_SNAKE_CASE__ = '''this is a test''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''<pad>''' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(A_ ) , 3_00_01 ) def lowercase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , do_lower_case=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , do_lower_case=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''This is a test''' SCREAMING_SNAKE_CASE__ = [13, 1, 43_98, 25, 21, 12_89] SCREAMING_SNAKE_CASE__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ , keep_accents=A_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(A_ , keep_accents=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) # fmt: off SCREAMING_SNAKE_CASE__ = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] SCREAMING_SNAKE_CASE__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] SCREAMING_SNAKE_CASE__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''sequence builders''' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''multi-sequence build''' ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A_ , ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
100
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = """decision_transformer""" _UpperCAmelCase : str = ["""past_key_values"""] _UpperCAmelCase : Any = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __magic_name__=1_7 , __magic_name__=4 , __magic_name__=1_2_8 , __magic_name__=4_0_9_6 , __magic_name__=True , __magic_name__=1 , __magic_name__=1_0_2_4 , __magic_name__=3 , __magic_name__=1 , __magic_name__=None , __magic_name__="relu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=5_0_2_5_6 , __magic_name__=5_0_2_5_6 , __magic_name__=False , __magic_name__=False , **__magic_name__ , ): lowerCamelCase : Optional[int] = state_dim lowerCamelCase : int = act_dim lowerCamelCase : int = hidden_size lowerCamelCase : Union[str, Any] = max_ep_len lowerCamelCase : Optional[int] = action_tanh lowerCamelCase : Any = vocab_size lowerCamelCase : List[str] = n_positions lowerCamelCase : List[Any] = n_layer lowerCamelCase : Dict = n_head lowerCamelCase : Optional[Any] = n_inner lowerCamelCase : Tuple = activation_function lowerCamelCase : Tuple = resid_pdrop lowerCamelCase : str = embd_pdrop lowerCamelCase : Dict = attn_pdrop lowerCamelCase : Tuple = layer_norm_epsilon lowerCamelCase : Tuple = initializer_range lowerCamelCase : Tuple = scale_attn_weights lowerCamelCase : str = use_cache lowerCamelCase : List[Any] = scale_attn_by_inverse_layer_idx lowerCamelCase : List[str] = reorder_and_upcast_attn lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : str = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
681
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCAmelCase__ = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def snake_case_ ( A_ : str = "dhaka", A_ : int = 5 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = min(_SCREAMING_SNAKE_CASE, 50 ) # Prevent abuse! _lowerCamelCase : Dict = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _lowerCamelCase : Optional[int] = requests.get('''https://www.google.com/search''', params=_SCREAMING_SNAKE_CASE, headers=_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Tuple = BeautifulSoup(html.text, '''html.parser''' ) _lowerCamelCase : Any = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''', str(soup.select('''script''' ) ) ) ) _lowerCamelCase : Dict = json.dumps(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = json.loads(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''', _SCREAMING_SNAKE_CASE, ) if not matched_google_image_data: return 0 _lowerCamelCase : int = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''', '''''', str(_SCREAMING_SNAKE_CASE ), ) _lowerCamelCase : List[Any] = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''', _SCREAMING_SNAKE_CASE, ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index _lowerCamelCase : Any = bytes(_SCREAMING_SNAKE_CASE, '''ascii''' ).decode( '''unicode-escape''' ) _lowerCamelCase : Dict = bytes(_SCREAMING_SNAKE_CASE, '''ascii''' ).decode( '''unicode-escape''' ) _lowerCamelCase : Any = urllib.request.build_opener() _lowerCamelCase : int = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = F'''query_{query.replace(" ", "_" )}''' if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE, F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowerCAmelCase__ = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('''Please provide a search term.''') raise
707
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def snake_case_ ( A_ : Optional[int], A_ : int, A_ : int=8 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( _lowercase): def __init__( self : List[str] , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : DDPMScheduler , __lowerCAmelCase : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) _lowerCamelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): """simple docstring""" if latents is None: _lowerCamelCase : Optional[int] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _lowerCamelCase : Any = latents.to(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Any=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowerCamelCase : Tuple = torch.device(f'''cuda:{gpu_id}''' ) _lowerCamelCase : Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _lowerCamelCase : Optional[int] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase , _lowerCamelCase : List[str] = cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Optional[int] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 5_1_2 , __lowerCAmelCase : int = 1_0_0 , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): """simple docstring""" _lowerCamelCase : int = self._execution_device _lowerCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[Any] = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Dict = torch.cat(__lowerCAmelCase , dim=0 ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : List[str] = torch.cat(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : int = hint.repeat_interleave(__lowerCAmelCase , dim=0 ) _lowerCamelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Tuple = self.movq.config.latent_channels _lowerCamelCase , _lowerCamelCase : List[Any] = downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) # create initial latent _lowerCamelCase : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : int = {'''image_embeds''': image_embeds, '''hint''': hint} _lowerCamelCase : List[str] = self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.chunk(2 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = variance_pred.chunk(2 ) _lowerCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase , _lowerCamelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _lowerCamelCase : Union[str, Any] = image * 0.5 + 0.5 _lowerCamelCase : List[Any] = image.clamp(0 , 1 ) _lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase : Union[str, Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
598
0
"""simple docstring""" def __lowerCamelCase ( a_ : int = 60_08_51_47_51_43 ) -> Any: try: __SCREAMING_SNAKE_CASE :Optional[Any] = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __SCREAMING_SNAKE_CASE :List[Any] = 2 __SCREAMING_SNAKE_CASE :int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __SCREAMING_SNAKE_CASE :int = i while n % i == 0: __SCREAMING_SNAKE_CASE :Optional[Any] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
498
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[torch.FloatTensor] = None lowercase : torch.FloatTensor = None lowercase : Optional[Tuple[torch.FloatTensor]] = None lowercase : Optional[Tuple[torch.FloatTensor]] = None class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=5_12 , __UpperCamelCase="cls" , __UpperCamelCase=False , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : str = project_dim __UpperCamelCase : Union[str, Any] = pooler_fn __UpperCamelCase : List[Any] = learn_encoder __UpperCamelCase : Union[str, Any] = use_attention_mask class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Dict = [R'pooler', R'logit_scale'] lowercase : Optional[int] = [R'position_ids', R'predictions.decoder.bias'] lowercase : str = 'roberta' lowercase : int = RobertaSeriesConfig def __init__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' super().__init__(__UpperCamelCase ) __UpperCamelCase : List[Any] = XLMRobertaModel(__UpperCamelCase ) __UpperCamelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : str = getattr(__UpperCamelCase , "has_pre_transformation" , __UpperCamelCase ) if self.has_pre_transformation: __UpperCamelCase : int = nn.Linear(config.hidden_size , config.project_dim ) __UpperCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __lowerCamelCase ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Optional[Any] = self.base_model( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , position_ids=__UpperCamelCase , head_mask=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__UpperCamelCase , ) if self.has_pre_transformation: __UpperCamelCase : Any = outputs["hidden_states"][-2] __UpperCamelCase : Tuple = self.pre_LN(__UpperCamelCase ) __UpperCamelCase : str = self.transformation_pre(__UpperCamelCase ) return TransformationModelOutput( projection_state=__UpperCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __UpperCamelCase : int = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__UpperCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
327
0
"""simple docstring""" import pytest A_ = '''__dummy_dataset1__''' A_ = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCAmelCase__ (): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase__ (): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" _snake_case : List[str] = dataset_loading_script_name _snake_case : Optional[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=snake_case__ ) _snake_case : Tuple = script_dir / F"{script_name}.py" with open(snake_case__ , """w""" ) as f: f.write(snake_case__ ) return str(snake_case__ )
710
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__snake_case , """num_heads""" ) ) class UpperCAmelCase : def __init__( self : str , __snake_case : List[str] , __snake_case : Dict=13 , __snake_case : Dict=64 , __snake_case : List[str]=3 , __snake_case : str=[16, 48, 96] , __snake_case : Tuple=[1, 3, 6] , __snake_case : Optional[Any]=[1, 2, 10] , __snake_case : str=[7, 3, 3] , __snake_case : Optional[int]=[4, 2, 2] , __snake_case : int=[2, 1, 1] , __snake_case : str=[2, 2, 2] , __snake_case : Any=[False, False, True] , __snake_case : Optional[Any]=[0.0, 0.0, 0.0] , __snake_case : List[Any]=0.02 , __snake_case : Optional[Any]=1E-1_2 , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : Any=2 , ) -> Union[str, Any]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_sizes _lowerCAmelCase = patch_stride _lowerCAmelCase = patch_padding _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = num_labels _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = num_heads _lowerCAmelCase = stride_kv _lowerCAmelCase = depth _lowerCAmelCase = cls_token _lowerCAmelCase = attention_drop_rate _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps def lowercase__ ( self : Dict ) -> Optional[Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ) -> List[Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : int ) -> int: _lowerCAmelCase = CvtModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case ) _lowerCAmelCase = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : List[str] , __snake_case : Tuple ) -> Tuple: _lowerCAmelCase = self.num_labels _lowerCAmelCase = CvtForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: int = (CvtModel, CvtForImageClassification) if is_torch_available() else () _lowercase: Tuple = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _lowercase: Tuple = False _lowercase: Union[str, Any] = False _lowercase: Tuple = False _lowercase: List[str] = False _lowercase: Optional[Any] = False def lowercase__ ( self : Dict ) -> Any: _lowerCAmelCase = CvtModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowercase__ ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : int ) -> Any: return @unittest.skip(reason="""Cvt does not output attentions""" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowercase__ ( self : List[Any] ) -> Optional[int]: pass def lowercase__ ( self : int ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : List[Any] ) -> Optional[int]: def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : str ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Optional[int] ) -> Dict: pass @slow def lowercase__ ( self : Union[str, Any] ) -> Any: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = CvtModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[str] ) -> Any: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ) -> Tuple: _lowerCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__snake_case ) # verify the logits _lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) _lowerCAmelCase = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
207
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: _lowerCAmelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: _lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: _lowerCAmelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: _lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: _lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: _lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(lowerCAmelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: _lowerCAmelCase = config.decoder_hidden_size _lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = config.hidden_size _lowerCAmelCase = """vit.encoder.layer.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: _lowerCAmelCase = 10_24 _lowerCAmelCase = 40_96 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif "huge" in checkpoint_url: _lowerCAmelCase = 14 _lowerCAmelCase = 12_80 _lowerCAmelCase = 51_20 _lowerCAmelCase = 32 _lowerCAmelCase = 16 _lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""model"""] _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = convert_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() _lowerCAmelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**lowerCAmelCase ) _lowerCAmelCase = outputs.logits if "large" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: _lowerCAmelCase = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : List[Any] =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
207
1
'''simple docstring''' def a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: if index == number_of_items: return 0 snake_case__ =0 snake_case__ =0 snake_case__ =knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ) if weights[index] <= max_weight: snake_case__ =values[index] + knapsack( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_weight - weights[index] , index + 1 ) return max(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
581
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__( snake_case__ , unittest.TestCase ): a_ : str = PriorTransformer a_ : Tuple = '''hidden_states''' @property def _lowercase ( self ) -> int: snake_case__ =4 snake_case__ =8 snake_case__ =7 snake_case__ =floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self , _UpperCAmelCase=0 ) -> List[str]: torch.manual_seed(_UpperCAmelCase ) snake_case__ =4 snake_case__ =8 snake_case__ =7 snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowercase ( self ) -> str: return (4, 8) @property def _lowercase ( self ) -> Any: return (4, 8) def _lowercase ( self ) -> Dict: snake_case__ ={ 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } snake_case__ =self.dummy_input return init_dict, inputs_dict def _lowercase ( self ) -> List[Any]: snake_case__ , snake_case__ =PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_UpperCAmelCase ) snake_case__ =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowercase ( self ) -> Optional[Any]: snake_case__ , snake_case__ =self.prepare_init_args_and_inputs_for_common() snake_case__ =self.model_class(**_UpperCAmelCase ) snake_case__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ =[*signature.parameters.keys()] snake_case__ =['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , _UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) snake_case__ =model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() snake_case__ =self.get_dummy_seed_input() with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase )[0] snake_case__ =output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. snake_case__ =torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-2 ) ) @slow class a__( unittest.TestCase ): def _lowercase ( self , _UpperCAmelCase=1 , _UpperCAmelCase=768 , _UpperCAmelCase=77 , _UpperCAmelCase=0 ) -> Optional[Any]: torch.manual_seed(_UpperCAmelCase ) snake_case__ =batch_size snake_case__ =embedding_dim snake_case__ =num_embeddings snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: snake_case__ =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(_UpperCAmelCase ) snake_case__ =self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] snake_case__ =sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) snake_case__ =torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 )
581
1
def UpperCamelCase ( snake_case__ : list ) -> list: UpperCamelCase : str = len(snake_case__ ) for _ in range(snake_case__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase , UpperCamelCase : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCAmelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
40
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __UpperCAmelCase = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ElectraTokenizer def __init__( self : int , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[str]="[UNK]" , lowerCamelCase_ : int="[SEP]" , lowerCamelCase_ : List[Any]="[PAD]" , lowerCamelCase_ : Union[str, Any]="[CLS]" , lowerCamelCase_ : Union[str, Any]="[MASK]" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , normalizer_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : List[Any] = do_lower_case SCREAMING_SNAKE_CASE : int = strip_accents SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Optional[Any] = normalizer_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = do_lower_case def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
709
'''simple docstring''' import math def __A ( lowerCamelCase_ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __A ( lowerCamelCase_ = 1_00_01 ): """simple docstring""" try: SCREAMING_SNAKE_CASE : Tuple = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Dict = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
79
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : @staticmethod def lowerCAmelCase_ ( *a__ , **a__ ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class __lowercase ( unittest.TestCase ): __magic_name__ : Optional[int] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Tuple: '''simple docstring''' A_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCAmelCase_ ( self , a__ , a__ ) -> str: '''simple docstring''' A_ = vqa_pipeline(a__ , top_k=1 ) self.assertEqual( a__ , [ [{'''score''': ANY(a__ ), '''answer''': ANY(a__ )}], [{'''score''': ANY(a__ ), '''answer''': ANY(a__ )}], ] , ) @require_torch def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ = '''How many cats are there?''' A_ = vqa_pipeline(image=a__ , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( a__ , [{'''score''': ANY(a__ ), '''answer''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ )}] ) A_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( a__ , [{'''score''': ANY(a__ ), '''answer''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ )}] ) @slow @require_torch def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) A_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A_ = '''How many cats are there?''' A_ = vqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) A_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [[{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' pass
141
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowercase ( A , unittest.TestCase ): __magic_name__ : Any = FlaxAutoencoderKL @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = 4 A_ = 3 A_ = (3_2, 3_2) A_ = jax.random.PRNGKey(0 ) A_ = jax.random.uniform(a__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' A_ = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } A_ = self.dummy_input return init_dict, inputs_dict
141
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Dict=10 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Union[str, Any]=10 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=0.9 , _lowerCAmelCase : List[Any]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[int] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size , -1 ).bool() __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case :Any = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case :List[Any] = False __snake_case :List[Any] = False __snake_case :List[Any] = False __snake_case :Union[str, Any] = False def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple=False ) -> int: """simple docstring""" __lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() __lowercase = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self : int ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowercase = len(_lowerCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass def snake_case ( ): '''simple docstring''' __lowercase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowercase = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Tuple ) -> Any: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowercase = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size([1, 1408, 1536] ) __lowercase = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5_142] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = torch.tensor(torch.tensor([0.6_469] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) )
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(_lowercase ) UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowercase ) UpperCamelCase = checkpoints.load_tax_checkpoint(_lowercase ) UpperCamelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCamelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''encoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_global_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = tax_mlp_layer_norm UpperCamelCase = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_global_rel_embedding # Assigning UpperCamelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCamelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCamelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''decoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_pre_attention_layer_norm UpperCamelCase = tax_enc_dec_attention_key UpperCamelCase = tax_enc_dec_attention_out UpperCamelCase = tax_enc_dec_attention_query UpperCamelCase = tax_enc_dec_attention_value UpperCamelCase = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = txa_mlp_layer_norm UpperCamelCase = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCamelCase = txa_decoder_norm # Only for layer 0: UpperCamelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCamelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_lowercase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
34
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( snake_case__ ,snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = IFImgaImgSuperResolutionPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) a_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE__ ( self ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _lowerCAmelCase : Any = torch.manual_seed(_snake_case ) else: _lowerCAmelCase : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) _lowerCAmelCase : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case ) _lowerCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def SCREAMING_SNAKE_CASE__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
424
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : int = """bart""" lowercase__ : str = ["""past_key_values"""] lowercase__ : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , lowercase : List[str]=50_265 , lowercase : Any=1_024 , lowercase : Dict=12 , lowercase : Union[str, Any]=4_096 , lowercase : str=16 , lowercase : Optional[Any]=12 , lowercase : str=4_096 , lowercase : Optional[Any]=16 , lowercase : int=0.0 , lowercase : int=0.0 , lowercase : Tuple="gelu" , lowercase : Dict=1_024 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=0.0 , lowercase : Dict=0.0 , lowercase : str=0.02 , lowercase : Any=0.0 , lowercase : Dict=False , lowercase : str=True , lowercase : Union[str, Any]=3 , lowercase : Optional[int]=1 , lowercase : Dict=0 , lowercase : Dict=2 , lowercase : Tuple=True , lowercase : str=2 , lowercase : Tuple=2 , **lowercase : Any , ) -> int: """simple docstring""" __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = classifier_dropout __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowercase ): __lowercase = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase = {0: """batch"""} __lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowercase = {0: """batch""", 1: """decoder_sequence"""} __lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase ): __lowercase = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def snake_case__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase , self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase ): __lowercase = {0: """batch""", 2: """past_sequence + sequence"""} __lowercase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def snake_case__ ( self : Tuple , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase = common_inputs["""input_ids"""].shape __lowercase = common_inputs["""decoder_input_ids"""].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase , lowercase )] , dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase , lowercase ) __lowercase = max(lowercase , lowercase ) - min_num_layers __lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def snake_case__ ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs["""attention_mask"""].dtype __lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) __lowercase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def snake_case__ ( self : Any , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase ) __lowercase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def snake_case__ ( self : Any , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def snake_case__ ( self : Union[str, Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : int ) -> Union[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: __lowercase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
634
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE: int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE: Tuple = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowercase_ (SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ ="mvp" lowerCAmelCase__ =["past_key_values"] lowerCAmelCase__ ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , snake_case__ : Union[str, Any]=5_02_67 , snake_case__ : Dict=10_24 , snake_case__ : int=12 , snake_case__ : Tuple=40_96 , snake_case__ : Optional[int]=16 , snake_case__ : List[Any]=12 , snake_case__ : Any=40_96 , snake_case__ : Tuple=16 , snake_case__ : Any=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : List[Any]="gelu" , snake_case__ : List[str]=10_24 , snake_case__ : List[Any]=0.1 , snake_case__ : Any=0.0 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Optional[int]=0.02 , snake_case__ : Tuple=0.0 , snake_case__ : Union[str, Any]=False , snake_case__ : Dict=True , snake_case__ : Optional[Any]=1 , snake_case__ : List[Any]=0 , snake_case__ : str=2 , snake_case__ : Any=True , snake_case__ : Tuple=2 , snake_case__ : Optional[int]=2 , snake_case__ : List[str]=False , snake_case__ : int=1_00 , snake_case__ : int=8_00 , **snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = classifier_dropout SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = use_prompt SCREAMING_SNAKE_CASE_ = prompt_length SCREAMING_SNAKE_CASE_ = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): SCREAMING_SNAKE_CASE_ = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE: Optional[int] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Tuple = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Any = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: str = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case (metaclass=UpperCamelCase ): lowerCAmelCase__ :str = ["torch", "scipy"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Tuple: requires_backends(self ,["torch", "scipy"] ) @classmethod def _a ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Any: requires_backends(cls ,["torch", "scipy"] ) @classmethod def _a ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Optional[Any]: requires_backends(cls ,["torch", "scipy"] )
539
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Optional[int] = CodeGenTokenizer lowerCAmelCase__ :List[Any] = CodeGenTokenizerFast lowerCAmelCase__ :str = True lowerCAmelCase__ :Tuple = {"add_prefix_space": True} lowerCAmelCase__ :Dict = False def _a ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowercase__ = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) lowercase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _a ( self ,**UpperCAmelCase_ ) -> int: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def _a ( self ,**UpperCAmelCase_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ) -> List[Any]: lowercase__ = "lower newer" lowercase__ = "lower newer" return input_text, output_text def _a ( self ) -> Optional[int]: lowercase__ = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowercase__ = "lower newer" lowercase__ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowercase__ = tokenizer.tokenize(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def _a ( self ) -> int: if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) lowercase__ = "lower newer" # Testing tokenization lowercase__ = tokenizer.tokenize(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) lowercase__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing conversion to ids without special tokens lowercase__ = tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) lowercase__ = rust_tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing conversion to ids with special tokens lowercase__ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) lowercase__ = tokenizer.encode(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) lowercase__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing the unknown token lowercase__ = tokens + [rust_tokenizer.unk_token] lowercase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def _a ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Any: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _a ( self ,UpperCAmelCase_=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) # Simple input lowercase__ = "This is a simple input" lowercase__ = ["This is a simple input 1", "This is a simple input 2"] lowercase__ = ("This is a simple input", "This is a pair") lowercase__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ) # Simple input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ) # Simple input self.assertRaises( UpperCAmelCase_ ,tokenizer_r.batch_encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ,) # Pair input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ) # Pair input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ) # Pair input self.assertRaises( UpperCAmelCase_ ,tokenizer_r.batch_encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="max_length" ,) def _a ( self ) -> Optional[Any]: lowercase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowercase__ = "This is a simple input" lowercase__ = ["This is a simple input looooooooong", "This is a simple input"] lowercase__ = ("This is a simple input", "This is a pair") lowercase__ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer(UpperCAmelCase_ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowercase__ = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncate=UpperCAmelCase_ ,return_tensors="np" ) lowercase__ = tokenizer(*UpperCAmelCase_ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowercase__ = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncate=UpperCAmelCase_ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def _a ( self ) -> List[str]: lowercase__ = "$$$" lowercase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=UpperCAmelCase_ ,add_bos_token=UpperCAmelCase_ ) lowercase__ = "This is a simple input" lowercase__ = ["This is a simple input 1", "This is a simple input 2"] lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer(UpperCAmelCase_ ) lowercase__ = tokenizer(UpperCAmelCase_ ) self.assertEqual(out_s.input_ids[0] ,UpperCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase__ = tokenizer.decode(out_s.input_ids ) lowercase__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,UpperCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _a ( self ) -> List[Any]: lowercase__ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowercase__ = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowercase__ = "\nif len_a > len_b: result = a\nelse: result = b" lowercase__ = tokenizer.encode(UpperCAmelCase_ ) lowercase__ = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowercase__ = tokenizer.decode(UpperCAmelCase_ ,truncate_before_pattern=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ) -> Any: pass
539
1
'''simple docstring''' from __future__ import annotations from math import pi def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
407
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a__ = get_tests_dir('''fixtures/dummy-config.json''') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : str ) -> Dict: """simple docstring""" __UpperCamelCase : Optional[Any] = 0 def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __UpperCamelCase : int = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> Any: """simple docstring""" __UpperCamelCase : List[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCamelCase : Union[str, Any] = os.path.join(lowerCAmelCase , """fake-roberta""" ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) __UpperCamelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertEqual(type(lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> str: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase ): AutoConfig.register("""model""" , lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoConfig.register("""bert""" , lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase : Optional[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase ) __UpperCamelCase : List[str] = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""bert-base""" ) def lowerCamelCase__ ( self : Dict ) -> Any: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase , revision="""aaaaaa""" ) def lowerCamelCase__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) __UpperCamelCase : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase ) __UpperCamelCase : str = AutoConfig.from_pretrained(lowerCAmelCase , trust_remote_code=lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : int = 'new-model' try: AutoConfig.register("""new-model""" , lowerCAmelCase ) # If remote code is not set, the default is to use local __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. __UpperCamelCase : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub __UpperCamelCase : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
279
0
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE_ , n - 1 , SCREAMING_SNAKE_CASE_ ) * a) % mod else: _lowerCamelCase : str = binary_exponentiation(SCREAMING_SNAKE_CASE_ , n / 2 , SCREAMING_SNAKE_CASE_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE__ : str =701 SCREAMING_SNAKE_CASE__ : Any =10_0000_0000 SCREAMING_SNAKE_CASE__ : List[Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
708
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Any: _lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = sum(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Union[str, Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCamelCase : List[str] = True for i in range(1 , s + 1 ): _lowerCamelCase : Union[str, Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCamelCase : int = dp[i][j - 1] if arr[i - 1] <= j: _lowerCamelCase : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCamelCase : List[str] = s - 2 * j break return diff
558
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __snake_case ( _lowercase): snake_case__ : torch.FloatTensor snake_case__ : torch.FloatTensor class __snake_case ( _lowercase , _lowercase): snake_case__ : int = 1 @register_to_config def __init__( self : str , __lowerCAmelCase : int = 2_0_0_0 , __lowerCAmelCase : float = 0.15 , __lowerCAmelCase : float = 0.01 , __lowerCAmelCase : float = 13_48.0 , __lowerCAmelCase : float = 1E-5 , __lowerCAmelCase : int = 1 , ): """simple docstring""" _lowerCamelCase : Optional[int] = sigma_max # setable values _lowerCamelCase : Dict = None self.set_sigmas(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[int] = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : float = None , __lowerCAmelCase : Union[str, torch.device] = None ): """simple docstring""" _lowerCamelCase : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCamelCase : Optional[int] = torch.linspace(1 , __lowerCAmelCase , __lowerCAmelCase , device=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : float = None , __lowerCAmelCase : float = None , __lowerCAmelCase : float = None ): """simple docstring""" _lowerCamelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCamelCase : int = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCamelCase : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCamelCase : Optional[int] = torch.exp(torch.linspace(math.log(__lowerCAmelCase ) , math.log(__lowerCAmelCase ) , __lowerCAmelCase ) ) _lowerCamelCase : Tuple = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ): """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) _lowerCamelCase : Tuple = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCamelCase : Dict = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCamelCase : Optional[int] = timesteps.to(self.discrete_sigmas.device ) _lowerCamelCase : Any = self.discrete_sigmas[timesteps].to(sample.device ) _lowerCamelCase : int = self.get_adjacent_sigma(__lowerCAmelCase , __lowerCAmelCase ).to(sample.device ) _lowerCamelCase : Any = torch.zeros_like(__lowerCAmelCase ) _lowerCamelCase : Any = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCamelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _lowerCamelCase : List[Any] = diffusion.unsqueeze(-1 ) _lowerCamelCase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCamelCase : List[str] = randn_tensor( sample.shape , layout=sample.layout , generator=__lowerCAmelCase , device=sample.device , dtype=sample.dtype ) _lowerCamelCase : List[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCamelCase : int = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCAmelCase , prev_sample_mean=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCamelCase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=__lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _lowerCamelCase : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _lowerCamelCase : Tuple = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _lowerCamelCase : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCamelCase : Tuple = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCamelCase : Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _lowerCamelCase : str = step_size.unsqueeze(-1 ) _lowerCamelCase : Any = sample + step_size * model_output _lowerCamelCase : int = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : torch.FloatTensor , ): """simple docstring""" _lowerCamelCase : Dict = timesteps.to(original_samples.device ) _lowerCamelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] _lowerCamelCase : Union[str, Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCAmelCase ) * sigmas[:, None, None, None] ) _lowerCamelCase : int = noise + original_samples return noisy_samples def __len__( self : Optional[int] ): """simple docstring""" return self.config.num_train_timesteps
83
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase = 16 ): """simple docstring""" snake_case__ : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Optional[int] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Any = 16 elif accelerator.mixed_precision != "no": snake_case__ : str = 8 else: snake_case__ : Optional[int] = None return tokenizer.pad( UpperCAmelCase , padding="""longest""" , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : Any = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase , drop_last=UpperCAmelCase ) snake_case__ : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : int = config["""lr"""] snake_case__ : Tuple = int(config["""num_epochs"""] ) snake_case__ : int = int(config["""seed"""] ) snake_case__ : List[str] = int(config["""batch_size"""] ) snake_case__ : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Any = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : str = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) snake_case__ , snake_case__ : str = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : int = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[str] = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Any = model(**UpperCAmelCase ) snake_case__ : int = outputs.loss snake_case__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Dict = model(**UpperCAmelCase ) snake_case__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) snake_case__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCAmelCase ) def lowerCAmelCase__ ( ): """simple docstring""" snake_case__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase , default=UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Union[str, Any] = parser.parse_args() snake_case__ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
172
'''simple docstring''' import math from datetime import datetime, timedelta def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : List[str] = year % 19 snake_case__ : Optional[Any] = year % 4 snake_case__ : Optional[Any] = year % 7 snake_case__ : List[str] = math.floor(year / 100 ) snake_case__ : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case__ : Dict = leap_day_inhibits / 4 snake_case__ : Optional[int] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case__ : Optional[int] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case__ : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case__ : Optional[int] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase , 4 , 18 ) else: return datetime(UpperCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCAmelCase__ = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
172
1
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE :Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' SCREAMING_SNAKE_CASE :int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' SCREAMING_SNAKE_CASE :List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] ,) def UpperCamelCase_ ( self : Dict ,A : Dict ,A : str ,A : str=None ,A : Tuple=1 ,A : Any="binary" ,A : List[Any]=None ): __A = fa_score( A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A ) return {"f1": float(A ) if score.size == 1 else score}
55
from __future__ import annotations SCREAMING_SNAKE_CASE_:Tuple = """#""" class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self ): A : dict = {} def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self._trie for char in text: if char not in trie: A : str = {} A : str = trie[char] A : Optional[int] = True def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = self._trie for char in prefix: if char in trie: A : Optional[Any] = trie[char] else: return [] return self._elements(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = [] for c, v in d.items(): A : List[Any] = [""" """] if c == END else [(c + s) for s in self._elements(lowerCamelCase__ )] result.extend(lowerCamelCase__ ) return tuple(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_:Any = Trie() SCREAMING_SNAKE_CASE_:Tuple = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def __UpperCamelCase ( _lowerCAmelCase ) -> tuple: """simple docstring""" A : List[str] = trie.find_word(_lowerCAmelCase ) return tuple(string + word for word in suffixes ) def __UpperCamelCase ( ) -> None: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
662
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } lowerCamelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __SCREAMING_SNAKE_CASE ( _snake_case ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ :str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ :str = DistilBertTokenizer def __init__( self : Union[str, Any] , __a : Optional[int]=None , __a : List[str]=None , __a : int=True , __a : Any="[UNK]" , __a : Tuple="[SEP]" , __a : Dict="[PAD]" , __a : Optional[Any]="[CLS]" , __a : int="[MASK]" , __a : Union[str, Any]=True , __a : Tuple=None , **__a : Any , ) -> Tuple: super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _UpperCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __a ) != do_lower_case or normalizer_state.get("strip_accents" , __a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars ): _UpperCamelCase : List[str] = getattr(__a , normalizer_state.pop("type" ) ) _UpperCamelCase : Dict = do_lower_case _UpperCamelCase : Dict = strip_accents _UpperCamelCase : Optional[Any] = tokenize_chinese_chars _UpperCamelCase : Optional[int] = normalizer_class(**__a ) _UpperCamelCase : Union[str, Any] = do_lower_case def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict=None ) -> Any: _UpperCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> str: _UpperCamelCase : List[Any] = [self.sep_token_id] _UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Any: _UpperCamelCase : Dict = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["OwlViTFeatureExtractor"] lowerCamelCase__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[str] = GPTSanJapaneseTokenizer A : Optional[Any] = False A : List[Any] = {'''do_clean_text''': False, '''add_prefix_space''': False} def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE : Union[str, Any] = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE : Optional[Any] = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file, 'w' ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。 \nこんばんは、㔺界。😀' SCREAMING_SNAKE_CASE : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.get_input_output_texts(A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A, clean_up_tokenization_spaces=A ) return text, ids def UpperCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE : int = 'こんにちは、世界。 こんばんは、㔺界。' SCREAMING_SNAKE_CASE : str = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(A ) self.assertListEqual(A, A ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A, A ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE : Union[str, Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE : int = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' SCREAMING_SNAKE_CASE : List[str] = 'こんにちは、、、、世界。こんばんは、、、、世界。' SCREAMING_SNAKE_CASE : str = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(A ) self.assertEqual(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。' SCREAMING_SNAKE_CASE : Dict = 'こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE : List[Any] = 'こんにちは、世界。こんばんは、世界。😀' SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('', prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE : int = tokenizer.encode(A, prefix_text=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(A ) SCREAMING_SNAKE_CASE : Any = tokenizer.decode(A ) SCREAMING_SNAKE_CASE : Any = tokenizer.decode(A ) self.assertEqual(A, A ) self.assertEqual(A, A ) self.assertEqual(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE : Optional[Any] = 'こんにちは、世界。' SCREAMING_SNAKE_CASE : Dict = 'こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE : str = len(tokenizer.encode(A ) ) - 2 SCREAMING_SNAKE_CASE : Optional[Any] = len(tokenizer.encode(A ) ) - 2 SCREAMING_SNAKE_CASE : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE : List[str] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE : Tuple = tokenizer('', prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE : List[str] = tokenizer(A, prefix_text=A ).token_type_ids self.assertListEqual(A, A ) self.assertListEqual(A, A ) self.assertListEqual(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE : str = tokenizer.encode('あンいワ' ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('', prefix_text='あンいワ' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('いワ', prefix_text='あン' ) self.assertEqual(tokenizer.decode(A ), tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ), tokenizer.decode(A ) ) self.assertNotEqual(A, A ) self.assertNotEqual(A, A ) self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE : Any = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] SCREAMING_SNAKE_CASE : Any = tokenizer(A, padding=A ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_encode_plus(A, padding=A ) # fmt: off SCREAMING_SNAKE_CASE : int = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] SCREAMING_SNAKE_CASE : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE : List[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids, A ) self.assertListEqual(x_token.token_type_ids, A ) self.assertListEqual(x_token.attention_mask, A ) self.assertListEqual(x_token_a.input_ids, A ) self.assertListEqual(x_token_a.token_type_ids, A ) self.assertListEqual(x_token_a.attention_mask, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' pass
28
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _a ( lowerCamelCase_ ): return 1.0 / (1.0 + np.exp(-_outputs )) def _a ( lowerCamelCase_ ): snake_case : Union[str, Any] =np.max(_outputs , axis=-1 , keepdims=lowerCamelCase_ ) snake_case : Optional[int] =np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase_ ) class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'sigmoid' __UpperCAmelCase = 'softmax' __UpperCAmelCase = 'none' @add_end_docstrings( a_ , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = False __UpperCAmelCase = ClassificationFunction.NONE def __init__( self : List[str], **_snake_case : List[Any] ): '''simple docstring''' super().__init__(**_snake_case ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __snake_case ( self : List[Any], _snake_case : str=None, _snake_case : Union[str, Any]=None, _snake_case : Optional[int]="", **_snake_case : List[Any] ): '''simple docstring''' snake_case : int =tokenizer_kwargs snake_case : str ={} if hasattr(self.model.config, '''return_all_scores''' ) and return_all_scores is None: snake_case : int =self.model.config.return_all_scores if isinstance(_snake_case, _snake_case ) or top_k is None: snake_case : int =top_k snake_case : Optional[Any] =False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''', _snake_case, ) if return_all_scores: snake_case : List[Any] =None else: snake_case : Dict =1 if isinstance(_snake_case, _snake_case ): snake_case : List[str] =ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: snake_case : Tuple =function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Tuple, *_snake_case : Union[str, Any], **_snake_case : int ): '''simple docstring''' snake_case : Dict =super().__call__(*_snake_case, **_snake_case ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. snake_case : Optional[int] ='''top_k''' not in kwargs if isinstance(args[0], _snake_case ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __snake_case ( self : List[Any], _snake_case : List[str], **_snake_case : Dict ): '''simple docstring''' snake_case : Optional[Any] =self.framework if isinstance(_snake_case, _snake_case ): return self.tokenizer(**_snake_case, return_tensors=_snake_case, **_snake_case ) elif isinstance(_snake_case, _snake_case ) and len(_snake_case ) == 1 and isinstance(inputs[0], _snake_case ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0], text_pair=inputs[0][1], return_tensors=_snake_case, **_snake_case ) elif isinstance(_snake_case, _snake_case ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(_snake_case, return_tensors=_snake_case, **_snake_case ) def __snake_case ( self : Tuple, _snake_case : Union[str, Any] ): '''simple docstring''' return self.model(**_snake_case ) def __snake_case ( self : Tuple, _snake_case : Optional[int], _snake_case : str=None, _snake_case : Any=1, _snake_case : Optional[int]=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: snake_case : Tuple =ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: snake_case : str =ClassificationFunction.SOFTMAX elif hasattr(self.model.config, '''function_to_apply''' ) and function_to_apply is None: snake_case : Tuple =self.model.config.function_to_apply else: snake_case : Optional[Any] =ClassificationFunction.NONE snake_case : List[str] =model_outputs['''logits'''][0] snake_case : Union[str, Any] =outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: snake_case : Optional[int] =sigmoid(_snake_case ) elif function_to_apply == ClassificationFunction.SOFTMAX: snake_case : Optional[Any] =softmax(_snake_case ) elif function_to_apply == ClassificationFunction.NONE: snake_case : Union[str, Any] =outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} snake_case : int =[ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(_snake_case ) ] if not _legacy: dict_scores.sort(key=lambda _snake_case : x["score"], reverse=_snake_case ) if top_k is not None: snake_case : List[Any] =dict_scores[:top_k] return dict_scores
349
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = 'maskformer' _A = {'hidden_size': 'mask_feature_size'} _A = ['resnet', 'swin'] _A = ['detr'] def __init__( self , lowercase__ = 256 , lowercase__ = 256 , lowercase__ = 0.1 , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0.02 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 20.0 , lowercase__ = None , **lowercase__ , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE_ : Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ : Optional[Any] = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE_ : Optional[int] = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE_ : Dict = ( decoder_config.pop("model_type" ) if isinstance(lowercase__ , lowercase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[str] = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE_ : int = config_class.from_dict(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = backbone_config SCREAMING_SNAKE_CASE_ : int = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE_ : Tuple = fpn_feature_size SCREAMING_SNAKE_CASE_ : Dict = mask_feature_size # initializer SCREAMING_SNAKE_CASE_ : Union[str, Any] = init_std SCREAMING_SNAKE_CASE_ : List[Any] = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE_ : int = cross_entropy_weight SCREAMING_SNAKE_CASE_ : List[str] = dice_weight SCREAMING_SNAKE_CASE_ : List[Any] = mask_weight SCREAMING_SNAKE_CASE_ : Dict = use_auxiliary_loss SCREAMING_SNAKE_CASE_ : Dict = no_object_weight SCREAMING_SNAKE_CASE_ : List[Any] = output_auxiliary_logits SCREAMING_SNAKE_CASE_ : List[Any] = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = self.decoder_config.num_hidden_layers super().__init__(**lowercase__ ) @classmethod def __lowerCamelCase ( cls , lowercase__ , lowercase__ , **lowercase__ ): """simple docstring""" return cls( backbone_config=lowercase__ , decoder_config=lowercase__ , **lowercase__ , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.__class__.model_type return output
701
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = "xmod" def __init__( self , lowercase__=3_0522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , lowercase__=False , lowercase__=2 , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=("en_XX",) , lowercase__=None , **lowercase__ , ): """simple docstring""" super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = position_embedding_type SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : Optional[int] = classifier_dropout SCREAMING_SNAKE_CASE_ : int = pre_norm SCREAMING_SNAKE_CASE_ : Optional[int] = adapter_reduction_factor SCREAMING_SNAKE_CASE_ : List[str] = adapter_layer_norm SCREAMING_SNAKE_CASE_ : List[str] = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE_ : int = ln_before_adapter SCREAMING_SNAKE_CASE_ : List[Any] = list(lowercase__ ) SCREAMING_SNAKE_CASE_ : Any = default_language class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @property def __lowerCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
68
0
__UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__ : float ) -> str: assert type(snake_case__ ) in (int, float) and decimal == int(snake_case__ ) UpperCamelCase : Any = int(snake_case__ ) UpperCamelCase : Any = '' UpperCamelCase : List[str] = False if decimal < 0: UpperCamelCase : Optional[Any] = True decimal *= -1 while decimal > 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = divmod(snake_case__ , 16 ) UpperCamelCase : int = values[remainder] + hexadecimal UpperCamelCase : int = '0x' + hexadecimal if negative: UpperCamelCase : str = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
40
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase : Tuple = bs[:] __UpperCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Union[str, Any] = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = set() __UpperCAmelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Tuple = char return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , **lowercase__ , ): __UpperCAmelCase : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else bos_token __UpperCAmelCase : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else eos_token __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else sep_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else cls_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else unk_token __UpperCAmelCase : List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : Optional[int] = json.load(lowercase__) __UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Optional[Any] = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[int] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : int = [tuple(merge.split()) for merge in bpe_merges] __UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : List[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : int = tuple(lowercase__) __UpperCAmelCase : int = get_pairs(lowercase__) if not pairs: return token while True: __UpperCAmelCase : Union[str, Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Tuple = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 0 while i < len(lowercase__): try: __UpperCAmelCase : List[Any] = word.index(lowercase__ , lowercase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __UpperCAmelCase : str = j if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : Union[str, Any] = tuple(lowercase__) __UpperCAmelCase : Dict = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(lowercase__) __UpperCAmelCase : List[Any] = ''' '''.join(lowercase__) __UpperCAmelCase : Tuple = word return word def A( self , lowercase__): __UpperCAmelCase : str = [] for token in re.findall(self.pat , lowercase__): __UpperCAmelCase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__).split(''' ''')) return bpe_tokens def A( self , lowercase__): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__) def A( self , lowercase__): __UpperCAmelCase : str = ''''''.join(lowercase__) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : Tuple = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : Optional[int] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Optional[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) if token_ids_a is None: return [1] + ([0] * len(lowercase__)) + [1] return [1] + ([0] * len(lowercase__)) + [1, 1] + ([0] * len(lowercase__)) + [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__=False , **lowercase__): __UpperCAmelCase : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowercase__) > 0 and not text[0].isspace()): __UpperCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def A( self , lowercase__ , lowercase__ = None , lowercase__ = PaddingStrategy.DO_NOT_PAD , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: __UpperCAmelCase : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCAmelCase : int = len(encoded_inputs['''global_attention_mask''']) != len(lowercase__) if needs_to_be_padded: __UpperCAmelCase : Dict = len(lowercase__) - len(encoded_inputs['''global_attention_mask''']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCAmelCase : Optional[Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __UpperCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side)) return encoded_inputs
462
0
'''simple docstring''' import math def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : str = 0 A : int = n while left <= right: A : List[Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A : Dict = mid - 1 else: A : Tuple = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False ) -> int: """simple docstring""" A : Any = scheduler A : Tuple = optimizers if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] A : Dict = split_batches A : Tuple = step_with_optimizer A : Any = GradientState() def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step A : str = AcceleratorState().num_processes for _ in range(SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return self.scheduler.state_dict() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" return self.scheduler.get_lr() def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.scheduler.print_lr(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
343
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case (lowerCamelCase ): __a = ['''image_processor''', '''tokenizer'''] __a = '''Pix2StructImageProcessor''' __a = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self: Dict , A_: List[str] , A_: Optional[int] ): __lowerCamelCase = False super().__init__(A_ , A_ ) def __call__( self: Tuple , A_: str=None , A_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A_: bool = True , A_: Union[bool, str, PaddingStrategy] = False , A_: Union[bool, str, TruncationStrategy] = None , A_: Optional[int] = None , A_: Optional[int] = 20_48 , A_: int = 0 , A_: Optional[int] = None , A_: Optional[bool] = None , A_: bool = False , A_: bool = False , A_: bool = False , A_: bool = False , A_: bool = False , A_: bool = True , A_: Optional[Union[str, TensorType]] = None , **A_: List[str] , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase = self.image_processor( A_ , return_tensors=A_ , max_patches=A_ , **A_ ) else: # add pixel_values and bbox __lowerCamelCase = self.image_processor( A_ , return_tensors=A_ , max_patches=A_ , header_text=A_ , **A_ ) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) if "attention_mask" in text_encoding: __lowerCamelCase = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: __lowerCamelCase = text_encoding.pop("""input_ids""" ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __a ( self: List[str] , *A_: Tuple , **A_: Optional[Any] ): return self.tokenizer.batch_decode(*A_ , **A_ ) def __a ( self: int , *A_: Optional[int] , **A_: Optional[Any] ): return self.tokenizer.decode(*A_ , **A_ ) @property def __a ( self: Dict ): __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
281
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case (lowerCamelCase ): __a = ['''image_processor''', '''tokenizer'''] __a = '''LayoutLMv2ImageProcessor''' __a = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self: Any , A_: Optional[Any]=None , A_: Dict=None , **A_: Any ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A_ , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A_ , A_ ) def __call__( self: List[str] , A_: Any , A_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A_: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , A_: Union[List[List[int]], List[List[List[int]]]] = None , A_: Optional[Union[List[int], List[List[int]]]] = None , A_: bool = True , A_: Union[bool, str, PaddingStrategy] = False , A_: Union[bool, str, TruncationStrategy] = None , A_: Optional[int] = None , A_: int = 0 , A_: Optional[int] = None , A_: Optional[bool] = None , A_: Optional[bool] = None , A_: bool = False , A_: bool = False , A_: bool = False , A_: bool = False , A_: bool = True , A_: Optional[Union[str, TensorType]] = None , **A_: Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=A_ , return_tensors=A_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A_ , A_ ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features["""words"""] __lowerCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) # add pixel values __lowerCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(A_ , encoded_inputs["""overflow_to_sample_mapping"""] ) __lowerCamelCase = images return encoded_inputs def __a ( self: Optional[Any] , A_: Any , A_: Tuple ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A_ ) != len(A_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f' {len(A_ )} and {len(A_ )}' ) return images_with_overflow def __a ( self: Optional[Any] , *A_: str , **A_: Dict ): return self.tokenizer.batch_decode(*A_ , **A_ ) def __a ( self: Union[str, Any] , *A_: Optional[Any] , **A_: Tuple ): return self.tokenizer.decode(*A_ , **A_ ) @property def __a ( self: Union[str, Any] ): return ["input_ids", "bbox", "attention_mask", "image"] @property def __a ( self: Optional[Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A_ , ) return self.image_processor_class @property def __a ( self: List[Any] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A_ , ) return self.image_processor
281
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[Any] ): A = [] for part_id in partition_order: A = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(2 ) A = [1, 0] A = _generate_iterable_examples(snake_case__ , snake_case__ ) # Reverse the partitions. A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(1 ) A = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: A = lambda snake_case__ : x.reverse() A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [2, 1, 0] ) A = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
"""simple docstring""" import os import sys UpperCamelCase__ :Union[str, Any] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase__ :List[Any] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoConfig.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoTokenizer.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModel.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModel.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForCausalLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForMaskedLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*snake_case__ , **snake_case__ )
355
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
467
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: _UpperCAmelCase : Dict = b.T _UpperCAmelCase : Dict = np.sum(np.square(lowerCAmelCase ) , axis=1 ) _UpperCAmelCase : Optional[Any] = np.sum(np.square(lowerCAmelCase ) , axis=0 ) _UpperCAmelCase : str = np.matmul(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = aa[:, None] - 2 * ab + ba[None, :] return d def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict ) -> int: _UpperCAmelCase : Any = x.reshape(-1 , 3 ) _UpperCAmelCase : List[str] = squared_euclidean_distance(lowerCAmelCase , lowerCAmelCase ) return np.argmin(lowerCAmelCase , axis=1 ) class a ( UpperCAmelCase ): _lowercase = ["pixel_values"] def __init__( self , A_ = None , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = True , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _UpperCAmelCase : Optional[Any] = size if size is not None else {"height": 256, "width": 256} _UpperCAmelCase : Optional[int] = get_size_dict(A_ ) _UpperCAmelCase : Union[str, Any] = np.array(A_ ) if clusters is not None else None _UpperCAmelCase : int = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Optional[Any] = resample _UpperCAmelCase : str = do_normalize _UpperCAmelCase : List[str] = do_color_quantize def _UpperCAmelCase ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , ): '''simple docstring''' _UpperCAmelCase : int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( A_ , size=(size["height"], size["width"]) , resample=A_ , data_format=A_ , **A_ ) def _UpperCAmelCase ( self , A_ , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Dict = rescale(image=A_ , scale=1 / 1_27.5 , data_format=A_ ) _UpperCAmelCase : List[Any] = image - 1 return image def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Dict = get_size_dict(A_ ) _UpperCAmelCase : List[Any] = resample if resample is not None else self.resample _UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase : Any = clusters if clusters is not None else self.clusters _UpperCAmelCase : Optional[int] = np.array(A_ ) _UpperCAmelCase : List[str] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(A_ ) for image in images] if do_resize: _UpperCAmelCase : int = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_normalize: _UpperCAmelCase : List[str] = [self.normalize(image=A_ ) for image in images] if do_color_quantize: _UpperCAmelCase : Tuple = [to_channel_dimension_format(A_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase : List[str] = np.array(A_ ) _UpperCAmelCase : List[Any] = color_quantize(A_ , A_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _UpperCAmelCase : Any = images.shape[0] _UpperCAmelCase : List[Any] = images.reshape(A_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase : Union[str, Any] = list(A_ ) else: _UpperCAmelCase : Optional[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _UpperCAmelCase : List[Any] = {"input_ids": images} return BatchFeature(data=A_ , tensor_type=A_ )
467
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' _a : List[Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) _a : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_ ) _a : Any = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) _a : List[Any] = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _a : Tuple = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _a : int = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : int = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _a : Union[str, Any] = f'''layers_{str(lowerCamelCase_ )}''' # Self-Attention _a : Any = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _a : Any = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _a : Dict = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _a : Dict = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _a : Tuple = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _a : Any = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _a : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _a : Any = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _a : Any = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _a : Optional[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _a : Optional[int] = flax_model.params['encoder']['block'][str(lowerCamelCase_ )]['layer'] _a : Tuple = tax_attention_key _a : Dict = tax_attention_out _a : Union[str, Any] = tax_attention_query _a : Any = tax_attention_value _a : Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : str = tax_global_layer_norm if split_mlp_wi: _a : Union[str, Any] = tax_mlp_wi_a _a : Dict = tax_mlp_wi_a else: _a : Any = tax_mlp_wi _a : List[Any] = tax_mlp_wo _a : Optional[int] = tax_mlp_layer_norm _a : List[Any] = flax_model_encoder_layer_block # Only for layer 0: _a : List[Any] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _a : List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : List[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _a : List[str] = tax_encoder_global_rel_embedding # Assigning _a : Dict = tax_model['target']['encoder']['encoder_norm']['scale'] _a : List[str] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _a : Any = f'''layers_{str(lowerCamelCase_ )}''' # Self-Attention _a : int = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _a : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _a : Union[str, Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _a : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _a : str = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _a : int = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _a : List[Any] = tax_enc_dec_attention_module['key']['kernel'] _a : Any = tax_enc_dec_attention_module['out']['kernel'] _a : List[str] = tax_enc_dec_attention_module['query']['kernel'] _a : Optional[int] = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _a : str = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _a : str = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _a : Optional[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _a : List[str] = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _a : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _a : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _a : str = flax_model.params['decoder']['block'][str(lowerCamelCase_ )]['layer'] _a : List[str] = tax_attention_key _a : Union[str, Any] = tax_attention_out _a : Optional[Any] = tax_attention_query _a : str = tax_attention_value _a : Any = tax_pre_attention_layer_norm _a : Any = tax_enc_dec_attention_key _a : Union[str, Any] = tax_enc_dec_attention_out _a : Dict = tax_enc_dec_attention_query _a : str = tax_enc_dec_attention_value _a : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _a : Dict = tax_mlp_wi_a _a : Union[str, Any] = tax_mlp_wi_a else: _a : Union[str, Any] = tax_mlp_wi _a : Optional[Any] = tax_mlp_wo _a : Tuple = txa_mlp_layer_norm _a : Union[str, Any] = flax_model_decoder_layer_block # Decoder Normalization _a : Union[str, Any] = tax_model['target']['decoder']['decoder_norm']['scale'] _a : Any = txa_decoder_norm # Only for layer 0: _a : Dict = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _a : List[Any] = tax_decoder_rel_embedding # Token Embeddings _a : List[Any] = tax_model['target']['token_embedder']['embedding'] _a : List[str] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _a : int = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(lowerCamelCase_ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
120
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __magic_name__ : str ={ 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __magic_name__ : Tuple ={ 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' __magic_name__ = (images / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = numpy_to_pil(lowerCamelCase_ ) return images def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' if images.ndim == 3: __magic_name__ = images[None, ...] __magic_name__ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __magic_name__ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __magic_name__ = [Image.fromarray(lowerCamelCase_ ) for image in images] return pil_images
664
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase ( A__: str ) -> Tuple: __lowerCamelCase : List[str] = image.size __lowerCamelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCamelCase : str = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __lowerCamelCase : int = np.array(A__ ).astype(np.floataa ) / 255.0 __lowerCamelCase : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) __lowerCamelCase : Any = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a , __a , ): super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self , __a = None , __a = 1 , __a = 100 , __a = 0.0 , __a = None , __a = "pil" , __a = True , ): if isinstance(__a , PIL.Image.Image ): __lowerCamelCase : Dict = 1 elif isinstance(__a , torch.Tensor ): __lowerCamelCase : List[str] = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__a )}''' ) if isinstance(__a , PIL.Image.Image ): __lowerCamelCase : int = preprocess(__a ) __lowerCamelCase : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowerCamelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) __lowerCamelCase : List[Any] = next(self.unet.parameters() ).dtype __lowerCamelCase : str = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) __lowerCamelCase : Optional[int] = image.to(device=self.device , dtype=__a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__a , device=self.device ) __lowerCamelCase : Union[str, Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : List[str] = {} if accepts_eta: __lowerCamelCase : Tuple = eta for t in self.progress_bar(__a ): # concat latents and low resolution image in the channel dimension. __lowerCamelCase : str = torch.cat([latents, image] , dim=1 ) __lowerCamelCase : Optional[int] = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual __lowerCamelCase : Union[str, Any] = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Dict = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # decode the image latents with the VQVAE __lowerCamelCase : int = self.vqvae.decode(__a ).sample __lowerCamelCase : int = torch.clamp(__a , -1.0 , 1.0 ) __lowerCamelCase : Tuple = image / 2 + 0.5 __lowerCamelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
708
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=False , __a=True , __a="None" , __a=3 , __a=4 , __a=None , ): __lowerCamelCase : List[str] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : str = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : Dict = use_input_mask __lowerCamelCase : Dict = use_token_type_ids __lowerCamelCase : Dict = use_labels __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_act __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Optional[Any] = type_vocab_size __lowerCamelCase : Dict = type_sequence_label_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Tuple = num_choices __lowerCamelCase : str = relative_attention __lowerCamelCase : Optional[int] = position_biased_input __lowerCamelCase : int = pos_att_type __lowerCamelCase : str = scope def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : int = None if self.use_input_mask: __lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase : Tuple = None if self.use_token_type_ids: __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : int = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case_ ( self , __a ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : int = DebertaVaModel(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : str = model(__a , attention_mask=__a , token_type_ids=__a )[0] __lowerCamelCase : str = model(__a , token_type_ids=__a )[0] __lowerCamelCase : Optional[Any] = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : List[str] = DebertaVaForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Union[str, Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : Optional[int] = self.num_labels __lowerCamelCase : List[Any] = DebertaVaForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCamelCase : Optional[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : int = self.num_labels __lowerCamelCase : Dict = DebertaVaForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : int = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : Optional[Any] = DebertaVaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Any = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCamelCase : Any = DebertaVaForMultipleChoice(config=__a ) model.to(__a ) model.eval() __lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : List[Any] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ): __lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[str] = config_and_inputs __lowerCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : Dict = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __a : Tuple = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __a : str = True __a : Dict = False __a : Tuple = False __a : Optional[Any] = False __a : List[Any] = False def snake_case_ ( self ): __lowerCamelCase : List[str] = DebertaVaModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def snake_case_ ( self ): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def snake_case_ ( self ): __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) def snake_case_ ( self ): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__a ) @slow def snake_case_ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = DebertaVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def snake_case_ ( self ): pass @slow def snake_case_ ( self ): __lowerCamelCase : Any = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __lowerCamelCase : Any = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowerCamelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. __lowerCamelCase : str = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
263
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE_ : List[str] = FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE_ : Tuple = 0.01 with locka.acquire(): with pytest.raises(A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = 'a' * 1_0_0_0 + '.lock' SCREAMING_SNAKE_CASE_ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 SCREAMING_SNAKE_CASE_ : Optional[int] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
101
def a__ ( A__, A__ ): def get_matched_characters(A__, A__ ) -> str: SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Any = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(max(0, i - limit ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = F'''{_stra[0:_stra.index(A__ )]} {_stra[_stra.index(A__ ) + 1:]}''' return "".join(A__ ) # matching characters SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : int = get_matched_characters(A__, A__ ) SCREAMING_SNAKE_CASE_ : Any = len(A__ ) # transposition SCREAMING_SNAKE_CASE_ : Optional[int] = ( len([(ca, ca) for ca, ca in zip(A__, A__ ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE_ : Dict = 0.0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 1 / 3 * ( match_count / len(A__ ) + match_count / len(A__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE_ : List[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
101
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : int = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase__ : Dict = 4 lowerCamelCase__ : Optional[Any] = 48 lowerCamelCase__ : str = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ : List[str] = [6, 6, 6, 6] lowerCamelCase__ : Any = 60 lowerCamelCase__ : int = [6, 6, 6, 6] lowerCamelCase__ : Dict = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ : int = 4 lowerCamelCase__ : List[Any] = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : List[Any] = 126 lowerCamelCase__ : Union[str, Any] = 7 lowerCamelCase__ : Union[str, Any] = 255.0 lowerCamelCase__ : Optional[Any] = '''''' return config def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase__ : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase__ : List[str] = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: lowerCamelCase__ : str = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: lowerCamelCase__ : List[str] = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: lowerCamelCase__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase__ : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowerCamelCase__ : int = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowerCamelCase__ : Optional[int] = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowerCamelCase__ : Optional[Any] = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowerCamelCase__ : Optional[Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Tuple = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": lowerCamelCase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase__ : str = '''layernorm.bias''' if "conv_first" in name: lowerCamelCase__ : List[Any] = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase__ : Any = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: lowerCamelCase__ : Optional[Any] = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: lowerCamelCase__ : List[str] = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) lowerCamelCase__ : List[str] = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase__ : int = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) lowerCamelCase__ : int = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: lowerCamelCase__ : Any = '''swin2sr.''' + name return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : str = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: lowerCamelCase__ : Union[str, Any] = key.split('''.''' ) lowerCamelCase__ : Dict = int(key_split[1] ) lowerCamelCase__ : int = int(key_split[4] ) lowerCamelCase__ : Optional[Any] = config.embed_dim if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : Tuple = val[dim : dim * 2, :] lowerCamelCase__ : Tuple = val[-dim:, :] else: lowerCamelCase__ : List[str] = val[:dim] lowerCamelCase__ : Any = val[dim : dim * 2] lowerCamelCase__ : Union[str, Any] = val[-dim:] pass else: lowerCamelCase__ : Optional[int] = val return orig_state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Tuple = get_config(UpperCAmelCase ) lowerCamelCase__ : List[Any] = SwinaSRForImageSuperResolution(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[str] = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values lowerCamelCase__ : Dict = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert('''RGB''' ) lowerCamelCase__ : List[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase__ : List[str] = 126 if '''Jpeg''' in checkpoint_url else 256 lowerCamelCase__ : str = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) lowerCamelCase__ : str = transforms(UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase__ : str = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase__ : int = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ : Optional[int] = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ : Optional[int] = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : int = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase__ : Any = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : int = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ : Optional[int] = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ : List[Any] = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : int = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) lowerCamelCase__ : Optional[int] = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } lowerCamelCase__ : Optional[int] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') _A : List[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
720
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Any , A : str ) ->int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCamelCase__ : Any = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A ) def __lowerCamelCase ( self : List[str] ) ->List[str]: lowerCamelCase__ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase__ : Tuple = '''sgugger/tiny-distilbert-classification''' lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : int = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : Tuple = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Dict = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ : int = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Dict = TensorFlowBenchmark(A , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def __lowerCamelCase ( self : Dict ) ->Dict: lowerCamelCase__ : Dict = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(A , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(A , '''env.csv''' ) , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''env.csv''' ) ).exists() ) def __lowerCamelCase ( self : Tuple ) ->Optional[int]: lowerCamelCase__ : List[Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A : int ): self.assertTrue(hasattr(A , '''sequential''' ) ) self.assertTrue(hasattr(A , '''cumulative''' ) ) self.assertTrue(hasattr(A , '''current''' ) ) self.assertTrue(hasattr(A , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , '''log.txt''' ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Any = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , '''log.txt''' ) ).exists() )
130
0
"""simple docstring""" from math import factorial def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(_UpperCamelCase ) // (factorial(_UpperCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', f"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
642
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = 2 lowercase_ : Tuple = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCamelCase ) if n > 1: factors.append(_UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
620
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __snake_case ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """LayoutLMv2ImageProcessor""" lowercase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self : str , __magic_name__ : Tuple=None , __magic_name__ : Union[str, Any]=None , **__magic_name__ : Optional[Any] ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : Tuple , __magic_name__ : str , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __magic_name__ : Union[List[List[int]], List[List[List[int]]]] = None , __magic_name__ : Optional[Union[List[int], List[List[int]]]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : int , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor UpperCamelCase = self.image_processor(images=__magic_name__ , return_tensors=__magic_name__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__magic_name__ , __magic_name__ ): UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase = features["""words"""] UpperCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel values UpperCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase = self.get_overflowing_images(__magic_name__ , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase = images return encoded_inputs def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] ): """simple docstring""" UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F' {len(__magic_name__ )} and {len(__magic_name__ )}' ) return images_with_overflow def lowerCamelCase_ ( self : List[str] , *__magic_name__ : Optional[Any] , **__magic_name__ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : str , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase_ ( self : str ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : str ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
181
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __snake_case = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __snake_case = { "facebook/mbart-large-en-ro": 1_024, "facebook/mbart-large-cc25": 1_024, } # fmt: off __snake_case = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase ( __snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["""input_ids""", """attention_mask"""] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict="<s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : List[str]="<mask>" , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Tuple , ): """simple docstring""" UpperCamelCase = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCamelCase = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase = src_lang if src_lang is not None else """en_XX""" UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : List[str] , __magic_name__ : str ): """simple docstring""" UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : int , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Tuple ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase = src_lang UpperCamelCase = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = tgt_lang_id return inputs def lowerCamelCase_ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : Any ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : str ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Any , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return UpperCamelCase = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
181
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
256
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCamelCase_ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
256
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( A__ , unittest.TestCase ): UpperCamelCase__ = DebertaVaTokenizer UpperCamelCase__ = DebertaVaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing A__ = DebertaVaTokenizer(a__ , unk_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self , a__): A__ = '''this is a test''' A__ = '''this is a test''' return input_text, output_text def snake_case_ ( self): A__ = '''<pad>''' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__) , a__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__) , a__) def snake_case_ ( self): A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<pad>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''[PAD]''') self.assertEqual(len(a__) , 3_0_0_0_1) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0) def snake_case_ ( self): # fmt: off A__ = ''' \tHeLLo!how \n Are yoU? ''' A__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on A__ = DebertaVaTokenizer(a__ , do_lower_case=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , do_lower_case=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''') def snake_case_ ( self): pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''') def snake_case_ ( self): pass def snake_case_ ( self): # fmt: off A__ = '''I was born in 92000, and this is falsé.''' A__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on A__ = DebertaVaTokenizer(a__ , split_by_punct=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , split_by_punct=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) def snake_case_ ( self): # fmt: off A__ = '''I was born in 92000, and this is falsé.''' A__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on A__ = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) def snake_case_ ( self): # fmt: off A__ = '''I was born in 92000, and this is falsé.''' A__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on A__ = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) def snake_case_ ( self): # fmt: off A__ = '''I was born in 92000, and this is falsé.''' A__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on A__ = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) def snake_case_ ( self): # fmt: off A__ = ''' \tHeLLo!how \n Are yoU? ''' A__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on A__ = DebertaVaTokenizer(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = DebertaVaTokenizerFast(a__ , do_lower_case=a__ , split_by_punct=a__) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) def snake_case_ ( self): A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = '''I was born in 92000, and this is falsé.''' A__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(a__ , add_special_tokens=a__)) A__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a__ , add_special_tokens=a__)) self.assertListEqual(a__ , a__) A__ = tokenizer.encode(a__ , add_special_tokens=a__) A__ = rust_tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(a__) A__ = rust_tokenizer.encode(a__) self.assertListEqual(a__ , a__) def snake_case_ ( self): A__ = '''This is a test''' A__ = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] A__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] A__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] A__ = DebertaVaTokenizer(a__ , keep_accents=a__) A__ = DebertaVaTokenizerFast(a__ , keep_accents=a__) A__ = tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) A__ = tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) A__ = tokenizer.convert_ids_to_tokens(a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.convert_ids_to_tokens(a__) self.assertListEqual(a__ , a__) # fmt: off A__ = '''I was born in 92000, and this is falsé.''' A__ = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] A__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] A__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on A__ = tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) A__ = tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) A__ = tokenizer.convert_ids_to_tokens(a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.encode(a__ , add_special_tokens=a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) A__ = rust_tokenizer.convert_ids_to_tokens(a__) self.assertListEqual(a__ , a__) def snake_case_ ( self): A__ = DebertaVaTokenizer(a__) A__ = tokenizer.encode('''sequence builders''') A__ = tokenizer.encode('''multi-sequence build''') A__ = tokenizer.build_inputs_with_special_tokens(a__) A__ = tokenizer.build_inputs_with_special_tokens(a__ , a__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a__ , ) @slow def snake_case_ ( self): # fmt: off A__ = {'''input_ids''': [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
526
def lowerCAmelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str )-> float: def get_matched_characters(UpperCamelCase_ : str , UpperCamelCase_ : str ) -> str: A__ = [] A__ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): A__ = int(max(0 , i - limit ) ) A__ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase_ ) A__ = f"{_stra[0:_stra.index(UpperCamelCase_ )]} {_stra[_stra.index(UpperCamelCase_ ) + 1:]}" return "".join(UpperCamelCase_ ) # matching characters A__ = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ ) A__ = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ ) A__ = len(UpperCamelCase_ ) # transposition A__ = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase_ , UpperCamelCase_ ) if ca != ca] ) // 2 ) if not match_count: A__ = 0.0 else: A__ = ( 1 / 3 * ( match_count / len(UpperCamelCase_ ) + match_count / len(UpperCamelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters A__ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
526
1
"""simple docstring""" from math import pow def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A = int(pow(snake_case__ , snake_case__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A , A = backtrack( snake_case__ , snake_case__ , current_number + 1 , snake_case__ , snake_case__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A , A = backtrack( snake_case__ , snake_case__ , current_number + 1 , snake_case__ , snake_case__ ) return current_sum, solutions_count def _snake_case ( snake_case__ : int , snake_case__ : int ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(snake_case__ , snake_case__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase = get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving model to {ckpt_dir}' ) A = {'model': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def _snake_case ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = ( os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) A = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) A = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case__ ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: A = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) A = torch.load(snake_case__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: A = ( os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) A = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) A = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
91
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ): """simple docstring""" lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Union[str, Any] = 13 lowerCamelCase : Tuple = 7 lowerCamelCase : Tuple = True lowerCamelCase : str = True lowerCamelCase : int = True lowerCamelCase : List[Any] = True lowerCamelCase : Dict = 99 lowerCamelCase : Union[str, Any] = 32 lowerCamelCase : Optional[Any] = 2 lowerCamelCase : Dict = 4 lowerCamelCase : Any = 37 lowerCamelCase : Dict = 'gelu' lowerCamelCase : Dict = 0.1 lowerCamelCase : Dict = 0.1 lowerCamelCase : Any = 512 lowerCamelCase : Any = 16 lowerCamelCase : List[Any] = 2 lowerCamelCase : List[Any] = 0.02 lowerCamelCase : Union[str, Any] = 3 lowerCamelCase : List[str] = 4 lowerCamelCase : Optional[Any] = None def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase : Any = None if self.use_input_mask: lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Any = None if self.use_token_type_ids: lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase : Any = None lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[int] = None if self.use_labels: lowerCamelCase : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase : int = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=A, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[int] = TFRoFormerModel(config=A ) lowerCamelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase : Any = [input_ids, input_mask] lowerCamelCase : Any = model(A ) lowerCamelCase : List[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[Any] = True lowerCamelCase : Tuple = TFRoFormerForCausalLM(config=A ) lowerCamelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Any = model(A )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ), [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : List[str] = TFRoFormerForMaskedLM(config=A ) lowerCamelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Tuple = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[Any] = self.num_labels lowerCamelCase : List[Any] = TFRoFormerForSequenceClassification(config=A ) lowerCamelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Dict = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : List[str] = self.num_choices lowerCamelCase : List[str] = TFRoFormerForMultipleChoice(config=A ) lowerCamelCase : Union[str, Any] = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) lowerCamelCase : List[str] = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) lowerCamelCase : Any = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) lowerCamelCase : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[Any] = self.num_labels lowerCamelCase : str = TFRoFormerForTokenClassification(config=A ) lowerCamelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Optional[int] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : List[Any] = TFRoFormerForQuestionAnswering(config=A ) lowerCamelCase : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : List[Any] = model(A ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( lowerCamelCase ) : Dict = config_and_inputs lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( a__ , a__ , unittest.TestCase): _lowerCAmelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _lowerCAmelCase = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self, A, A, A, A, A ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = TFRoFormerModelTester(self ) lowerCamelCase : Tuple = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A ) @require_tf class __snake_case ( unittest.TestCase): @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCamelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : List[Any] = model(A )[0] # TODO Replace vocab size lowerCamelCase : List[str] = 5_0000 lowerCamelCase : Dict = [1, 6, vocab_size] self.assertEqual(output.shape, A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCamelCase : Optional[Any] = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3], A, atol=1e-4 ) @require_tf class __snake_case ( unittest.TestCase): _lowerCAmelCase = 1E-4 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = tf.constant([[4, 10]] ) lowerCamelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6 ) lowerCamelCase : List[str] = emba(input_ids.shape ) lowerCamelCase : Tuple = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A, A, atol=self.tolerance ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) lowerCamelCase : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512 ) emba([2, 16, 512] ) lowerCamelCase : Optional[Any] = emba.weight[:3, :5] tf.debugging.assert_near(A, A, atol=self.tolerance ) @require_tf class __snake_case ( unittest.TestCase): _lowerCAmelCase = 1E-4 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowerCamelCase : Any = -tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.floataa ), shape=(2, 12, 16, 64) ) / 100 lowerCamelCase : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64 ) lowerCamelCase : Tuple = embed_positions([2, 16, 768] )[None, None, :, :] lowerCamelCase : List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A, A, A ) lowerCamelCase : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) lowerCamelCase : str = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8], A, atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8], A, atol=self.tolerance )
707
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''') if not ops[op](version.parse(UpperCAmelCase__) , version.parse(UpperCAmelCase__)): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''') def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None): lowerCamelCase : List[Any] = F'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , UpperCAmelCase__): lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = requirement, None, None else: lowerCamelCase : Optional[Any] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , UpperCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F''' got {requirement}''') lowerCamelCase , lowerCamelCase : Dict = match[0] lowerCamelCase : Dict = want_full.split(',') # there could be multiple requirements lowerCamelCase : Union[str, Any] = {} for w in want_range: lowerCamelCase : int = re.findall(R'^([\s!=<>]{1,2})(.+)' , UpperCAmelCase__) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F''' but got {requirement}''') lowerCamelCase , lowerCamelCase : List[Any] = match[0] lowerCamelCase : Optional[int] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys())}, but got {op}''') # special case if pkg == "python": lowerCamelCase : Optional[int] = '.'.join([str(UpperCAmelCase__) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) return # check if any version is installed try: lowerCamelCase : Any = importlib.metadata.version(UpperCAmelCase__) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''') # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : List[str] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(UpperCAmelCase__ , UpperCAmelCase__)
449
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( _lowerCamelCase ): def __a ( self : Optional[Any] ) -> Any: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : Union[str, Any] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_A ) def __a ( self : List[str] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] = self._create_example_records() lowercase : List[str] = Dataset.from_list(_A ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_A ): self.assertDictEqual(_A , example_records[i] ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : Dict = self._create_example_records() lowercase : List[Any] = Dataset.from_list(_A ) lowercase : Union[str, Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __a ( self : Dict ) -> Union[str, Any]: # checks what happens with missing columns """simple docstring""" lowercase : Optional[Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] lowercase : Optional[int] = Dataset.from_list(_A ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __a ( self : Tuple ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" lowercase : Any = [{'''col_1''': []}, {'''col_1''': [1, 2]}] lowercase : Optional[int] = Dataset.from_list(_A ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Any = Dataset.from_list([] ) self.assertEqual(len(_A ) , 0 ) self.assertListEqual(dset.column_names , [] )
217
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[int] = KandinskyVaaImgaImgPipeline _UpperCamelCase : Dict = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _UpperCamelCase : Tuple = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _UpperCamelCase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCamelCase : int = False @property def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" return 32 @property def __a ( self : str ) -> List[str]: """simple docstring""" return 32 @property def __a ( self : str ) -> int: """simple docstring""" return self.time_input_dim @property def __a ( self : Dict ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def __a ( self : Any ) -> Optional[int]: """simple docstring""" return 100 @property def __a ( self : Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase : Union[str, Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase : Any = UNetaDConditionModel(**_A ) return model @property def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : int = self.dummy_unet lowercase : str = self.dummy_movq lowercase : Union[str, Any] = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase : Optional[Any] = DDIMScheduler(**_A ) lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __a ( self : Tuple , _A : int , _A : Any=0 ) -> List[str]: """simple docstring""" lowercase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) lowercase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image lowercase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) lowercase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : str = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) if str(_A ).startswith('''mps''' ): lowercase : int = torch.manual_seed(_A ) else: lowercase : Tuple = torch.Generator(device=_A ).manual_seed(_A ) lowercase : List[str] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = '''cpu''' lowercase : Any = self.get_dummy_components() lowercase : Any = self.pipeline_class(**_A ) lowercase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = pipe(**self.get_dummy_inputs(_A ) ) lowercase : str = output.images lowercase : int = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] lowercase : int = image[0, -3:, -3:, -1] lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : List[Any] = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Optional[int] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowercase : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase : Optional[Any] = '''A red cartoon frog, 4k''' lowercase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) lowercase : Any = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase : Optional[Any] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) lowercase : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase , lowercase : Dict = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase : Tuple = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowercase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
217
1
import os def lowerCAmelCase_ ( A_ = "matrix.txt"): with open(os.path.join(os.path.dirname(A_) ,A_)) as in_file: UpperCamelCase__: Optional[int] = in_file.read() UpperCamelCase__: int = [[int(A_) for cell in row.split(",")] for row in data.strip().splitlines()] UpperCamelCase__: List[Any] = [[0 for cell in row] for row in grid] UpperCamelCase__: int = len(grid[0]) UpperCamelCase__: int = [[0 for i in range(A_)] for j in range(A_)] UpperCamelCase__: Any = grid[0][0] for i in range(1 ,A_): UpperCamelCase__: Optional[int] = grid[0][i] + dp[0][i - 1] for i in range(1 ,A_): UpperCamelCase__: Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 ,A_): for j in range(1 ,A_): UpperCamelCase__: List[Any] = grid[i][j] + min(dp[i - 1][j] ,dp[i][j - 1]) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
221
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax A__: Any = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__) class _a ( UpperCamelCase__): """simple docstring""" def __init__( self: List[str] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self: Optional[Any] , __lowerCamelCase: Union[str, List[str], "Image", List["Image"]] , **__lowerCamelCase: Optional[int] ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: str , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[int] = {} if "candidate_labels" in kwargs: UpperCamelCase__: Any = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__: Dict = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Dict , __lowerCamelCase: str=None , __lowerCamelCase: Dict="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = load_image(__lowerCamelCase ) UpperCamelCase__: Dict = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__: Union[str, Any] = candidate_labels UpperCamelCase__: Optional[Any] = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] UpperCamelCase__: Optional[int] = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) UpperCamelCase__: Dict = [text_inputs] return inputs def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = model_inputs.pop("candidate_labels" ) UpperCamelCase__: Optional[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __lowerCamelCase ): UpperCamelCase__: Optional[int] = text_inputs[0] else: # Batching case. UpperCamelCase__: str = text_inputs[0][0] UpperCamelCase__: str = self.model(**__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Tuple = model_outputs.pop("candidate_labels" ) UpperCamelCase__: Optional[Any] = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__: List[str] = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__: str = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: Any = [scores] elif self.framework == "tf": UpperCamelCase__: int = stable_softmax(__lowerCamelCase , axis=-1 ) UpperCamelCase__: int = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) UpperCamelCase__: List[Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
221
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A_ : Tuple = logging.get_logger(__name__) def snake_case () -> Optional[Any]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase_: Optional[Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase_: List[str] = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase_: Any = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase_: Tuple = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowerCamelCase , ) @cached_property def _a ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: UpperCamelCase_: str = torch.device('cpu' ) UpperCamelCase_: Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase_: Optional[int] = smp.local_rank() UpperCamelCase_: Any = torch.device('cuda' , _lowerCamelCase ) UpperCamelCase_: int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[int] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) UpperCamelCase_: Dict = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase_: Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase_: Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[Any] = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def _a ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self ): return not is_sagemaker_model_parallel_available() @property def _a ( self ): return False
57
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __lowerCamelCase : str = get_logger(__name__) class a__ ( enum.Enum ): A = 'all_checks' A = 'basic_checks' A = 'no_checks' class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass def _snake_case ( lowerCAmelCase : Optional[dict] , lowerCAmelCase : dict , lowerCAmelCase : List[Any]=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE_ : List[str] = " for " + verification_name if verification_name is not None else "" if len(lowerCAmelCase ) > 0: raise NonMatchingChecksumError( f'Checksums didn\'t match{for_verification_name}:\n' f'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass def _snake_case ( lowerCAmelCase : Optional[dict] , lowerCAmelCase : dict ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(lowerCAmelCase ) ) logger.info("All the splits matched successfully." ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : bool = True ): """simple docstring""" if record_checksum: SCREAMING_SNAKE_CASE_ : int = shaaaa() with open(lowerCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"" ): m.update(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = m.hexdigest() else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None return {"num_bytes": os.path.getsize(lowerCAmelCase ), "checksum": checksum} def _snake_case ( lowerCAmelCase : str ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
216
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Dict = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = emb.weight.shape lowerCAmelCase__ : Optional[Any] = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" lowerCAmelCase__ : List[str] = {} for old_key in state_dict.keys(): lowerCAmelCase__ : str = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase__ : Tuple = key.replace("moe_layer.experts.0" , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase__ : List[str] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: lowerCAmelCase__ : Union[str, Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: lowerCAmelCase__ : List[Any] = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: lowerCAmelCase__ : List[str] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: lowerCAmelCase__ : Tuple = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: lowerCAmelCase__ : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: lowerCAmelCase__ : Dict = key.replace("final_layer_norm" , "ff_layer_norm" ) lowerCAmelCase__ : Tuple = state_dict[old_key] return new_dict def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = WEIGHTS_NAME ): """simple docstring""" lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Any = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) for expert in range(lowerCamelCase_ ): lowerCAmelCase__ : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(lowerCamelCase_ ): lowerCAmelCase__ : str = torch.load(lowerCamelCase_ )["model"] remove_ignore_keys_(lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = rename_fairseq_keys(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : str = os.path.join( lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowerCamelCase_ )[0]].dtype ) # Add the last block lowerCAmelCase__ : int = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{len(lowerCamelCase_ )+1:05d}-of-???.bin''' ) ) lowerCAmelCase__ : Tuple = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(lowerCamelCase_ ) lowerCAmelCase__ : Dict = rename_fairseq_keys(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : str = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowerCamelCase_ ) == 1: lowerCAmelCase__ : str = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowerCamelCase_ , lowerCamelCase_ ) # Otherwise, let's build the index lowerCAmelCase__ : Dict = {} for idx, shard in enumerate(lowerCamelCase_ ): lowerCAmelCase__ : int = weights_name.replace(".bin" , f'''-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin''' ) lowerCAmelCase__ : Tuple = os.path.join(lowerCamelCase_ , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) for key in shard: lowerCAmelCase__ : Any = shard_file # Add the metadata lowerCAmelCase__ : List[str] = {"total_size": total_size} lowerCAmelCase__ : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , "w" , encoding="utf-8" ) as f: lowerCAmelCase__ : List[str] = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + "\n" f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) snake_case = parser.parse_args() snake_case = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) snake_case = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
720
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if "img_encoder.pos_embed" in name: lowerCAmelCase__ : int = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ : Optional[int] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ : int = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ : Optional[Any] = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ : Optional[int] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ : int = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ : List[str] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ : Tuple = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ : int = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ : Any = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ : int = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ : Optional[Any] = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ : Optional[Any] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ : Optional[Any] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ : Optional[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ : List[str] = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ : str = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ : Optional[int] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ : List[str] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ : Optional[Any] = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : int = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Any = key.split("." ) lowerCAmelCase__ , lowerCAmelCase__ : str = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ : List[str] = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ : Dict = val[:dim, :] lowerCAmelCase__ : Any = val[dim : dim * 2, :] lowerCAmelCase__ : Optional[int] = val[-dim:, :] else: lowerCAmelCase__ : List[str] = val[:dim] lowerCAmelCase__ : List[Any] = val[dim : dim * 2] lowerCAmelCase__ : str = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : List[Any] = key.split("." ) lowerCAmelCase__ : Dict = int(key_split[3] ) lowerCAmelCase__ : str = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : List[Any] = val[:dim, :] lowerCAmelCase__ : Any = val[ dim : dim * 2, : ] lowerCAmelCase__ : Dict = val[-dim:, :] else: lowerCAmelCase__ : str = val[:dim] lowerCAmelCase__ : str = val[dim : dim * 2] lowerCAmelCase__ : Optional[int] = val[-dim:] else: lowerCAmelCase__ : List[str] = rename_key(lowerCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ : Optional[Any] = val.squeeze_() else: lowerCAmelCase__ : List[str] = val return orig_state_dict def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="groupvit-gcc-yfcc" , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : List[str] = GroupViTConfig() lowerCAmelCase__ : Any = GroupViTModel(lowerCamelCase_ ).eval() lowerCAmelCase__ : Tuple = torch.load(lowerCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ : Optional[int] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase_ ) == 0) # verify result lowerCAmelCase__ : Union[str, Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : int = processor(text=["a photo of a cat", "a photo of a dog"] , images=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**lowerCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , lowerCamelCase_ , atol=1e-3 ) processor.save_pretrained(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) print("Successfully saved processor and model to" , lowerCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(lowerCamelCase_ , organization="nielsr" ) model.push_to_hub(lowerCamelCase_ , organization="nielsr" ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) snake_case = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
568
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCAmelCase = """main""" # Default branch name _UpperCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _UpperCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _UpperCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __magic_name__ ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __magic_name__ ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> Tuple: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : List[Any] ) -> str: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_flax def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , [] )
409
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : int = b.T __A : Optional[Any] = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __A : List[Any] = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __A : List[Any] = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __A : str = aa[:, None] - 2 * ab + ba[None, :] return d def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : Union[str, Any] = x.reshape(-1 , 3 ) __A : Any = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = ['pixel_values'] def __init__( self , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = True , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Optional[int] = size if size is not None else {"height": 256, "width": 256} __A : int = get_size_dict(lowerCamelCase ) __A : str = np.array(lowerCamelCase ) if clusters is not None else None __A : List[Any] = do_resize __A : Dict = size __A : str = resample __A : Optional[Any] = do_normalize __A : Dict = do_color_quantize def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( lowerCamelCase , size=(size["height"], size["width"]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , ): '''simple docstring''' __A : List[str] = rescale(image=lowerCamelCase , scale=1 / 127.5 , data_format=lowerCamelCase ) __A : List[Any] = image - 1 return image def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): '''simple docstring''' __A : List[Any] = do_resize if do_resize is not None else self.do_resize __A : int = size if size is not None else self.size __A : Tuple = get_size_dict(lowerCamelCase ) __A : Tuple = resample if resample is not None else self.resample __A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __A : Any = clusters if clusters is not None else self.clusters __A : Dict = np.array(lowerCamelCase ) __A : Optional[int] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __A : Optional[Any] = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __A : Dict = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: __A : List[Any] = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: __A : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __A : int = np.array(lowerCamelCase ) __A : Any = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __A : Tuple = images.shape[0] __A : List[Any] = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __A : Optional[int] = list(lowerCamelCase ) else: __A : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __A : Optional[int] = {"input_ids": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
111
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) set_seed(770) lowerCamelCase_ = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCamelCase_ = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCamelCase_ = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCamelCase_ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def UpperCamelCase( lowercase_ , lowercase_=False ) -> Tuple: '''simple docstring''' snake_case_ = model_type if use_small: key += "_small" return os.path.join(lowercase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def UpperCamelCase( lowercase_ , lowercase_ ) -> str: '''simple docstring''' os.makedirs(lowercase_ , exist_ok=lowercase_ ) hf_hub_download(repo_id=lowercase_ , filename=lowercase_ , local_dir=lowercase_ ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=False , lowercase_="text" ) -> List[str]: '''simple docstring''' if model_type == "text": snake_case_ = BarkSemanticModel snake_case_ = BarkSemanticConfig snake_case_ = BarkSemanticGenerationConfig elif model_type == "coarse": snake_case_ = BarkCoarseModel snake_case_ = BarkCoarseConfig snake_case_ = BarkCoarseGenerationConfig elif model_type == "fine": snake_case_ = BarkFineModel snake_case_ = BarkFineConfig snake_case_ = BarkFineGenerationConfig else: raise NotImplementedError() snake_case_ = f'''{model_type}_small''' if use_small else model_type snake_case_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase_ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) snake_case_ = torch.load(lowercase_ , map_location=lowercase_ ) # this is a hack snake_case_ = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: snake_case_ = model_args["""vocab_size"""] snake_case_ = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments snake_case_ = model_args.pop("""n_head""" ) snake_case_ = model_args.pop("""n_embd""" ) snake_case_ = model_args.pop("""n_layer""" ) snake_case_ = ConfigClass(**checkpoint["""model_args"""] ) snake_case_ = ModelClass(config=lowercase_ ) snake_case_ = GenerationConfigClass() snake_case_ = model_generation_config snake_case_ = checkpoint["""model"""] # fixup checkpoint snake_case_ = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowercase_ ): # replace part of the key with corresponding layer name in HF implementation snake_case_ = k[len(lowercase_ ) :] for old_layer_name in new_layer_name_dict: snake_case_ = new_k.replace(lowercase_ , new_layer_name_dict[old_layer_name] ) snake_case_ = state_dict.pop(lowercase_ ) snake_case_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) snake_case_ = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} snake_case_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) snake_case_ = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowercase_ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(lowercase_ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(lowercase_ , strict=lowercase_ ) snake_case_ = model.num_parameters(exclude_embeddings=lowercase_ ) snake_case_ = checkpoint["""best_val_loss"""].item() logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowercase_ , 3 )} loss''' ) model.eval() model.to(lowercase_ ) del checkpoint, state_dict return model def UpperCamelCase( lowercase_ , lowercase_=False , lowercase_="text" ) -> Union[str, Any]: '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() snake_case_ = """cpu""" # do conversion on cpu snake_case_ = _get_ckpt_path(lowercase_ , use_small=lowercase_ ) snake_case_ = _load_model(lowercase_ , lowercase_ , model_type=lowercase_ , use_small=lowercase_ ) # load bark initial model snake_case_ = _bark_load_model(lowercase_ , """cpu""" , model_type=lowercase_ , use_small=lowercase_ ) if model_type == "text": snake_case_ = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowercase_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model snake_case_ = 5 snake_case_ = 10 if model_type in ["text", "coarse"]: snake_case_ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) snake_case_ = bark_model(lowercase_ )[0] snake_case_ = model(lowercase_ ) # take last logits snake_case_ = output_new_model_total.logits[:, [-1], :] else: snake_case_ = 3 snake_case_ = 8 snake_case_ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = bark_model(lowercase_ , lowercase_ ) snake_case_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict: '''simple docstring''' snake_case_ = os.path.join(lowercase_ , lowercase_ ) snake_case_ = BarkSemanticConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) snake_case_ = BarkCoarseConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) snake_case_ = BarkFineConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) snake_case_ = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) snake_case_ = BarkSemanticModel.from_pretrained(lowercase_ ) snake_case_ = BarkCoarseModel.from_pretrained(lowercase_ ) snake_case_ = BarkFineModel.from_pretrained(lowercase_ ) snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) snake_case_ = BarkConfig.from_sub_model_configs( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) snake_case_ = BarkModel(lowercase_ ) snake_case_ = semantic snake_case_ = coarseAcoustic snake_case_ = fineAcoustic snake_case_ = codec snake_case_ = bark_generation_config Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) bark.save_pretrained(lowercase_ , repo_id=lowercase_ , push_to_hub=lowercase_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCamelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
714
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCamelCase_ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def UpperCamelCase( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' inspect_dataset(lowercase_ , lowercase_ ) snake_case_ = path + """.py""" assert script_name in os.listdir(lowercase_ ) assert "__pycache__" not in os.listdir(lowercase_ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def UpperCamelCase( lowercase_ , lowercase_ ) -> int: '''simple docstring''' inspect_metric(lowercase_ , lowercase_ ) snake_case_ = path + """.py""" assert script_name in os.listdir(lowercase_ ) assert "__pycache__" not in os.listdir(lowercase_ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = get_dataset_config_info(lowercase_ , config_name=lowercase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' with pytest.raises(lowercase_ ): get_dataset_config_info(lowercase_ , config_name=lowercase_ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def UpperCamelCase( lowercase_ , lowercase_ ) -> str: '''simple docstring''' snake_case_ = get_dataset_config_names(lowercase_ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = get_dataset_infos(lowercase_ ) assert list(infos.keys() ) == expected_configs snake_case_ = expected_configs[0] assert expected_config in infos snake_case_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = get_dataset_infos(lowercase_ ) assert expected_config in infos snake_case_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' with pytest.raises(lowercase_ ): get_dataset_split_names(lowercase_ , config_name=lowercase_ )
161
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> List[str]: super().__init__() self.register_modules(transformer=UpperCAmelCase , vae=UpperCAmelCase , scheduler=UpperCAmelCase ) # create a imagenet -> id dictionary for easier use _snake_case = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): _snake_case = int(UpperCAmelCase ) _snake_case = dict(sorted(self.labels.items() ) ) def lowercase (self , UpperCAmelCase ) -> List[int]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = list(UpperCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__(self , UpperCAmelCase , UpperCAmelCase = 4.0 , UpperCAmelCase = None , UpperCAmelCase = 50 , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Union[ImagePipelineOutput, Tuple]: _snake_case = len(UpperCAmelCase ) _snake_case = self.transformer.config.sample_size _snake_case = self.transformer.config.in_channels _snake_case = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) _snake_case = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _snake_case = torch.tensor(UpperCAmelCase , device=self.device ).reshape(-1 ) _snake_case = torch.tensor([1000] * batch_size , device=self.device ) _snake_case = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _snake_case = latent_model_input[: len(UpperCAmelCase ) // 2] _snake_case = torch.cat([half, half] , dim=0 ) _snake_case = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) _snake_case = t if not torch.is_tensor(UpperCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _snake_case = latent_model_input.device.type == """mps""" if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = torch.floataa if is_mps else torch.floataa else: _snake_case = torch.intaa if is_mps else torch.intaa _snake_case = torch.tensor([timesteps] , dtype=UpperCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _snake_case = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _snake_case = self.transformer( UpperCAmelCase , timestep=UpperCAmelCase , class_labels=UpperCAmelCase ).sample # perform guidance if guidance_scale > 1: _snake_case, _snake_case = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _snake_case, _snake_case = torch.split(UpperCAmelCase , len(UpperCAmelCase ) // 2 , dim=0 ) _snake_case = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _snake_case = torch.cat([half_eps, half_eps] , dim=0 ) _snake_case = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _snake_case, _snake_case = torch.split(UpperCAmelCase , UpperCAmelCase , dim=1 ) else: _snake_case = noise_pred # compute previous image: x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample if guidance_scale > 1: _snake_case, _snake_case = latent_model_input.chunk(2 , dim=0 ) else: _snake_case = latent_model_input _snake_case = 1 / self.vae.config.scaling_factor * latents _snake_case = self.vae.decode(UpperCAmelCase ).sample _snake_case = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _snake_case = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCAmelCase )
585
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _snake_case = int(max_value - min_value ) + 1 _snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
585
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class a__ ( UpperCAmelCase__ ): """simple docstring""" A__ : Union[str, Any] = '''pix2struct_text_model''' A__ : Union[str, Any] = ['''past_key_values'''] A__ : Optional[Any] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Optional[int] , lowercase__ :int=5_0244 , lowercase__ :str=768 , lowercase__ :List[Any]=64 , lowercase__ :Union[str, Any]=2048 , lowercase__ :Any=12 , lowercase__ :Any=12 , lowercase__ :Optional[int]=32 , lowercase__ :str=128 , lowercase__ :int=0.1 , lowercase__ :int=1E-6 , lowercase__ :str=1.0 , lowercase__ :Optional[int]="gelu_new" , lowercase__ :List[str]=0 , lowercase__ :Union[str, Any]=False , lowercase__ :Optional[int]=0 , lowercase__ :List[Any]=1 , lowercase__ :Dict=False , lowercase__ :int=True , **lowercase__ :List[str] , ): lowercase = vocab_size lowercase = hidden_size lowercase = d_kv lowercase = d_ff lowercase = num_layers lowercase = num_heads lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = dropout_rate lowercase = layer_norm_epsilon lowercase = initializer_factor lowercase = use_cache lowercase = eos_token_id lowercase = decoder_start_token_id # for backwards compatibility lowercase = dense_act_fn super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , is_decoder=__lowerCAmelCase , **__lowerCAmelCase , ) @classmethod def __UpperCAmelCase ( cls :Dict , lowercase__ :Union[str, os.PathLike] , **lowercase__ :Dict ): cls._set_token_in_kwargs(__lowerCAmelCase ) lowercase , lowercase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class a__ ( UpperCAmelCase__ ): """simple docstring""" A__ : List[Any] = '''pix2struct_vision_model''' def __init__( self :List[Any] , lowercase__ :List[Any]=768 , lowercase__ :str=768 , lowercase__ :Optional[int]=2048 , lowercase__ :int=64 , lowercase__ :Any=12 , lowercase__ :str=12 , lowercase__ :Optional[Any]="gelu_new" , lowercase__ :Any=1E-6 , lowercase__ :Optional[Any]=0.0 , lowercase__ :Tuple=0.0 , lowercase__ :int=1E-10 , lowercase__ :int=1.0 , lowercase__ :Optional[Any]=4096 , lowercase__ :str=32 , lowercase__ :Any=128 , **lowercase__ :Optional[Any] , ): super().__init__(**__lowerCAmelCase ) lowercase = hidden_size lowercase = patch_embed_hidden_size lowercase = d_ff lowercase = dropout_rate lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = initializer_factor lowercase = attention_dropout lowercase = layer_norm_eps lowercase = dense_act_fn lowercase = seq_len lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = d_kv @classmethod def __UpperCAmelCase ( cls :List[str] , lowercase__ :Union[str, os.PathLike] , **lowercase__ :str ): cls._set_token_in_kwargs(__lowerCAmelCase ) lowercase , lowercase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class a__ ( UpperCAmelCase__ ): """simple docstring""" A__ : List[Any] = '''pix2struct''' A__ : int = True def __init__( self :Optional[Any] , lowercase__ :Union[str, Any]=None , lowercase__ :Union[str, Any]=None , lowercase__ :Optional[Any]=1.0 , lowercase__ :str=0.02 , lowercase__ :Optional[Any]=False , lowercase__ :Dict=False , lowercase__ :Tuple=True , **lowercase__ :Any , ): super().__init__(tie_word_embeddings=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) if text_config is None: lowercase = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowercase = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowercase = PixaStructTextConfig(**__lowerCAmelCase ) lowercase = PixaStructVisionConfig(**__lowerCAmelCase ) lowercase = self.text_config.decoder_start_token_id lowercase = self.text_config.pad_token_id lowercase = self.text_config.eos_token_id lowercase = initializer_factor lowercase = initializer_range lowercase = self.initializer_range lowercase = self.initializer_range lowercase = is_vqa @classmethod def __UpperCAmelCase ( cls :Optional[Any] , lowercase__ :PixaStructTextConfig , lowercase__ :PixaStructVisionConfig , **lowercase__ :List[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCAmelCase ) def __UpperCAmelCase ( self :Optional[int] ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
710
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __magic_name__ = parser.parse_args() if args.model_type == "roberta": __magic_name__ = RobertaForMaskedLM.from_pretrained(args.model_name) __magic_name__ = '''roberta''' elif args.model_type == "gpt2": __magic_name__ = GPTaLMHeadModel.from_pretrained(args.model_name) __magic_name__ = '''transformer''' __magic_name__ = model.state_dict() __magic_name__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __magic_name__ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __magic_name__ = F"""{prefix}.embeddings.{w}.weight""" __magic_name__ = state_dict[param_name] for w in ["weight", "bias"]: __magic_name__ = F"""{prefix}.embeddings.LayerNorm.{w}""" __magic_name__ = state_dict[param_name] # Transformer Blocks # __magic_name__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __magic_name__ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __magic_name__ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __magic_name__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __magic_name__ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __magic_name__ = state_dict[F"""lm_head.dense.{w}"""] __magic_name__ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __magic_name__ = state_dict[F"""{prefix}.ln_f.{w}"""] __magic_name__ = state_dict['''lm_head.weight'''] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
314
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __magic_name__ = None __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''moussaKam/mbarthez''': 1_024, '''moussaKam/barthez''': 1_024, '''moussaKam/barthez-orangesum-title''': 1_024, } __magic_name__ = '''▁''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = BarthezTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it __snake_case : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Tuple = vocab_file __snake_case : Optional[int] = False if not self.vocab_file else True def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] __snake_case : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
576
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Tuple = filter(lambda __UpperCAmelCase : p.requires_grad , model.parameters() ) __snake_case : List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __magic_name__ = logging.getLogger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ): if metric == "rouge2": __snake_case : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __snake_case : Any = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __snake_case : Dict = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) __snake_case : List[Any] = ModelCheckpoint( dirpath=__UpperCAmelCase , filename=__UpperCAmelCase , monitor=F"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ): return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__UpperCAmelCase , verbose=__UpperCAmelCase , ) class __SCREAMING_SNAKE_CASE ( pl.Callback): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __snake_case : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __snake_case : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": __snake_case : Union[str, Any] = od / 'test_results.txt' __snake_case : Union[str, Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __snake_case : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __snake_case : List[str] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'a+' ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue __snake_case : Tuple = metrics[key] if isinstance(_UpperCAmelCase , torch.Tensor ): __snake_case : List[Any] = val.item() __snake_case : Dict = F"""{key}: {val:.6f}\n""" writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: __snake_case : Optional[int] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_UpperCAmelCase ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): try: __snake_case : Any = pl_module.model.model.num_parameters() except AttributeError: __snake_case : List[Any] = pl_module.model.num_parameters() __snake_case : List[str] = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , 'test' ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
576
1
"""simple docstring""" import sys a : Union[str, Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = 1 for digit in s: product *= int(__A ) return product def _UpperCamelCase ( _A = N ) -> int: """simple docstring""" _UpperCAmelCase = -sys.maxsize - 1 _UpperCAmelCase = n[:1_3] _UpperCAmelCase = 1_3 while cur_index < len(__A ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): _UpperCAmelCase = substr[1:] + n[cur_index] cur_index += 1 else: _UpperCAmelCase = max(__A , str_eval(__A ) ) _UpperCAmelCase = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F"{solution() = }")
708
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = backbone_out_indices _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = scope _UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : int = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : str = False a : List[str] = False a : Dict = False def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = DPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[int] ) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' pass def _snake_case ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def _snake_case ( self : str ) ->Any: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ): continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = False _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) # Skip the check for the backbone _UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Dict ) ->Tuple: '''simple docstring''' pass @slow def _snake_case ( self : Optional[int] ) ->List[Any]: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = """add""" with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) _UpperCAmelCase = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) )
19
0
import torch from torch import nn class __a ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' super().__init__() UpperCamelCase__ : Dict = n_token UpperCamelCase__ : str = d_embed UpperCamelCase__ : List[Any] = d_proj UpperCamelCase__ : List[Any] = cutoffs + [n_token] UpperCamelCase__ : Optional[int] = [0] + self.cutoffs UpperCamelCase__ : List[str] = div_val UpperCamelCase__ : str = self.cutoffs[0] UpperCamelCase__ : Any = len(self.cutoffs ) - 1 UpperCamelCase__ : List[str] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase__ : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase__ : Any = nn.ModuleList() UpperCamelCase__ : Union[str, Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) else: self.out_projs.append(SCREAMING_SNAKE_CASE ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase__ , UpperCamelCase__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ : int = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE , r_idx - l_idx ) ) UpperCamelCase__ : Optional[int] = keep_order def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if proj is None: UpperCamelCase__ : Tuple = nn.functional.linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase__ : int = nn.functional.linear(SCREAMING_SNAKE_CASE , proj.t().contiguous() ) UpperCamelCase__ : int = nn.functional.linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[int]=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase__ : Dict = hidden[..., :-1, :].contiguous() UpperCamelCase__ : Optional[Any] = labels[..., 1:].contiguous() UpperCamelCase__ : str = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase__ : Optional[int] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCamelCase__ : str = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase__ : List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase__ : str = labels != -1_00 UpperCamelCase__ : str = torch.zeros_like(SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ : Optional[int] = ( -nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase__ : List[str] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ : str = self.out_layers[i].weight UpperCamelCase__ : str = self.out_layers[i].bias if i == 0: UpperCamelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE ) biases.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ : Tuple = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 ) if labels is None: UpperCamelCase__ : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase__ : Optional[Any] = torch.zeros_like(SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase__ : str = 0 UpperCamelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase__ , UpperCamelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase__ : Optional[Any] = (labels >= l_idx) & (labels < r_idx) UpperCamelCase__ : List[Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase__ : Optional[Any] = labels.index_select(0 , SCREAMING_SNAKE_CASE ) - l_idx UpperCamelCase__ : Optional[int] = head_logprob.index_select(0 , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = hidden.index_select(0 , SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Any = hidden if i == 0: if labels is not None: UpperCamelCase__ : str = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ : Dict = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase__ : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase__ : List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase__ : List[str] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , SCREAMING_SNAKE_CASE , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __lowercase ( self : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase__ : List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ : Tuple = self.out_layers[i].weight UpperCamelCase__ : List[str] = self.out_layers[i].bias if i == 0: UpperCamelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase__ : Tuple = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE ) biases.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ : int = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase__ : Optional[Any] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase__ : Dict = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase__ : str = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ : Tuple = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase__ : Any = head_logprob[:, -i] + tail_logprob_i UpperCamelCase__ : int = logprob_i return out
228
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __a : def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' raise NotImplementedError() def __lowercase ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError() class __a ( A__ ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : "AutoTokenizer" , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Any = tokenizer UpperCamelCase__ : Tuple = skip_prompt UpperCamelCase__ : List[str] = decode_kwargs # variables used in the streaming process UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : int = True def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: UpperCamelCase__ : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCamelCase__ : Union[str, Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCamelCase__ : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): UpperCamelCase__ : Any = text[self.print_len :] UpperCamelCase__ : Dict = [] UpperCamelCase__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(SCREAMING_SNAKE_CASE ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCamelCase__ : List[str] = text[self.print_len :] self.print_len += len(SCREAMING_SNAKE_CASE ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCamelCase__ : Dict = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(SCREAMING_SNAKE_CASE ) self.on_finalized_text(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if len(self.token_cache ) > 0: UpperCamelCase__ : int = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCamelCase__ : Tuple = text[self.print_len :] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = 0 else: UpperCamelCase__ : List[str] = "" UpperCamelCase__ : Dict = True self.on_finalized_text(SCREAMING_SNAKE_CASE , stream_end=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' print(SCREAMING_SNAKE_CASE , flush=SCREAMING_SNAKE_CASE , end="" if not stream_end else None ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class __a ( A__ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE : "AutoTokenizer" , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[float] = None , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = Queue() UpperCamelCase__ : str = None UpperCamelCase__ : str = timeout def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' self.text_queue.put(SCREAMING_SNAKE_CASE , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[Any] ): '''simple docstring''' return self def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
228
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[str] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'gptj' _snake_case = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=50400 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=28 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "default" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , )-> int: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , task=SCREAMING_SNAKE_CASE_ , patching_specs=SCREAMING_SNAKE_CASE_ , use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config , '''pad_token_id''' , SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? __UpperCamelCase = 0 @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) __UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def A__ ( self )-> int: '''simple docstring''' return self._config.n_layer @property def A__ ( self )-> int: '''simple docstring''' return self._config.n_head def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = super(SCREAMING_SNAKE_CASE_ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCamelCase = ordered_inputs['''attention_mask'''].dtype __UpperCamelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) return ordered_inputs @property def A__ ( self )-> int: '''simple docstring''' return 13
709
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 * 8 , SCREAMING_SNAKE_CASE_=32 * 8 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = is_training __UpperCamelCase = use_auxiliary_loss __UpperCamelCase = num_queries __UpperCamelCase = num_channels __UpperCamelCase = min_size __UpperCamelCase = max_size __UpperCamelCase = num_labels __UpperCamelCase = hidden_dim __UpperCamelCase = hidden_dim def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() __UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() __UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCamelCase = self.num_queries __UpperCamelCase = self.num_labels __UpperCamelCase = [1, 1, 1, 1] __UpperCamelCase = self.num_channels __UpperCamelCase = 64 __UpperCamelCase = 128 __UpperCamelCase = self.hidden_dim __UpperCamelCase = self.hidden_dim __UpperCamelCase = self.hidden_dim return config def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = output.encoder_hidden_states __UpperCamelCase = output.pixel_decoder_hidden_states __UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , config.decoder_layers ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> Tuple: '''simple docstring''' with torch.no_grad(): __UpperCamelCase = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model( pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _snake_case = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def A__ ( self )-> Any: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def A__ ( self )-> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def A__ ( self )-> List[str]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A__ ( self )-> Dict: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self )-> str: '''simple docstring''' pass def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCamelCase = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = (self.model_tester.min_size,) * 2 __UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE_ ), '''class_labels''': torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE_ ).long(), } __UpperCamelCase = self.model_tester.get_config() __UpperCamelCase = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def A__ ( self )-> Any: '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ : Any = 1e-4 def A_ ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self )-> List[Any]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self )-> Any: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCamelCase = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCamelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCamelCase = self.default_image_processor __UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCamelCase = inputs['''pixel_values'''].to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''mask_labels''']] __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
451
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("""_T""") class __SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self : int , UpperCAmelCase__ : Iterable[_T] | None = None ): '''simple docstring''' lowercase : Dict =list(iterable or [] ) lowercase : Union[str, Any] =[] def __len__( self : Tuple ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Any ): '''simple docstring''' return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def lowerCamelCase_ ( self : int , UpperCAmelCase__ : _T ): '''simple docstring''' self._stacka.append(a_ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Optional[Any] =self._stacka.pop lowercase : Dict =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
92
from sklearn.metrics import recall_score import datasets a__ : str = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ a__ : Dict = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ a__ : List[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _UpperCamelCase ( self : Dict , a_ : Tuple , a_ : Optional[Any] , a_ : Union[str, Any]=None , a_ : List[Any]=1 , a_ : List[str]="binary" , a_ : List[str]=None , a_ : int="warn" , ): """simple docstring""" lowerCamelCase__ = recall_score( a_ , a_ , labels=a_ , pos_label=a_ , average=a_ , sample_weight=a_ , zero_division=a_ , ) return {"recall": float(a_ ) if score.size == 1 else score}
165
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(a_ , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase_ ( a_ , a_ ) ->Dict: A =_distribute_shards(**a_ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCamelCase_ ( a_ , a_ , a_ ) ->Any: A =_split_gen_kwargs(a_ , a_ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCamelCase_ ( a_ , a_ ) ->List[str]: if expected is RuntimeError: with pytest.raises(a_ ): _number_of_shards_in_gen_kwargs(a_ ) else: A =_number_of_shards_in_gen_kwargs(a_ ) assert out == expected
689
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase_ ( a_ ) ->List[str]: if "emb" in name: A =name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: A =name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: A =name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: A =name.replace("linear1" , "fc1" ) if "linear2" in name: A =name.replace("linear2" , "fc2" ) if "norm1" in name: A =name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: A =name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: A =name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: A =name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: A =name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: A =name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def UpperCamelCase_ ( a_ , a_ ) ->Tuple[Dict, Dict]: A =list(state_dict.keys() ) A ={} for key in keys: A =state_dict.pop(a_ ) A =rename_keys(a_ ) if "in_proj_weight" in key: # split fused qkv proj A =val[:hidden_size, :] A =val[hidden_size : 2 * hidden_size, :] A =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: A =val else: A =val return state_dict, enc_dec_proj_state_dict def UpperCamelCase_ ( a_ ) ->MusicgenDecoderConfig: if checkpoint == "small": # default config values A =1024 A =24 A =16 elif checkpoint == "medium": A =1536 A =48 A =24 elif checkpoint == "large": A =2048 A =48 A =32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) A =MusicgenDecoderConfig( hidden_size=a_ , ffn_dim=hidden_size * 4 , num_hidden_layers=a_ , num_attention_heads=a_ , ) return config @torch.no_grad() def UpperCamelCase_ ( a_ , a_=None , a_=None , a_="cpu" ) ->Union[str, Any]: A =MusicGen.get_pretrained(a_ , device=a_ ) A =decoder_config_from_checkpoint(a_ ) A =fairseq_model.lm.state_dict() A , A =rename_state_dict( a_ , hidden_size=decoder_config.hidden_size ) A =TaEncoderModel.from_pretrained("t5-base" ) A =EncodecModel.from_pretrained("facebook/encodec_32khz" ) A =MusicgenForCausalLM(a_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection A , A =decoder.load_state_dict(a_ , strict=a_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a_ ) if len(a_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(a_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model A =MusicgenForConditionalGeneration(text_encoder=a_ , audio_encoder=a_ , decoder=a_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a_ ) # check we can do a forward pass A =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) A =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): A =model(input_ids=a_ , decoder_input_ids=a_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor A =AutoTokenizer.from_pretrained("t5-base" ) A =AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) A =MusicgenProcessor(feature_extractor=a_ , tokenizer=a_ ) # set the appropriate bos/pad token ids A =2048 A =2048 # set other default generation config params A =int(30 * audio_encoder.config.frame_rate ) A =True A =3.0 if pytorch_dump_folder is not None: Path(a_ ).mkdir(exist_ok=a_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(a_ ) processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
689
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
"""simple docstring""" def _A ( _a : int , _a : Optional[Any] ): """simple docstring""" A = 0 A = len(_a ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_a ): return None A = sorted_collection[point] if current_item == item: return point else: if point < left: A = left A = point elif point > right: A = right A = point else: if item < current_item: A = point - 1 else: A = point + 1 return None def _A ( _a : Any , _a : Optional[Any] , _a : Tuple , _a : Tuple ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_a ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_a , _a , _a , _a ) elif point > right: return interpolation_search_by_recursion(_a , _a , _a , _a ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _a , _a , _a , point - 1 ) else: return interpolation_search_by_recursion( _a , _a , point + 1 , _a ) def _A ( _a : Optional[Any] ): """simple docstring""" if collection != sorted(_a ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys UpperCAmelCase =0 if debug == 1: UpperCAmelCase =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") UpperCAmelCase =67 UpperCAmelCase =interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
255
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = (DDPMParallelScheduler,) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> List[Any]: A = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowerCamelCase_ ) return config def UpperCamelCase__ ( self ) -> Tuple: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Dict: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_ ,beta_end=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> int: self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_ ,prediction_type=lowerCamelCase_ ,sample_max_value=lowerCamelCase_ ,) def UpperCamelCase__ ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] ,dim=0 ) A = torch.arange(lowerCamelCase_ )[0:3, None].repeat(1 ,lowerCamelCase_ ) A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) A = scheduler.batch_step_no_noise(lowerCamelCase_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 11_53.18_33 ) < 1E-2 assert abs(result_mean.item() - 0.50_05 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[int]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def UpperCamelCase__ ( self ) -> int: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="""v_prediction""" ) A = scheduler_class(**lowerCamelCase_ ) A = len(lowerCamelCase_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual A = model(lowerCamelCase_ ,lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(lowerCamelCase_ ) ) A = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) A = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(lowerCamelCase_ ) A = prev_t.item() self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCamelCase_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [1_0_0, 8_7, 5_0, 1, 0] A = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ ,timesteps=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**lowerCamelCase_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
255
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCAmelCase__ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ = """segformer""" def __init__( self : Optional[int] , snake_case__ : Optional[Any]=3 , snake_case__ : int=4 , snake_case__ : Optional[Any]=[2, 2, 2, 2] , snake_case__ : Optional[int]=[8, 4, 2, 1] , snake_case__ : Tuple=[3_2, 6_4, 1_6_0, 2_5_6] , snake_case__ : Any=[7, 3, 3, 3] , snake_case__ : Union[str, Any]=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[1, 2, 5, 8] , snake_case__ : Optional[Any]=[4, 4, 4, 4] , snake_case__ : str="gelu" , snake_case__ : Optional[int]=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=1e-6 , snake_case__ : Dict=2_5_6 , snake_case__ : List[Any]=2_5_5 , **snake_case__ : Optional[int] , ) -> Tuple: super().__init__(**_UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , _UpperCAmelCase , ) _lowerCamelCase = num_channels _lowerCamelCase = num_encoder_blocks _lowerCamelCase = depths _lowerCamelCase = sr_ratios _lowerCamelCase = hidden_sizes _lowerCamelCase = patch_sizes _lowerCamelCase = strides _lowerCamelCase = mlp_ratios _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = drop_path_rate _lowerCamelCase = layer_norm_eps _lowerCamelCase = decoder_hidden_size _lowerCamelCase = kwargs.get('reshape_last_stage' , _UpperCAmelCase ) _lowerCamelCase = semantic_loss_ignore_index class lowerCAmelCase__ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ = version.parse('1.11' ) @property def _snake_case ( self : int ) -> Tuple: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _snake_case ( self : Tuple ) -> Optional[int]: return 1e-4 @property def _snake_case ( self : Tuple ) -> str: return 1_2
544
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
'''simple docstring''' from math import sqrt def lowerCAmelCase__ ( a_ : int = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
599
'''simple docstring''' def lowerCAmelCase__ ( a_ : list , a_ : list ) -> float: _validate_point(a_ ) _validate_point(a_ ) if len(a_ ) != len(a_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(a_ , a_ ) ) ) def lowerCAmelCase__ ( a_ : list[float] ) -> None: if point: if isinstance(a_ , a_ ): for item in point: if not isinstance(a_ , (int, float) ): UpperCAmelCase__ : Optional[Any] = ( '''Expected a list of numbers as input, found ''' f"""{type(a_ ).__name__}""" ) raise TypeError(a_ ) else: UpperCAmelCase__ : Tuple = f"""Expected a list of numbers as input, found {type(a_ ).__name__}""" raise TypeError(a_ ) else: raise ValueError('''Missing an input''' ) def lowerCAmelCase__ ( a_ : list , a_ : list ) -> float: _validate_point(a_ ) _validate_point(a_ ) if len(a_ ) != len(a_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(a_ , a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
599
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=1_3 , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[Any]=9_9 , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : Union[str, Any]=5 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Any=3_7 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Union[str, Any]=5_1_2 , _lowerCAmelCase : List[Any]=1_6 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[str]=4 , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_attention_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_choices def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowercase =None if self.use_attention_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length]) __lowercase =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__A , ) return config, input_ids, attention_mask def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =FlaxDistilBertModelTester(self) @slow def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase =model_class_name.from_pretrained('distilbert-base-uncased') __lowercase =model(np.ones((1, 1))) self.assertIsNotNone(__A) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowercase =np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowercase =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowercase =model(__A , attention_mask=__A)[0] __lowercase =(1, 1_1, 7_6_8) self.assertEqual(output.shape , __A) __lowercase =np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4))
474
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __magic_name__ : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') __magic_name__ : int = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __magic_name__ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def A__ ( A_ ) -> Any: with open(A_ , "rb" ) as f: _lowercase = Image.open(A_ ) return im.convert("RGB" ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the training data.'} ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the validation data.'} ) UpperCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def snake_case ( self : int ): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCamelCase__ )} , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) UpperCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCAmelCase__ = field(default=lowerCamelCase__ , metadata={'help': 'Name or path of preprocessor config.'} ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) UpperCAmelCase__ = field( default=lowerCamelCase__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def A__ ( A_ ) -> Optional[Any]: _lowercase = torch.stack([example["pixel_values"] for example in examples] ) _lowercase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def A__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , A_ , A_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase = training_args.get_process_log_level() logger.setLevel(A_ ) transformers.utils.logging.set_verbosity(A_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowercase = {} if data_args.train_dir is not None: _lowercase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _lowercase = os.path.join(data_args.validation_dir , "**" ) _lowercase = load_dataset( "imagefolder" , data_files=A_ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _lowercase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A_ ) and data_args.train_val_split > 0.0: _lowercase = dataset["train"].train_test_split(data_args.train_val_split ) _lowercase = split["train"] _lowercase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowercase = dataset["train"].features["labels"].names _lowercase , _lowercase = {}, {} for i, label in enumerate(A_ ): _lowercase = str(A_ ) _lowercase = label # Load the accuracy metric from the datasets package _lowercase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A_ ) , labelaid=A_ , idalabel=A_ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _lowercase = image_processor.size["shortest_edge"] else: _lowercase = (image_processor.size["height"], image_processor.size["width"]) _lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _lowercase = Compose( [ RandomResizedCrop(A_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _lowercase = Compose( [ Resize(A_ ), CenterCrop(A_ ), ToTensor(), normalize, ] ) def train_transforms(A_ ): _lowercase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A_ ): _lowercase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _lowercase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _lowercase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A_ ) # Initalize our trainer _lowercase = Trainer( model=A_ , args=A_ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=A_ , tokenizer=A_ , data_collator=A_ , ) # Training if training_args.do_train: _lowercase = None if training_args.resume_from_checkpoint is not None: _lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase = last_checkpoint _lowercase = trainer.train(resume_from_checkpoint=A_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowercase = trainer.evaluate() trainer.log_metrics("eval" , A_ ) trainer.save_metrics("eval" , A_ ) # Write model card and (optionally) push to hub _lowercase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A_ ) else: trainer.create_model_card(**A_ ) if __name__ == "__main__": main()
497
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) def lowercase (_lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase = 10 , _lowerCAmelCase = 2 ): def get_dataset(_lowerCAmelCase ): __lowerCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCAmelCase = get_dataset(_lowerCAmelCase ) __lowerCAmelCase = get_dataset(_lowerCAmelCase ) __lowerCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) __lowerCAmelCase = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): __lowerCAmelCase = [] for epoch in range(_lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: __lowerCAmelCase = batch __lowerCAmelCase = model(_lowerCAmelCase ) __lowerCAmelCase = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) accelerator.backward(_lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , snake_case_ ) -> List[str]: return x * self.a + self.b class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=_a , automatic_checkpoint_naming=_a ) # Train baseline __lowerCAmelCase = Accelerator(project_config=_a ) __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = dummy_dataloaders() # Train baseline __lowerCAmelCase = Accelerator() __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a ) # Save initial __lowerCAmelCase = os.path.join(_a , """initial""" ) accelerator.save_state(_a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , _a , _a , _a , _a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = Accelerator() __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(_a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) __lowerCAmelCase = train(2 , _a , _a , _a , _a ) # Save everything __lowerCAmelCase = os.path.join(_a , """checkpoint""" ) accelerator.save_state(_a ) # Load everything back in and make sure all states work accelerator.load_state(_a ) test_rands += train(1 , _a , _a , _a , _a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def A__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=_a , project_config=_a ) __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a ) # Save initial accelerator.save_state() (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , _a , _a , _a , _a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_a ) __lowerCAmelCase = Accelerator(project_dir=_a , project_config=_a ) __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a ) accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) __lowerCAmelCase = train(2 , _a , _a , _a , _a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _a , _a , _a , _a ) (__lowerCAmelCase) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) self.assertEqual(_a , _a ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = torch.tensor([1, 2, 3] ) __lowerCAmelCase = torch.tensor([2, 3, 4] ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(net.parameters() ) __lowerCAmelCase = Accelerator() with self.assertRaises(_a ) as ve: accelerator.register_for_checkpointing(_a , _a , _a , _a ) __lowerCAmelCase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def A__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(_a , step_size=1 , gamma=0.99 ) __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=_a , project_config=_a ) __lowerCAmelCase = accelerator.prepare( _a , _a , _a , _a , _a ) # Save initial accelerator.save_state() __lowerCAmelCase = scheduler.state_dict() train(3 , _a , _a , _a , _a , _a ) self.assertNotEqual(_a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_a , scheduler.state_dict() ) def A__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=_a , total_limit=2 ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=_a , project_config=_a ) __lowerCAmelCase = accelerator.prepare(_a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def A__ ( self ) -> str: __lowerCAmelCase = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = '''/tmp/accelerate/state_checkpointing''' SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_ = group['''params'''][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
705
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ) -> None: warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
573
0
'''simple docstring''' from __future__ import annotations a : Optional[Any] = '''Muhammad Umer Farooq''' a : int = '''MIT''' a : Dict = '''1.0.0''' a : Optional[int] = '''Muhammad Umer Farooq''' a : Optional[Any] = '''contact@muhammadumerfarooq.me''' a : Union[str, Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def A ( self : str , a_ : str , a_ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a_ ) self.urls.append(a_ ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCAmelCase ).split("." )[-2:] ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return parse.urlparse(_UpperCAmelCase ).netloc def __UpperCAmelCase ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(_UpperCAmelCase ) # Initialize the parser __snake_case = Parser(_UpperCAmelCase ) try: # Open URL __snake_case = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(_UpperCAmelCase ) # Get the valid email. __snake_case = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": a : Any = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
69
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
596
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict=False ) -> int: lowerCamelCase_ : Union[str, Any] =[] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ : Dict =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ : Union[str, Any] ="" else: lowerCamelCase_ : Any ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ : Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Dict =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ : Any =in_proj_bias[: config.hidden_size] lowerCamelCase_ : Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Tuple =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ : Dict =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ : List[str] =in_proj_bias[-config.hidden_size :] def _snake_case ( lowerCamelCase__ : Any ) -> str: lowerCamelCase_ : Optional[Any] =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : Union[str, Any] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : int =val def _snake_case ( ) -> List[str]: lowerCamelCase_ : Optional[int] ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ : List[Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Any=False ) -> int: lowerCamelCase_ : Optional[Any] =BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCamelCase__ , ) lowerCamelCase_ : int =ViTHybridConfig(backbone_config=lowerCamelCase__ , image_size=384 , num_labels=1_000 ) lowerCamelCase_ : Optional[Any] =False # load original model from timm lowerCamelCase_ : Optional[Any] =timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ : int =timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase__ ) lowerCamelCase_ : Any =create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Any ="imagenet-1k-id2label.json" lowerCamelCase_ : List[Any] =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : str ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] =idalabel lowerCamelCase_ : Union[str, Any] ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ : Dict =ViTHybridModel(lowerCamelCase__ ).eval() else: lowerCamelCase_ : List[str] =ViTHybridForImageClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # create image processor lowerCamelCase_ : Optional[Any] =create_transform(**resolve_data_config({} , model=lowerCamelCase__ ) ) lowerCamelCase_ : int =transform.transforms lowerCamelCase_ : Any ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCamelCase_ : List[str] =ViTHybridImageProcessor( do_resize=lowerCamelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ : int =prepare_img() lowerCamelCase_ : List[Any] =transform(lowerCamelCase__ ).unsqueeze(0 ) lowerCamelCase_ : str =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) # verify logits with torch.no_grad(): lowerCamelCase_ : List[Any] =model(lowerCamelCase__ ) lowerCamelCase_ : Dict =outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase_ : List[Any] =timm_model.forward_features(lowerCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: lowerCamelCase_ : Optional[int] =timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) A__ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
244
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowercase__ : def __init__( self : Union[str, Any] , snake_case__ : Optional[int] , ): lowerCamelCase_ : Optional[int] =parent lowerCamelCase_ : str =13 lowerCamelCase_ : str =7 lowerCamelCase_ : str =30 lowerCamelCase_ : List[str] =self.seq_length + self.mem_len lowerCamelCase_ : Optional[int] =15 lowerCamelCase_ : Union[str, Any] =True lowerCamelCase_ : int =True lowerCamelCase_ : Union[str, Any] =99 lowerCamelCase_ : Optional[int] =[10, 50, 80] lowerCamelCase_ : Tuple =32 lowerCamelCase_ : Optional[int] =32 lowerCamelCase_ : Optional[int] =4 lowerCamelCase_ : List[Any] =8 lowerCamelCase_ : Optional[Any] =128 lowerCamelCase_ : Optional[int] =2 lowerCamelCase_ : Dict =2 lowerCamelCase_ : Union[str, Any] =None lowerCamelCase_ : Optional[int] =1 lowerCamelCase_ : Any =0 lowerCamelCase_ : Optional[int] =3 lowerCamelCase_ : List[str] =self.vocab_size - 1 lowerCamelCase_ : Optional[Any] =0.01 def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : List[Any] =None if self.use_labels: lowerCamelCase_ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Tuple =TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCAmelCase__ ( self : Optional[Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCAmelCase__ ( self : str , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =TFTransfoXLModel(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : str =model(snake_case__ ).to_tuple() lowerCamelCase_ : int ={"input_ids": input_ids_a, "mems": mems_a} lowerCamelCase_ , lowerCamelCase_ : Tuple =model(snake_case__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : int , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowerCamelCase_ : Optional[int] =TFTransfoXLLMHeadModel(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] =model(snake_case__ ).to_tuple() lowerCamelCase_ : int ={"input_ids": input_ids_a, "labels": lm_labels} lowerCamelCase_ , lowerCamelCase_ : str =model(snake_case__ ).to_tuple() lowerCamelCase_ , lowerCamelCase_ : List[Any] =model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase_ : Union[str, Any] ={"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} lowerCamelCase_ , lowerCamelCase_ : Optional[int] =model(snake_case__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): lowerCamelCase_ : Tuple =TFTransfoXLForSequenceClassification(snake_case__ ) lowerCamelCase_ : List[str] =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Optional[Any] =self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) : List[Any] =config_and_inputs lowerCamelCase_ : int ={"input_ids": input_ids_a} return config, inputs_dict @require_tf class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Optional[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCAmelCase :Union[str, Any] = () if is_tf_available() else () _UpperCAmelCase :List[str] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :int = False _UpperCAmelCase :Any = False def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =TFTransfoXLModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , d_embed=37 ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): self.model_tester.set_seed() lowerCamelCase_ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): self.model_tester.set_seed() lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Dict =[TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(snake_case__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase_ : Optional[Any] =model.get_output_embeddings() assert isinstance(snake_case__ , tf.keras.layers.Layer ) lowerCamelCase_ : Any =model.get_bias() assert name is None else: lowerCamelCase_ : List[Any] =model.get_output_embeddings() assert x is None lowerCamelCase_ : int =model.get_bias() assert name is None def UpperCAmelCase__ ( self : str ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCAmelCase__ ( self : Optional[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Dict =TFTransfoXLModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCAmelCase__ ( self : Optional[int] ): pass @require_tf class lowercase__ ( unittest.TestCase ): @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Optional[Any] =TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off lowerCamelCase_ : str =tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase_ : int =[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , max_length=200 , do_sample=snake_case__ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ )
244
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed A_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) A_ = "sshleifer/student_marian_en_ro_6_1" A_ = "sshleifer/tiny-mbart" @require_torch class _snake_case ( _a ): def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int]=False ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,): SCREAMING_SNAKE_CASE:Optional[int] = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=SCREAMING_SNAKE_CASE__ ,num_train_epochs=1 ,distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str=SCREAMING_SNAKE_CASE__ ,predict_with_generate=SCREAMING_SNAKE_CASE__ ,do_train=SCREAMING_SNAKE_CASE__ ,do_eval=SCREAMING_SNAKE_CASE__ ,do_predict=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:List[Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ ,"trainer_state.json" ) ).log_history if not do_eval: return SCREAMING_SNAKE_CASE:int = [log for log in logs if "eval_loss" in log.keys()] SCREAMING_SNAKE_CASE:List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats SCREAMING_SNAKE_CASE:Optional[int] = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] ,SCREAMING_SNAKE_CASE__ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __UpperCamelCase ( self : str ): self.run_seqaseq_quick() @require_torch_multi_gpu def __UpperCamelCase ( self : Optional[int] ): self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @require_torch_multi_gpu def __UpperCamelCase ( self : List[Any] ): self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __UpperCamelCase ( self : Dict ): self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __UpperCamelCase ( self : Optional[Any] ): self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __UpperCamelCase ( self : Any ): self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--sharded_ddp zero_dp_2" ,predict_with_generate=SCREAMING_SNAKE_CASE__ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __UpperCamelCase ( self : Tuple ): self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--sharded_ddp zero_dp_2 --fp16" ,predict_with_generate=SCREAMING_SNAKE_CASE__ ) @require_apex @require_torch_gpu def __UpperCamelCase ( self : List[Any] ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout SCREAMING_SNAKE_CASE:List[Any] = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } SCREAMING_SNAKE_CASE:str = experiments[experiment_id] SCREAMING_SNAKE_CASE:List[str] = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} SCREAMING_SNAKE_CASE:Optional[int] = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE__ ,extra_args_str=data["extra_args_str"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = len(re.findall(SCREAMING_SNAKE_CASE__ ,cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,data["n_matches"] ) @slow def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=SCREAMING_SNAKE_CASE__ ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=SCREAMING_SNAKE_CASE__ ,) # Check metrics SCREAMING_SNAKE_CASE:str = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ ,"trainer_state.json" ) ).log_history SCREAMING_SNAKE_CASE:Dict = [log for log in logs if "eval_loss" in log.keys()] SCREAMING_SNAKE_CASE:Optional[Any] = eval_metrics[0] SCREAMING_SNAKE_CASE:List[str] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] ,SCREAMING_SNAKE_CASE__ ) # test if do_predict saves generations and metrics SCREAMING_SNAKE_CASE:int = os.listdir(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = {os.path.basename(SCREAMING_SNAKE_CASE__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __UpperCamelCase ( self : List[Any] ): from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE__ : str ) -> Tuple[int, float]: SCREAMING_SNAKE_CASE:Union[str, Any] = "--skip_memory_metrics 0" SCREAMING_SNAKE_CASE:Optional[Any] = self.run_trainer( max_len=128 ,model_name=SCREAMING_SNAKE_CASE__ ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=SCREAMING_SNAKE_CASE__ ,distributed=SCREAMING_SNAKE_CASE__ ,extra_args_str=SCREAMING_SNAKE_CASE__ ,do_eval=SCREAMING_SNAKE_CASE__ ,do_predict=SCREAMING_SNAKE_CASE__ ,n_gpus_to_use=1 ,) # Check metrics SCREAMING_SNAKE_CASE:int = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE__ ,"trainer_state.json" ) ).log_history SCREAMING_SNAKE_CASE:int = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) SCREAMING_SNAKE_CASE:Tuple = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) SCREAMING_SNAKE_CASE:str = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Union[str, Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) SCREAMING_SNAKE_CASE:Optional[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE:Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig SCREAMING_SNAKE_CASE:Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb SCREAMING_SNAKE_CASE:Optional[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings SCREAMING_SNAKE_CASE:Tuple = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,"should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' ,) self.assertGreater( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,"should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' ,) self.assertEqual( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : float = 3e-3 ,SCREAMING_SNAKE_CASE__ : str = "adafactor" ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : int = None ,): SCREAMING_SNAKE_CASE:List[Any] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" SCREAMING_SNAKE_CASE:Optional[int] = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE:Tuple = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(SCREAMING_SNAKE_CASE__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(SCREAMING_SNAKE_CASE__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() SCREAMING_SNAKE_CASE:List[Any] = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(SCREAMING_SNAKE_CASE__ )} '''.split() SCREAMING_SNAKE_CASE:Optional[Any] = "\n --do_predict\n ".split() SCREAMING_SNAKE_CASE:Optional[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: SCREAMING_SNAKE_CASE:Union[str, Any] = get_gpu_count() SCREAMING_SNAKE_CASE:Any = get_torch_dist_unique_port() SCREAMING_SNAKE_CASE:Optional[Any] = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() SCREAMING_SNAKE_CASE:Any = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE__ ,env=self.get_env() ) else: SCREAMING_SNAKE_CASE:Optional[int] = ["run_translation.py"] + args with patch.object(SCREAMING_SNAKE_CASE__ ,"argv" ,SCREAMING_SNAKE_CASE__ ): main() return output_dir
143
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case=True , snake_case="pt" ): SCREAMING_SNAKE_CASE:Optional[int] = {"add_prefix_space": True} if isinstance(snake_case , snake_case ) and not line.startswith(" " ) else {} SCREAMING_SNAKE_CASE:Any = padding_side return tokenizer( [line] , max_length=snake_case , padding="max_length" if pad_to_max_length else None , truncation=snake_case , return_tensors=snake_case , add_special_tokens=snake_case , **snake_case , ) def A_ ( snake_case , snake_case , snake_case=None , ): SCREAMING_SNAKE_CASE:List[str] = input_ids.ne(snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _snake_case ( _a ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple="train" ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Any="" ,): super().__init__() SCREAMING_SNAKE_CASE:int = Path(SCREAMING_SNAKE_CASE__ ).joinpath(type_path + ".source" ) SCREAMING_SNAKE_CASE:Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).joinpath(type_path + ".target" ) SCREAMING_SNAKE_CASE:List[str] = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE:Tuple = max_source_length SCREAMING_SNAKE_CASE:Any = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE:List[Any] = tokenizer SCREAMING_SNAKE_CASE:str = prefix if n_obs is not None: SCREAMING_SNAKE_CASE:Union[str, Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE:Dict = src_lang SCREAMING_SNAKE_CASE:Optional[int] = tgt_lang def __len__( self : Union[str, Any] ): return len(self.src_lens ) def __getitem__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:List[str] = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE:Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,SCREAMING_SNAKE_CASE__ ).rstrip("\n" ) SCREAMING_SNAKE_CASE:Union[str, Any] = linecache.getline(str(self.tgt_file ) ,SCREAMING_SNAKE_CASE__ ).rstrip("\n" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE:str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE:Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer SCREAMING_SNAKE_CASE:int = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_source_length ,"right" ) SCREAMING_SNAKE_CASE:List[Any] = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_target_length ,"right" ) SCREAMING_SNAKE_CASE:Dict = source_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE:List[str] = target_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE:List[str] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): return [len(SCREAMING_SNAKE_CASE__ ) for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:Dict = torch.stack([x["input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.stack([x["attention_mask"] for x in batch] ) SCREAMING_SNAKE_CASE:int = torch.stack([x["decoder_input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE:Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE:Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE:Dict = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch A_ = getLogger(__name__) def A_ ( snake_case ): return list(itertools.chain.from_iterable(snake_case ) ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Tuple = get_git_info() save_json(snake_case , os.path.join(snake_case , "git_log.json" ) ) def A_ ( snake_case , snake_case , snake_case=4 , **snake_case ): with open(snake_case , "w" ) as f: json.dump(snake_case , snake_case , indent=snake_case , **snake_case ) def A_ ( snake_case ): with open(snake_case ) as f: return json.load(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:int = git.Repo(search_parent_directories=snake_case ) SCREAMING_SNAKE_CASE:Any = { "repo_id": str(snake_case ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def A_ ( snake_case , snake_case ): return list(map(snake_case , snake_case ) ) def A_ ( snake_case , snake_case ): with open(snake_case , "wb" ) as f: return pickle.dump(snake_case , snake_case ) def A_ ( snake_case ): def remove_articles(snake_case ): return re.sub(r"\b(a|an|the)\b" , " " , snake_case ) def white_space_fix(snake_case ): return " ".join(text.split() ) def remove_punc(snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case ) ) ) ) def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = normalize_answer(snake_case ).split() SCREAMING_SNAKE_CASE:Optional[int] = normalize_answer(snake_case ).split() SCREAMING_SNAKE_CASE:Optional[int] = Counter(snake_case ) & Counter(snake_case ) SCREAMING_SNAKE_CASE:List[str] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 1.0 * num_same / len(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = 1.0 * num_same / len(snake_case ) SCREAMING_SNAKE_CASE:str = (2 * precision * recall) / (precision + recall) return fa def A_ ( snake_case , snake_case ): return normalize_answer(snake_case ) == normalize_answer(snake_case ) def A_ ( snake_case , snake_case ): assert len(snake_case ) == len(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 for hypo, pred in zip(snake_case , snake_case ): em += exact_match_score(snake_case , snake_case ) if len(snake_case ) > 0: em /= len(snake_case ) return {"em": em} def A_ ( snake_case ): return model_prefix.startswith("rag" ) def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE:Dict = "dropout_rate" for p in extra_params: if getattr(snake_case , snake_case , snake_case ): if not hasattr(snake_case , snake_case ) and not hasattr(snake_case , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case ) ) delattr(snake_case , snake_case ) continue SCREAMING_SNAKE_CASE:Optional[int] = p if hasattr(snake_case , snake_case ) else equivalent_param[p] setattr(snake_case , snake_case , getattr(snake_case , snake_case ) ) delattr(snake_case , snake_case ) return hparams, config
143
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCAmelCase : int = grid[0] for row_n in range(1 , len(UpperCamelCase ) ): __UpperCAmelCase : int = grid[row_n] __UpperCAmelCase : str = fill_row(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = grid[row_n] return grid[-1][-1] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
487
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=14, UpperCamelCase__=7, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=99, UpperCamelCase__=32, UpperCamelCase__=5, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=16, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=None, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_labels lowerCAmelCase_ = use_mc_token_ids lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope lowerCAmelCase_ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCAmelCase_ = None if self.use_mc_token_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size], self.num_choices ) lowerCAmelCase_ = self.get_config() lowerCAmelCase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = CTRLModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() model(UpperCamelCase__, token_type_ids=UpperCamelCase__, head_mask=UpperCamelCase__ ) model(UpperCamelCase__, token_type_ids=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = CTRLLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = CTRLForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = model(UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __snake_case = (CTRLLMHeadModel,) if is_torch_available() else () __snake_case = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CTRLModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = CTRLModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [[1_1859, 0, 1611, 8]], dtype=torch.long, device=UpperCamelCase__ ) # Legal the president is lowerCAmelCase_ = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase_ = model.generate(UpperCamelCase__, do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist(), UpperCamelCase__ )
431
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Dict): '''simple docstring''' warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
710
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "data2vec-text" def __init__( self : Any , lowercase_ : Any=30522 , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : Dict=12 , lowercase_ : List[Any]=3072 , lowercase_ : str="gelu" , lowercase_ : int=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=512 , lowercase_ : Optional[int]=2 , lowercase_ : int=0.02 , lowercase_ : int=1e-12 , lowercase_ : Any=1 , lowercase_ : Any=0 , lowercase_ : List[Any]=2 , lowercase_ : Tuple="absolute" , lowercase_ : Optional[int]=True , lowercase_ : int=None , **lowercase_ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : str = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
176
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTTokenizer _UpperCamelCase : List[Any] = OpenAIGPTTokenizerFast _UpperCamelCase : int = True _UpperCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowercase = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(snake_case ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE__ ( self ): lowercase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase = 'lower' lowercase = ['low', 'er</w>'] lowercase = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) lowercase = tokens + ['<unk>'] lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) # Simple input lowercase = 'This is a simple input' lowercase = ['This is a simple input 1', 'This is a simple input 2'] lowercase = ('This is a simple input', 'This is a pair') lowercase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_ftfy @require_spacy @require_tokenizers class A_ ( __lowerCamelCase ): '''simple docstring''' pass
84
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =int(A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def _UpperCAmelCase ( A , A , A , A , A=300 ): '''simple docstring''' return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ ="<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase__ =F"""{elt:.6f}""" if isinstance(A , A ) else str(A ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case_ : '''simple docstring''' __UpperCamelCase = 5 __UpperCamelCase = 0.2 def __init__( self, A_, A_ = None, A_ = True, A_ = None, A_ = 300, ) -> Optional[Any]: UpperCAmelCase__ =total UpperCAmelCase__ ="" if prefix is None else prefix UpperCAmelCase__ =leave UpperCAmelCase__ =parent UpperCAmelCase__ =width UpperCAmelCase__ =None UpperCAmelCase__ =None UpperCAmelCase__ =None def __UpperCAmelCase ( self, A_, A_ = False, A_ = None ) -> Any: UpperCAmelCase__ =value if comment is not None: UpperCAmelCase__ =comment if self.last_value is None: UpperCAmelCase__ =UpperCAmelCase__ =time.time() UpperCAmelCase__ =UpperCAmelCase__ =value UpperCAmelCase__ =UpperCAmelCase__ =None UpperCAmelCase__ =self.warmup UpperCAmelCase__ =1 self.update_bar(A_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase__ =time.time() UpperCAmelCase__ =current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase__ =self.elapsed_time / (value - self.start_value) else: UpperCAmelCase__ =None if value >= self.total: UpperCAmelCase__ =self.total UpperCAmelCase__ =None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase__ =self.average_time_per_item * (self.total - value) self.update_bar(A_ ) UpperCAmelCase__ =value UpperCAmelCase__ =current_time if self.average_time_per_item is None: UpperCAmelCase__ =1 else: UpperCAmelCase__ =max(int(self.update_every / self.average_time_per_item ), 1 ) def __UpperCAmelCase ( self, A_, A_=None ) -> Dict: UpperCAmelCase__ =" " * (len(str(self.total ) ) - len(str(A_ ) )) + str(A_ ) if self.elapsed_time is None: UpperCAmelCase__ =f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: UpperCAmelCase__ =f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: UpperCAmelCase__ =( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase__ =disp.display(disp.HTML(self.html_code ), display_id=A_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self ) -> str: if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class snake_case_ ( a ): '''simple docstring''' def __init__( self, A_, A_=None ) -> Dict: super().__init__(A_ ) UpperCAmelCase__ =None if column_names is None else [column_names] UpperCAmelCase__ =None def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase__ =disp.display(disp.HTML(self.html_code ), display_id=A_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self, A_ ) -> Tuple: if self.inner_table is None: UpperCAmelCase__ =[list(values.keys() ), list(values.values() )] else: UpperCAmelCase__ =self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A_ ) UpperCAmelCase__ =columns self.inner_table.append([values[c] for c in columns] ) def __UpperCAmelCase ( self, A_, A_=None, A_=300 ) -> Union[str, Any]: UpperCAmelCase__ =NotebookProgressBar(A_, prefix=A_, parent=self, width=A_ ) return self.child_bar def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =None self.display() class snake_case_ ( a ): '''simple docstring''' def __init__( self ) -> Optional[int]: UpperCAmelCase__ =None UpperCAmelCase__ =None UpperCAmelCase__ =False def __UpperCAmelCase ( self, A_, A_, A_, **A_ ) -> str: UpperCAmelCase__ ="Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" UpperCAmelCase__ =0 UpperCAmelCase__ =0 UpperCAmelCase__ =[self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) UpperCAmelCase__ =NotebookTrainingTracker(state.max_steps, A_ ) def __UpperCAmelCase ( self, A_, A_, A_, **A_ ) -> str: UpperCAmelCase__ =int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1, comment=f"""Epoch {epoch}/{state.num_train_epochs}""", force_update=self._force_next_update, ) UpperCAmelCase__ =False def __UpperCAmelCase ( self, A_, A_, A_, A_=None, **A_ ) -> int: if not has_length(A_ ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase__ =self.training_tracker.add_child(len(A_ ) ) else: UpperCAmelCase__ =NotebookProgressBar(len(A_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __UpperCAmelCase ( self, A_, A_, A_, **A_ ) -> Optional[Any]: if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase__ =None def __UpperCAmelCase ( self, A_, A_, A_, A_=None, **A_ ) -> str: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase__ ={"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase__ =state.global_step self.training_tracker.write_line(A_ ) def __UpperCAmelCase ( self, A_, A_, A_, A_=None, **A_ ) -> str: if self.training_tracker is not None: UpperCAmelCase__ ={"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase__ =log["loss"] break if self.first_column == "Epoch": UpperCAmelCase__ =int(state.epoch ) else: UpperCAmelCase__ =state.global_step UpperCAmelCase__ ="eval" for k in metrics: if k.endswith("_loss" ): UpperCAmelCase__ =re.sub(R"\_loss$", "", A_ ) UpperCAmelCase__ =metrics.pop("total_flos", A_ ) UpperCAmelCase__ =metrics.pop("epoch", A_ ) UpperCAmelCase__ =metrics.pop(f"""{metric_key_prefix}_runtime""", A_ ) UpperCAmelCase__ =metrics.pop(f"""{metric_key_prefix}_samples_per_second""", A_ ) UpperCAmelCase__ =metrics.pop(f"""{metric_key_prefix}_steps_per_second""", A_ ) UpperCAmelCase__ =metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""", A_ ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": UpperCAmelCase__ =v else: UpperCAmelCase__ =k.split("_" ) UpperCAmelCase__ =" ".join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase__ =v self.training_tracker.write_line(A_ ) self.training_tracker.remove_child() UpperCAmelCase__ =None # Evaluation takes a long time so we should force the next update. UpperCAmelCase__ =True def __UpperCAmelCase ( self, A_, A_, A_, **A_ ) -> List[str]: self.training_tracker.update( state.global_step, comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""", force_update=A_ ) UpperCAmelCase__ =None
625
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] ) -> Optional[int]: A__ : Optional[int] = old_name if "patch_embed" in old_name: A__ , A__ , A__ : Optional[int] = old_name.split(""".""" ) if layer == "0": A__ : Dict = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A__ : str = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A__ : Union[str, Any] = old_name.replace("""3""" , """convolution2""" ) else: A__ : Any = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , UpperCAmelCase__ ): A__ : Dict = r"""\b\d{2}\b""" if bool(re.search(UpperCAmelCase__ , UpperCAmelCase__ ) ): A__ : Dict = re.search(r"""\d\.\d\d.""" , UpperCAmelCase__ ).group() else: A__ : Optional[Any] = re.search(r"""\d\.\d.""" , UpperCAmelCase__ ).group() if int(match[0] ) < 6: A__ : Tuple = old_name.replace(UpperCAmelCase__ , """""" ) A__ : Optional[int] = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A__ : List[str] = """intermediate_stages.""" + trimmed_name else: A__ : Union[str, Any] = old_name.replace(UpperCAmelCase__ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A__ : Tuple = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A__ : Dict = str(int(match[2] ) - num_meta4D_last_stage ) A__ : Any = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A__ : Tuple = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A__ : Union[str, Any] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A__ : str = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A__ : Optional[int] = trimmed_name.replace("""fc2""" , """linear_out""" ) A__ : int = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , UpperCAmelCase__ ): A__ : Dict = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A__ : List[str] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : int = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : List[str] = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A__ : Any = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A__ : Tuple = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A__ : Dict = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A__ : Dict = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : List[str] = new_name.replace("""norm""" , """layernorm""" ) A__ : Union[str, Any] = """efficientformer.""" + new_name else: A__ : Optional[Any] = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase (lowercase_: str , lowercase_: List[Any] ) -> Tuple: for key in checkpoint.copy().keys(): A__ : Optional[int] = checkpoint.pop(UpperCAmelCase__ ) A__ : Any = val return checkpoint def UpperCamelCase () -> List[str]: A__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Optional[int] = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image def UpperCamelCase (lowercase_: List[str] , lowercase_: List[Any] , lowercase_: Dict , lowercase_: Tuple ) -> Tuple: A__ : int = torch.load(UpperCAmelCase__ , map_location="""cpu""" )["""model"""] A__ : Tuple = EfficientFormerConfig.from_json_file(UpperCAmelCase__ ) A__ : List[str] = EfficientFormerForImageClassificationWithTeacher(UpperCAmelCase__ ) A__ : Dict = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A__ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 A__ : Any = convert_torch_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() A__ : List[str] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A__ : str = prepare_img() A__ : Any = 256 A__ : Optional[int] = 224 A__ : List[Any] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A__ : Optional[int] = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values # original processing pipeline A__ : Union[str, Any] = Compose( [ Resize(UpperCAmelCase__ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(UpperCAmelCase__ ), ToTensor(), Normalize(UpperCAmelCase__ , UpperCAmelCase__ ), ] ) A__ : Tuple = image_transforms(UpperCAmelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Optional[Any] = outputs.logits A__ : Tuple = (1, 1000) if "l1" in model_name: A__ : Union[str, Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : List[str] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , UpperCAmelCase__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Optional[int] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(UpperCAmelCase__ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=UpperCAmelCase__ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=UpperCAmelCase__ , ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A_ : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
713
from __future__ import annotations from collections.abc import Callable A_ : List[Any] = list[list[float | int]] def UpperCamelCase (lowercase_: Matrix , lowercase_: Matrix ) -> Matrix: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase_ )] A__ : int A__ : int A__ : int A__ : int A__ : int A__ : float for row in range(lowercase_ ): for col in range(lowercase_ ): A__ : List[str] = matrix[row][col] A__ : int = vector[row][0] A__ : Optional[int] = 0 A__ : str = 0 while row < size and col < size: # pivoting A__ : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase_ , lowercase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase_ ): A__ : List[Any] = augmented[rowa][col] / augmented[row][col] A__ : Dict = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase_ ): for row in range(lowercase_ ): A__ : List[str] = augmented[row][col] / augmented[col][col] for cola in range(lowercase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase_ ) ] def UpperCamelCase (lowercase_: list[int] ) -> Callable[[int], int]: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(lowercase_ )] for _ in range(lowercase_ )] A__ : Matrix = [[0] for _ in range(lowercase_ )] A__ : Matrix A__ : int A__ : int A__ : int for x_val, y_val in enumerate(lowercase_ ): for col in range(lowercase_ ): A__ : Dict = (x_val + 1) ** (size - col - 1) A__ : Any = y_val A__ : Union[str, Any] = solve(lowercase_ , lowercase_ ) def interpolated_func(lowercase_: int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase_ ) ) return interpolated_func def UpperCamelCase (lowercase_: int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase (lowercase_: Callable[[int], int] = question_function , lowercase_: int = 10 ) -> int: A__ : list[int] = [func(lowercase_ ) for x_val in range(1 , order + 1 )] A__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ : int = 0 A__ : Callable[[int], int] A__ : int for poly in polynomials: A__ : List[str] = 1 while func(lowercase_ ) == poly(lowercase_ ): x_val += 1 ret += poly(lowercase_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
64
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def a__ ( a__ , a__="shi-labs/oneformer_demo" ): """simple docstring""" with open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) as f: __SCREAMING_SNAKE_CASE = json.load(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): __SCREAMING_SNAKE_CASE = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(a__ ) ) __SCREAMING_SNAKE_CASE = thing_ids __SCREAMING_SNAKE_CASE = class_names return metadata class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=30 , __SCREAMING_SNAKE_CASE : str=400 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Tuple=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[Any]=10 , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[str]=255 , __SCREAMING_SNAKE_CASE : Union[str, Any]="shi-labs/oneformer_demo" , __SCREAMING_SNAKE_CASE : Optional[int]="ade20k_panoptic.json" , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = class_info_file __SCREAMING_SNAKE_CASE = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_text __SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = do_reduce_labels __SCREAMING_SNAKE_CASE = ignore_index def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[Any]: """simple docstring""" if not batched: __SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: __SCREAMING_SNAKE_CASE = [] for image in image_inputs: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCAmelCase__ = image_processing_class def UpperCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """ignore_index""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """class_info_file""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_text""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """repo_path""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """metadata""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_reduce_labels""" ) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_processor( __SCREAMING_SNAKE_CASE , ["""semantic"""] * len(__SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_processor( __SCREAMING_SNAKE_CASE , ["""semantic"""] * len(__SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_processor( __SCREAMING_SNAKE_CASE , ["""semantic"""] * len(__SCREAMING_SNAKE_CASE ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : str="np" ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) if with_segmentation_maps: __SCREAMING_SNAKE_CASE = num_labels if is_instance_map: __SCREAMING_SNAKE_CASE = list(range(__SCREAMING_SNAKE_CASE ) ) * 2 __SCREAMING_SNAKE_CASE = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __SCREAMING_SNAKE_CASE = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations] __SCREAMING_SNAKE_CASE = image_processor( __SCREAMING_SNAKE_CASE , ["""semantic"""] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , ) return inputs def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def common(__SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : str=None ): __SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inputs["""mask_labels"""] __SCREAMING_SNAKE_CASE = inputs["""class_labels"""] __SCREAMING_SNAKE_CASE = inputs["""pixel_values"""] __SCREAMING_SNAKE_CASE = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__SCREAMING_SNAKE_CASE ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type="""pil""" ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type="""pil""" ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = np.zeros((20, 50) ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = binary_mask_to_rle(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() __SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() __SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() __SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
627
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Tuple = 'Hello, World!' UpperCAmelCase : Any = 'en_XX' def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Path("""data_bin""" ) __SCREAMING_SNAKE_CASE = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a__ ).parent ) , checkpoint_file=Path(a__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(a__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(a__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(a__ ) __SCREAMING_SNAKE_CASE = xmod.model.encoder.sentence_encoder __SCREAMING_SNAKE_CASE = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , a__ ) __SCREAMING_SNAKE_CASE = XmodForSequenceClassification(a__ ) if classification_head else XmodForMaskedLM(a__ ) model.eval() # Now let's copy all the weights. # Embeddings __SCREAMING_SNAKE_CASE = xmod_sent_encoder.embed_tokens.weight __SCREAMING_SNAKE_CASE = xmod_sent_encoder.embed_positions.weight __SCREAMING_SNAKE_CASE = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __SCREAMING_SNAKE_CASE = xmod_sent_encoder.layernorm_embedding.weight __SCREAMING_SNAKE_CASE = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __SCREAMING_SNAKE_CASE = model.roberta.encoder.layer[i] __SCREAMING_SNAKE_CASE = xmod_sent_encoder.layers[i] # self attention __SCREAMING_SNAKE_CASE = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.q_proj.weight __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.q_proj.bias __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.k_proj.weight __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.k_proj.bias __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.v_proj.weight __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.v_proj.bias # self-attention output __SCREAMING_SNAKE_CASE = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.out_proj.weight __SCREAMING_SNAKE_CASE = xmod_layer.self_attn.out_proj.bias __SCREAMING_SNAKE_CASE = xmod_layer.self_attn_layer_norm.weight __SCREAMING_SNAKE_CASE = xmod_layer.self_attn_layer_norm.bias # intermediate __SCREAMING_SNAKE_CASE = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __SCREAMING_SNAKE_CASE = xmod_layer.fca.weight __SCREAMING_SNAKE_CASE = xmod_layer.fca.bias # output __SCREAMING_SNAKE_CASE = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __SCREAMING_SNAKE_CASE = xmod_layer.fca.weight __SCREAMING_SNAKE_CASE = xmod_layer.fca.bias __SCREAMING_SNAKE_CASE = xmod_layer.final_layer_norm.weight __SCREAMING_SNAKE_CASE = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __SCREAMING_SNAKE_CASE = xmod_layer.adapter_layer_norm.weight __SCREAMING_SNAKE_CASE = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __SCREAMING_SNAKE_CASE = bert_output.adapter_modules[lang_code] __SCREAMING_SNAKE_CASE = xmod_layer.adapter_modules[lang_code] __SCREAMING_SNAKE_CASE = from_adapter.fca.weight __SCREAMING_SNAKE_CASE = from_adapter.fca.bias __SCREAMING_SNAKE_CASE = from_adapter.fca.weight __SCREAMING_SNAKE_CASE = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __SCREAMING_SNAKE_CASE = xmod_sent_encoder.layer_norm.weight __SCREAMING_SNAKE_CASE = xmod_sent_encoder.layer_norm.bias if classification_head: __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].dense.weight __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].dense.bias __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.weight __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.dense.weight __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.dense.bias __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.layer_norm.weight __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.layer_norm.bias __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.weight __SCREAMING_SNAKE_CASE = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __SCREAMING_SNAKE_CASE = xmod.encode(a__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(a__ ) __SCREAMING_SNAKE_CASE = model(a__ )[0] if classification_head: __SCREAMING_SNAKE_CASE = xmod.model.classification_heads["""mnli"""](xmod.extract_features(a__ ) ) else: __SCREAMING_SNAKE_CASE = xmod.model(a__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __SCREAMING_SNAKE_CASE = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __SCREAMING_SNAKE_CASE = torch.allclose(a__ , a__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(a__ ).mkdir(parents=a__ , exist_ok=a__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
627
1
import math import qiskit def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" if ( isinstance(snake_case__ , snake_case__ ) or isinstance(snake_case__ , snake_case__ ) or isinstance(snake_case__ , snake_case__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(snake_case__ ) != input_a) or (math.floor(snake_case__ ) != input_a) or (math.floor(snake_case__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers UpperCamelCase = qiskit.QuantumRegister(4 , """qr""" ) UpperCamelCase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries UpperCamelCase = [input_a, input_a, carry_in] UpperCamelCase = qiskit.QuantumCircuit(snake_case__ , snake_case__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case__ ) # measure the last two qbits UpperCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) UpperCamelCase = qiskit.execute(snake_case__ , snake_case__ , shots=1_000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
700
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCAmelCase ( __snake_case ): lowercase = """lilt""" def __init__( self : Tuple , __magic_name__ : Tuple=3_0_5_2_2 , __magic_name__ : List[str]=7_6_8 , __magic_name__ : Optional[Any]=1_2 , __magic_name__ : str=1_2 , __magic_name__ : Tuple=3_0_7_2 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Dict=5_1_2 , __magic_name__ : Any=2 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Optional[int]=1e-12 , __magic_name__ : Optional[int]=0 , __magic_name__ : List[str]="absolute" , __magic_name__ : List[Any]=None , __magic_name__ : str=4 , __magic_name__ : Any=1_0_2_4 , **__magic_name__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = classifier_dropout UpperCamelCase = channel_shrink_ratio UpperCamelCase = max_ad_position_embeddings
181
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _lowercase ( snake_case_ ): lowercase = 'gptsan-japanese' lowercase = [ 'past_key_values', ] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , snake_case : Any=3_6_0_0_0 , snake_case : Tuple=1_2_8_0 , snake_case : Any=1_0_2_4 , snake_case : Optional[Any]=8_1_9_2 , snake_case : Tuple=4_0_9_6 , snake_case : Dict=1_2_8 , snake_case : Optional[Any]=1_0 , snake_case : int=0 , snake_case : List[Any]=1_6 , snake_case : List[str]=1_6 , snake_case : int=1_2_8 , snake_case : List[Any]=0.0 , snake_case : Any=1e-5 , snake_case : Tuple=False , snake_case : int=0.0 , snake_case : Dict="float32" , snake_case : int=False , snake_case : int=False , snake_case : Union[str, Any]=False , snake_case : List[Any]=0.002 , snake_case : Any=False , snake_case : Any=True , snake_case : int=3_5_9_9_8 , snake_case : Optional[Any]=3_5_9_9_5 , snake_case : int=3_5_9_9_9 , **snake_case : Dict , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Any = vocab_size UpperCamelCase_ : str = max_position_embeddings UpperCamelCase_ : str = d_model UpperCamelCase_ : Optional[int] = d_ff UpperCamelCase_ : Any = d_ext UpperCamelCase_ : int = d_spout UpperCamelCase_ : List[str] = num_switch_layers UpperCamelCase_ : int = num_ext_layers UpperCamelCase_ : List[str] = num_switch_layers + num_ext_layers UpperCamelCase_ : Union[str, Any] = num_heads UpperCamelCase_ : str = num_experts UpperCamelCase_ : Optional[Any] = expert_capacity UpperCamelCase_ : Optional[Any] = dropout_rate UpperCamelCase_ : Tuple = layer_norm_epsilon UpperCamelCase_ : List[str] = router_bias UpperCamelCase_ : str = router_jitter_noise UpperCamelCase_ : Dict = router_dtype UpperCamelCase_ : str = router_ignore_padding_tokens UpperCamelCase_ : Tuple = output_hidden_states UpperCamelCase_ : int = output_attentions UpperCamelCase_ : Optional[int] = initializer_factor UpperCamelCase_ : Optional[int] = output_router_logits UpperCamelCase_ : List[str] = use_cache super().__init__( separator_token_id=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , **snake_case , )
417
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = {'vocab_file': 'spiece.model'} a_ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } a_ = { 'google/reformer-crime-and-punishment': 524_288, } class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Any , snake_case : List[Any] , snake_case : Any="</s>" , snake_case : Optional[Any]="<unk>" , snake_case : str=[] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : str , ) -> None: """simple docstring""" UpperCamelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCamelCase_ : Dict = vocab_file UpperCamelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ : List[str] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : Dict = self.__dict__.copy() UpperCamelCase_ : Any = None return state def __setstate__( self : Optional[Any] , snake_case : Any ) -> Dict: """simple docstring""" UpperCamelCase_ : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_ : Optional[int] = {} UpperCamelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Optional[int] ) -> int: """simple docstring""" return self.sp_model.piece_to_id(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Union[str, Any] ) -> str: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCamelCase_ : Tuple = self.sp_model.IdToPiece(snake_case ) return token def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Any = [] UpperCamelCase_ : Tuple = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token UpperCamelCase_ : int = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : Union[str, Any] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: UpperCamelCase_ : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
417
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCamelCase_ : Any = ["small", "medium", "large"] lowerCamelCase_ : Dict = "lm_head.decoder.weight" lowerCamelCase_ : Tuple = "lm_head.weight" def __lowercase( __snake_case : str ,__snake_case : str ) -> str: __snake_case = torch.load(__snake_case ) __snake_case = d.pop(__snake_case ) os.makedirs(__snake_case ,exist_ok=__snake_case ) torch.save(__snake_case ,os.path.join(__snake_case ,__snake_case ) ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowerCamelCase_ : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCamelCase_ : Dict = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") lowerCamelCase_ : Any = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
345
from ..utils import DummyObject, requires_backends class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) class _lowerCamelCase (metaclass=lowerCamelCase ): lowercase__ = ["""flax"""] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(self , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] ) @classmethod def __lowerCamelCase ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): requires_backends(cls , ['flax'] )
345
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __UpperCamelCase : Any = 'tiny-wmt19-en-ru' # Build # borrowed from a test __UpperCamelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : Any = dict(zip(vocab, range(len(vocab)))) __UpperCamelCase : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Optional[Any] = Path(tmpdirname) __UpperCamelCase : Tuple = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] __UpperCamelCase : Optional[int] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] __UpperCamelCase : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) __UpperCamelCase : Any = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __UpperCamelCase : Tuple = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __UpperCamelCase : Optional[int] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __UpperCamelCase : str = tokenizer(['Making tiny model'], return_tensors='pt') __UpperCamelCase : Any = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
248
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case_ : """simple docstring""" __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_a )} , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCAmelCase =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def A__ ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class snake_case_ : """simple docstring""" __UpperCAmelCase =field( default=_a , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase =field(default=_a , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCAmelCase =field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __UpperCAmelCase =field( default=_a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCAmelCase =field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __UpperCAmelCase =field( default=_a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def A__ ( self ): if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" with open(UpperCAmelCase__ , 'r' , encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(UpperCAmelCase__ ) for line in f.read().splitlines() if (len(UpperCAmelCase__ ) > 0 and not line.isspace())] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(UpperCAmelCase__ ) def __lowercase ( ): """simple docstring""" __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(UpperCAmelCase__ , data_files=UpperCAmelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase__ ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(UpperCAmelCase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def __lowercase ( UpperCAmelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
102
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCamelCase = data_utils.TransfoXLTokenizer lowerCamelCase = data_utils.TransfoXLCorpus lowerCamelCase = data_utils lowerCamelCase = data_utils def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: __lowerCAmelCase = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __lowerCAmelCase = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) __lowerCAmelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase = os.path.abspath(UpperCAmelCase__ ) __lowerCAmelCase = os.path.abspath(UpperCAmelCase__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase = TransfoXLConfig() else: __lowerCAmelCase = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase = TransfoXLLMHeadModel(UpperCAmelCase__ ) __lowerCAmelCase = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model __lowerCAmelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}""" ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F"""Save configuration file to {os.path.abspath(UpperCAmelCase__ )}""" ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) lowerCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
102
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> int: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCAmelCase = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Union[str, Any]: '''simple docstring''' assert _test_patching.open is open _UpperCAmelCase = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , A__ ): pass def A__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , A__ ) is None with patch_submodule(_test_patching , "len" , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = "__test_patch_submodule_start_and_stop_mock__" _UpperCAmelCase = patch_submodule(_test_patching , "open" , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> List[str]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCAmelCase = "__test_patch_submodule_successive_join__" _UpperCAmelCase = "__test_patch_submodule_successive_dirname__" _UpperCAmelCase = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , A__ ): with patch_submodule(_test_patching , "os.rename" , A__ ): with patch_submodule(_test_patching , "os.path.dirname" , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , A__ ): with patch_submodule(_test_patching , "os.path.join" , A__ ): with patch_submodule(_test_patching , "os.path.dirname" , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , A__ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , A__ ): pass
426
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "xglm" A__ : List[Any] = ["past_key_values"] A__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=256008 , snake_case_=2048 , snake_case_=1024 , snake_case_=4096 , snake_case_=24 , snake_case_=16 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> List[str]: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
426
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=A__ ): __SCREAMING_SNAKE_CASE = ["""flax""", """transformers"""] def __init__( self , *_snake_case , **_snake_case ) -> Dict: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> int: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> int: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=A__ ): __SCREAMING_SNAKE_CASE = ["""flax""", """transformers"""] def __init__( self , *_snake_case , **_snake_case ) -> str: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> str: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=A__ ): __SCREAMING_SNAKE_CASE = ["""flax""", """transformers"""] def __init__( self , *_snake_case , **_snake_case ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=A__ ): __SCREAMING_SNAKE_CASE = ["""flax""", """transformers"""] def __init__( self , *_snake_case , **_snake_case ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> str: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] )
704
import re import string import numpy as np import datasets __magic_name__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" __magic_name__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" __magic_name__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=False , _snake_case=False , _snake_case=False , ) -> Optional[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase = np.array([re.sub(_snake_case , '''''' , _snake_case ) for x in predictions] ) UpperCAmelCase = np.array([re.sub(_snake_case , '''''' , _snake_case ) for x in references] ) else: UpperCAmelCase = np.asarray(_snake_case ) UpperCAmelCase = np.asarray(_snake_case ) if ignore_case: UpperCAmelCase = np.char.lower(_snake_case ) UpperCAmelCase = np.char.lower(_snake_case ) if ignore_punctuation: UpperCAmelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) if ignore_numbers: UpperCAmelCase = string.digits.maketrans('''''' , '''''' , string.digits ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = predictions == references return {"exact_match": np.mean(_snake_case ) * 100}
391
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : List[Any] = 256 class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[Any] = ['melgan'] def __init__( self : Optional[Any] , snake_case : SpectrogramNotesEncoder , snake_case : SpectrogramContEncoder , snake_case : TaFilmDecoder , snake_case : DDPMScheduler , snake_case : OnnxRuntimeModel if is_onnx_available() else Any , ): '''simple docstring''' super().__init__() # From MELGAN SCREAMING_SNAKE_CASE : List[Any] = math.log(1E-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE : Optional[Any] = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE : List[Any] = 128 self.register_modules( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) def lowerCamelCase_ ( self : int , snake_case : int , snake_case : Union[str, Any]=(-1.0, 1.0) , snake_case : Optional[Any]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = output_range if clip: SCREAMING_SNAKE_CASE : List[Any] = torch.clip(snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE : Optional[int] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase_ ( self : int , snake_case : str , snake_case : Optional[Any]=(-1.0, 1.0) , snake_case : Tuple=False ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = input_range SCREAMING_SNAKE_CASE : Any = torch.clip(snake_case , snake_case , snake_case ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase_ ( self : List[Any] , snake_case : Dict , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = input_tokens > 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.notes_encoder( encoder_input_tokens=snake_case , encoder_inputs_mask=snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.continuous_encoder( encoder_inputs=snake_case , encoder_inputs_mask=snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase_ ( self : Dict , snake_case : Dict , snake_case : Tuple , snake_case : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = noise_time if not torch.is_tensor(snake_case ): SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : Tuple = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE : Any = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.decoder( encodings_and_masks=snake_case , decoder_input_tokens=snake_case , decoder_noise_time=snake_case ) return logits @torch.no_grad() def __call__( self : Dict , snake_case : List[List[int]] , snake_case : Optional[torch.Generator] = None , snake_case : int = 100 , snake_case : bool = True , snake_case : str = "numpy" , snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case : int = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case )}.''' ) SCREAMING_SNAKE_CASE : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : str = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(snake_case ): if i == 0: SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE : Dict = ones SCREAMING_SNAKE_CASE : Union[str, Any] = self.scale_features( snake_case , output_range=[-1.0, 1.0] , clip=snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=snake_case , continuous_mask=snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE : Any = randn_tensor( shape=encoder_continuous_inputs.shape , generator=snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Optional[int] = self.decode( encodings_and_masks=snake_case , input_tokens=snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE : Any = self.scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample SCREAMING_SNAKE_CASE : Optional[int] = self.scale_to_features(snake_case , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE : Optional[int] = mel[:1] SCREAMING_SNAKE_CASE : str = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case ) logger.info('Generated segment' , snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": SCREAMING_SNAKE_CASE : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE : Optional[int] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=snake_case )
352
from __future__ import annotations def __a ( __lowerCAmelCase , __lowerCAmelCase = None ) -> list[list[str]]: SCREAMING_SNAKE_CASE : Dict = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(__lowerCAmelCase ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(__lowerCAmelCase ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCAmelCase )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCAmelCase )]: combination.reverse() return table[len(__lowerCAmelCase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
352
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = model.config lowerCAmelCase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCAmelCase__ = MBartConfig( is_decoder=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , add_cross_attention=UpperCamelCase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase_ , add_final_layer_norm=UpperCamelCase_ , ) return encoder_config, decoder_config def _UpperCamelCase ( UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" if "encoder.model" in name: lowerCAmelCase__ = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: lowerCAmelCase__ = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: lowerCAmelCase__ = 'encoder.' + name if "attn.proj" in name: lowerCAmelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: lowerCAmelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowerCAmelCase__ = 'encoder.layernorm.weight' if name == "encoder.norm.bias": lowerCAmelCase__ = 'encoder.layernorm.bias' return name def _UpperCamelCase ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: lowerCAmelCase__ = key.split('.' ) lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = int(key_split[5] ) lowerCAmelCase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCAmelCase__ = val return orig_state_dict def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Tuple=False ) -> int: """simple docstring""" lowerCAmelCase__ = DonutModel.from_pretrained(UpperCamelCase_ ).eval() # load HuggingFace model lowerCAmelCase__ , lowerCAmelCase__ = get_configs(UpperCamelCase_ ) lowerCAmelCase__ = DonutSwinModel(UpperCamelCase_ ) lowerCAmelCase__ = MBartForCausalLM(UpperCamelCase_ ) lowerCAmelCase__ = VisionEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) model.eval() lowerCAmelCase__ = original_model.state_dict() lowerCAmelCase__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) # verify results on scanned document lowerCAmelCase__ = load_dataset('hf-internal-testing/example-documents' ) lowerCAmelCase__ = dataset['test'][0]['image'].convert('RGB' ) lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase_ , from_slow=UpperCamelCase_ ) lowerCAmelCase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCAmelCase__ = DonutProcessor(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = processor(UpperCamelCase_ , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCAmelCase__ = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowerCAmelCase__ = 'When is the coffee break?' lowerCAmelCase__ = task_prompt.replace('{user_input}' , UpperCamelCase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCAmelCase__ = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCAmelCase__ = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCAmelCase__ = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCAmelCase__ = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCAmelCase__ = 'hello world' else: raise ValueError('Model name not supported' ) lowerCAmelCase__ = original_model.decoder.tokenizer(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='pt' )[ 'input_ids' ] lowerCAmelCase__ = original_model.encoder.model.patch_embed(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = model.encoder.embeddings(UpperCamelCase_ ) assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) # verify encoder hidden states lowerCAmelCase__ = original_model.encoder(UpperCamelCase_ ) lowerCAmelCase__ = model.encoder(UpperCamelCase_ ).last_hidden_state assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-2 ) # verify decoder hidden states lowerCAmelCase__ = original_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).logits lowerCAmelCase__ = model(UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ).logits assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) __snake_case : str = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCamelCase__ ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" pass def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> Any: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __snake_case : List[str] = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model=_UpperCamelCase , tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) lowerCAmelCase__ = 'What is the placebo?' lowerCAmelCase__ = [ { 'image': load_image(_UpperCamelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = dqa_pipeline(_UpperCamelCase , top_k=2 ) self.assertEqual( _UpperCamelCase , [ [ {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'How many cats are there?' lowerCAmelCase__ = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , words=_UpperCamelCase , boxes=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass
365
1
__lowerCamelCase : Any = {str(digit): digit**5 for digit in range(10)} def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(snake_case_ ) ) if __name__ == "__main__": print(solution())
297
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = KandinskyInpaintPipeline a_ = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a_ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a_ = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a_ = False @property def _lowercase ( self : int ): return 3_2 @property def _lowercase ( self : Any ): return 3_2 @property def _lowercase ( self : Dict ): return self.time_input_dim @property def _lowercase ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def _lowercase ( self : List[str] ): return 1_0_0 @property def _lowercase ( self : List[str] ): snake_case__ : Tuple = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) snake_case__ : List[str] = MultilingualCLIP(__A ) snake_case__ : List[str] = text_encoder.eval() return text_encoder @property def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case__ : List[Any] = UNetaDConditionModel(**__A ) return model @property def _lowercase ( self : Dict ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self : Optional[int] ): snake_case__ : List[Any] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : Any = self.dummy_unet snake_case__ : List[Any] = self.dummy_movq snake_case__ : Optional[int] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type="epsilon" , thresholding=__A , ) snake_case__ : Union[str, Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase ( self : Any , __A : Union[str, Any] , __A : int=0 ): snake_case__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__A ) ).to(__A ) snake_case__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__A ) # create init_image snake_case__ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__A ) ).to(__A ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Optional[int] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : str = np.ones((6_4, 6_4) , dtype=np.floataa ) snake_case__ : str = 0 if str(__A ).startswith("mps" ): snake_case__ : Optional[Any] = torch.manual_seed(__A ) else: snake_case__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[int] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = "cpu" snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Tuple = self.pipeline_class(**__A ) snake_case__ : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = pipe(**self.get_dummy_inputs(__A ) ) snake_case__ : List[Any] = output.images snake_case__ : List[str] = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : int = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _lowercase ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) snake_case__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case__ : Optional[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) snake_case__ : List[Any] = 0 snake_case__ : str = "a hat" snake_case__ : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) snake_case__ : Dict = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) snake_case__ : Union[str, Any] = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) snake_case__ : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case__, snake_case__ : str = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case__ : int = pipeline( __A , image=__A , mask_image=__A , image_embeds=__A , negative_image_embeds=__A , generator=__A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) snake_case__ : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__A , __A )
297
1
'''simple docstring''' def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" return abs(_lowercase ) if a == 0 else greatest_common_divisor(b % a , _lowercase ) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. a__ , a__ = y, x % y return abs(_lowercase ) def _lowerCAmelCase (): """simple docstring""" try: a__ = input("Enter two integers separated by comma (,): " ).split("," ) a__ = int(nums[0] ) a__ = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(_lowercase , _lowercase )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowercase , _lowercase )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
709
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase_ : str = """scheduler_config.json""" class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 1 UpperCamelCase__ = 2 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 5 @dataclass class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 42 class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = SCHEDULER_CONFIG_NAME UpperCamelCase__ = ['''dtype'''] UpperCamelCase__ = [] UpperCamelCase__ = True @classmethod def lowerCAmelCase_ ( cls : Optional[Any] ,a__ : Dict[str, Any] = None ,a__ : Optional[str] = None ,a__ : Union[str, Any]=False ,**a__ : Tuple ,): a__ , a__ = cls.load_config( pretrained_model_name_or_path=a__ ,subfolder=a__ ,return_unused_kwargs=a__ ,**a__ ,) a__ , a__ = cls.from_config(a__ ,return_unused_kwargs=a__ ,**a__ ) if hasattr(a__ ,"create_state" ) and getattr(a__ ,"has_state" ,a__ ): a__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase_ ( self : Any ,a__ : Union[str, os.PathLike] ,a__ : bool = False ,**a__ : Optional[int] ): self.save_config(save_directory=a__ ,push_to_hub=a__ ,**a__ ) @property def lowerCAmelCase_ ( self : List[str] ): return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls : str ): a__ = list(set([cls.__name__] + cls._compatibles ) ) a__ = importlib.import_module(__name__.split("." )[0] ) a__ = [ getattr(a__ ,a__ ) for c in compatible_classes_str if hasattr(a__ ,a__ ) ] return compatible_classes def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" assert len(_lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowercase ) - x.ndim) ) , _lowercase ) def _lowerCAmelCase (_lowercase , _lowercase=0.999 , _lowercase=jnp.floataa ): """simple docstring""" def alpha_bar(_lowercase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 a__ = [] for i in range(_lowercase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowercase ) / alpha_bar(_lowercase ) , _lowercase ) ) return jnp.array(_lowercase , dtype=_lowercase ) @flax.struct.dataclass class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @classmethod def lowerCAmelCase_ ( cls : Tuple ,a__ : List[Any] ): a__ = scheduler.config if config.trained_betas is not None: a__ = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a__ = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) a__ = 1.0 - betas a__ = jnp.cumprod(a__ ,axis=0 ) return cls( alphas=a__ ,betas=a__ ,alphas_cumprod=a__ ,) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = state.alphas_cumprod a__ = alphas_cumprod[timesteps] ** 0.5 a__ = sqrt_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) a__ = (1 - alphas_cumprod[timesteps]) ** 0.5 a__ = sqrt_one_minus_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
394
0
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase__ = n - 1 UpperCAmelCase__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase__ = 0 while count < prec: UpperCAmelCase__ = random.randint(2 , n - 1 ) UpperCAmelCase__ = bin_exp_mod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if b != 1: UpperCAmelCase__ = True for _ in range(SCREAMING_SNAKE_CASE__ ): if b == n - 1: UpperCAmelCase__ = False break UpperCAmelCase__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase_ = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
603
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Any=None ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : int = OPTConfig lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : List[Any] = """gelu""" def __init__( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]=99 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[int]=20 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Optional[int]=16 , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = embed_dim UpperCAmelCase__ = word_embed_proj_dim UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) UpperCAmelCase__ = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = TFOPTModel(config=_UpperCAmelCase ) UpperCAmelCase__ = inputs_dict["""input_ids"""] UpperCAmelCase__ = input_ids[:1, :] UpperCAmelCase__ = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase__ = 1 # first forward pass UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) @require_tf class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase_ : Dict = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase_ : Dict = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = 10 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = TFOPTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ): if hasattr(_UpperCAmelCase , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) UpperCAmelCase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCAmelCase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) UpperCAmelCase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCAmelCase__ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCAmelCase__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing UpperCAmelCase__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCAmelCase__ = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) UpperCAmelCase__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCAmelCase__ = False self.assertTrue(_UpperCAmelCase ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return tf.constant(SCREAMING_SNAKE_CASE__ , dtype=tf.intaa ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = 99 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCAmelCase__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCAmelCase__ = input_ids.shape[0] UpperCAmelCase__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) UpperCAmelCase__ = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase__ = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): UpperCAmelCase__ = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state UpperCAmelCase__ = (1, 11, 5_12) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-3 ) ) UpperCAmelCase__ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCAmelCase__ = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() UpperCAmelCase__ = """facebook/opt-350m""" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCAmelCase__ = GPTaTokenizer.from_pretrained(self.path_model ) UpperCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCAmelCase__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) UpperCAmelCase__ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCAmelCase__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = """facebook/opt-125m""" UpperCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] UpperCAmelCase__ = [] UpperCAmelCase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(_UpperCAmelCase , max_length=10 ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = """facebook/opt-350m""" UpperCAmelCase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = """left""" # use different length sentences to test batching UpperCAmelCase__ = [ """Hello, my dog is a little""", """Today, I""", ] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" , padding=_UpperCAmelCase ) UpperCAmelCase__ = inputs["""input_ids"""] UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs["""attention_mask"""] ) UpperCAmelCase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase ) UpperCAmelCase__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) UpperCAmelCase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = """facebook/opt-350m""" UpperCAmelCase__ = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] UpperCAmelCase__ = [] UpperCAmelCase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""tf""" ).input_ids UpperCAmelCase__ = model.generate(_UpperCAmelCase , max_length=10 ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
603
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') __a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') __a = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = CamembertTokenizer a :Optional[Any] = CamembertTokenizerFast a :Union[str, Any] = True a :str = True def _lowercase ( self : Tuple ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing lowercase_ = CamembertTokenizer(SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple ) -> Optional[Any]: lowercase_ = '''<pad>''' lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_4 ) def _lowercase ( self : List[str] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def _lowercase ( self : str ) -> Tuple: lowercase_ = CamembertTokenizer(SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) lowercase_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowercase_ = '''I was born in 92000, and this is falsé.''' lowercase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowercase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = '''I was born in 92000, and this is falsé.''' lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) lowercase_ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: # fmt: off lowercase_ = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowercase_ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=SCREAMING_SNAKE_CASE_ , )
409
from __future__ import annotations from collections.abc import Callable def a ( snake_case__: Callable[[int | float], int | float] , snake_case__: int | float , snake_case__: int | float , snake_case__: int = 100 , ): '''simple docstring''' lowercase_ = x_start lowercase_ = fnc(snake_case__ ) lowercase_ = 0.0 for _ in range(snake_case__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase_ = (x_end - x_start) / steps + xa lowercase_ = fnc(snake_case__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase_ = xa lowercase_ = fxa return area if __name__ == "__main__": def a ( snake_case__: List[Any] ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __a = 1_0 while i <= 1_0_0_0_0_0: print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
409
1
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class a ( a__ ): """simple docstring""" def __init__( self : int , snake_case_ : Tuple = 1_0_1 ): '''simple docstring''' snake_case__ : int = length def __len__( self : Union[str, Any] ): '''simple docstring''' return self.length def __getitem__( self : Optional[Any] , snake_case_ : Optional[int] ): '''simple docstring''' return i class a : """simple docstring""" def __call__( self : Optional[int] , snake_case_ : Optional[Any] ): '''simple docstring''' return {"input_ids": torch.tensor(snake_case_ ), "labels": torch.tensor(snake_case_ )} class a ( nn.Module ): """simple docstring""" def __init__( self : int ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case__ : str = nn.Linear(1_2_0 , 8_0 ) def __magic_name__ ( self : Optional[Any] , snake_case_ : int , snake_case_ : str=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class a ( a__ ): """simple docstring""" @require_torch_neuroncore def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : List[str] = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case__ : Optional[Any] = self.get_auto_remove_tmp_dir() snake_case__ : int = F"""--output_dir {output_dir}""".split() snake_case__ : Optional[Any] = ['torchrun'] + distributed_args + args execute_subprocess_async(snake_case_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class a ( a__ ): """simple docstring""" @require_torch_multi_gpu def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : List[Any] = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case__ : int = self.get_auto_remove_tmp_dir() snake_case__ : Optional[Any] = F"""--output_dir {output_dir}""".split() snake_case__ : str = ['torchrun'] + distributed_args + args execute_subprocess_async(snake_case_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCAmelCase__ : Dict = HfArgumentParser((TrainingArguments,)) lowerCAmelCase__ : int = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowerCAmelCase__ : Union[str, Any] = DummyDataset(dataset_length) def _a ( __lowerCAmelCase : EvalPrediction ): """simple docstring""" snake_case__ : Union[str, Any] = list(range(len(UpperCAmelCase__ ) ) ) snake_case__ : Any = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCAmelCase__ : List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCAmelCase__ : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase__ : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCAmelCase__ : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCAmelCase__ : Optional[Any] = None
347
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray]): if isinstance(UpperCAmelCase__ , np.ndarray): return list(tensor.shape) lowerCamelCase : Optional[Any] = tf.shape(UpperCAmelCase__) if tensor.shape == tf.TensorShape(UpperCAmelCase__): return dynamic lowerCamelCase : int = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__)] def UpperCAmelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None): return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : List[str]=-1): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.') # Get mean and variance on the axis to be normalized lowerCamelCase , lowerCamelCase : Dict = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCamelCase : Optional[int] = [1] * inputs.shape.rank lowerCamelCase : Union[str, Any] = shape_list(UpperCAmelCase__)[axis] lowerCamelCase : int = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : Optional[int] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__) # Compute layer normalization using the batch_normalization # function. lowerCamelCase : List[str] = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def UpperCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : int=-1): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCamelCase : int = tf.shape(UpperCAmelCase__) lowerCamelCase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) lowerCamelCase : Tuple = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : tf.Tensor): if not isinstance(UpperCAmelCase__ , tf.Tensor): lowerCamelCase : Optional[Any] = tf.convert_to_tensor(UpperCAmelCase__) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCamelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCamelCase : Optional[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCamelCase : List[Any] = ( tf.cast(1 , encoder_attention_mask.dtype) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids"): tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__)}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any): lowerCamelCase : str = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCamelCase : Tuple = [x for x in data if len(UpperCAmelCase__) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''') lowerCamelCase : Any = np.asarray(UpperCAmelCase__) lowerCamelCase : int = 1 lowerCamelCase : List[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 lowerCamelCase : List[str] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__): lowerCamelCase : Optional[int] = chunk_data else: lowerCamelCase : List[str] = data def UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]): if name in group.attrs: lowerCamelCase : int = [n.decode('utf8') if hasattr(UpperCAmelCase__ , 'decode') else n for n in group.attrs[name]] else: lowerCamelCase : Any = [] lowerCamelCase : Union[str, Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8') if hasattr(UpperCAmelCase__ , 'decode') else n for n in group.attrs['%s%d' % (name, chunk_id)]]) chunk_id += 1 return data def UpperCAmelCase ( UpperCAmelCase__ : Any): def _expand_single_ad_tensor(UpperCAmelCase__ : Any): if isinstance(UpperCAmelCase__ , tf.Tensor) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__)
320
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , ): """simple docstring""" _snake_case = parent _snake_case = 13 _snake_case = 7 _snake_case = True _snake_case = True _snake_case = True _snake_case = 99 _snake_case = 32 _snake_case = 2 _snake_case = 4 _snake_case = 37 _snake_case = 'gelu' _snake_case = 0.1 _snake_case = 0.1 _snake_case = 5_12 _snake_case = 16 _snake_case = 2 _snake_case = 0.02 _snake_case = 3 _snake_case = 4 _snake_case = None def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = self.prepare_config_and_inputs() _snake_case = True _snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = TFEsmModel(config=_lowerCamelCase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} _snake_case = model(_lowerCamelCase ) _snake_case = [input_ids, input_mask] _snake_case = model(_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = True _snake_case = TFEsmModel(config=_lowerCamelCase ) _snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _snake_case = model(_lowerCamelCase ) _snake_case = [input_ids, input_mask] _snake_case = model(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase ) # Also check the case where encoder outputs are not passed _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = TFEsmForMaskedLM(config=_lowerCamelCase ) _snake_case = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = TFEsmForTokenClassification(config=_lowerCamelCase ) _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __lowercase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __lowercase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __lowercase = False __lowercase = False def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFEsmModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEsmModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _snake_case = model.get_bias() assert isinstance(_lowerCamelCase , _lowerCamelCase ) for k, v in name.items(): assert isinstance(_lowerCamelCase , tf.Variable ) else: _snake_case = model.get_output_embeddings() assert x is None _snake_case = model.get_bias() assert name is None @require_tf class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case = model(_lowerCamelCase )[0] _snake_case = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowerCamelCase ) # compare the actual values for a slice. _snake_case = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _snake_case = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _snake_case = model(_lowerCamelCase )[0] # compare the actual values for a slice. _snake_case = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
701
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase : str = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowercase : int = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase : Any = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase : Optional[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=0.9 , lowerCAmelCase_=3 , lowerCAmelCase_=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): _snake_case = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase_ ) , word_tokenize(lowerCAmelCase_ ) , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , gamma=lowerCAmelCase_ ) for ref, pred in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] else: _snake_case = [ meteor_score.single_meteor_score(lowerCAmelCase_ , lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , gamma=lowerCAmelCase_ ) for ref, pred in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] return {"meteor": np.mean(lowerCAmelCase_ )}
542
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''gpt_neo''' SCREAMING_SNAKE_CASE__ : int = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :str , lowerCAmelCase__ :Optional[Any]=50_257 , lowerCAmelCase__ :List[Any]=2_048 , lowerCAmelCase__ :Dict=2_048 , lowerCAmelCase__ :Union[str, Any]=24 , lowerCAmelCase__ :str=[[["global", "local"], 12]] , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[Any]=256 , lowerCAmelCase__ :Union[str, Any]="gelu_new" , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Any=0.0 , lowerCAmelCase__ :Optional[int]=0.0 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Dict=1E-5 , lowerCAmelCase__ :Union[str, Any]=0.02 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Optional[Any]=50_256 , lowerCAmelCase__ :Tuple=50_256 , **lowerCAmelCase__ :str , ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : int = num_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_heads __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = window_size __SCREAMING_SNAKE_CASE : List[Any] = activation_function __SCREAMING_SNAKE_CASE : Union[str, Any] = resid_dropout __SCREAMING_SNAKE_CASE : Optional[Any] = embed_dropout __SCREAMING_SNAKE_CASE : List[str] = attention_dropout __SCREAMING_SNAKE_CASE : List[str] = classifier_dropout __SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : List[str] = use_cache __SCREAMING_SNAKE_CASE : List[str] = bos_token_id __SCREAMING_SNAKE_CASE : Dict = eos_token_id __SCREAMING_SNAKE_CASE : Optional[Any] = attention_types __SCREAMING_SNAKE_CASE : Optional[Any] = self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def __magic_name__( lowerCAmelCase__ :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): import torch __SCREAMING_SNAKE_CASE : List[Any] = input.size() __SCREAMING_SNAKE_CASE : List[str] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = shape[dimension] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.arange(0 , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = torch.div(sizedim - size , lowercase__ , rounding_mode='''floor''' ) + 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(lowercase__ ) + low_indices[:min_length][:, None] __SCREAMING_SNAKE_CASE : str = [slice(lowercase__ )] * rank __SCREAMING_SNAKE_CASE : int = indices __SCREAMING_SNAKE_CASE : Dict = input[s] __SCREAMING_SNAKE_CASE : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): import torch __SCREAMING_SNAKE_CASE : Any = torch.arange(1 , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = torch.remainder(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = remainders == 0 __SCREAMING_SNAKE_CASE : Optional[Any] = candidates[divisor_indices] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.max(lowercase__ ) return largest_divisor, torch.div(lowercase__ , lowercase__ , rounding_mode='''floor''' ) class _lowercase ( A__ ): '''simple docstring''' @property def __magic_name__( self :Tuple ) -> Mapping[str, Mapping[int, str]]: __SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction='''inputs''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __magic_name__( self :List[str] ) -> int: return self._config.num_heads def __magic_name__( self :Optional[int] , lowerCAmelCase__ :PreTrainedTokenizer , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[TensorType] = None , ) -> Mapping[str, Any]: __SCREAMING_SNAKE_CASE : str = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : Any = seqlen + 2 __SCREAMING_SNAKE_CASE : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE : Optional[Any] = common_inputs['''attention_mask'''] if self.use_past: __SCREAMING_SNAKE_CASE : int = ordered_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def __magic_name__( self :List[Any] ) -> int: return 13
696
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): _A = ZeroShotClassificationPipeline( model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ): _A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) # No kwarg _A = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) _A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) _A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _A = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_UpperCAmelCase , {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _A = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(1 ) ] , ) _A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'labels': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], 'scores': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_UpperCAmelCase ): classifier(_UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(_UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_UpperCAmelCase , ) self.run_entailment_id(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Pipeline ): _A = zero_shot_classifier.model.config _A = config.labelaid _A = zero_shot_classifier.entailment_id _A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _A = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _A = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _A = original_labelaid self.assertEqual(_UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def lowerCAmelCase_ ( self : Tuple ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def lowerCAmelCase_ ( self : Union[str, Any] ): _A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): _A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) _A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCAmelCase_ ( self : Union[str, Any] ): _A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) _A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
505
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] ) -> list[int]: '''simple docstring''' if len(_snake_case ) == 0: return array _A , _A = min(_snake_case ), max(_snake_case ) # Compute the variables _A = _max - _min + 1 _A , _A = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _A = i - _min _A = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _A = 0 for i in range(_snake_case ): while holes_repeat[i] > 0: _A = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() a = input('''Enter numbers separated by comma:\n''') a = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
505
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , UpperCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase__ : Optional[Features] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Any , ): '''simple docstring''' super().__init__(features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , **UpperCamelCase__) snake_case__ = Sql( cache_dir=UpperCamelCase__ , features=UpperCamelCase__ , sql=UpperCamelCase__ , con=UpperCamelCase__ , **UpperCamelCase__ , ) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , ) # Build dataset for splits snake_case__ = self.builder.as_dataset( split="""train""" , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory) return dataset class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase__ : Dataset , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') snake_case__ = dataset snake_case__ = name snake_case__ = con snake_case__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case__ = num_proc snake_case__ = to_sql_kwargs def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.to_sql_kwargs.pop("""sql""" , UpperCamelCase__) snake_case__ = self.to_sql_kwargs.pop("""con""" , UpperCamelCase__) snake_case__ = self.to_sql_kwargs.pop("""index""" , UpperCamelCase__) snake_case__ = self._write(index=UpperCamelCase__ , **self.to_sql_kwargs) return written def __magic_name__ ( self : int , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ = args snake_case__ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs snake_case__ = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size) , indices=self.dataset._indices , ) snake_case__ = batch.to_pandas() snake_case__ = df.to_sql(self.name , self.con , index=UpperCamelCase__ , **UpperCamelCase__) return num_rows or len(UpperCamelCase__) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: snake_case__ , snake_case__ = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
654
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a__ = logging.get_logger(__name__) a__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } a__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } a__ = { """jukebox""": 5_1_2, } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = VOCAB_FILES_NAMES _lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : str = PRETRAINED_LYRIC_TOKENS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=["v3", "v2", "v2"] , UpperCamelCase__ : List[str]=5_1_2 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : List[Any]="<|endoftext|>" , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' snake_case__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else unk_token super().__init__( unk_token=UpperCamelCase__ , n_genres=UpperCamelCase__ , version=UpperCamelCase__ , max_n_lyric_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case__ = version snake_case__ = max_n_lyric_tokens snake_case__ = n_genres with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) snake_case__ = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 7_9: snake_case__ = oov.replace(R"""\-'""" , R"""\-+'""") snake_case__ = regex.compile(UpperCamelCase__) snake_case__ = {v: k for k, v in self.artists_encoder.items()} snake_case__ = {v: k for k, v in self.genres_encoder.items()} snake_case__ = {v: k for k, v in self.lyrics_encoder.items()} @property def __magic_name__ ( self : List[str]): '''simple docstring''' return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder) def __magic_name__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = [self.artists_encoder.get(UpperCamelCase__ , 0) for artist in list_artists] for genres in range(len(UpperCamelCase__)): snake_case__ = [self.genres_encoder.get(UpperCamelCase__ , 0) for genre in list_genres[genres]] snake_case__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) snake_case__ = [[self.lyrics_encoder.get(UpperCamelCase__ , 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Optional[int]): '''simple docstring''' return list(UpperCamelCase__) def __magic_name__ ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , **UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ = self.prepare_for_tokenization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = self._tokenize(UpperCamelCase__) return artist, genre, lyrics def __magic_name__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : bool = False): '''simple docstring''' for idx in range(len(self.version)): if self.version[idx] == "v3": snake_case__ = artists[idx].lower() snake_case__ = [genres[idx].lower()] else: snake_case__ = self._normalize(artists[idx]) + """.v2""" snake_case__ = [ self._normalize(UpperCamelCase__) + """.v2""" for genre in genres[idx].split("""_""") ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case__ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""") snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case__ = {vocab[index]: index + 1 for index in range(len(UpperCamelCase__))} snake_case__ = 0 snake_case__ = len(UpperCamelCase__) + 1 snake_case__ = self.vocab snake_case__ = {v: k for k, v in self.vocab.items()} snake_case__ = """""" else: snake_case__ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""") snake_case__ = self._run_strip_accents(UpperCamelCase__) snake_case__ = lyrics.replace("""\\""" , """\n""") snake_case__ = self.out_of_vocab.sub("""""" , UpperCamelCase__), [], [] return artists, genres, lyrics def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = unicodedata.normalize("""NFD""" , UpperCamelCase__) snake_case__ = [] for char in text: snake_case__ = unicodedata.category(UpperCamelCase__) if cat == "Mn": continue output.append(UpperCamelCase__) return "".join(UpperCamelCase__) def __magic_name__ ( self : List[str] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = ( [chr(UpperCamelCase__) for i in range(ord("""a""") , ord("""z""") + 1)] + [chr(UpperCamelCase__) for i in range(ord("""A""") , ord("""Z""") + 1)] + [chr(UpperCamelCase__) for i in range(ord("""0""") , ord("""9""") + 1)] + ["""."""] ) snake_case__ = frozenset(UpperCamelCase__) snake_case__ = re.compile(R"""_+""") snake_case__ = """""".join([c if c in accepted else """_""" for c in text.lower()]) snake_case__ = pattern.sub("""_""" , UpperCamelCase__).strip("""_""") return text def __magic_name__ ( self : List[Any] , UpperCamelCase__ : List[str]): '''simple docstring''' return " ".join(UpperCamelCase__) def __magic_name__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : bool = False): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__): snake_case__ = TensorType(UpperCamelCase__) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""") import tensorflow as tf snake_case__ = tf.constant snake_case__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""") import torch snake_case__ = torch.tensor snake_case__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""") import jax.numpy as jnp # noqa: F811 snake_case__ = jnp.array snake_case__ = _is_jax else: snake_case__ = np.asarray snake_case__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case__ = [inputs] if not is_tensor(UpperCamelCase__): snake_case__ = as_tensor(UpperCamelCase__) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""") return inputs def __call__( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any="" , UpperCamelCase__ : Dict="pt"): '''simple docstring''' snake_case__ = [0, 0, 0] snake_case__ = [artist] * len(self.version) snake_case__ = [genres] * len(self.version) snake_case__ , snake_case__ , snake_case__ = self.tokenize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ , snake_case__ , snake_case__ = self._convert_token_to_id(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = [-INFINITY] * len(full_tokens[-1]) snake_case__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCamelCase__) for i in range(len(self.version)) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks}) def __magic_name__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCamelCase__)) snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCamelCase__)) snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCamelCase__)) return (artists_file, genres_file, lyrics_file) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = self.artists_decoder.get(UpperCamelCase__) snake_case__ = [self.genres_decoder.get(UpperCamelCase__) for genre in genres_index] snake_case__ = [self.lyrics_decoder.get(UpperCamelCase__) for character in lyric_index] return artist, genres, lyrics
654
1
import torch from diffusers import StableDiffusionPipeline lowercase_ : Tuple = 'path-to-your-trained-model' lowercase_ : Dict = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') lowercase_ : Optional[Any] = 'A photo of sks dog in a bucket' lowercase_ : Optional[Any] = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
107
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , ) -> Any: SCREAMING_SNAKE_CASE__: Tuple= size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__: Dict= parent SCREAMING_SNAKE_CASE__: Tuple= batch_size SCREAMING_SNAKE_CASE__: int= num_channels SCREAMING_SNAKE_CASE__: List[Any]= image_size SCREAMING_SNAKE_CASE__: Dict= min_resolution SCREAMING_SNAKE_CASE__: Union[str, Any]= max_resolution SCREAMING_SNAKE_CASE__: Optional[Any]= do_resize SCREAMING_SNAKE_CASE__: List[Any]= size SCREAMING_SNAKE_CASE__: Optional[Any]= apply_ocr def UpperCamelCase_ ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''apply_ocr''' ) ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__: int= self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__: Optional[int]= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__: str= image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__: Dict= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__: Dict= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__: Tuple= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__: int= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__: Optional[int]= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Any= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE__: int= LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__: int= load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__: str= Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__: str= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__: Dict= [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__: List[Any]= [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__: int= LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
107
1