code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: return [ord(_lowerCAmelCase ) - 96 for elem in plain] def snake_case_ ( _lowerCAmelCase : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def snake_case_ ( ) -> None: UpperCAmelCase : Any = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _lowerCAmelCase ) print('''Decoded:''' , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
127
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> str: UpperCAmelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Dict ) -> Tuple: # pass variant but use the non-variant filenames UpperCAmelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase : Optional[int] = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase : List[str] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: # pass variant but use the non-variant filenames UpperCAmelCase : Optional[int] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : Dict = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) )
127
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = XGLMConfig _a = {} _a = "gelu" def __init__( self , A , A=14 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=0.02 , ) -> Optional[int]: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = d_model __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = ffn_dim __magic_name__ = activation_function __magic_name__ = activation_dropout __magic_name__ = attention_dropout __magic_name__ = max_position_embeddings __magic_name__ = initializer_range __magic_name__ = None __magic_name__ = 0 __magic_name__ = 2 __magic_name__ = 1 def __A ( self ) -> Union[str, Any]: '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = self.get_config() __magic_name__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ) -> int: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _a = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _a = (TFXGLMForCausalLM,) if is_tf_available() else () _a = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) _a = False _a = False _a = False def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = TFXGLMModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A_ , n_embd=37 ) def __A ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @slow def __A ( self ) -> Dict: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def __A ( self ) -> Any: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self , A=True ) -> List[str]: '''simple docstring''' __magic_name__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __magic_name__ = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __magic_name__ = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __magic_name__ = model.generate(A_ , do_sample=A_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , A_ ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __magic_name__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) __magic_name__ = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) __magic_name__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): __magic_name__ = model.generate(A_ , do_sample=A_ , seed=[7, 0] ) __magic_name__ = tokenizer.decode(output_ids[0] , skip_special_tokens=A_ ) __magic_name__ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(A_ , A_ ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __magic_name__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __magic_name__ = '''left''' # use different length sentences to test batching __magic_name__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __magic_name__ = tokenizer(A_ , return_tensors='''tf''' , padding=A_ ) __magic_name__ = inputs['''input_ids'''] __magic_name__ = model.generate(input_ids=A_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) __magic_name__ = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __magic_name__ = model.generate(input_ids=A_ , max_new_tokens=12 ) __magic_name__ = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __magic_name__ = model.generate(input_ids=A_ , max_new_tokens=12 ) __magic_name__ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) __magic_name__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) __magic_name__ = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) __magic_name__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] )
703
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
0
"""simple docstring""" from collections.abc import Generator from math import sin def snake_case__ ( _lowerCamelCase ) ->bytes: """simple docstring""" if len(_lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) __lowercase : int = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case__ ( _lowerCamelCase ) ->bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __lowercase : str = format(_lowerCamelCase, "08x" )[-8:] __lowercase : List[Any] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def snake_case__ ( _lowerCamelCase ) ->bytes: """simple docstring""" __lowercase : int = b"" for char in message: bit_string += format(_lowerCamelCase, "08b" ).encode("utf-8" ) __lowercase : int = format(len(_lowerCamelCase ), "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowerCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case__ ( _lowerCamelCase ) ->Generator[list[int], None, None]: """simple docstring""" if len(_lowerCamelCase ) % 5_12 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0, len(_lowerCamelCase ), 5_12 ): __lowercase : str = bit_string[pos : pos + 5_12] __lowercase : List[Any] = [] for i in range(0, 5_12, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __lowercase : Dict = format(_lowerCamelCase, "032b" ) __lowercase : Optional[int] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowerCamelCase, 2 ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return (a + b) % 2**32 def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case__ ( _lowerCamelCase ) ->bytes: """simple docstring""" __lowercase : str = preprocess(_lowerCamelCase ) __lowercase : str = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowercase : str = 0X67_45_23_01 __lowercase : Optional[Any] = 0Xef_cd_ab_89 __lowercase : int = 0X98_ba_dc_fe __lowercase : str = 0X10_32_54_76 __lowercase : Optional[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowerCamelCase ): __lowercase : List[Any] = aa __lowercase : List[str] = ba __lowercase : Dict = ca __lowercase : str = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase : int = d ^ (b & (c ^ d)) __lowercase : str = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase : List[Any] = c ^ (d & (b ^ c)) __lowercase : Optional[Any] = (5 * i + 1) % 16 elif i <= 47: __lowercase : Tuple = b ^ c ^ d __lowercase : Optional[Any] = (3 * i + 5) % 16 else: __lowercase : Any = c ^ (b | not_aa(_lowerCamelCase )) __lowercase : List[str] = (7 * i) % 16 __lowercase : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowercase : Optional[Any] = d __lowercase : List[str] = c __lowercase : Optional[int] = b __lowercase : List[str] = sum_aa(_lowerCamelCase, left_rotate_aa(_lowerCamelCase, shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase : int = sum_aa(_lowerCamelCase, _lowerCamelCase ) __lowercase : Optional[int] = sum_aa(_lowerCamelCase, _lowerCamelCase ) __lowercase : Optional[Any] = sum_aa(_lowerCamelCase, _lowerCamelCase ) __lowercase : Optional[Any] = sum_aa(_lowerCamelCase, _lowerCamelCase ) __lowercase : List[Any] = reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
575
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __A : Tuple = random.Random() def snake_case__ ( _lowerCamelCase, _lowerCamelCase=1.0, _lowerCamelCase=None, _lowerCamelCase=None ) ->str: """simple docstring""" if rng is None: __lowercase : str = global_rng __lowercase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowercase__ : int , lowercase__ : Optional[Any]=7 , lowercase__ : List[Any]=4_0_0 , lowercase__ : Optional[int]=2_0_0_0 , lowercase__ : Any=1 , lowercase__ : Union[str, Any]=0.0 , lowercase__ : Tuple=1_6_0_0_0 , lowercase__ : Tuple=True , lowercase__ : Tuple=8_0 , lowercase__ : int=1_6 , lowercase__ : Optional[Any]=6_4 , lowercase__ : List[str]="hann_window" , lowercase__ : Union[str, Any]=8_0 , lowercase__ : List[str]=7_6_0_0 , lowercase__ : int=1e-10 , lowercase__ : Tuple=True , ): __lowercase : Any = parent __lowercase : List[str] = batch_size __lowercase : Optional[Any] = min_seq_length __lowercase : Dict = max_seq_length __lowercase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase : Dict = feature_size __lowercase : int = padding_value __lowercase : int = sampling_rate __lowercase : Optional[int] = do_normalize __lowercase : Union[str, Any] = num_mel_bins __lowercase : str = hop_length __lowercase : str = win_length __lowercase : List[str] = win_function __lowercase : Union[str, Any] = fmin __lowercase : Optional[int] = fmax __lowercase : Optional[Any] = mel_floor __lowercase : Union[str, Any] = return_attention_mask def snake_case ( self : Tuple ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def snake_case ( self : Tuple , lowercase__ : Optional[int]=False , lowercase__ : str=False ): def _flatten(lowercase__ : Optional[Any] ): return list(itertools.chain(*lowercase__ ) ) if equal_length: __lowercase : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase : str = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs def snake_case ( self : Optional[int] , lowercase__ : int=False , lowercase__ : Any=False ): if equal_length: __lowercase : Any = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase : Optional[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase : List[str] = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = SpeechTaFeatureExtractor def snake_case ( self : Tuple ): __lowercase : List[Any] = SpeechTaFeatureExtractionTester(self ) def snake_case ( self : Any , lowercase__ : Dict ): self.assertTrue(np.all(np.mean(lowercase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ , axis=0 ) - 1 ) < 1e-3 ) ) def snake_case ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : Union[str, Any] = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test not batched input __lowercase : List[str] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __lowercase : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # Test batched __lowercase : Union[str, Any] = feat_extract(lowercase__ , return_tensors="np" ).input_values __lowercase : Dict = feat_extract(lowercase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) def snake_case ( self : Tuple ): __lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : List[str] = ["longest", "max_length", "do_not_pad"] __lowercase : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ , lowercase__ ): __lowercase : Tuple = feat_extract(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors="np" ) __lowercase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def snake_case ( self : str ): __lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : List[Any] = range(8_0_0 , 1_4_0_0 , 2_0_0 ) __lowercase : Tuple = [floats_list((1, x) )[0] for x in lengths] __lowercase : Any = ["longest", "max_length", "do_not_pad"] __lowercase : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ , lowercase__ ): __lowercase : int = feat_extract(lowercase__ , max_length=lowercase__ , padding=lowercase__ ) __lowercase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def snake_case ( self : Dict ): __lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : List[str] = feat_extract( lowercase__ , truncation=lowercase__ , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) __lowercase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case ( self : List[Any] ): __lowercase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : Union[str, Any] = feat_extract( lowercase__ , truncation=lowercase__ , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) __lowercase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) __lowercase : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : Optional[int] = feat_extract( lowercase__ , truncation=lowercase__ , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) __lowercase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def snake_case ( self : Dict ): __lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase : Optional[int] = np.random.rand(1_0_0 ).astype(np.floataa ) __lowercase : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase : Any = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase : str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase : Union[str, Any] = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size __lowercase : List[str] = feature_extractor(audio_target=lowercase__ , padding=lowercase__ , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __lowercase : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values __lowercase : Any = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # Test batched __lowercase : int = feature_extractor(lowercase__ , return_tensors="np" ).input_values __lowercase : List[str] = feature_extractor(lowercase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase : Dict = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase : List[Any] = np.asarray(lowercase__ ) __lowercase : Any = feature_extractor(lowercase__ , return_tensors="np" ).input_values __lowercase : int = feature_extractor(lowercase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) def snake_case ( self : Any ): __lowercase : Any = self.feat_extract_tester.prepare_inputs_for_target() __lowercase : str = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase : Tuple = feat_extract.model_input_names[0] __lowercase : Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase__ ) == len(lowercase__ ) for x, y in zip(lowercase__ , processed_features[input_name] ) ) ) __lowercase : Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) __lowercase : int = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __lowercase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case ( self : List[Any] ): __lowercase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) __lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase : Optional[Any] = feat_extract.model_input_names[0] __lowercase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __lowercase : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case ( self : List[str] ): __lowercase : Any = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() __lowercase : Dict = feat_extract.model_input_names[0] __lowercase : Optional[int] = BatchFeature({input_name: speech_inputs} ) __lowercase : Union[str, Any] = feat_extract.num_mel_bins # hack! __lowercase : Dict = feat_extract.pad(lowercase__ , padding="longest" , return_tensors="np" )[input_name] __lowercase : Optional[int] = feat_extract.pad(lowercase__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self : List[Any] ): __lowercase : Union[str, Any] = self.feat_extract_dict __lowercase : List[Any] = True __lowercase : int = self.feature_extraction_class(**lowercase__ ) __lowercase : List[str] = self.feat_extract_tester.prepare_inputs_for_target() __lowercase : Dict = [len(lowercase__ ) for x in speech_inputs] __lowercase : int = feat_extract.model_input_names[0] __lowercase : str = BatchFeature({input_name: speech_inputs} ) __lowercase : Union[str, Any] = feat_extract.num_mel_bins # hack! __lowercase : int = feat_extract.pad(lowercase__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowercase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowercase__ ) def snake_case ( self : str ): __lowercase : List[str] = self.feat_extract_dict __lowercase : List[Any] = True __lowercase : Tuple = self.feature_extraction_class(**lowercase__ ) __lowercase : Tuple = self.feat_extract_tester.prepare_inputs_for_target() __lowercase : Tuple = [len(lowercase__ ) for x in speech_inputs] __lowercase : Dict = feat_extract.model_input_names[0] __lowercase : List[Any] = BatchFeature({input_name: speech_inputs} ) __lowercase : str = min(lowercase__ ) __lowercase : str = feat_extract.num_mel_bins # hack! __lowercase : int = feat_extract.pad( lowercase__ , padding="max_length" , max_length=lowercase__ , truncation=lowercase__ , return_tensors="np" ) self.assertIn("attention_mask" , lowercase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def snake_case ( self : Any , lowercase__ : List[Any] ): from datasets import load_dataset __lowercase : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowercase : Any = ds.sort("id" ).select(range(lowercase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case ( self : int ): # fmt: off __lowercase : List[Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on __lowercase : Any = self._load_datasamples(1 ) __lowercase : List[Any] = SpeechTaFeatureExtractor() __lowercase : Union[str, Any] = feature_extractor(lowercase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , lowercase__ , atol=1e-6 ) ) def snake_case ( self : Optional[int] ): # fmt: off __lowercase : Dict = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on __lowercase : List[str] = self._load_datasamples(1 ) __lowercase : Dict = SpeechTaFeatureExtractor() __lowercase : Optional[Any] = feature_extractor(audio_target=lowercase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowercase__ , atol=1e-4 ) )
575
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ = datasets.load_iris() a_ = np.array(data['data']) a_ = np.array(data['target']) a_ = data['target_names'] a_ , a_ , a_ , a_ = train_test_split(X, y) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any] ): '''simple docstring''' return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) ) def _a( UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =zip(UpperCamelCase__, UpperCamelCase__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE__ : Tuple =[] for data_point in data: SCREAMING_SNAKE_CASE__ : str =euclidean_distance(data_point[0], UpperCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE__ : Optional[Any] =[i[1] for i in sorted(UpperCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE__ : Any =Counter(UpperCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
665
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
1
def A ( __UpperCamelCase ) -> float: return 10 - x * x def A ( __UpperCamelCase , __UpperCamelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) >= 0: raise ValueError('Wrong space!' ) A__ = a while (b - a) >= 0.01: # Find middle point A__ = (a + b) / 2 # Check if middle point is root if equation(__UpperCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) < 0: A__ = c else: A__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
9
from __future__ import annotations def lowerCAmelCase__ ( a__ , a__ ) ->bool: '''simple docstring''' _UpperCamelCase = get_failure_array(a__ ) # 2) Step through text searching for pattern _UpperCamelCase , _UpperCamelCase = 0, 0 # index into text, pattern while i < len(a__ ): if pattern[j] == text[i]: if j == (len(a__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCamelCase = failure[j - 1] continue i += 1 return False def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [0] _UpperCamelCase = 0 _UpperCamelCase = 1 while j < len(a__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCamelCase = failure[i - 1] continue j += 1 failure.append(a__ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase__ = '''abc1abc12''' lowerCamelCase__ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase__ = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase__ = '''ABABX''' lowerCamelCase__ = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase__ = '''AAAB''' lowerCamelCase__ = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase__ = '''abcdabcy''' lowerCamelCase__ = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase__ = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
547
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = '''▁''' _lowerCamelCase : Any = {'''vocab_file''': '''spiece.model'''} _lowerCamelCase : Any = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } _lowerCamelCase : str = { '''google/pegasus-xsum''': 512, } _lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__ , lowercase__="<pad>" , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<mask_2>" , lowercase__="<mask_1>" , lowercase__=None , lowercase__=1_0_3 , lowercase__ = None , **lowercase__ , ): '''simple docstring''' __A =offset if additional_special_tokens is not None: if not isinstance(lowercase__ , lowercase__ ): raise TypeError( f'''additional_special_tokens should be of type {type(lowercase__ )}, but is''' f''' {type(lowercase__ )}''' ) __A =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowercase__ ) , self.offset - 1 ) ] if len(set(lowercase__ ) ) != len(lowercase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __A =additional_special_tokens_extended else: __A =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] __A ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , mask_token=lowercase__ , pad_token=lowercase__ , mask_token_sent=lowercase__ , offset=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) __A =mask_token_sent __A =vocab_file __A =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # add special tokens to encoder dict __A ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __A ={v: k for k, v in self.encoder.items()} @property def __UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.offset def __UpperCamelCase ( self ): '''simple docstring''' __A ={self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __A =self.__dict__.copy() __A =None return state def __setstate__( self , lowercase__ ): '''simple docstring''' __A =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A ={} __A =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __A =self.sp_model.piece_to_id(lowercase__ ) return sp_id + self.offset def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __A =self.sp_model.IdToPiece(index - self.offset ) return token def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =[] __A ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token __A =[] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __UpperCamelCase ( self , lowercase__=False ): '''simple docstring''' return 1 def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowercase__ ) elif token_ids_a is None: return self._special_token_mask(lowercase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __UpperCamelCase ( self , lowercase__ , lowercase__=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A =os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: __A =self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
516
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Union[str, Any] ) ->Dict: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : int ) ->List[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Dict , **__A : str ) ->Tuple: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[Any] , **__A : Dict ) ->Optional[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : str ) ->Any: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : List[Any] , **__A : Dict ) ->Union[str, Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Optional[int] ) ->Any: requires_backends(__A , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] )
516
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = R"\w+[.]\d+" UpperCAmelCase_ = re.findall(snake_case_ , snake_case_ ) for pat in pats: UpperCAmelCase_ = key.replace(snake_case_ , "_".join(pat.split("." ) ) ) return key def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple=42 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ = flax_model.init_weights(PRNGKey(snake_case_ ) ) UpperCAmelCase_ = flatten_dict(snake_case_ ) UpperCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ = rename_key(snake_case_ ) UpperCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase_ = rename_key_and_reshape_tensor(snake_case_ , snake_case_ , snake_case_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ = jnp.asarray(snake_case_ ) return unflatten_dict(snake_case_ )
78
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowerCamelCase : Dict = """bart""" __lowerCamelCase : Union[str, Any] = True @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case__ : str = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case__ : Dict = qar_model.eval() else: snake_case__, snake_case__ : str = (None, None) if MODEL_TYPE == "bart": snake_case__ : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case__ : str = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case__ : List[Any] = sas_model.eval() else: snake_case__, snake_case__ : Any = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[int] = faiss.StandardGpuResources() snake_case__ : int = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case__ : Tuple = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case__ : int = faiss.IndexFlatIP(128 ) snake_case__ : Dict = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: snake_case__, snake_case__ : int = (None, None) snake_case__ : Tuple = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case__ : Dict = elia["train_eli5"] snake_case__ : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case__ : List[str] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = load_indexes() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = load_models() __lowerCamelCase , __lowerCamelCase : List[str] = load_train_data() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[int]=10 ): snake_case__ : Optional[Any] = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) snake_case__, snake_case__ : int = eli5_train_q_index.search(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any]="wiki40b" , snake_case_ : Optional[int]="dense" , snake_case_ : List[str]=10 ): if source == "none": snake_case__, snake_case__ : Tuple = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case__, snake_case__ : Tuple = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case__, snake_case__ : Dict = query_es_index( snake_case_ , snake_case_ , index_name="english_wiki40b_snippets_100w" , n_results=snake_case_ , ) snake_case__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case__ : int = "question: {} context: {}".format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=64 , snake_case_ : List[str]=256 , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[Any]=2 , snake_case_ : str=0.95 , snake_case_ : Optional[Any]=0.8 ): with torch.no_grad(): snake_case__ : List[str] = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar __lowerCamelCase : Dict = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" __lowerCamelCase : Dict = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowerCamelCase : List[Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) __lowerCamelCase : Optional[int] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] __lowerCamelCase : Dict = st.sidebar.checkbox("""Demo options""") if demo_options: __lowerCamelCase : Tuple = st.sidebar.selectbox( """""", action_list, index=3, ) __lowerCamelCase : Optional[Any] = action_list.index(action_st) __lowerCamelCase : int = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) __lowerCamelCase : List[Any] = show_type == """Show full text of passages""" else: __lowerCamelCase : Any = 3 __lowerCamelCase : str = True __lowerCamelCase : Optional[Any] = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: __lowerCamelCase : Any = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) __lowerCamelCase : List[str] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) __lowerCamelCase : int = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: __lowerCamelCase : Optional[int] = """wiki40b""" __lowerCamelCase : Optional[Any] = """dense""" __lowerCamelCase : int = """beam""" __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Any = 64 __lowerCamelCase : List[str] = 256 __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = None __lowerCamelCase : Any = st.sidebar.checkbox("""Generation options""") if generate_options: __lowerCamelCase : Optional[Any] = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) __lowerCamelCase : Optional[Any] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) __lowerCamelCase : Optional[Any] = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __lowerCamelCase : List[str] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __lowerCamelCase : Optional[Any] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowerCamelCase : List[str] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowerCamelCase : str = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowerCamelCase : Any = None # start main text __lowerCamelCase : Any = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] __lowerCamelCase : Dict = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowerCamelCase : Optional[Any] = st.text_input("""Enter your question here:""", """""") else: __lowerCamelCase : List[str] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": __lowerCamelCase , __lowerCamelCase : Tuple = make_support(question, source=wiki_source, method="""dense""", n_results=10) __lowerCamelCase , __lowerCamelCase : Optional[Any] = make_support(question, source=wiki_source, method="""sparse""", n_results=10) __lowerCamelCase : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowerCamelCase : List[str] = support_list[:10] __lowerCamelCase : Tuple = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowerCamelCase , __lowerCamelCase : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): __lowerCamelCase : List[str] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) __lowerCamelCase : str = res[1].strip() if sec_titles == "": __lowerCamelCase : Union[str, Any] = """[{}]({})""".format(res[0], wiki_url) else: __lowerCamelCase : List[str] = sec_titles.split(""" & """) __lowerCamelCase : Dict = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: __lowerCamelCase : Optional[Any] = find_nearest_training(question) __lowerCamelCase : Optional[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) __lowerCamelCase : Union[str, Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) __lowerCamelCase : List[str] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
297
0
'''simple docstring''' def _snake_case ( A_ : int ): """simple docstring""" a_ : Optional[int] = [1] a_ : str = 0, 0, 0 a_ : Any = ugly_nums[ia] * 2 a_ : List[Any] = ugly_nums[ia] * 3 a_ : Union[str, Any] = ugly_nums[ia] * 5 for _ in range(1 , A_ ): a_ : Any = min(A_ , A_ , A_ ) ugly_nums.append(A_ ) if next_num == next_a: ia += 1 a_ : Any = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 a_ : Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 a_ : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_00) = }""")
713
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = field(default="automatic-speech-recognition" ,metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"audio": Audio()} ) a_ = Features({"transcription": Value("string" )} ) a_ = "audio" a_ = "transcription" def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) a_ : int = copy.deepcopy(self ) a_ : Optional[int] = self.input_schema.copy() a_ : Any = features[self.audio_column] a_ : Any = input_schema return task_template @property def _lowerCAmelCase ( self ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
460
0
import math class A_ : '''simple docstring''' def __init__( self: List[Any] , a: str=0 ): # a graph with Node 0,1,...,N-1 __lowerCamelCase : Dict = n __lowerCamelCase : List[str] = [ [math.inf for j in range(0 , __SCREAMING_SNAKE_CASE )] for i in range(0 , __SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight __lowerCamelCase : Dict = [ [math.inf for j in range(0 , __SCREAMING_SNAKE_CASE )] for i in range(0 , __SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self: int , a: Tuple , a: Optional[Any] , a: Dict ): __lowerCamelCase : int = w def _snake_case ( self: Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __lowerCamelCase : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _snake_case ( self: Union[str, Any] , a: Union[str, Any] , a: List[Any] ): return self.dp[u][v] if __name__ == "__main__": lowercase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
669
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase_ ( SCREAMING_SNAKE_CASE : ndarray ): """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class _lowerCAmelCase : """simple docstring""" def __init__( self , *, __SCREAMING_SNAKE_CASE = np.inf , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = 0.0 , ) -> None: """simple docstring""" snake_case__ : int =regularization snake_case__ : Tuple =gamma if kernel == "linear": snake_case__ : str =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) snake_case__ : Dict =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: snake_case__ : Optional[int] =f'''Unknown kernel: {kernel}''' raise ValueError(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" snake_case__ : Optional[Any] =observations snake_case__ : Union[str, Any] =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((snake_case__), ) : Dict =np.shape(__SCREAMING_SNAKE_CASE ) def to_minimize(__SCREAMING_SNAKE_CASE ) -> float: snake_case__ : List[str] =0 ((snake_case__), ) : int =np.shape(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =LinearConstraint(__SCREAMING_SNAKE_CASE , 0 , 0 ) snake_case__ : int =Bounds(0 , self.regularization ) snake_case__ : Union[str, Any] =minimize( __SCREAMING_SNAKE_CASE , np.ones(__SCREAMING_SNAKE_CASE ) , bounds=__SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x snake_case__ : Optional[int] =l_star # calculating mean offset of separation plane to points snake_case__ : Optional[Any] =0 for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) snake_case__ : int =s / n def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" snake_case__ : int =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
381
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } lowerCAmelCase = Dataset.from_dict(_A ) return dataset class a__( lowerCAmelCase__ ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = get_dataset() lowerCAmelCase = make_duplicate_clusters(__lowerCAmelCase , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def a_ ( self): """simple docstring""" lowerCAmelCase = get_dataset() lowerCAmelCase , lowerCAmelCase = deduplicate_dataset(__lowerCAmelCase) self.assertEqual(len(__lowerCAmelCase) , 2) print(__lowerCAmelCase) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __lowerCAmelCase)
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(__lowerCAmelCase)) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCAmelCase = os.path.join(self.tmpdirname , __lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor_slow.save_pretrained(self.tmpdirname) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase) lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor_fast.save_pretrained(self.tmpdirname) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=__lowerCAmelCase) lowerCAmelCase = tokenizer(__lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase): processor() def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(__lowerCAmelCase) lowerCAmelCase = tokenizer.batch_decode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
605
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A(__a: Dict , __a: Optional[Any] , __a: int ): return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def A(__a: List[Any] , __a: Optional[int] , __a: List[str] , __a: Dict="attention" ): lowerCAmelCase_ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowerCAmelCase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCAmelCase_ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowerCAmelCase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCAmelCase_ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowerCAmelCase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCAmelCase_ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowerCAmelCase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A(__a: Any , __a: List[str] , __a: Optional[int] , __a: Any=False ): if split_mlp_wi: lowerCAmelCase_ = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowerCAmelCase_ = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowerCAmelCase_ = (wi_a, wi_a) else: lowerCAmelCase_ = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowerCAmelCase_ = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def A(__a: List[str] , __a: Any , __a: Any , __a: List[Any] ): return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def A(__a: dict , *, __a: int , __a: bool , __a: bool = False ): lowerCAmelCase_ = traverse_util.flatten_dict(variables["target"] ) lowerCAmelCase_ = {'''/'''.join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ = '''encoder/encoder/mlp/wi_0/kernel''' in old print("Split MLP:" , snake_case__ ) lowerCAmelCase_ = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ = old['''token_embedder/embedding'''] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ = tax_layer_norm_lookup(snake_case__ , snake_case__ , "encoder" , "pre_attention_layer_norm" ) lowerCAmelCase_ = tax_attention_lookup(snake_case__ , snake_case__ , "encoder" , "attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ = tax_layer_norm_lookup(snake_case__ , snake_case__ , "encoder" , "pre_mlp_layer_norm" ) lowerCAmelCase_ = tax_mlp_lookup(snake_case__ , snake_case__ , "encoder" , snake_case__ ) lowerCAmelCase_ = layer_norm if split_mlp_wi: lowerCAmelCase_ = wi[0].T lowerCAmelCase_ = wi[1].T else: lowerCAmelCase_ = wi.T lowerCAmelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ = tax_relpos_bias_lookup( snake_case__ , snake_case__ , "encoder" ).T lowerCAmelCase_ = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowerCAmelCase_ = tax_relpos_bias_lookup( snake_case__ , 0 , "encoder" ).T lowerCAmelCase_ = tax_relpos_bias_lookup( snake_case__ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_self_attention_layer_norm" ) lowerCAmelCase_ = tax_attention_lookup(snake_case__ , snake_case__ , "decoder" , "self_attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_cross_attention_layer_norm" ) lowerCAmelCase_ = tax_attention_lookup(snake_case__ , snake_case__ , "decoder" , "encoder_decoder_attention" ) lowerCAmelCase_ = layer_norm lowerCAmelCase_ = k.T lowerCAmelCase_ = o.T lowerCAmelCase_ = q.T lowerCAmelCase_ = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_mlp_layer_norm" ) lowerCAmelCase_ = tax_mlp_lookup(snake_case__ , snake_case__ , "decoder" , snake_case__ ) lowerCAmelCase_ = layer_norm if split_mlp_wi: lowerCAmelCase_ = wi[0].T lowerCAmelCase_ = wi[1].T else: lowerCAmelCase_ = wi.T lowerCAmelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ = tax_relpos_bias_lookup(snake_case__ , snake_case__ , "decoder" ).T lowerCAmelCase_ = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ = old['''decoder/logits_dense/kernel'''].T return new def A(__a: Union[str, Any] , __a: bool ): lowerCAmelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowerCAmelCase_ = state_dict['''shared.weight'''] return state_dict def A(__a: int , __a: str , __a: Optional[Any] , __a: Any , __a: str ): lowerCAmelCase_ = checkpoints.load_tax_checkpoint(snake_case__ ) lowerCAmelCase_ = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) lowerCAmelCase_ = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def A(__a: List[str] , __a: List[str] , __a: Optional[Any] , __a: bool = False , __a: bool = False , ): lowerCAmelCase_ = MTaConfig.from_json_file(snake_case__ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ = UMTaEncoderModel(snake_case__ ) else: lowerCAmelCase_ = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("Done" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCamelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
122
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Any = 1_6 _lowerCAmelCase : Optional[int] = 3_2 def _A ( snake_case__ : Accelerator , snake_case__ : int = 16 ): snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Tuple = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Tuple = 16 elif accelerator.mixed_precision != "no": snake_case__ : int = 8 else: snake_case__ : List[Any] = None return tokenizer.pad( snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) snake_case__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : Tuple = mocked_dataloaders # noqa: F811 def _A ( snake_case__ : Optional[Any] , snake_case__ : int ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case__ ) == "1": snake_case__ : Any = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case__ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: snake_case__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[str] = config['''lr'''] snake_case__ : List[Any] = int(config['''num_epochs'''] ) snake_case__ : List[Any] = int(config['''seed'''] ) snake_case__ : Union[str, Any] = int(config['''batch_size'''] ) set_seed(snake_case__ ) snake_case__ ,snake_case__ : Tuple = get_dataloaders(snake_case__ , snake_case__ ) snake_case__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case__ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Dict = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : int = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Dict = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler snake_case__ : Dict = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case__ : Union[str, Any] = os.path.split(snake_case__ )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case__ : Tuple = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Optional[Any] = model(**snake_case__ ) snake_case__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case__ : str = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : int = model(**snake_case__ ) snake_case__ : str = outputs.logits.argmax(dim=-1 ) snake_case__ ,snake_case__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) snake_case__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case__ ), '''epoch''': epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A ( ): snake_case__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
261
0
from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = pos_x lowercase = pos_y lowercase = (pos_y, pos_x) lowercase = goal_x lowercase = goal_y lowercase = parent class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , snake_case ) lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , snake_case ) lowercase = [self.start] lowercase = False def SCREAMING_SNAKE_CASE__ ( self ): while self.node_queue: lowercase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase = True return self.retrace_path(snake_case ) lowercase = self.get_successors(snake_case ) for node in successors: self.node_queue.append(snake_case ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] for action in delta: lowercase = parent.pos_x + action[1] lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(snake_case , snake_case , self.target.pos_y , self.target.pos_x , snake_case ) ) return successors def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = node lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = BreadthFirstSearch(snake_case , snake_case ) lowercase = BreadthFirstSearch(snake_case , snake_case ) lowercase = False def SCREAMING_SNAKE_CASE__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase = self.fwd_bfs.node_queue.pop(0 ) lowercase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase = True return self.retrace_bidirectional_path( snake_case , snake_case ) lowercase = current_bwd_node lowercase = current_fwd_node lowercase = { self.fwd_bfs: self.fwd_bfs.get_successors(snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.fwd_bfs.retrace_path(snake_case ) lowercase = self.bwd_bfs.retrace_path(snake_case ) bwd_path.pop() bwd_path.reverse() lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
565
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if "model" in orig_key: lowercase = orig_key.replace('model.' , '' ) if "norm1" in orig_key: lowercase = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: lowercase = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: lowercase = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: lowercase = orig_key.split('.' )[0].split('_' )[-1] lowercase = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: lowercase = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: lowercase = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: lowercase = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: lowercase = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: lowercase = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: lowercase = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: lowercase = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: lowercase = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: lowercase = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: lowercase = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: lowercase = 'yoso.' + orig_key return orig_key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase = val lowercase = orig_state_dict['cls.predictions.decoder.bias'] lowercase = torch.arange(__SCREAMING_SNAKE_CASE ).expand((1, -1) ) + 2 return orig_state_dict def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model_state_dict'] lowercase = YosoConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase = YosoForMaskedLM(__SCREAMING_SNAKE_CASE ) lowercase = convert_checkpoint_helper(config.max_position_embeddings , __SCREAMING_SNAKE_CASE ) print(model.load_state_dict(__SCREAMING_SNAKE_CASE ) ) model.eval() model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
565
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } __a = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[int]: UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = 1_0_0_0 UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im def _UpperCamelCase ( lowerCAmelCase_ ) ->List[str]: UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=lowerCAmelCase_ , ) return preprocessor def _UpperCamelCase ( lowerCAmelCase_ ) ->Any: UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCAmelCase = sorted(set(lowerCAmelCase_ ) ) UpperCAmelCase = len(lowerCAmelCase_ ) UpperCAmelCase = {b: str(lowerCAmelCase_ ) for b, i in zip(lowerCAmelCase_ , range(lowerCAmelCase_ ) )} UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = """efficientnet.""" + item[1] UpperCAmelCase = """classifier.weight""" UpperCAmelCase = """classifier.bias""" return key_mapping def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Tuple: for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(lowerCAmelCase_ ) ) else: UpperCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase_ ) @torch.no_grad() def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[Any]: UpperCAmelCase = model_classes[model_name]( include_top=lowerCAmelCase_ , weights="""imagenet""" , input_tensor=lowerCAmelCase_ , input_shape=lowerCAmelCase_ , pooling=lowerCAmelCase_ , classes=1_0_0_0 , classifier_activation="""softmax""" , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(lowerCAmelCase_ ) UpperCAmelCase = EfficientNetForImageClassification(lowerCAmelCase_ ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCAmelCase = rename_keys(lowerCAmelCase_ ) replace_params(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(lowerCAmelCase_ ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**lowerCAmelCase_ ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(lowerCAmelCase_ ) UpperCAmelCase = np.expand_dims(lowerCAmelCase_ , axis=0 ) UpperCAmelCase = original_model.predict(lowerCAmelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase_ ): os.mkdir(lowerCAmelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase_ ) preprocessor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) UpperCAmelCase = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCAmelCase_ ) hf_model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") __a = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
701
from math import sqrt def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0_0_0_0 ) ->int: UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
627
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
551
'''simple docstring''' import qiskit def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register UpperCAmelCase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
447
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : int="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() __snake_case : int = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : Tuple = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
from __future__ import annotations import math import random from typing import Any class __A : def __init__( self :Dict ): '''simple docstring''' __magic_name__ : list[Any] =[] __magic_name__ : int =0 __magic_name__ : int =0 def A__ ( self :int ): '''simple docstring''' return self.head == self.tail def A__ ( self :Optional[Any] , __snake_case :Any ): '''simple docstring''' self.data.append(__snake_case ) __magic_name__ : Optional[int] =self.tail + 1 def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.data[self.head] __magic_name__ : Any =self.head + 1 return ret def A__ ( self :Dict ): '''simple docstring''' return self.tail - self.head def A__ ( self :Any ): '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __A : def __init__( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =data __magic_name__ : MyNode | None =None __magic_name__ : MyNode | None =None __magic_name__ : int =1 def A__ ( self :Any ): '''simple docstring''' return self.data def A__ ( self :int ): '''simple docstring''' return self.left def A__ ( self :int ): '''simple docstring''' return self.right def A__ ( self :str ): '''simple docstring''' return self.height def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : int =data def A__ ( self :Dict , __snake_case :MyNode | None ): '''simple docstring''' __magic_name__ : Any =node def A__ ( self :str , __snake_case :MyNode | None ): '''simple docstring''' __magic_name__ : Tuple =node def A__ ( self :Optional[Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =height def lowerCAmelCase_ ( lowerCamelCase ): if node is None: return 0 return node.get_height() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if a > b: return a return b def lowerCAmelCase_ ( lowerCamelCase ): print("""left rotation node:""" , node.get_data() ) __magic_name__ : Any =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCamelCase ) __magic_name__ : Optional[int] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) __magic_name__ : List[str] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def lowerCAmelCase_ ( lowerCamelCase ): print("""right rotation node:""" , node.get_data() ) __magic_name__ : List[str] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCamelCase ) __magic_name__ : Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) __magic_name__ : str =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCamelCase ) ) return right_rotation(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCamelCase ) ) return left_rotation(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if node is None: return MyNode(lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __magic_name__ : int =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __magic_name__ : Tuple =right_rotation(lowerCamelCase ) else: __magic_name__ : int =lr_rotation(lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __magic_name__ : List[Any] =node.get_right() assert right_child is not None if data < right_child.get_data(): __magic_name__ : Tuple =rl_rotation(lowerCamelCase ) else: __magic_name__ : Optional[Any] =left_rotation(lowerCamelCase ) __magic_name__ : Optional[int] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) return node def lowerCAmelCase_ ( lowerCamelCase ): while True: __magic_name__ : str =root.get_right() if right_child is None: break __magic_name__ : List[Any] =right_child return root.get_data() def lowerCAmelCase_ ( lowerCamelCase ): while True: __magic_name__ : List[Any] =root.get_left() if left_child is None: break __magic_name__ : Optional[int] =left_child return root.get_data() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =root.get_left() __magic_name__ : Union[str, Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __magic_name__ : Union[str, Any] =get_left_most(lowerCamelCase ) root.set_data(lowerCamelCase ) root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) elif left_child is not None: __magic_name__ : Any =left_child elif right_child is not None: __magic_name__ : Tuple =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCamelCase , lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) if get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __magic_name__ : Optional[Any] =left_rotation(lowerCamelCase ) else: __magic_name__ : Union[str, Any] =rl_rotation(lowerCamelCase ) elif get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __magic_name__ : Any =right_rotation(lowerCamelCase ) else: __magic_name__ : Optional[int] =lr_rotation(lowerCamelCase ) __magic_name__ : Dict =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCamelCase ) return root class __A : def __init__( self :List[Any] ): '''simple docstring''' __magic_name__ : MyNode | None =None def A__ ( self :str ): '''simple docstring''' return get_height(self.root ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' print("""insert:""" + str(__snake_case ) ) __magic_name__ : Optional[int] =insert_node(self.root , __snake_case ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' print("""delete:""" + str(__snake_case ) ) if self.root is None: print("""Tree is empty!""" ) return __magic_name__ : str =del_node(self.root , __snake_case ) def __str__( self :List[str] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __magic_name__ : str ="""""" __magic_name__ : List[Any] =MyQueue() q.push(self.root ) __magic_name__ : str =self.get_height() if layer == 0: return output __magic_name__ : List[Any] =0 while not q.is_empty(): __magic_name__ : Any =q.pop() __magic_name__ : str =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__snake_case ) q.push(__snake_case ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __magic_name__ : Optional[Any] =cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , __snake_case ) - 1: __magic_name__ : str =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase_ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase_ : int = AVLtree() UpperCAmelCase_ : Dict = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase__ : def __init__( self ,A__ ,A__=13 ,A__=10 ,A__=3 ,A__=2 ,A__=2 ,A__=2 ,A__=True ,A__=True ,A__=32 ,A__=5 ,A__=4 ,A__=37 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=10 ,A__=0.02 ,A__=0.9 ,A__=None ,): _A : List[str] = parent _A : str = batch_size _A : str = image_size _A : str = num_channels _A : Optional[int] = patch_size _A : List[Any] = tubelet_size _A : List[Any] = num_frames _A : Tuple = is_training _A : Optional[Any] = use_labels _A : Tuple = hidden_size _A : Optional[Any] = num_hidden_layers _A : List[str] = num_attention_heads _A : Optional[Any] = intermediate_size _A : str = hidden_act _A : Union[str, Any] = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : str = type_sequence_label_size _A : Any = initializer_range _A : Optional[Any] = mask_ratio _A : Any = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _A : Optional[Any] = (image_size // patch_size) ** 2 _A : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _A : Tuple = int(mask_ratio * self.seq_length ) def A__ ( self ): _A : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _A : Any = None if self.use_labels: _A : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _A : Tuple = self.get_config() return config, pixel_values, labels def A__ ( self ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A__ ,initializer_range=self.initializer_range ,) def A__ ( self ,A__ ,A__ ,A__ ): _A : List[str] = VideoMAEModel(config=A__ ) model.to(A__ ) model.eval() _A : List[str] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self ,A__ ,A__ ,A__ ): _A : Optional[Any] = VideoMAEForPreTraining(A__ ) model.to(A__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A : Optional[int] = torch.ones((self.num_masks,) ) _A : int = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _A : Tuple = mask.expand(self.batch_size ,-1 ).bool() _A : Optional[Any] = model(A__ ,A__ ) # model only returns predictions for masked patches _A : str = mask.sum().item() _A : List[str] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def A__ ( self ): _A : int = self.prepare_config_and_inputs() _A , _A , _A : Union[str, Any] = config_and_inputs _A : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __snake_case , __snake_case , unittest.TestCase ): __snake_case : Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case : Tuple = False __snake_case : Tuple = False __snake_case : Any = False __snake_case : List[str] = False def A__ ( self ): _A : Union[str, Any] = VideoMAEModelTester(self ) _A : str = ConfigTester(self ,config_class=A__ ,has_text_modality=A__ ,hidden_size=37 ) def A__ ( self ,A__ ,A__ ,A__=False ): _A : Optional[Any] = copy.deepcopy(A__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A : Any = torch.ones((self.model_tester.num_masks,) ) _A : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _A : Optional[Any] = mask.expand(self.model_tester.batch_size ,-1 ).bool() _A : int = bool_masked_pos.to(A__ ) if return_labels: if model_class in [ *get_values(A__ ), ]: _A : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__ ) return inputs_dict def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def A__ ( self ): pass def A__ ( self ): _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[int] = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ ,nn.Linear ) ) def A__ ( self ): _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(A__ ) _A : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[Any] = [*signature.parameters.keys()] _A : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,A__ ) def A__ ( self ): _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def A__ ( self ): _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) @slow def A__ ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : str = VideoMAEModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def A__ ( self ): if not self.has_attentions: pass else: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = True for model_class in self.all_model_classes: _A : str = self.model_tester.seq_length - self.model_tester.num_masks _A : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _A : Optional[int] = True _A : List[Any] = False _A : List[str] = True _A : Optional[int] = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(A__ ,A__ ) ) _A : Dict = outputs.attentions self.assertEqual(len(A__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A : Optional[Any] = True _A : Dict = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(A__ ,A__ ) ) _A : Dict = outputs.attentions self.assertEqual(len(A__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) _A : Union[str, Any] = len(A__ ) # Check attention is always last and order is fine _A : Any = True _A : str = True _A : int = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(A__ ,A__ ) ) self.assertEqual(out_len + 1 ,len(A__ ) ) _A : Optional[int] = outputs.attentions self.assertEqual(len(A__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def A__ ( self ): def check_hidden_states_output(A__ ,A__ ,A__ ): _A : Optional[int] = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _A : Union[str, Any] = model(**self._prepare_for_class(A__ ,A__ ) ) _A : Union[str, Any] = outputs.hidden_states _A : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A__ ) ,A__ ) _A : Tuple = self.model_tester.seq_length - self.model_tester.num_masks _A : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = True check_hidden_states_output(A__ ,A__ ,A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Dict = True check_hidden_states_output(A__ ,A__ ,A__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self ): pass def a__ () -> Optional[int]: _A : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _A : Optional[Any] = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def A__ ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A__ ( self ): _A : Tuple = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( A__ ) _A : List[Any] = self.default_image_processor _A : str = prepare_video() _A : Any = image_processor(A__ ,return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): _A : Any = model(**A__ ) # verify the logits _A : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,A__ ) _A : List[str] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A__ ,atol=1E-4 ) ) @slow def A__ ( self ): _A : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(A__ ) _A : List[str] = self.default_image_processor _A : Optional[int] = prepare_video() _A : List[str] = image_processor(A__ ,return_tensors='''pt''' ).to(A__ ) # add boolean mask, indicating which patches to mask _A : Optional[int] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) _A : Optional[int] = torch.load(A__ ) # forward pass with torch.no_grad(): _A : Any = model(**A__ ) # verify the logits _A : int = torch.Size([1, 1408, 1536] ) _A : Tuple = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ,device=A__ ) self.assertEqual(outputs.logits.shape ,A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,A__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _A : List[Any] = torch.tensor([0.51_42] ,device=A__ ) self.assertTrue(torch.allclose(outputs.loss ,A__ ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _A : List[Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=A__ ).to( A__ ) with torch.no_grad(): _A : List[str] = model(**A__ ) _A : Dict = torch.tensor(torch.tensor([0.64_69] ) ,device=A__ ) self.assertTrue(torch.allclose(outputs.loss ,A__ ,atol=1E-4 ) )
332
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() _UpperCamelCase : Optional[Any] =logging.get_logger(__name__) _UpperCamelCase : Tuple ='Hello, World!' _UpperCamelCase : List[str] ='en_XX' def a__ (__lowercase :str , __lowercase :str , __lowercase :bool ) -> Tuple: _A : Optional[int] = Path('''data_bin''' ) _A : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowercase ).parent ) , checkpoint_file=Path(__lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__lowercase ) _A : Union[str, Any] = xmod.model.encoder.sentence_encoder _A : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _A : Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __lowercase ) _A : List[str] = XmodForSequenceClassification(__lowercase ) if classification_head else XmodForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings _A : Optional[Any] = xmod_sent_encoder.embed_tokens.weight _A : Dict = xmod_sent_encoder.embed_positions.weight _A : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _A : Tuple = xmod_sent_encoder.layernorm_embedding.weight _A : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _A : Optional[Any] = model.roberta.encoder.layer[i] _A : Dict = xmod_sent_encoder.layers[i] # self attention _A : int = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) _A : Any = xmod_layer.self_attn.q_proj.weight _A : List[str] = xmod_layer.self_attn.q_proj.bias _A : str = xmod_layer.self_attn.k_proj.weight _A : Optional[int] = xmod_layer.self_attn.k_proj.bias _A : Dict = xmod_layer.self_attn.v_proj.weight _A : Dict = xmod_layer.self_attn.v_proj.bias # self-attention output _A : Dict = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) _A : Union[str, Any] = xmod_layer.self_attn.out_proj.weight _A : List[str] = xmod_layer.self_attn.out_proj.bias _A : Tuple = xmod_layer.self_attn_layer_norm.weight _A : Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate _A : List[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) _A : Any = xmod_layer.fca.weight _A : str = xmod_layer.fca.bias # output _A : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) _A : Any = xmod_layer.fca.weight _A : Union[str, Any] = xmod_layer.fca.bias _A : Tuple = xmod_layer.final_layer_norm.weight _A : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _A : int = xmod_layer.adapter_layer_norm.weight _A : Dict = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _A : List[Any] = bert_output.adapter_modules[lang_code] _A : Dict = xmod_layer.adapter_modules[lang_code] _A : Tuple = from_adapter.fca.weight _A : Optional[Any] = from_adapter.fca.bias _A : str = from_adapter.fca.weight _A : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _A : str = xmod_sent_encoder.layer_norm.weight _A : Any = xmod_sent_encoder.layer_norm.bias if classification_head: _A : int = xmod.model.classification_heads['''mnli'''].dense.weight _A : List[str] = xmod.model.classification_heads['''mnli'''].dense.bias _A : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight _A : List[str] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _A : Any = xmod.model.encoder.lm_head.dense.weight _A : Optional[int] = xmod.model.encoder.lm_head.dense.bias _A : str = xmod.model.encoder.lm_head.layer_norm.weight _A : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.bias _A : Tuple = xmod.model.encoder.lm_head.weight _A : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _A : Dict = xmod.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowercase ) _A : str = model(__lowercase )[0] if classification_head: _A : int = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__lowercase ) ) else: _A : int = xmod.model(__lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _A : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 _A : List[Any] = torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCamelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _UpperCamelCase : str =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
332
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase( snake_case_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = 1.0 if scale is None else scale lowercase__ : Optional[Any] = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def __a ( self ) -> List[Any]: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def __a ( self ) -> Optional[int]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def __a ( self ) -> Tuple: """simple docstring""" return self.variance.sqrt() class UpperCAmelCase( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) lowercase__ : Dict = args_dim lowercase__ : Tuple = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) lowercase__ : Tuple = domain_map def __a ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" lowercase__ : str = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class UpperCAmelCase( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Any: """simple docstring""" super().__init__() lowercase__ : Optional[int] = function def __a ( self , lowerCamelCase , *lowerCamelCase ) -> Tuple: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class UpperCAmelCase: """simple docstring""" a : type a : int a : Dict[str, int] def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" lowercase__ : Dict = dim lowercase__ : Optional[Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __a ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def __a ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" lowercase__ : Optional[int] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def __a ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def __a ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def __a ( self ) -> float: """simple docstring""" return 0.0 def __a ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __a ( self , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @staticmethod def __a ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a : type = StudentT @classmethod def __a ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Dict = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase__ : Dict = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict[str, int] = {"loc": 1, "scale": 1} a : type = Normal @classmethod def __a ( cls , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : str = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict[str, int] = {"total_count": 1, "logits": 1} a : type = NegativeBinomial @classmethod def __a ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" lowercase__ : int = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __a ( self , lowerCamelCase ) -> Distribution: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def __a ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
397
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" return None class UpperCAmelCase: """simple docstring""" def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" return None class UpperCAmelCase( unittest.TestCase ): """simple docstring""" a : str = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self ) -> Any: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) @require_torch @slow def __a ( self ) -> Optional[Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) @require_torch @slow def __a ( self ) -> Union[str, Any]: """simple docstring""" from transformers import BertModel lowercase__ : Dict = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase ) ) vocab_file.flush() lowercase__ : Any = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase__ : int = BertModel(BertConfig(vocab_size=len(lowerCamelCase ) ) ) model.save_pretrained(lowerCamelCase ) self._test_export(lowerCamelCase , "pt" , 12 , lowerCamelCase ) @require_tf @slow def __a ( self ) -> int: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : str = self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) lowercase__ : Tuple = quantize(Path(lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def __a ( self ) -> int: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ : str = self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) lowercase__ : Optional[int] = quantize(lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ) -> Dict: """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: lowercase__ : Tuple = Path(lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) return path except Exception as e: self.fail(lowerCamelCase ) @require_torch @require_tokenizers @slow def __a ( self ) -> str: """simple docstring""" from transformers import BertModel lowercase__ : List[str] = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : Dict = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def __a ( self ) -> Optional[Any]: """simple docstring""" from transformers import TFBertModel lowercase__ : Tuple = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ : str = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "tf" ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = FeatureExtractionPipeline(lowerCamelCase , lowerCamelCase ) lowercase__ : Optional[Any] = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] lowercase__ , lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = infer_shapes(lowerCamelCase , lowerCamelCase ) # Assert all variables are present self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ["input_ids", "attention_mask", "token_type_ids"] lowercase__ : Optional[int] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} lowercase__ , lowercase__ : int = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase ) , set(lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase__ , lowercase__ : int = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
397
1
def _snake_case ( __snake_case ) -> Tuple: '''simple docstring''' UpperCAmelCase_ : str = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _snake_case ( __snake_case ) -> List[str]: '''simple docstring''' UpperCAmelCase_ : Dict = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key UpperCAmelCase_ : Tuple = remove_duplicates(key.upper() ) UpperCAmelCase_ : Tuple = len(lowercase__ ) # First fill cipher with key characters UpperCAmelCase_ : List[Any] = {alphabet[i]: char for i, char in enumerate(lowercase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase__ ) , 2_6 ): UpperCAmelCase_ : Tuple = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCAmelCase_ : List[str] = alphabet[i - offset] UpperCAmelCase_ : Union[str, Any] = char return cipher_alphabet def _snake_case ( __snake_case , __snake_case ) -> Dict: '''simple docstring''' return "".join(cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def _snake_case ( __snake_case , __snake_case ) -> Tuple: '''simple docstring''' UpperCAmelCase_ : List[str] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def _snake_case ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_ : List[Any] = input("Enter message to encode or decode: " ).strip() UpperCAmelCase_ : Optional[Any] = input("Enter keyword: " ).strip() UpperCAmelCase_ : Dict = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: UpperCAmelCase_ : List[str] = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) UpperCAmelCase_ : List[str] = create_cipher_map(lowercase__ ) print(func(lowercase__ , lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = AltDiffusionPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def A_ ( self): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowercase ,set_alpha_to_one=lowercase ,) torch.manual_seed(0) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) UpperCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) UpperCAmelCase_ : Dict = CLIPTextModel(lowercase) UpperCAmelCase_ : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") UpperCAmelCase_ : List[str] = 77 UpperCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A_ ( self ,lowercase ,lowercase=0): """simple docstring""" if str(lowercase).startswith("mps"): UpperCAmelCase_ : Any = torch.manual_seed(lowercase) else: UpperCAmelCase_ : Dict = torch.Generator(device=lowercase).manual_seed(lowercase) UpperCAmelCase_ : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A_ ( self): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3) def A_ ( self): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() torch.manual_seed(0) UpperCAmelCase_ : List[Any] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Any = RobertaSeriesModelWithTransformation(lowercase) UpperCAmelCase_ : Optional[Any] = text_encoder UpperCAmelCase_ : List[Any] = AltDiffusionPipeline(**lowercase) UpperCAmelCase_ : Union[str, Any] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(lowercase) UpperCAmelCase_ : Optional[Any] = "A photo of an astronaut" UpperCAmelCase_ : str = alt_pipe(**lowercase) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[Any] = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase) torch.manual_seed(0) UpperCAmelCase_ : Any = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Union[str, Any] = RobertaSeriesModelWithTransformation(lowercase) UpperCAmelCase_ : Dict = text_encoder UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline(**lowercase) UpperCAmelCase_ : List[Any] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase) UpperCAmelCase_ : Union[str, Any] = alt_pipe(**lowercase) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): """simple docstring""" def A_ ( self): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,safety_checker=lowercase) UpperCAmelCase_ : Any = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : Any = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Any = torch.manual_seed(0) UpperCAmelCase_ : Optional[int] = alt_pipe([prompt] ,generator=lowercase ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="np") UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Dict = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" ,subfolder="scheduler") UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,scheduler=lowercase ,safety_checker=lowercase) UpperCAmelCase_ : List[str] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : str = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0) UpperCAmelCase_ : List[str] = alt_pipe([prompt] ,generator=lowercase ,num_inference_steps=2 ,output_type="numpy") UpperCAmelCase_ : int = output.images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : List[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
455
0
UpperCAmelCase_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} UpperCAmelCase_ = ["a", "b", "c", "d", "e"] def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Any: """simple docstring""" _UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE_ ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): for vertice in vertices: if vertice not in visited: _UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort("a", [], []) print(sort)
32
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =(DEISMultistepScheduler,) SCREAMING_SNAKE_CASE_ : List[str] =(("num_inference_steps", 25),) def __lowerCAmelCase ( self : Tuple , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase , UpperCamelCase = sample, sample for t in range(SCREAMING_SNAKE_CASE__ , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" pass def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , **SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" if scheduler is None: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase = scheduler.timesteps[5] UpperCamelCase = scheduler.timesteps[6] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , algorithm_type='deis' , solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=0 ) def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.full_loop() UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0 ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa
282
0
import math import unittest def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bool: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Union[str, Any] ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _A ( self : Optional[Any] ): with self.assertRaises(__lowerCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
590
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """trocr""" snake_case__ : str = ["""past_key_values"""] snake_case__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : List[str] , __lowerCamelCase : int=50_265 , __lowerCamelCase : Tuple=1_024 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : int=4_096 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : int=2 , **__lowerCamelCase : Dict , ): UpperCamelCase :Optional[Any] = vocab_size UpperCamelCase :str = d_model UpperCamelCase :Dict = decoder_layers UpperCamelCase :Tuple = decoder_attention_heads UpperCamelCase :Tuple = decoder_ffn_dim UpperCamelCase :List[Any] = activation_function UpperCamelCase :Dict = max_position_embeddings UpperCamelCase :Optional[Any] = dropout UpperCamelCase :List[str] = attention_dropout UpperCamelCase :int = activation_dropout UpperCamelCase :List[str] = init_std UpperCamelCase :int = decoder_layerdrop UpperCamelCase :List[Any] = use_cache UpperCamelCase :Optional[Any] = scale_embedding UpperCamelCase :Any = use_learned_position_embeddings UpperCamelCase :Tuple = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
590
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """data2vec-text""" def __init__( self: Any,A_: Union[str, Any]=3_0522,A_: Optional[Any]=768,A_: Optional[int]=12,A_: int=12,A_: int=3072,A_: Tuple="gelu",A_: List[str]=0.1,A_: str=0.1,A_: str=512,A_: Union[str, Any]=2,A_: Union[str, Any]=0.0_2,A_: Optional[int]=1E-12,A_: Dict=1,A_: str=0,A_: Any=2,A_: Optional[int]="absolute",A_: Tuple=True,A_: int=None,**A_: List[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
1
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self , _a ): """simple docstring""" # we need a list not a string, so do something to change the type a__ = arr.split(',' ) def lowercase__ ( self ): """simple docstring""" a__ = [int(self.array[0] )] * len(self.array ) a__ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): a__ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) a__ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __A : str = input('please input some numbers:') __A : int = SubArray(whole_array) __A : str = array.solve_sub_array() print(('the results is:', re))
394
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A__ : Optional[int] = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = 8 , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : List[Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = do_pad UpperCAmelCase__ : Tuple = pad_size def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = get_image_size(__UpperCamelCase ) UpperCAmelCase__ : Dict = (old_height // size + 1) * size - old_height UpperCAmelCase__ : Optional[int] = (old_width // size + 1) * size - old_width return pad(__UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad UpperCAmelCase__ : List[Any] = pad_size if pad_size is not None else self.pad_size UpperCAmelCase__ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[Any] = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_pad: UpperCAmelCase__ : Optional[int] = [self.pad(__UpperCamelCase , size=__UpperCamelCase ) for image in images] UpperCAmelCase__ : Dict = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] UpperCAmelCase__ : List[str] = {"pixel_values": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCamelCase__ : Tuple = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCamelCase__ : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCamelCase__ : Any = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ,id='''token''' ) ,id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' ,id='''token''' ) ,id='''sequence''' ) ,id='''references''' ), } ) ,) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[List[List[str]]] ,__lowerCamelCase : List[List[str]] ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 4 ,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowerCamelCase ,hypotheses=__lowerCamelCase ,min_len=__lowerCamelCase ,max_len=__lowerCamelCase ) }
387
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=1_0_2_4, snake_case_=1_0_2_4, snake_case_=False, **snake_case_ ) -> Optional[Any]: """simple docstring""" a = AutoTokenizer.from_pretrained(snake_case_ ) a = SeqaSeqDataset(snake_case_, snake_case_, snake_case_, snake_case_, type_path='''train''', **snake_case_ ) a = tok.pad_token_id def get_lens(snake_case_ ): a = tqdm( DataLoader(snake_case_, batch_size=5_1_2, num_workers=8, shuffle=snake_case_, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) a = [] for batch in dl: a = batch['''input_ids'''].ne(snake_case_ ).sum(1 ).tolist() a = batch['''labels'''].ne(snake_case_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case_, snake_case_ ): max_lens.append(max(snake_case_, snake_case_ ) ) else: max_lens.extend(snake_case_ ) return max_lens a = get_lens(snake_case_ ) a = SeqaSeqDataset(snake_case_, snake_case_, snake_case_, snake_case_, type_path='''val''', **snake_case_ ) a = get_lens(snake_case_ ) pickle_save(snake_case_, train_ds.len_file ) pickle_save(snake_case_, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
387
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A_ : int = logging.getLogger(__name__) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCAmelCase = field( default='''summarization''', metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''}, ) _UpperCAmelCase = field( default=1_024, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=128, metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=142, metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) }, ) _UpperCAmelCase = field( default=142, metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field(default=-1, metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCAmelCase = field(default=-1, metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCAmelCase = field(default=-1, metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Source language id for translation.'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''Target language id for translation.'''} ) _UpperCAmelCase = field(default=UpperCAmelCase__, metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCAmelCase = field( default=UpperCAmelCase__, metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''}, ) def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :List[Any] , UpperCAmelCase__ :Union[str, Any] ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , F"""{split}_results.json""" ) ) def UpperCAmelCase__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() check_output_dir(UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert hasattr(UpperCAmelCase__ , UpperCAmelCase__ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCAmelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: a = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCAmelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): a = tokenizer.lang_code_to_id[data_args.tgt_lang] else: a = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCAmelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) a = SeqaSeqDataset # Get datasets a = ( dataset_class( UpperCAmelCase__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) a = ( dataset_class( UpperCAmelCase__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) a = ( dataset_class( UpperCAmelCase__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer a = ( build_compute_metrics_fn(data_args.task , UpperCAmelCase__ ) if training_args.predict_with_generate else None ) a = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , data_collator=SeqaSeqDataCollator( UpperCAmelCase__ , UpperCAmelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) a = {} # Training if training_args.do_train: logger.info("*** Train ***" ) a = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) a = train_result.metrics a = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a = trainer.evaluate(metric_key_prefix="val" ) a = data_args.n_val a = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) a = trainer.predict(test_dataset=UpperCAmelCase__ , metric_key_prefix="test" ) a = test_output.metrics a = data_args.n_test if trainer.is_world_process_zero(): a = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCAmelCase__ , training_args.output_dir ) all_metrics.update(UpperCAmelCase__ ) if training_args.predict_with_generate: a = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) a = lmap(str.strip , UpperCAmelCase__ ) write_txt_file(UpperCAmelCase__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCAmelCase__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def UpperCAmelCase__ ( UpperCAmelCase__ :Union[str, Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
32
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :List[str] , UpperCAmelCase__ :Any ): '''simple docstring''' a = TaConfig.from_json_file(UpperCAmelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) a = TaForConditionalGeneration(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Tuple = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "vit_mae" def __init__( self : Optional[int] , A_ : Union[str, Any]=7_68 , A_ : List[Any]=12 , A_ : Union[str, Any]=12 , A_ : Optional[int]=30_72 , A_ : Any="gelu" , A_ : List[str]=0.0 , A_ : Optional[Any]=0.0 , A_ : Any=0.02 , A_ : Union[str, Any]=1e-12 , A_ : int=2_24 , A_ : List[str]=16 , A_ : List[str]=3 , A_ : Tuple=True , A_ : List[str]=16 , A_ : Tuple=5_12 , A_ : int=8 , A_ : List[Any]=20_48 , A_ : Optional[Any]=0.75 , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: List[str] = hidden_size lowerCamelCase_: Optional[Any] = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: Tuple = intermediate_size lowerCamelCase_: Optional[Any] = hidden_act lowerCamelCase_: Union[str, Any] = hidden_dropout_prob lowerCamelCase_: Dict = attention_probs_dropout_prob lowerCamelCase_: Tuple = initializer_range lowerCamelCase_: Union[str, Any] = layer_norm_eps lowerCamelCase_: Optional[Any] = image_size lowerCamelCase_: Dict = patch_size lowerCamelCase_: Any = num_channels lowerCamelCase_: Dict = qkv_bias lowerCamelCase_: List[Any] = decoder_num_attention_heads lowerCamelCase_: Any = decoder_hidden_size lowerCamelCase_: List[str] = decoder_num_hidden_layers lowerCamelCase_: int = decoder_intermediate_size lowerCamelCase_: Tuple = mask_ratio lowerCamelCase_: int = norm_pix_loss
423
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( __SCREAMING_SNAKE_CASE ): _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : Any , A_ : Union[str, Any] , A_ : List[str] ) -> Tuple: """simple docstring""" super().__init__(A_ , A_ ) lowerCamelCase_: str = self.feature_extractor lowerCamelCase_: Optional[int] = False @classmethod def lowerCAmelCase ( cls : int , A_ : Dict , **A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" try: return super().from_pretrained(A_ , **A_ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , A_ , ) lowerCamelCase_: Tuple = WavaVecaFeatureExtractor.from_pretrained(A_ , **A_ ) lowerCamelCase_: List[str] = WavaVecaCTCTokenizer.from_pretrained(A_ , **A_ ) return cls(feature_extractor=A_ , tokenizer=A_ ) def __call__( self : List[str] , *A_ : Tuple , **A_ : Optional[Any] ) -> List[str]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase_: List[str] = kwargs.pop("""raw_speech""" ) else: lowerCamelCase_: str = kwargs.pop("""audio""" , A_ ) lowerCamelCase_: str = kwargs.pop("""sampling_rate""" , A_ ) lowerCamelCase_: List[Any] = kwargs.pop("""text""" , A_ ) if len(A_ ) > 0: lowerCamelCase_: List[str] = args[0] lowerCamelCase_: Tuple = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase_: Dict = self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ ) if text is not None: lowerCamelCase_: Tuple = self.tokenizer(A_ , **A_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_: Any = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Optional[Any] , *A_ : Optional[int] , **A_ : Tuple ) -> str: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ , **A_ ) lowerCamelCase_: str = kwargs.pop("""input_features""" , A_ ) lowerCamelCase_: Optional[Any] = kwargs.pop("""labels""" , A_ ) if len(A_ ) > 0: lowerCamelCase_: Tuple = args[0] lowerCamelCase_: int = args[1:] if input_features is not None: lowerCamelCase_: Tuple = self.feature_extractor.pad(A_ , *A_ , **A_ ) if labels is not None: lowerCamelCase_: Optional[int] = self.tokenizer.pad(A_ , **A_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_: List[str] = labels["""input_ids"""] return input_features def lowerCAmelCase ( self : str , *A_ : int , **A_ : List[str] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def lowerCAmelCase ( self : Any , *A_ : Union[str, Any] , **A_ : str ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase_: Union[str, Any] = True lowerCamelCase_: int = self.tokenizer yield lowerCamelCase_: int = self.feature_extractor lowerCamelCase_: Optional[Any] = False
423
1
'''simple docstring''' class a_ : def __init__( self : Optional[Any] , __lowerCAmelCase : Dict ): __snake_case = set_counts __snake_case = max(__A ) __snake_case = len(__A ) __snake_case = [1] * num_sets __snake_case = list(range(__A ) ) def lowercase__ ( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ): __snake_case = self.get_parent(__A ) __snake_case = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __snake_case = 0 __snake_case = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __snake_case = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __snake_case = 0 __snake_case = src_parent __snake_case = self.set_counts[src_parent] __snake_case = max(self.max_set , __A ) return True def lowercase__ ( self : Dict , __lowerCAmelCase : Dict ): if self.parents[disj_set] == disj_set: return disj_set __snake_case = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
714
'''simple docstring''' from __future__ import annotations _lowercase = """Muhammad Umer Farooq""" _lowercase = """MIT""" _lowercase = """1.0.0""" _lowercase = """Muhammad Umer Farooq""" _lowercase = """contact@muhammadumerfarooq.me""" _lowercase = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class a_ ( UpperCAmelCase__ ): def __init__( self : int , __lowerCAmelCase : str ): super().__init__() __snake_case = [] __snake_case = domain def lowercase__ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , __lowerCAmelCase ) self.urls.append(__lowerCAmelCase ) def lowerCamelCase__ ( a ): return ".".join(get_sub_domain_name(a ).split('.' )[-2:] ) def lowerCamelCase__ ( a ): return parse.urlparse(a ).netloc def lowerCamelCase__ ( a = "https://github.com" ): __snake_case = get_domain_name(a ) # Initialize the parser __snake_case = Parser(a ) try: # Open URL __snake_case = requests.get(a ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(a ) # Get the valid email. __snake_case = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a ) if __name__ == "__main__": _lowercase = emails_from_url("""https://github.com""") print(f'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
427
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _A (__a , __a , __a=None ) -> Any: """simple docstring""" assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' SCREAMING_SNAKE_CASE_ : Dict = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Parameter(__a ) def _A (__a , __a , __a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE_ : str = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def _A (__a , __a , __a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE_ : str = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE_ : Dict = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE_ : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def _A (__a , __a , __a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = weights[0][0][0] SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE_ : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output SCREAMING_SNAKE_CASE_ : Union[str, Any] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs SCREAMING_SNAKE_CASE_ : List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: SCREAMING_SNAKE_CASE_ : Dict = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE_ : int = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE_ : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense SCREAMING_SNAKE_CASE_ : str = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE_ : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out SCREAMING_SNAKE_CASE_ : int = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE_ : str = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def _A (__a , __a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE_ : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): SCREAMING_SNAKE_CASE_ : int = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE_ : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' SCREAMING_SNAKE_CASE_ : List[Any] = nn.Parameter(torch.tensor(__a ) ) SCREAMING_SNAKE_CASE_ : Any = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE_ : Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm SCREAMING_SNAKE_CASE_ : Tuple = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE_ : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def _A (__a , __a , __a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ReformerConfig.from_json_file(__a ) print(f'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : str = ReformerModelWithLMHead(__a ) with open(__a , '''rb''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = pickle.load(__a )['''weights'''] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ : int = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
512
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Dict = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) UpperCAmelCase_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _A (__a ) -> str: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE_ : List[str] = model_type_to_module_name(__a ) SCREAMING_SNAKE_CASE_ : Dict = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__a , '''__name__''' , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE_ : Any = importlib.import_module('''transformers''' ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def _A (__a , __a = None , __a = False , __a = False , __a = None , __a = None , __a = None , __a = False , **__a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(__a , encoding='''utf-8''' ) as reader: return json.load(__a ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int): '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(lowercase_) def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('''config''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''trust_remote_code''' , lowercase_) SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = FeatureExtractionMixin.get_feature_extractor_dict(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = config_dict.get('''feature_extractor_type''' , lowercase_) SCREAMING_SNAKE_CASE_ : str = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): SCREAMING_SNAKE_CASE_ : Optional[int] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Any = AutoConfig.from_pretrained(lowercase_ , **lowercase_) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowercase_ , '''feature_extractor_type''' , lowercase_) if hasattr(lowercase_ , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE_ : Dict = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE_ : Dict = feature_extractor_class_from_name(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE_ : Dict = feature_extractor_class is not None or type(lowercase_) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE_ : Optional[int] = resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE_ : Dict = get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''code_revision''' , lowercase_) if os.path.isdir(lowercase_): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase_ , **lowercase_) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase_ , **lowercase_) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase_) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE_ : Any = FEATURE_EXTRACTOR_MAPPING[type(lowercase_)] return feature_extractor_class.from_dict(lowercase_ , **lowercase_) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}') @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : List[Any]): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(lowercase_ , lowercase_)
512
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _A ( snake_case__ : Union[str, Any] ): snake_case__ : Union[str, Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _A ( snake_case__ : Tuple ): snake_case__ ,snake_case__ : Optional[Any] = emb.weight.shape snake_case__ : str = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) snake_case__ : Tuple = emb.weight.data return lin_layer def _A ( snake_case__ : Dict ): snake_case__ : Tuple = torch.load(__lowerCAmelCase , map_location='''cpu''' ) snake_case__ : List[str] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] snake_case__ : Optional[int] = mam_aaa['''model'''] remove_ignore_keys_(__lowerCAmelCase ) snake_case__ : List[str] = state_dict['''encoder.embed_tokens.weight'''].shape[0] snake_case__ : Any = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) snake_case__ : str = state_dict['''decoder.embed_tokens.weight'''] snake_case__ : int = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) snake_case__ : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Dict = 'distilbert' _A : Optional[int] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , lowerCamelCase=3_05_22 , lowerCamelCase=5_12 , lowerCamelCase=False , lowerCamelCase=6 , lowerCamelCase=12 , lowerCamelCase=7_68 , lowerCamelCase=4 * 7_68 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=0.0_2 , lowerCamelCase=0.1 , lowerCamelCase=0.2 , lowerCamelCase=0 , **lowerCamelCase , ): snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = sinusoidal_pos_embds snake_case__ = n_layers snake_case__ = n_heads snake_case__ = dim snake_case__ = hidden_dim snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation snake_case__ = initializer_range snake_case__ = qa_dropout snake_case__ = seq_classif_dropout super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): @property def A_ ( self ): if self.task == "multiple-choice": snake_case__ = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
276
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Dict = 'biogpt' def __init__( self , lowerCamelCase=4_23_84 , lowerCamelCase=10_24 , lowerCamelCase=24 , lowerCamelCase=16 , lowerCamelCase=40_96 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10_24 , lowerCamelCase=0.0_2 , lowerCamelCase=1e-12 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ): snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = scale_embedding snake_case__ = use_cache snake_case__ = layerdrop snake_case__ = activation_dropout super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
276
1
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False A__ : Optional[Any] = range(3 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=1 , **__UpperCamelCase : str ) -> str: """simple docstring""" A__ : Union[str, Any] = factor * value A__ : str = value while not is_prime(__UpperCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__UpperCamelCase ) return value
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __a ( unittest.TestCase ): """simple docstring""" _A : Tuple = inspect.getfile(accelerate.test_utils ) _A : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) _A : int = ["accelerate", "launch"] _A : Dict = Path.home() / ".cache/huggingface/accelerate" _A : Any = "default_config.yaml" _A : str = config_folder / config_file _A : Tuple = config_folder / "_default_config.yaml" _A : List[Any] = Path("tests/test_configs" ) @classmethod def __A ( cls : str ) -> Tuple: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __A ( cls : Optional[int] ) -> List[str]: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __A ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] ,env=os.environ.copy() ) def __A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_UpperCamelCase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_UpperCamelCase ), self.test_file_path] ,env=os.environ.copy() ) def __A ( self : Dict ) -> Tuple: '''simple docstring''' execute_subprocess_async(["""accelerate""", """test"""] ,env=os.environ.copy() ) class __a ( unittest.TestCase ): """simple docstring""" _A : Tuple = "test-tpu" _A : int = "us-central1-a" _A : Dict = "ls" _A : Any = ["accelerate", "tpu-config"] _A : List[str] = "cd /usr/share" _A : List[str] = "tests/test_samples/test_command_file.sh" _A : int = "Running gcloud compute tpus tpu-vm ssh" def __A ( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_UpperCamelCase ,) def __A ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_UpperCamelCase ,) def __A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] ,return_stdout=_UpperCamelCase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_UpperCamelCase ,) def __A ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" ,_UpperCamelCase ,) def __A ( self : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" ,_UpperCamelCase ,) def __A ( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_UpperCamelCase ,) def __A ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_UpperCamelCase ,) def __A ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_UpperCamelCase ,) def __A ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] ,return_stdout=_UpperCamelCase ,) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" ,_UpperCamelCase ,)
151
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : List[str] = ReformerTokenizer _A : List[str] = ReformerTokenizerFast _A : int = True _A : List[Any] = False _A : Optional[Any] = True def __A ( self : Any ) -> Tuple: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE__ =ReformerTokenizer(_UpperCamelCase ,keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""<s>""" SCREAMING_SNAKE_CASE__ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) ,_UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) ,_UpperCamelCase ) def __A ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_UpperCamelCase ) ,1_0_0_0 ) def __A ( self : Dict ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_0 ) def __A ( self : Tuple ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ =self.get_tokenizer() SCREAMING_SNAKE_CASE__ =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ ="""I was born in 92000, and this is falsé.""" SCREAMING_SNAKE_CASE__ =tokenizer.tokenize(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.encode(_UpperCamelCase ,add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =rust_tokenizer.encode(_UpperCamelCase ,add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ =tokenizer.encode(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : List[str] ,_UpperCamelCase : Tuple=1_5 ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE__ =self.rust_tokenizer_class.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) # Simple input SCREAMING_SNAKE_CASE__ ="""This is a simple input""" SCREAMING_SNAKE_CASE__ =["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ =("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_UpperCamelCase ,tokenizer_r.encode ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ) # Simple input self.assertRaises(_UpperCamelCase ,tokenizer_r.encode_plus ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ) # Simple input self.assertRaises( _UpperCamelCase ,tokenizer_r.batch_encode_plus ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ,) # Pair input self.assertRaises(_UpperCamelCase ,tokenizer_r.encode ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ) # Pair input self.assertRaises(_UpperCamelCase ,tokenizer_r.encode_plus ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ) # Pair input self.assertRaises( _UpperCamelCase ,tokenizer_r.batch_encode_plus ,_UpperCamelCase ,max_length=_UpperCamelCase ,padding="""max_length""" ,) def __A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def __A ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =ReformerTokenizer(_UpperCamelCase ,keep_accents=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCamelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ,) SCREAMING_SNAKE_CASE__ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCamelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) SCREAMING_SNAKE_CASE__ =tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase ,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ,) SCREAMING_SNAKE_CASE__ =tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) @cached_property def __A ( self : Dict ) -> List[str]: '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __A ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""Hello World!""" SCREAMING_SNAKE_CASE__ =[1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(_UpperCamelCase ,self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def __A ( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) SCREAMING_SNAKE_CASE__ =[ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(_UpperCamelCase ,self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def __A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence SCREAMING_SNAKE_CASE__ =list(self.big_tokenizer.get_vocab().keys() )[:1_0] SCREAMING_SNAKE_CASE__ =""" """.join(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.big_tokenizer.encode_plus(_UpperCamelCase ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ =self.big_tokenizer.batch_encode_plus([sequence, sequence] ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ =ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) SCREAMING_SNAKE_CASE__ =encoded_sequence["""input_ids"""].shape SCREAMING_SNAKE_CASE__ =ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def __A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={"""input_ids""": [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 SCREAMING_SNAKE_CASE__ =[ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase ,model_name="""google/reformer-crime-and-punishment""" ,revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" ,padding=_UpperCamelCase ,sequences=_UpperCamelCase ,)
151
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Tuple =[1] _a , _a , _a : List[Any] =0, 0, 0 _a : List[str] =ugly_nums[ia] * 2 _a : Optional[Any] =ugly_nums[ia] * 3 _a : Dict =ugly_nums[ia] * 5 for _ in range(1 ,_UpperCAmelCase ): _a : Any =min(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ugly_nums.append(_UpperCAmelCase ) if next_num == next_a: ia += 1 _a : List[str] =ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _a : Optional[Any] =ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _a : Optional[Any] =ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
506
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any=False ) -> str: _a : Union[str, Any] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _a : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Tuple=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: _a : str ="""""" else: _a : Tuple ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a : Optional[int] =state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) _a : Any =state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _a : Any =in_proj_weight[ : config.hidden_size, : ] _a : Dict =in_proj_bias[: config.hidden_size] _a : Dict =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : Optional[Any] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] _a : List[str] =in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ) -> Optional[int]: _a : Any =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Tuple: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _a : str =[ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ) -> int: _a : str =dct.pop(_UpperCAmelCase ) _a : Any =val def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ) -> str: _a : List[Any] =ViTMSNConfig() _a : Optional[int] =1000 _a : Union[str, Any] ="""datasets/huggingface/label-files""" _a : Any ="""imagenet-1k-id2label.json""" _a : Optional[int] =json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ) ,"""r""" ) ) _a : int ={int(_UpperCAmelCase ): v for k, v in idalabel.items()} _a : Optional[Any] =idalabel _a : Dict ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _a : Tuple =384 _a : Optional[int] =1536 _a : Optional[int] =6 elif "l16" in checkpoint_url: _a : int =1024 _a : int =4096 _a : List[str] =24 _a : Union[str, Any] =16 _a : Any =0.1 elif "b4" in checkpoint_url: _a : Optional[int] =4 elif "l7" in checkpoint_url: _a : Optional[int] =7 _a : Union[str, Any] =1024 _a : Dict =4096 _a : List[str] =24 _a : Any =16 _a : Dict =0.1 _a : Any =ViTMSNModel(_UpperCAmelCase ) _a : Union[str, Any] =torch.hub.load_state_dict_from_url(_UpperCAmelCase ,map_location="""cpu""" )["""target_encoder"""] _a : Union[str, Any] =ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) _a : List[str] =create_rename_keys(_UpperCAmelCase ,base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase ,_UpperCAmelCase ,base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() _a : Union[str, Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" _a : str =Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw ) _a : Union[str, Any] =ViTImageProcessor( size=config.image_size ,image_mean=_UpperCAmelCase ,image_std=_UpperCAmelCase ) _a : Tuple =image_processor(images=_UpperCAmelCase ,return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _a : str =model(**_UpperCAmelCase ) _a : Union[str, Any] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _a : Tuple =torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: _a : Optional[int] =torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: _a : str =torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: _a : List[str] =torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: _a : Optional[int] =torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,_UpperCAmelCase ,atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__: Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
506
1
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
88
1
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] ) -> int: # Construct model if gpta_config_file == "": lowerCamelCase_ = GPTaConfig() else: lowerCamelCase_ = GPTaConfig.from_json_file(_lowerCamelCase ) lowerCamelCase_ = GPTaModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model lowerCamelCase_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
720
"""simple docstring""" import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE : List[Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE : List[str] = '''sshleifer/student_marian_en_ro_6_1''' _SCREAMING_SNAKE_CASE : List[Any] = '''sshleifer/tiny-mbart''' @require_torch class a ( __snake_case ): def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , ) -> int: lowerCamelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=__SCREAMING_SNAKE_CASE , extra_args_str=__SCREAMING_SNAKE_CASE , predict_with_generate=__SCREAMING_SNAKE_CASE , do_train=__SCREAMING_SNAKE_CASE , do_eval=__SCREAMING_SNAKE_CASE , do_predict=__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = TrainerState.load_from_json(os.path.join(__SCREAMING_SNAKE_CASE , 'trainer_state.json' ) ).log_history if not do_eval: return lowerCamelCase_ = [log for log in logs if 'eval_loss' in log.keys()] lowerCamelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowerCamelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] , __SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self : Dict ) -> Any: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self : str ) -> List[Any]: self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self : str ) -> List[Any]: self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self : Any ) -> int: self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--sharded_ddp zero_dp_2' , predict_with_generate=__SCREAMING_SNAKE_CASE ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: self.run_seqaseq_quick( distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--sharded_ddp zero_dp_2 --fp16' , predict_with_generate=__SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def UpperCamelCase ( self : List[Any] ) -> List[str]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__SCREAMING_SNAKE_CASE , extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout lowerCamelCase_ = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } lowerCamelCase_ = experiments[experiment_id] lowerCamelCase_ = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} lowerCamelCase_ = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**__SCREAMING_SNAKE_CASE , extra_args_str=data['extra_args_str'] ) lowerCamelCase_ = len(re.findall(__SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , data['n_matches'] ) @slow def UpperCamelCase ( self : int ) -> str: lowerCamelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=__SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=10 , distributed=__SCREAMING_SNAKE_CASE , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(os.path.join(__SCREAMING_SNAKE_CASE , 'trainer_state.json' ) ).log_history lowerCamelCase_ = [log for log in logs if 'eval_loss' in log.keys()] lowerCamelCase_ = eval_metrics[0] lowerCamelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] , __SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics lowerCamelCase_ = os.listdir(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {os.path.basename(__SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: from transformers.training_args import OptimizerNames def train_and_return_metrics(__SCREAMING_SNAKE_CASE : str ) -> Tuple[int, float]: lowerCamelCase_ = '--skip_memory_metrics 0' lowerCamelCase_ = self.run_trainer( max_len=128 , model_name=__SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=1 , optim=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , extra_args_str=__SCREAMING_SNAKE_CASE , do_eval=__SCREAMING_SNAKE_CASE , do_predict=__SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(Path(__SCREAMING_SNAKE_CASE , 'trainer_state.json' ) ).log_history lowerCamelCase_ = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) lowerCamelCase_ = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) lowerCamelCase_ = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowerCamelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowerCamelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig lowerCamelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowerCamelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowerCamelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float = 3e-3 , __SCREAMING_SNAKE_CASE : str = "adafactor" , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : int = None , ) -> Optional[int]: lowerCamelCase_ = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__SCREAMING_SNAKE_CASE )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__SCREAMING_SNAKE_CASE )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() lowerCamelCase_ = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__SCREAMING_SNAKE_CASE )} '''.split() lowerCamelCase_ = '\n --do_predict\n '.split() lowerCamelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowerCamelCase_ = get_gpu_count() lowerCamelCase_ = get_torch_dist_unique_port() lowerCamelCase_ = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() lowerCamelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) else: lowerCamelCase_ = ['run_translation.py'] + args with patch.object(__SCREAMING_SNAKE_CASE , 'argv' , __SCREAMING_SNAKE_CASE ): main() return output_dir
137
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'Salesforce/blip-image-captioning-base' __UpperCamelCase : str = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) __UpperCamelCase : Optional[Any] = 'image_captioner' __UpperCamelCase : Dict = AutoModelForVisionaSeq __UpperCamelCase : List[str] = ['image'] __UpperCamelCase : Optional[int] = ['text'] def __init__( self , *snake_case , **snake_case ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.pre_processor(images=snake_case , return_tensors="pt" ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.model.generate(**snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
453
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCamelCase = get_tests_dir("""fixtures""") _UpperCamelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _UpperCamelCase = get_tests_dir("""fixtures/dummy-config.json""") class __a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 0 def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(snake_case ).to_dict() config_dict.pop("feature_extractor_type" ) lowerCAmelCase__ : Any = WavaVecaFeatureExtractor(**snake_case ) # save in new folder model_config.save_pretrained(snake_case ) config.save_pretrained(snake_case ) lowerCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(snake_case ) # make sure private variable is not incorrectly saved lowerCAmelCase__ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , "bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained(snake_case , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaises(snake_case ): lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): lowerCAmelCase__ : str = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case ) lowerCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained(snake_case , trust_remote_code=snake_case ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" try: AutoConfig.register("custom" , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoFeatureExtractor.register(snake_case , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : List[Any] = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case ) lowerCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Optional[int] = True try: AutoConfig.register("custom" , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) # If remote code is not set, the default is to use local lowerCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(snake_case , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
453
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: Optional[int] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class a__ ( lowercase__ ): snake_case_ = "ibert" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase="absolute", _UpperCAmelCase=False, _UpperCAmelCase="none", **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class a__ ( lowercase__ ): @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : str = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = """facebook/bart-large-mnli""" _A : str = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _A : List[str] = """text_classifier""" _A : Optional[int] = AutoTokenizer _A : Optional[Any] = AutoModelForSequenceClassification _A : List[str] = ["""text""", ["""text"""]] _A : Dict = ["""text"""] def lowerCamelCase(self ): super().setup() A_ : int = self.model.config A_ : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): A_ : List[Any] = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowerCamelCase(self , lowerCAmelCase_ ): A_ : str = outputs.logits A_ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
480
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _lowerCAmelCase = "." if __name__ == "__main__": _lowerCAmelCase = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _lowerCAmelCase = [] _lowerCAmelCase = [] with open(doctest_file_path) as fp: for line in fp: _lowerCAmelCase = line.strip() _lowerCAmelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _lowerCAmelCase = "\n".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
480
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : List[str] ) -> Tuple: __snake_case = Mock() __snake_case = conn, Mock() __snake_case = iter([1, None] ) __snake_case = lambda snake_case_ : next(UpperCAmelCase_ ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=UpperCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
592
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , ) -> Union[str, Any]: super().__init__() A__ = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = False A__ = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) A__ = TaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , d_model=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ , feed_forward_proj=SCREAMING_SNAKE_CASE__ , is_decoder=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , ) A__ = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__ ): A__ = TaBlock(SCREAMING_SNAKE_CASE__ ) self.encoders.append(SCREAMING_SNAKE_CASE__ ) A__ = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) A__ = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: A__ = self.token_embedder(SCREAMING_SNAKE_CASE__ ) A__ = encoder_input_tokens.shape[1] A__ = torch.arange(SCREAMING_SNAKE_CASE__ , device=encoder_input_tokens.device ) x += self.position_encoding(SCREAMING_SNAKE_CASE__ ) A__ = self.dropout_pre(SCREAMING_SNAKE_CASE__ ) # inverted the attention mask A__ = encoder_input_tokens.size() A__ = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for lyr in self.encoders: A__ = lyr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] A__ = self.layer_norm(SCREAMING_SNAKE_CASE__ ) return self.dropout_post(SCREAMING_SNAKE_CASE__ ), encoder_inputs_mask
104
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DanceDiffusionPipeline __SCREAMING_SNAKE_CASE : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __SCREAMING_SNAKE_CASE : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False def _a (self ): torch.manual_seed(0 ) A_ : Any = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase , use_timestep_embedding=lowercase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) A_ : Any = IPNDMScheduler() A_ : int = { """unet""": unet, """scheduler""": scheduler, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(lowercase ) else: A_ : Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : int = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def _a (self ): A_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : List[str] = DanceDiffusionPipeline(**lowercase ) A_ : List[str] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = self.get_dummy_inputs(lowercase ) A_ : Union[str, Any] = pipe(**lowercase ) A_ : Tuple = output.audios A_ : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) A_ : Dict = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a (self ): return super().test_save_load_local() @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _a (self ): return super().test_save_load_optional_components() @skip_mps def _a (self ): return super().test_attention_slicing_forward_pass() def _a (self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Any = torch_device A_ : int = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) A_ : Optional[int] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = torch.manual_seed(0 ) A_ : Optional[int] = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) A_ : Tuple = output.audios A_ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A_ : Optional[int] = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): A_ : Union[str, Any] = torch_device A_ : List[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) A_ : str = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Optional[int] = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) A_ : List[str] = output.audios A_ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A_ : str = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
686
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Optional[int] = field A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : Optional[Any] = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Union[str, Any] = None A_ : int = None A_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : str = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Any = dataset A_ : List[str] = path_or_buf A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : List[Any] = """utf-8""" A_ : int = to_json_kwargs def _a (self ): A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : List[str] = args A_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Any = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
686
1
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CustomTokenizer pass
316
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_snake_case ).to(_snake_case ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowerCamelCase = model(input_ids.to(_snake_case ) , labels=labels.to(_snake_case ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
316
1
'''simple docstring''' import os import sys import transformers _UpperCamelCase : Union[str, Any] = """3""" print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
706
'''simple docstring''' class snake_case__ : def __init__( self : Dict , _A : int ) -> Tuple: UpperCAmelCase_ : List[str] = n UpperCAmelCase_ : Optional[Any] = [None] * self.n UpperCAmelCase_ : List[str] = 0 # index of the first element UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[Any] = 0 def __len__( self : Optional[int] ) -> int: return self.size def A ( self : List[Any] ) -> bool: return self.size == 0 def A ( self : str ) -> Dict: return False if self.is_empty() else self.array[self.front] def A ( self : Any , _A : int ) -> List[str]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase_ : Dict = data UpperCAmelCase_ : List[str] = (self.rear + 1) % self.n self.size += 1 return self def A ( self : Optional[int] ) -> str: if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase_ : Dict = self.array[self.front] UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
216
0
from math import factorial snake_case_ = {str(digit): factorial(digit) for digit in range(10)} def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE_ ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 60 , SCREAMING_SNAKE_CASE_ : int = 1_000_000 ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length lowercase__ : Any = 0 # the cached sizes of the previous chains lowercase__ : dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE_ ): # The temporary set will contain the elements of the chain lowercase__ : int = set() lowercase__ : Optional[int] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase__ : int = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE_ ) chain_set_length += 1 lowercase__ : Dict = digit_factorial_sum(SCREAMING_SNAKE_CASE_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase__ : Optional[Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
164
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case_ = logging.get_logger(__name__) snake_case_ = Dict[str, Any] snake_case_ = List[Prediction] @add_end_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): super().__init__(*a , **a) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def snake_case_ ( self , **a): lowercase__ : Optional[int] = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *a , **a): return super().__call__(*a , **a) def snake_case_ ( self , a): lowercase__ : Optional[int] = load_image(a) lowercase__ : Any = torch.IntTensor([[image.height, image.width]]) lowercase__ : int = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: lowercase__ : str = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') lowercase__ : Union[str, Any] = target_size return inputs def snake_case_ ( self , a): lowercase__ : Any = model_inputs.pop('target_size') lowercase__ : Tuple = self.model(**a) lowercase__ : Dict = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: lowercase__ : Tuple = model_inputs['bbox'] return model_outputs def snake_case_ ( self , a , a=0.9): lowercase__ : Union[str, Any] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase__ , lowercase__ : Tuple = target_size[0].tolist() def unnormalize(a): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) lowercase__ , lowercase__ : List[str] = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) lowercase__ : Optional[int] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase__ : List[Any] = [unnormalize(a) for bbox in model_outputs['bbox'].squeeze(0)] lowercase__ : str = ['score', 'label', 'box'] lowercase__ : List[str] = [dict(zip(a , a)) for vals in zip(scores.tolist() , a , a) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase__ : Tuple = self.image_processor.post_process_object_detection(a , a , a) lowercase__ : Union[str, Any] = raw_annotations[0] lowercase__ : List[Any] = raw_annotation['scores'] lowercase__ : Optional[int] = raw_annotation['labels'] lowercase__ : List[Any] = raw_annotation['boxes'] lowercase__ : List[str] = scores.tolist() lowercase__ : Any = [self.model.config.idalabel[label.item()] for label in labels] lowercase__ : str = [self._get_bounding_box(a) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase__ : Union[str, Any] = ['score', 'label', 'box'] lowercase__ : Optional[Any] = [ dict(zip(a , a)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def snake_case_ ( self , a): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
164
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( a__): def __init__( self, A, A, A, A, A, A, A, A, A, ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=A, speech_processor=A, vae=A, text_encoder=A, tokenizer=A, unet=A, scheduler=A, feature_extractor=A, ) def UpperCAmelCase_ ( self, A = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase_ ( self ): """simple docstring""" self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self, A, A=1_6000, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): """simple docstring""" lowerCamelCase : int = self.speech_processor.feature_extractor( A, return_tensors='pt', sampling_rate=A ).input_features.to(self.device ) lowerCamelCase : str = self.speech_model.generate(A, max_length=48_0000 ) lowerCamelCase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(A, skip_special_tokens=A, normalize=A )[ 0 ] if isinstance(A, A ): lowerCamelCase : Any = 1 elif isinstance(A, A ): lowerCamelCase : Any = len(A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A, A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A )}.''' ) # get prompt text embeddings lowerCamelCase : Optional[Any] = self.tokenizer( A, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt', ) lowerCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase : Union[str, Any] = text_embeddings.shape lowerCamelCase : str = text_embeddings.repeat(1, A, 1 ) lowerCamelCase : str = text_embeddings.view(bs_embed * num_images_per_prompt, A, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase : List[str] if negative_prompt is None: lowerCamelCase : int = [''] * batch_size elif type(A ) is not type(A ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=''' F''' {type(A )}.''' ) elif isinstance(A, A ): lowerCamelCase : Any = [negative_prompt] elif batch_size != len(A ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowerCamelCase : Dict = negative_prompt lowerCamelCase : Optional[Any] = text_input_ids.shape[-1] lowerCamelCase : Optional[int] = self.tokenizer( A, padding='max_length', max_length=A, truncation=A, return_tensors='pt', ) lowerCamelCase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase : List[Any] = uncond_embeddings.shape[1] lowerCamelCase : int = uncond_embeddings.repeat(1, A, 1 ) lowerCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt, A, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase : List[Any] = torch.randn(A, generator=A, device='cpu', dtype=A ).to( self.device ) else: lowerCamelCase : Optional[Any] = torch.randn(A, generator=A, device=self.device, dtype=A ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase : str = {} if accepts_eta: lowerCamelCase : List[str] = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase : Optional[int] = self.scheduler.scale_model_input(A, A ) # predict the noise residual lowerCamelCase : List[Any] = self.unet(A, A, encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase : Optional[int] = noise_pred.chunk(2 ) lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : Optional[int] = self.scheduler.step(A, A, A, **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A, A, A ) lowerCamelCase : Optional[int] = 1 / 0.1_8215 * latents lowerCamelCase : List[Any] = self.vae.decode(A ).sample lowerCamelCase : List[str] = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase : List[Any] = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowerCamelCase : Dict = self.numpy_to_pil(A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A, nsfw_content_detected=A )
710
'''simple docstring''' from __future__ import annotations A = '#' class __snake_case : def __init__( self ): """simple docstring""" lowerCamelCase : dict = {} def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = self._trie for char in text: if char not in trie: lowerCamelCase : Dict = {} lowerCamelCase : Optional[int] = trie[char] lowerCamelCase : Optional[Any] = True def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Dict = self._trie for char in prefix: if char in trie: lowerCamelCase : int = trie[char] else: return [] return self._elements(A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] for c, v in d.items(): lowerCamelCase : Optional[Any] = [' '] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) A = Trie() A = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Any = trie.find_word(UpperCAmelCase__) return tuple(string + word for word in suffixes) def UpperCAmelCase ( ): print(autocomplete_using_trie('de')) if __name__ == "__main__": import doctest doctest.testmod() main()
449
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" snake_case = 'table-transformer' snake_case = ['past_key_values'] snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=3 , UpperCAmelCase_=1_00 , UpperCAmelCase_=6 , UpperCAmelCase_=20_48 , UpperCAmelCase_=8 , UpperCAmelCase_=6 , UpperCAmelCase_=20_48 , UpperCAmelCase_=8 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=True , UpperCAmelCase_="relu" , UpperCAmelCase_=2_56 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1.0 , UpperCAmelCase_=False , UpperCAmelCase_="sine" , UpperCAmelCase_="resnet50" , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=1 , UpperCAmelCase_=5 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=1 , UpperCAmelCase_=5 , UpperCAmelCase_=2 , UpperCAmelCase_=0.1 , **UpperCAmelCase_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): snake_case_ = backbone_config.get("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None snake_case_ , snake_case_ , snake_case_ = None, None, None snake_case_ = use_timm_backbone snake_case_ = backbone_config snake_case_ = num_channels snake_case_ = num_queries snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = encoder_layers snake_case_ = auxiliary_loss snake_case_ = position_embedding_type snake_case_ = backbone snake_case_ = use_pretrained_backbone snake_case_ = dilation # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = mask_loss_coefficient snake_case_ = dice_loss_coefficient snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def _lowercase ( self ): return self.encoder_attention_heads @property def _lowercase ( self ): return self.d_model class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" snake_case = version.parse("""1.11""" ) @property def _lowercase ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowercase ( self ): return 1e-5 @property def _lowercase ( self ): return 12
508
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): A_ = True # Deal with multi-line cases elif ( re.search( Rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , SCREAMING_SNAKE_CASE , ) is not None ): A_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] A_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed A_ = True if not attribute_used: A_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: A_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A_ = True elif attribute.endswith('''_token_id''' ): A_ = True # configuration class specific cases if not case_allowed: A_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = dict(inspect.signature(config_class.__init__ ).parameters ) A_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] A_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A_ = {} if len(config_class.attribute_map ) > 0: A_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A_ = inspect.getsourcefile(SCREAMING_SNAKE_CASE ) A_ = os.path.dirname(SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A_ = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for fn in os.listdir(SCREAMING_SNAKE_CASE ) if fn.startswith('''modeling_''' )] # Get the source code strings A_ = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) A_ = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` A_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' A_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE : inspect.isclass(SCREAMING_SNAKE_CASE ) and issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and inspect.getmodule(SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A_ = check_config_attributes_being_used(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: A_ = unused_attributes if len(SCREAMING_SNAKE_CASE ) > 0: A_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
203
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class a : UpperCAmelCase_ : Optional[Any] =42 UpperCAmelCase_ : List[Any] =None # Automatically constructed UpperCAmelCase_ : Tuple ="dict" UpperCAmelCase_ : List[Any] =None UpperCAmelCase_ : List[Any] =field(default="Translation", init=a_, repr=a_ ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class a : UpperCAmelCase_ : List[str] =None UpperCAmelCase_ : List[Any] =None UpperCAmelCase_ : List[str] =None # Automatically constructed UpperCAmelCase_ : int ="dict" UpperCAmelCase_ : Optional[int] =None UpperCAmelCase_ : Any =field(default="TranslationVariableLanguages", init=a_, repr=a_ ) def UpperCamelCase_ ( self ): lowercase = sorted(set(self.languages ) ) if self.languages else None lowercase = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = set(self.languages ) if self.languages and set(_SCREAMING_SNAKE_CASE ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(_SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({", ".join(_SCREAMING_SNAKE_CASE )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase = [] for lang, text in translation_dict.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase , lowercase = zip(*sorted(_SCREAMING_SNAKE_CASE ) ) return {"language": languages, "translation": translations} def UpperCamelCase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
713
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : int = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } _UpperCamelCase : Any = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } _UpperCamelCase : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } _UpperCamelCase : Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _UpperCamelCase : int = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _UpperCamelCase : Tuple = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class a ( a_ ): UpperCAmelCase_ : str =VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : int =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a ( a_ ): UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _UpperCamelCase : Tuple = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _UpperCamelCase : int = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a_ ) class a : def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: lowercase = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowercase = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] lowercase = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] lowercase = len(_lowerCamelCase ) lowercase = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F'There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.' ) lowercase = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] lowercase = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] lowercase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1_6 , _lowerCamelCase = 6_4 , _lowerCamelCase = 4 , ): lowercase = reader_input['input_ids'] lowercase , lowercase , lowercase = reader_output[:3] lowercase = len(_lowerCamelCase ) lowercase = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) lowercase = [] for doc_id in sorted_docs: lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase = sequence_ids.index(self.pad_token_id ) else: lowercase = len(_lowerCamelCase ) lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class a ( a_, a_ ): UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] =READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] =READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Optional[int] =["input_ids", "attention_mask"]
134
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class snake_case__ : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Any=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=99 , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Any=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : List[Any]=None , ) -> Optional[int]: """simple docstring""" snake_case : Optional[Any] = parent snake_case : List[Any] = batch_size snake_case : List[str] = seq_length snake_case : int = is_training snake_case : Any = use_input_mask snake_case : str = use_token_type_ids snake_case : List[Any] = use_labels snake_case : List[str] = vocab_size snake_case : Tuple = hidden_size snake_case : int = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[Any] = intermediate_multiple_size snake_case : List[Any] = hidden_act snake_case : Optional[Any] = hidden_dropout snake_case : Tuple = attention_dropout snake_case : Optional[int] = weight_tying snake_case : Tuple = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : Tuple = type_sequence_label_size snake_case : int = initializer_range snake_case : Optional[int] = num_labels snake_case : Tuple = num_choices snake_case : Optional[Any] = scope def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Optional[Any] = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case : Any = self.prepare_config_and_inputs() snake_case : List[str] = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" snake_case : Union[str, Any] = GPTNeoXJapaneseModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) snake_case : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" snake_case : Optional[Any] = True snake_case : List[str] = GPTNeoXJapaneseModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> int: """simple docstring""" snake_case : Optional[int] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" snake_case : Optional[int] = True snake_case : List[Any] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass snake_case : Union[str, Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) snake_case : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) snake_case : Optional[int] = output_from_no_past['''hidden_states'''][0] snake_case : Optional[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" snake_case : List[str] = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case ,snake_case : Union[str, Any] = config_and_inputs snake_case : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case : List[Any] = GPTNeoXJapaneseModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case : str = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" snake_case ,snake_case ,snake_case ,snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = '''abeja/gpt-neox-japanese-2.7b''' snake_case : Optional[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case : Optional[Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case : int = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) snake_case : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ ) snake_case : List[Any] = [] for prompt in prompts: snake_case : str = tokenizer(UpperCamelCase__ , return_tensors='''pt''' ).input_ids snake_case : Dict = model.generate(UpperCamelCase__ , max_length=50 ) snake_case : List[Any] = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
638
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
638
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''efficientformer''' def __init__( self , lowerCAmelCase_ = [3, 2, 6, 4] , lowerCAmelCase_ = [48, 96, 224, 448] , lowerCAmelCase_ = [True, True, True, True] , lowerCAmelCase_ = 448 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 8 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 1E-12 , lowerCAmelCase_ = 224 , lowerCAmelCase_ = 1E-05 , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = hidden_sizes _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = patch_size _snake_case = num_channels _snake_case = depths _snake_case = mlp_expansion_ratio _snake_case = downsamples _snake_case = dim _snake_case = key_dim _snake_case = attention_ratio _snake_case = resolution _snake_case = pool_size _snake_case = downsample_patch_size _snake_case = downsample_stride _snake_case = downsample_pad _snake_case = drop_path_rate _snake_case = num_metaad_blocks _snake_case = distillation _snake_case = use_layer_scale _snake_case = layer_scale_init_value _snake_case = image_size _snake_case = batch_norm_eps
710
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''vit_msn''' def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-06 , lowerCAmelCase_=224 , lowerCAmelCase_=16 , lowerCAmelCase_=3 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> str: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
541
0
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase_ : Any = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
44
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase__ : Optional[Any] = {'UserAgent': UserAgent().random} def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = script.contents[0] SCREAMING_SNAKE_CASE__ : Optional[int] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = F'''https://www.instagram.com/{username}/''' SCREAMING_SNAKE_CASE__ : List[str] = self.get_json() def __magic_name__ (self ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text SCREAMING_SNAKE_CASE__ : List[str] = BeautifulSoup(SCREAMING_SNAKE_CASE__ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ) -> str: """simple docstring""" return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__(self ) -> str: """simple docstring""" return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["username"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["full_name"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["biography"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["business_email"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["external_url"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def __magic_name__ (self ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def __magic_name__ (self ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowercase_ ( _snake_case = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE__ : List[Any] = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,_snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : List[str] = InstagramUser('github') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
223
0
"""simple docstring""" def lowercase__ ( lowerCAmelCase : int ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowercase__ ( lowerCAmelCase : int ) -> bool: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = number while duplicate > 0: UpperCAmelCase , UpperCAmelCase = divmod(lowerCAmelCase , 10 ) fact_sum += factorial(lowerCAmelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') SCREAMING_SNAKE_CASE_ = int(input('''Enter number: ''').strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
183
"""simple docstring""" def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def lowercase__ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
183
1
import os def a_ ( ): __lowerCAmelCase = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'triangle.txt' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [] for line in triangle: __lowerCAmelCase = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowerCAmelCase_ ) ) a.append(lowerCAmelCase_ ) for i in range(1, len(lowerCAmelCase_ ) ): for j in range(len(a[i] ) ): __lowerCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase_, lowerCAmelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
53
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __snake_case : '''simple docstring''' def __init__( self , A_ , A_=3 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A_ , ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconModel(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ ) SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconModel(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[Any] = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Tuple = False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE__ = alibi self.model_tester.create_and_check_model(A_ , *A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''single_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , use_cache=A_ ) SCREAMING_SNAKE_CASE__ = input_ids.shape[0] SCREAMING_SNAKE_CASE__ = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE__ = model._convert_cache_to_standard_format(A_ , A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''multi_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_ , '''use_cache''' ): return SCREAMING_SNAKE_CASE__ = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE__ = ( getattr(A_ , '''decoder_layers''' , A_ ) or getattr(A_ , '''num_decoder_layers''' , A_ ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ = getattr(A_ , '''num_kv_heads''' , config.num_attention_heads ) SCREAMING_SNAKE_CASE__ = getattr(A_ , '''d_model''' , config.hidden_size ) SCREAMING_SNAKE_CASE__ = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE__ = outputs['''past_key_values'''] self.assertEqual(len(A_ ) , A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''].shape for i in range(A_ ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE__ = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) SCREAMING_SNAKE_CASE__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=19 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , num_beams=2 , max_new_tokens=4 ) @slow def lowercase_ ( self ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
100
0
from __future__ import annotations from random import choice def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' return choice(snake_case_ ) def UpperCAmelCase__ ( UpperCAmelCase__ :list[int] , UpperCAmelCase__ :int ): '''simple docstring''' a = random_pivot(snake_case_ ) # partition based on pivot # linear time a = [e for e in lst if e < pivot] a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case_ ) < k - 1: return kth_number(snake_case_ , k - len(snake_case_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
718
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ : List[str] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : List[Any] , __lowerCAmelCase : Dict=2048 , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Dict=[16, 16] , __lowerCAmelCase : str=128 , __lowerCAmelCase : Optional[int]=4_4100 , __lowerCAmelCase : int=86 , __lowerCAmelCase : Optional[Any]=2048 , __lowerCAmelCase : str=0.0 , **__lowerCAmelCase : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase , ) a = spectrogram_length a = num_channels a = patch_size a = feature_size // self.patch_size[1] a = n_fft a = sampling_rate // hop_length_to_sampling_rate a = sampling_rate a = padding_value a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__lowerCAmelCase , norm="slaney" , mel_scale="slaney" , ).T def A ( self : List[str] , __lowerCAmelCase : np.array ) -> np.ndarray: """simple docstring""" a = spectrogram( __lowerCAmelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=8_0.0 , ) a = log_spec[:, :-1] a = log_spec - 2_0.0 a = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , __lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Optional[bool] = True , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Optional[int] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) a = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): a = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCAmelCase ): a = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a = np.array(__lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding a = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a = np.ones([len(__lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a = padded_audio_features * self.padding_value for i in range(len(__lowerCAmelCase ) ): a = audio_features[i] a = feature # return as BatchFeature if return_attention_mask: a = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: a = {"audio_values": padded_audio_features} a = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) return encoded_inputs
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , __magic_name__ , __magic_name__=3 , __magic_name__=3_2 , __magic_name__=3 , __magic_name__=1_0 , __magic_name__=[1_0, 2_0, 3_0, 4_0] , __magic_name__=[1, 1, 2, 1] , __magic_name__=True , __magic_name__=True , __magic_name__="relu" , __magic_name__=3 , __magic_name__=None , ): lowerCamelCase : Tuple = parent lowerCamelCase : Tuple = batch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : Dict = embeddings_size lowerCamelCase : Optional[int] = hidden_sizes lowerCamelCase : Union[str, Any] = depths lowerCamelCase : Optional[Any] = is_training lowerCamelCase : Union[str, Any] = use_labels lowerCamelCase : Dict = hidden_act lowerCamelCase : Any = num_labels lowerCamelCase : int = scope lowerCamelCase : Optional[Any] = len(__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Dict = TFResNetModel(config=__magic_name__ ) lowerCamelCase : Tuple = model(__magic_name__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : str = self.num_labels lowerCamelCase : Dict = TFResNetForImageClassification(__magic_name__ ) lowerCamelCase : Union[str, Any] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = config_and_inputs lowerCamelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase : List[str] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Any = False def UpperCamelCase__ ( self ): lowerCamelCase : int = TFResNetModelTester(self ) lowerCamelCase : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def UpperCamelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(__magic_name__ ) lowerCamelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Tuple = [*signature.parameters.keys()] lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCamelCase__ ( self ): def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Any = model_class(__magic_name__ ) lowerCamelCase : List[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase : Union[str, Any] = layer_type lowerCamelCase : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : int = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFResNetModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ): lowerCamelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class A__ ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase : List[str] = self.default_image_processor lowerCamelCase : str = prepare_img() lowerCamelCase : Tuple = image_processor(images=__magic_name__ , return_tensors="""tf""" ) # forward pass lowerCamelCase : Tuple = model(**__magic_name__ ) # verify the logits lowerCamelCase : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) lowerCamelCase : Optional[Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __magic_name__ , atol=1e-4 ) )
681
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a__: Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a__: Any = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase__ = input('Enter numbers separated by a comma:\n').strip() lowercase__ = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
703
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ = TypeVar('T') class __snake_case ( Generic[T] ): def __init__( self , lowercase) -> List[Any]: '''simple docstring''' a__: Union[str, Any] = data a__: Node[T] | None = None def __str__( self) -> str: '''simple docstring''' return f'{self.data}' class __snake_case ( Generic[T] ): def __init__( self) -> None: '''simple docstring''' a__: Node[T] | None = None def __iter__( self) -> Iterator[T]: '''simple docstring''' a__: Union[str, Any] = self.top while node: yield node.data a__: Optional[Any] = node.next def __str__( self) -> str: '''simple docstring''' return "->".join([str(lowercase) for item in self]) def __len__( self) -> int: '''simple docstring''' return len(tuple(iter(self))) def lowerCamelCase_ ( self) -> bool: '''simple docstring''' return self.top is None def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' a__: Any = Node(lowercase) if not self.is_empty(): a__: str = self.top a__: Optional[int] = node def lowerCamelCase_ ( self) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack') assert isinstance(self.top , lowercase) a__: Tuple = self.top a__: List[Any] = self.top.next return pop_node.data def lowerCamelCase_ ( self) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack') assert self.top is not None return self.top.data def lowerCamelCase_ ( self) -> None: '''simple docstring''' a__: Any = None if __name__ == "__main__": from doctest import testmod testmod()
217
0
'''simple docstring''' def __lowerCAmelCase ( a_ , a_ = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis SCREAMING_SNAKE_CASE : Optional[Any] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] SCREAMING_SNAKE_CASE : Optional[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE : Any = primes[:idx] break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE : Union[str, Any] = False for r in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = pow(_SCREAMING_SNAKE_CASE , d * 2**r , _SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
251
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self : Dict , a : Optional[Any]=2_048 , a : Union[str, Any]=1 , a : str=[16, 16] , a : Optional[int]=128 , a : str=44_100 , a : List[str]=86 , a : int=2_048 , a : Tuple=0.0 , **a : int , )-> Any: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ).T def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.array )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = True , a : Optional[int] = None , a : bool = False , a : bool = False , **a : Union[str, Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(a ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(a ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ = {'audio_values': padded_audio_features} lowercase__ = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
235
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase__ = logging.get_logger(__name__) # General docstring UpperCAmelCase__ = "ResNetConfig" # Base docstring UpperCAmelCase__ = "microsoft/resnet-50" UpperCAmelCase__ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase__ = "microsoft/resnet-50" UpperCAmelCase__ = "tiger cat" UpperCAmelCase__ = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , A : int , A : int , A : int = 3 , A : int = 1 , A : str = "relu") -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad( A , A , kernel_size=A , stride=A , padding=kernel_size // 2 , bias=A) _UpperCAmelCase = nn.BatchNormad(A) _UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCamelCase ( self : Optional[int] , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = self.convolution(A) _UpperCAmelCase = self.normalization(A) _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : ResNetConfig) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) _UpperCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) _UpperCAmelCase = config.num_channels def _lowerCamelCase ( self : str , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.pooler(A) return embedding class __lowerCAmelCase ( nn.Module ): def __init__( self : int , A : int , A : int , A : int = 2) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Convad(A , A , kernel_size=1 , stride=A , bias=A) _UpperCAmelCase = nn.BatchNormad(A) def _lowerCamelCase ( self : Optional[int] , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = self.convolution(A) _UpperCAmelCase = self.normalization(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , A : int , A : int , A : int = 1 , A : str = "relu") -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = ( ResNetShortCut(A , A , stride=A) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( ResNetConvLayer(A , A , stride=A) , ResNetConvLayer(A , A , activation=A) , ) _UpperCAmelCase = ACTaFN[activation] def _lowerCamelCase ( self : Tuple , A : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(A) _UpperCAmelCase = self.shortcut(A) hidden_state += residual _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : str , A : int , A : int , A : int = 1 , A : str = "relu" , A : int = 4) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = out_channels // reduction _UpperCAmelCase = ( ResNetShortCut(A , A , stride=A) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( ResNetConvLayer(A , A , kernel_size=1) , ResNetConvLayer(A , A , stride=A) , ResNetConvLayer(A , A , kernel_size=1 , activation=A) , ) _UpperCAmelCase = ACTaFN[activation] def _lowerCamelCase ( self : List[Any] , A : Dict) -> int: """simple docstring""" _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(A) _UpperCAmelCase = self.shortcut(A) hidden_state += residual _UpperCAmelCase = self.activation(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Dict , A : ResNetConfig , A : int , A : int , A : int = 2 , A : int = 2 , ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A , A , stride=A , activation=config.hidden_act) , *[layer(A , A , activation=config.hidden_act) for _ in range(depth - 1)] , ) def _lowerCamelCase ( self : str , A : Tensor) -> Tensor: """simple docstring""" _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(A) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self : Any , A : ResNetConfig) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(A , config.depths[1:]): self.stages.append(ResNetStage(A , A , A , depth=A)) def _lowerCamelCase ( self : Dict , A : Tensor , A : bool = False , A : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) _UpperCAmelCase = stage_module(A) if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=A , hidden_states=A , ) class __lowerCAmelCase ( A ): UpperCamelCase = ResNetConfig UpperCamelCase = '''resnet''' UpperCamelCase = '''pixel_values''' UpperCamelCase = True def _lowerCamelCase ( self : Any , A : int) -> str: """simple docstring""" if isinstance(A , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(A , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def _lowerCamelCase ( self : List[str] , A : List[Any] , A : Union[str, Any]=False) -> str: """simple docstring""" if isinstance(A , A): _UpperCAmelCase = value UpperCAmelCase__ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : List[Any] , A : Any) -> str: """simple docstring""" super().__init__(A) _UpperCAmelCase = config _UpperCAmelCase = ResNetEmbeddings(A) _UpperCAmelCase = ResNetEncoder(A) _UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : Optional[int] , A : Tensor , A : Optional[bool] = None , A : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.encoder( A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = encoder_outputs[0] _UpperCAmelCase = self.pooler(A) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A , pooler_output=A , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A , ) class __lowerCAmelCase ( A ): def __init__( self : Any , A : Any) -> int: """simple docstring""" super().__init__(A) _UpperCAmelCase = config.num_labels _UpperCAmelCase = ResNetModel(A) # classification head _UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Any , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Optional[bool] = None , A : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.resnet(A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase = self.classifier(A) _UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase = 'single_label_classification' else: _UpperCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _UpperCAmelCase = MSELoss() if self.num_labels == 1: _UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze()) else: _UpperCAmelCase = loss_fct(A , A) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase = BCEWithLogitsLoss() _UpperCAmelCase = loss_fct(A , A) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A , logits=A , hidden_states=outputs.hidden_states) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , A , ) class __lowerCAmelCase ( A , A ): def __init__( self : Dict , A : List[str]) -> Any: """simple docstring""" super().__init__(A) super()._init_backbone(A) _UpperCAmelCase = [config.embedding_size] + config.hidden_sizes _UpperCAmelCase = ResNetEmbeddings(A) _UpperCAmelCase = ResNetEncoder(A) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A) @replace_return_docstrings(output_type=A , config_class=_CONFIG_FOR_DOC) def _lowerCamelCase ( self : Optional[int] , A : Tensor , A : Optional[bool] = None , A : Optional[bool] = None) -> BackboneOutput: """simple docstring""" _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = self.embedder(A) _UpperCAmelCase = self.encoder(A , output_hidden_states=A , return_dict=A) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A , )
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
from __future__ import annotations def UpperCAmelCase ( a_ ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCAmelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCAmelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R""".*/layers_(\d+)""" __SCREAMING_SNAKE_CASE = key if re.match(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = R"""(encoder|decoder)\/""" if re.match(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = re.match(__UpperCAmelCase , __UpperCAmelCase ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , __UpperCAmelCase ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , __UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(__UpperCAmelCase , __UpperCAmelCase ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(__UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(__UpperCAmelCase ) return s_dict a = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' import regex as re with open(__UpperCAmelCase , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"""(.*) = ([0-9.]*)""" , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) if """.""" in value else int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , __UpperCAmelCase )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**__UpperCAmelCase ) return config def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="./" , __UpperCAmelCase=8 ) -> str: '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(__UpperCAmelCase ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(__UpperCAmelCase , __UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = flax_params["""target"""] __SCREAMING_SNAKE_CASE = flatten_dict(__UpperCAmelCase , sep="""/""" ) __SCREAMING_SNAKE_CASE = rename_keys(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = unflatten_dict(__UpperCAmelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__UpperCAmelCase , __UpperCAmelCase ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") a = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
109
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "open-llama" def __init__( self , _a=1_0_0_0_0_0 , _a=4_0_9_6 , _a=1_1_0_0_8 , _a=3_2 , _a=3_2 , _a="silu" , _a=2_0_4_8 , _a=0.02 , _a=1e-6 , _a=True , _a=0 , _a=1 , _a=2 , _a=False , _a=True , _a=0.1 , _a=0.1 , _a=True , _a=True , _a=None , **_a , ) -> Dict: _a : List[str] = vocab_size _a : Tuple = max_position_embeddings _a : List[Any] = hidden_size _a : Optional[int] = intermediate_size _a : List[str] = num_hidden_layers _a : List[str] = num_attention_heads _a : Dict = hidden_act _a : Optional[Any] = initializer_range _a : int = rms_norm_eps _a : int = use_cache _a : Any = kwargs.pop( '''use_memorry_efficient_attention''' , _a ) _a : Any = hidden_dropout_prob _a : Union[str, Any] = attention_dropout_prob _a : Union[str, Any] = use_stable_embedding _a : Tuple = shared_input_output_embedding _a : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a , ) def __lowercase ( self ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) _a : str = self.rope_scaling.get('''type''' , _a ) _a : List[str] = self.rope_scaling.get('''factor''' , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
578
def __UpperCAmelCase ( __a : int = 100 ) -> int: """simple docstring""" _a : str = (n * (n + 1) // 2) ** 2 _a : int = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
578
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a__ ( unittest.TestCase ): def __init__( self : str , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=99 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : int=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : Any=4 , ): """simple docstring""" __UpperCAmelCase : str = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Dict = seq_length __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : List[Any] = use_attention_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : str = num_choices def a_ ( self : int): """simple docstring""" __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Union[str, Any] = None if self.use_attention_mask: __UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : str = True __UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = True lowercase_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def a_ ( self : str): """simple docstring""" __UpperCAmelCase : List[Any] = FlaxBertModelTester(self) @slow def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Any = FlaxBertModel.from_pretrained("bert-base-cased") __UpperCAmelCase : Union[str, Any] = model(np.ones((1, 1))) self.assertIsNotNone(UpperCamelCase_)
77
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
104
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __A ( A_ ): UpperCamelCase :List[Any] = '''wavlm''' def __init__(self , __magic_name__=32 , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=1E-5 , __magic_name__="group" , __magic_name__="gelu" , __magic_name__=(512, 512, 512, 512, 512, 512, 512) , __magic_name__=(5, 2, 2, 2, 2, 2, 2) , __magic_name__=(10, 3, 3, 3, 3, 2, 2) , __magic_name__=False , __magic_name__=128 , __magic_name__=16 , __magic_name__=320 , __magic_name__=800 , __magic_name__=False , __magic_name__=True , __magic_name__=0.05 , __magic_name__=10 , __magic_name__=2 , __magic_name__=0.0 , __magic_name__=10 , __magic_name__=320 , __magic_name__=2 , __magic_name__=0.1 , __magic_name__=100 , __magic_name__=256 , __magic_name__=256 , __magic_name__=0.1 , __magic_name__="mean" , __magic_name__=False , __magic_name__=False , __magic_name__=256 , __magic_name__=(512, 512, 512, 512, 1500) , __magic_name__=(5, 3, 3, 1, 1) , __magic_name__=(1, 2, 3, 1, 1) , __magic_name__=512 , __magic_name__=80 , __magic_name__=0 , __magic_name__=1 , __magic_name__=2 , __magic_name__=False , __magic_name__=3 , __magic_name__=2 , __magic_name__=3 , __magic_name__=None , **__magic_name__ , ): super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = feat_extract_norm lowerCamelCase__ : Any = feat_extract_activation lowerCamelCase__ : Dict = list(__magic_name__ ) lowerCamelCase__ : str = list(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = list(__magic_name__ ) lowerCamelCase__ : Any = conv_bias lowerCamelCase__ : Tuple = num_buckets lowerCamelCase__ : List[str] = max_bucket_distance lowerCamelCase__ : str = num_conv_pos_embeddings lowerCamelCase__ : str = num_conv_pos_embedding_groups lowerCamelCase__ : List[Any] = len(self.conv_dim ) lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : Any = hidden_dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Union[str, Any] = activation_dropout lowerCamelCase__ : Optional[Any] = feat_proj_dropout lowerCamelCase__ : List[Any] = final_dropout lowerCamelCase__ : List[Any] = layerdrop lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : int = num_ctc_classes lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Any = do_stable_layer_norm lowerCamelCase__ : int = use_weighted_layer_sum lowerCamelCase__ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : Any = apply_spec_augment lowerCamelCase__ : str = mask_time_prob lowerCamelCase__ : str = mask_time_length lowerCamelCase__ : List[str] = mask_time_min_masks lowerCamelCase__ : Optional[Any] = mask_feature_prob lowerCamelCase__ : str = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCamelCase__ : int = num_codevectors_per_group lowerCamelCase__ : Union[str, Any] = num_codevector_groups lowerCamelCase__ : Optional[Any] = contrastive_logits_temperature lowerCamelCase__ : str = num_negatives lowerCamelCase__ : Dict = codevector_dim lowerCamelCase__ : Tuple = proj_codevector_dim lowerCamelCase__ : Any = diversity_loss_weight # ctc loss lowerCamelCase__ : int = ctc_loss_reduction lowerCamelCase__ : Union[str, Any] = ctc_zero_infinity # adapter lowerCamelCase__ : List[str] = add_adapter lowerCamelCase__ : Optional[int] = adapter_kernel_size lowerCamelCase__ : Any = adapter_stride lowerCamelCase__ : int = num_adapter_layers lowerCamelCase__ : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase__ : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase__ : List[str] = list(__magic_name__ ) lowerCamelCase__ : Tuple = list(__magic_name__ ) lowerCamelCase__ : Tuple = list(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = xvector_output_dim @property def _snake_case (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
96
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' lowerCamelCase__ : List[str] = nn.functional.normalize(UpperCamelCase ) lowerCamelCase__ : Tuple = nn.functional.normalize(UpperCamelCase ) return torch.mm(UpperCamelCase , normalized_text_embeds.t() ) class __A ( A_ ): UpperCamelCase :Optional[Any] = CLIPConfig UpperCamelCase :Optional[Any] = ['''CLIPEncoderLayer'''] def __init__(self , __magic_name__ ): super().__init__(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = CLIPVisionModel(config.vision_config ) lowerCamelCase__ : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Any = nn.Parameter(torch.ones(17 ) , requires_grad=__magic_name__ ) lowerCamelCase__ : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__magic_name__ ) @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : Tuple = self.visual_projection(__magic_name__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ : Any = cosine_distance(__magic_name__ , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase__ : str = cosine_distance(__magic_name__ , self.concept_embeds ).cpu().float().numpy() lowerCamelCase__ : int = [] lowerCamelCase__ : str = image_embeds.shape[0] for i in range(__magic_name__ ): lowerCamelCase__ : str = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase__ : List[str] = special_cos_dist[i][concept_idx] lowerCamelCase__ : Tuple = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase__ : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCamelCase__ : List[str] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase__ : str = cos_dist[i][concept_idx] lowerCamelCase__ : Dict = self.concept_embeds_weights[concept_idx].item() lowerCamelCase__ : int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__magic_name__ ) result.append(__magic_name__ ) lowerCamelCase__ : Tuple = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Union[str, Any] = self.vision_model(__magic_name__ )[1] # pooled_output lowerCamelCase__ : str = self.visual_projection(__magic_name__ ) lowerCamelCase__ : Optional[Any] = cosine_distance(__magic_name__ , self.special_care_embeds ) lowerCamelCase__ : Dict = cosine_distance(__magic_name__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ : Any = 0.0 lowerCamelCase__ : Dict = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase__ : Union[str, Any] = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase__ : Optional[Any] = special_care * 0.01 lowerCamelCase__ : Dict = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase__ : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase__ : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
96
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = self.dummy_uncond_unet _lowercase : Tuple = ScoreSdeVeScheduler() _lowercase : str = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) sde_ve.to(lowerCamelCase) sde_ve.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = torch.manual_seed(0) _lowercase : Tuple = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase).images _lowercase : Any = torch.manual_seed(0) _lowercase : Any = sde_ve(num_inference_steps=2, output_type='numpy', generator=lowerCamelCase, return_dict=lowerCamelCase)[ 0 ] _lowercase : Optional[Any] = image[0, -3:, -3:, -1] _lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = 'google/ncsnpp-church-256' _lowercase : Dict = UNetaDModel.from_pretrained(lowerCamelCase) _lowercase : Dict = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase) _lowercase : Union[str, Any] = ScoreSdeVePipeline(unet=lowerCamelCase, scheduler=lowerCamelCase) sde_ve.to(lowerCamelCase) sde_ve.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = torch.manual_seed(0) _lowercase : str = sde_ve(num_inference_steps=10, output_type='numpy', generator=lowerCamelCase).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _lowercase : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
89
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = set() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[int] = n + 1 # maximum limit for a in range(2 , _lowerCamelCase ): for b in range(2 , _lowerCamelCase ): _lowerCamelCase : List[str] = a**b # calculates the current power collect_powers.add(_lowerCamelCase ) # adds the result to the set return len(_lowerCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
46
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ = logging.getLogger(__name__) def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> List[Any]: return (preds == labels).mean() @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) A_ : str = field(metadata={'help': 'Should contain the data files for the task.'} ) A_ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : bool = field( default=UpperCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase__ ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: __snake_case = processors[data_args.task_name]() __snake_case = processor.get_labels() __snake_case = len(__UpperCamelCase ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case_ : Optional[int] ) -> Dict: __snake_case = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase , p.label_ids )} # Data collator __snake_case = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate() __snake_case = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __UpperCamelCase , __UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__UpperCamelCase ) return results def lowerCamelCase__ ( snake_case_ : Any ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
708
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : Tuple ) -> Dict: __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) __snake_case = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __snake_case = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def lowerCamelCase__ ( snake_case_ : int ) -> List[str]: if "visual_encoder" in key: __snake_case = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , snake_case_ ) if "blocks" in key: __snake_case = re.sub(R'''blocks''' , '''layers''' , snake_case_ ) if "attn" in key: __snake_case = re.sub(R'''attn''' , '''self_attn''' , snake_case_ ) if "norm1" in key: __snake_case = re.sub(R'''norm1''' , '''layer_norm1''' , snake_case_ ) if "norm2" in key: __snake_case = re.sub(R'''norm2''' , '''layer_norm2''' , snake_case_ ) if "encoder.norm" in key: __snake_case = re.sub(R'''encoder.norm''' , '''post_layernorm''' , snake_case_ ) if "encoder.patch_embed.proj" in key: __snake_case = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , snake_case_ ) if "encoder.pos_embed" in key: __snake_case = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , snake_case_ ) if "encoder.cls_token" in key: __snake_case = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , snake_case_ ) if "self_attn" in key: __snake_case = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , snake_case_ ) return key @torch.no_grad() def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : str=None ) -> str: if config_path is not None: __snake_case = BlipConfig.from_pretrained(snake_case_ ) else: __snake_case = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __snake_case = BlipForConditionalGeneration(snake_case_ ).eval() __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __snake_case = blip_decoder(pretrained=snake_case_ , image_size=384 , vit='''base''' ) __snake_case = pt_model.eval() __snake_case = pt_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value hf_model.load_state_dict(snake_case_ ) __snake_case = 384 __snake_case = load_demo_image(image_size=snake_case_ , device='''cpu''' ) __snake_case = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __snake_case = tokenizer(['''a picture of'''] ).input_ids __snake_case = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __snake_case = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __snake_case = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __snake_case = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) vqa_model.eval() __snake_case = vqa_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value __snake_case = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) __snake_case = ['''How many dogs are in this image?'''] __snake_case = tokenizer(snake_case_ , return_tensors='''pt''' ).input_ids __snake_case = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __snake_case = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) itm_model.eval() __snake_case = itm_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value __snake_case = BlipForImageTextRetrieval(snake_case_ ) __snake_case = ['''A picture of a woman with a dog sitting in a beach'''] __snake_case = tokenizer( snake_case_ , return_tensors='''pt''' , padding='''max_length''' , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() __snake_case = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) __snake_case = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
388
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants lowercase_ = 3_00 # TEMPERATURE (unit = K) def UpperCAmelCase ( _lowercase : float , _lowercase : float , _lowercase : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
552
"""simple docstring""" def UpperCAmelCase ( _lowercase : int = 1_0_0_0 ) -> int: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = 1, 1 lowerCAmelCase_ = [] for i in range(1 , n + 1 ): lowerCAmelCase_ = prev_numerator + 2 * prev_denominator lowerCAmelCase_ = prev_numerator + prev_denominator if len(str(_lowercase ) ) > len(str(_lowercase ) ): result.append(_lowercase ) lowerCAmelCase_ = numerator lowerCAmelCase_ = denominator return len(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
552
1
from pathlib import Path import fire def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = Path(__UpperCamelCase ) dest_dir.mkdir(exist_ok=__UpperCamelCase ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE__ = dest_dir.joinpath(path.name ) print(__UpperCamelCase ) dest_path.open("""w""" ).write("""\n""".join(__UpperCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
379
from __future__ import annotations from collections.abc import Iterator from typing import Any class __snake_case : def __init__( self : Union[str, Any] , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = None class __snake_case : def __init__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __iter__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while self.head: yield node.data SCREAMING_SNAKE_CASE__ = node.next if node == self.head: break def __len__( self : int ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Optional[int] ): """simple docstring""" return "->".join(str(_lowercase ) for item in iter(self ) ) def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" self.insert_nth(len(self ) , _lowercase ) def __a ( self : Tuple , _lowercase : Any ): """simple docstring""" self.insert_nth(0 , _lowercase ) def __a ( self : Tuple , _lowercase : int , _lowercase : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) SCREAMING_SNAKE_CASE__ = Node(_lowercase ) if self.head is None: SCREAMING_SNAKE_CASE__ = new_node # first node points itself SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = new_node else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = new_node if index == len(self ) - 1: # insert at tail SCREAMING_SNAKE_CASE__ = new_node def __a ( self : Dict ): """simple docstring""" return self.delete_nth(0 ) def __a ( self : str ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __a ( self : str , _lowercase : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) SCREAMING_SNAKE_CASE__ = self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None elif index == 0: # delete head node SCREAMING_SNAKE_CASE__ = self.tail.next.next SCREAMING_SNAKE_CASE__ = self.head.next else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next.next if index == len(self ) - 1: # delete at tail SCREAMING_SNAKE_CASE__ = temp return delete_node.data def __a ( self : Optional[int] ): """simple docstring""" return len(self ) == 0 def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
379
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): if radian_mode: return [magnitude * cos(__snake_case ), magnitude * sin(__snake_case )] return [magnitude * cos(radians(__snake_case ) ), magnitude * sin(radians(__snake_case ) )] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 10**-1 ): a__ : NDArray[floataa] = cross(__snake_case , __snake_case ) a__ : float = sum(__snake_case ) return abs(__snake_case ) < eps if __name__ == "__main__": # Test to check if it works SCREAMING_SNAKE_CASE__ : List[Any] = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) SCREAMING_SNAKE_CASE__ : List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg SCREAMING_SNAKE_CASE__ : int = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) SCREAMING_SNAKE_CASE__ : Tuple = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg SCREAMING_SNAKE_CASE__ : List[str] = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) SCREAMING_SNAKE_CASE__ : str = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
112
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowercase__ : __UpperCAmelCase = field( default='''cifar10''' ,metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''The column name of the images in the files.'''} ) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''A folder containing the training data.'''} ) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''A folder containing the validation data.'''} ) __UpperCAmelCase = field( default=0.1_5 ,metadata={'''help''': '''Percent to split off of train for validation.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } ,) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Any = {} if self.train_dir is not None: _lowerCamelCase : int = self.train_dir if self.validation_dir is not None: _lowerCamelCase : Tuple = self.validation_dir _lowerCamelCase : Optional[int] = data_files if data_files else None @dataclass class lowercase__ : __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } ,) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) __UpperCAmelCase = field( default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,) __UpperCAmelCase = field(default=A_ ,metadata={'''help''': '''Name or path of preprocessor config.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } ,) __UpperCAmelCase = field( default=0.7_5 ,metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) __UpperCAmelCase = field( default=A_ ,metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase__ ( A_ ): __UpperCAmelCase = field( default=1e-3 ,metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( __snake_case : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ): """simple docstring""" _lowerCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _lowerCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. _lowerCamelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : Tuple = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: _lowerCamelCase : List[str] = ds["""train"""].train_test_split(data_args.train_val_split ) _lowerCamelCase : Union[str, Any] = split["""train"""] _lowerCamelCase : Optional[int] = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : str = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: _lowerCamelCase : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _lowerCamelCase : Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__snake_case ) elif model_args.model_name_or_path: _lowerCamelCase : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : List[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _lowerCamelCase : Union[str, Any] = ViTMAEForPreTraining(__snake_case ) if training_args.do_train: _lowerCamelCase : List[Any] = ds["""train"""].column_names else: _lowerCamelCase : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: _lowerCamelCase : str = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : Optional[Any] = """image""" elif "img" in column_names: _lowerCamelCase : List[Any] = """img""" else: _lowerCamelCase : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Dict = image_processor.size["""shortest_edge"""] else: _lowerCamelCase : List[Any] = (image_processor.size["""height"""], image_processor.size["""width"""]) _lowerCamelCase : Tuple = Compose( [ Lambda(lambda __snake_case : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__snake_case : Optional[Any] ): _lowerCamelCase : Dict = [transforms(__snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _lowerCamelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _lowerCamelCase : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Compute absolute learning rate _lowerCamelCase : Optional[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Optional[Any] = Trainer( model=__snake_case , args=__snake_case , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _lowerCamelCase : Any = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Union[str, Any] = last_checkpoint _lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : int = trainer.evaluate() trainer.log_metrics("""eval""" , __snake_case ) trainer.save_metrics("""eval""" , __snake_case ) # Write model card and (optionally) push to hub _lowerCamelCase : Optional[Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def _snake_case ( __snake_case : Dict ): """simple docstring""" main() if __name__ == "__main__": main()
88
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , ) -> List[str]: __lowerCAmelCase : Dict = parent __lowerCAmelCase : int = 13 __lowerCAmelCase : Any = 7 __lowerCAmelCase : Tuple = True __lowerCAmelCase : str = True __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Tuple = 99 __lowerCAmelCase : Union[str, Any] = 32 __lowerCAmelCase : str = 2 __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : Union[str, Any] = 37 __lowerCAmelCase : List[str] = 'gelu' __lowerCAmelCase : Any = 0.1 __lowerCAmelCase : List[str] = 0.1 __lowerCAmelCase : int = 5_12 __lowerCAmelCase : Optional[int] = 16 __lowerCAmelCase : Dict = 2 __lowerCAmelCase : Union[str, Any] = 0.0_2 __lowerCAmelCase : Union[str, Any] = 3 __lowerCAmelCase : List[str] = 4 __lowerCAmelCase : int = None def snake_case ( self ) -> List[str]: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Union[str, Any] = None if self.use_labels: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase : Tuple = TFDistilBertModel(config=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} __lowerCAmelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = [input_ids, input_mask] __lowerCAmelCase : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase : List[Any] = TFDistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask} __lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : int = TFDistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, } __lowerCAmelCase : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : str = self.num_labels __lowerCAmelCase : Tuple = TFDistilBertForSequenceClassification(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} __lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase : Dict = self.num_choices __lowerCAmelCase : Union[str, Any] = TFDistilBertForMultipleChoice(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase : Dict = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase : Tuple = self.num_labels __lowerCAmelCase : Dict = TFDistilBertForTokenClassification(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} __lowerCAmelCase : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) : int = config_and_inputs __lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( a , a , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _snake_case = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = False def snake_case ( self ) -> Optional[Any]: __lowerCAmelCase : Optional[Any] = TFDistilBertModelTester(self ) __lowerCAmelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , dim=37 ) def snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case ( self ) -> Optional[Any]: __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> List[str]: __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE ) def snake_case ( self ) -> str: __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self ) -> int: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __lowerCAmelCase : List[str] = TFDistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self ) -> Any: __lowerCAmelCase : Dict = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __lowerCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Union[str, Any] = [1, 6, 7_68] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 )
123
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def snake_case ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase : List[str] = 'lower' __lowerCAmelCase : Union[str, Any] = ['low', 'er</w>'] __lowerCAmelCase : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokens + ['<unk>'] __lowerCAmelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Optional[Any] = 'This is a simple input' __lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : int = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def snake_case ( self ) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase__ ( a ): '''simple docstring''' pass
123
1
from __future__ import annotations import time a_ = list[tuple[int, int]] a_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : int , a : int , a : int , a : int , a : Node | None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = pos_x SCREAMING_SNAKE_CASE : Dict = pos_y SCREAMING_SNAKE_CASE : int = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Any = goal_x SCREAMING_SNAKE_CASE : Dict = goal_y SCREAMING_SNAKE_CASE : str = parent class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : tuple[int, int] , a : tuple[int, int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = Node(start[1] , start[0] , goal[1] , goal[0] , a ) SCREAMING_SNAKE_CASE : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , a ) SCREAMING_SNAKE_CASE : str = [self.start] SCREAMING_SNAKE_CASE : Any = False def __UpperCamelCase ( self : str ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE : List[str] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE : Tuple = True return self.retrace_path(a ) SCREAMING_SNAKE_CASE : str = self.get_successors(a ) for node in successors: self.node_queue.append(a ) if not self.reached: return [self.start.pos] return None def __UpperCamelCase ( self : Dict , a : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] for action in delta: SCREAMING_SNAKE_CASE : int = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a , a , self.target.pos_y , self.target.pos_x , a ) ) return successors def __UpperCamelCase ( self : Union[str, Any] , a : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = node SCREAMING_SNAKE_CASE : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Dict = current_node.parent path.reverse() return path class _UpperCamelCase : '''simple docstring''' def __init__( self : str , a : Optional[int] , a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = BreadthFirstSearch(a , a ) SCREAMING_SNAKE_CASE : Any = BreadthFirstSearch(a , a ) SCREAMING_SNAKE_CASE : Dict = False def __UpperCamelCase ( self : List[Any] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE : int = True return self.retrace_bidirectional_path( a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = current_bwd_node SCREAMING_SNAKE_CASE : str = current_fwd_node SCREAMING_SNAKE_CASE : Union[str, Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(a ), self.bwd_bfs: self.bwd_bfs.get_successors(a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCamelCase ( self : int , a : Node , a : Node ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.fwd_bfs.retrace_path(a ) SCREAMING_SNAKE_CASE : str = self.bwd_bfs.retrace_path(a ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ = (0, 0) a_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ = time.time() a_ = BreadthFirstSearch(init, goal) a_ = bfs.search() a_ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a_ = time.time() a_ = BidirectionalBreadthFirstSearch(init, goal) a_ = bd_bfs.search() a_ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if height >= 1: move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) move_disk(UpperCamelCase__ , UpperCamelCase__ ) move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): print("""moving disk from""" , UpperCamelCase__ , """to""" , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = int(input("""Height of hanoi: """ ).strip() ) move_tower(UpperCamelCase__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
713
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection UpperCAmelCase__ : List[str] = len(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = max(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = min(UpperCamelCase__ ) # create the counting array UpperCAmelCase__ : Dict = coll_max + 1 - coll_min UpperCAmelCase__ : Optional[int] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): UpperCAmelCase__ : List[str] = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCAmelCase__ : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): UpperCAmelCase__ : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _UpperCamelCase ( UpperCamelCase__ ): return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" __A =input('Enter numbers separated by a comma:\n').strip() __A =[int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
113
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=0.0 , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = "layer_norm" , lowercase_ = False , ) -> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ = only_cross_attention lowerCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' lowerCAmelCase_ = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCAmelCase_ = AdaLayerNorm(lowercase_ , lowercase_ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase_ = AdaLayerNormZero(lowercase_ , lowercase_ ) else: lowerCAmelCase_ = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) lowerCAmelCase_ = Attention( query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , dropout=lowercase_ , bias=lowercase_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowercase_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCAmelCase_ = ( AdaLayerNorm(lowercase_ , lowercase_ ) if self.use_ada_layer_norm else nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) ) lowerCAmelCase_ = Attention( query_dim=lowercase_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowercase_ , dim_head=lowercase_ , dropout=lowercase_ , bias=lowercase_ , upcast_attention=lowercase_ , ) # is self-attn if encoder_hidden_states is none else: lowerCAmelCase_ = None lowerCAmelCase_ = None # 3. Feed-forward lowerCAmelCase_ = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) lowerCAmelCase_ = FeedForward(lowercase_ , dropout=lowercase_ , activation_fn=lowercase_ , final_dropout=lowercase_ ) # let chunk size default to None lowerCAmelCase_ = None lowerCAmelCase_ = 0 def _lowercase ( self , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = chunk_size lowerCAmelCase_ = dim def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> Optional[Any]: '''simple docstring''' if self.use_ada_layer_norm: lowerCAmelCase_ = self.norma(lowercase_ , lowercase_ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.norma( lowercase_ , lowercase_ , lowercase_ , hidden_dtype=hidden_states.dtype ) else: lowerCAmelCase_ = self.norma(lowercase_ ) lowerCAmelCase_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCAmelCase_ = self.attna( lowercase_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowercase_ , **lowercase_ , ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ = gate_msa.unsqueeze(1 ) * attn_output lowerCAmelCase_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCAmelCase_ = ( self.norma(lowercase_ , lowercase_ ) if self.use_ada_layer_norm else self.norma(lowercase_ ) ) lowerCAmelCase_ = self.attna( lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = attn_output + hidden_states # 3. Feed-forward lowerCAmelCase_ = self.norma(lowercase_ ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) lowerCAmelCase_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCAmelCase_ = torch.cat( [self.ff(lowercase_ ) for hid_slice in norm_hidden_states.chunk(lowercase_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCAmelCase_ = self.ff(lowercase_ ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ = gate_mlp.unsqueeze(1 ) * ff_output lowerCAmelCase_ = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ = None , lowercase_ = 4 , lowercase_ = 0.0 , lowercase_ = "geglu" , lowercase_ = False , ) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ = int(dim * mult ) lowerCAmelCase_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCAmelCase_ = GELU(lowercase_ , lowercase_ ) if activation_fn == "gelu-approximate": lowerCAmelCase_ = GELU(lowercase_ , lowercase_ , approximate='tanh' ) elif activation_fn == "geglu": lowerCAmelCase_ = GEGLU(lowercase_ , lowercase_ ) elif activation_fn == "geglu-approximate": lowerCAmelCase_ = ApproximateGELU(lowercase_ , lowercase_ ) lowerCAmelCase_ = nn.ModuleList([] ) # project in self.net.append(lowercase_ ) # project dropout self.net.append(nn.Dropout(lowercase_ ) ) # project out self.net.append(nn.Linear(lowercase_ , lowercase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowercase_ ) ) def _lowercase ( self , lowercase_ ) -> Tuple: '''simple docstring''' for module in self.net: lowerCAmelCase_ = module(lowercase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ = "none" ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ ) lowerCAmelCase_ = approximate def _lowercase ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _lowercase ( self , lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = self.proj(lowercase_ ) lowerCAmelCase_ = self.gelu(lowercase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ = nn.Linear(lowercase_ , dim_out * 2 ) def _lowercase ( self , lowercase_ ) -> List[Any]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowercase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowercase ( self , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.proj(lowercase_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowercase_ ) class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ = nn.Linear(lowercase_ , lowercase_ ) def _lowercase ( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = self.proj(lowercase_ ) return x * torch.sigmoid(1.7_02 * x ) class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ = nn.Embedding(lowercase_ , lowercase_ ) lowerCAmelCase_ = nn.SiLU() lowerCAmelCase_ = nn.Linear(lowercase_ , embedding_dim * 2 ) lowerCAmelCase_ = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.linear(self.silu(self.emb(lowercase_ ) ) ) lowerCAmelCase_ , lowerCAmelCase_ = torch.chunk(lowercase_ , 2 ) lowerCAmelCase_ = self.norm(lowercase_ ) * (1 + scale) + shift return x class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ = CombinedTimestepLabelEmbeddings(lowercase_ , lowercase_ ) lowerCAmelCase_ = nn.SiLU() lowerCAmelCase_ = nn.Linear(lowercase_ , 6 * embedding_dim , bias=lowercase_ ) lowerCAmelCase_ = nn.LayerNorm(lowercase_ , elementwise_affine=lowercase_ , eps=1e-6 ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.linear(self.silu(self.emb(lowercase_ , lowercase_ , hidden_dtype=lowercase_ ) ) ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = emb.chunk(6 , dim=1 ) lowerCAmelCase_ = self.norm(lowercase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = 1e-5 ) -> List[str]: '''simple docstring''' super().__init__() lowerCAmelCase_ = num_groups lowerCAmelCase_ = eps if act_fn is None: lowerCAmelCase_ = None else: lowerCAmelCase_ = get_activation(lowercase_ ) lowerCAmelCase_ = nn.Linear(lowercase_ , out_dim * 2 ) def _lowercase ( self , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' if self.act: lowerCAmelCase_ = self.act(lowercase_ ) lowerCAmelCase_ = self.linear(lowercase_ ) lowerCAmelCase_ = emb[:, :, None, None] lowerCAmelCase_ , lowerCAmelCase_ = emb.chunk(2 , dim=1 ) lowerCAmelCase_ = F.group_norm(lowercase_ , self.num_groups , eps=self.eps ) lowerCAmelCase_ = x * (1 + scale) + shift return x
318
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a_ ( a_ , a_ ): '''simple docstring''' __a: Union[str, Any] = '''resnet''' __a: List[Any] = ['''basic''', '''bottleneck'''] def __init__( self , lowercase_=3 , lowercase_=6_4 , lowercase_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase_=[3, 4, 6, 3] , lowercase_="bottleneck" , lowercase_="relu" , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = embedding_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = layer_type lowerCAmelCase_ = hidden_act lowerCAmelCase_ = downsample_in_first_stage lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class a_ ( a_ ): '''simple docstring''' __a: Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-3
318
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowercase: """simple docstring""" def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : List[Any]=6 , _lowerCAmelCase : Optional[Any]=17 , _lowerCAmelCase : Optional[int]=23 , _lowerCAmelCase : List[str]=11 , _lowerCAmelCase : List[str]=True , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = act_dim _lowerCAmelCase = state_dim _lowerCAmelCase = hidden_size _lowerCAmelCase = max_length _lowerCAmelCase = is_training def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: _lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _lowerCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , ) -> List[str]: _lowerCAmelCase = DecisionTransformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class __lowercase( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (DecisionTransformerModel,) if is_torch_available() else () UpperCamelCase_ = () UpperCamelCase_ = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCamelCase_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = DecisionTransformerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = DecisionTransformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) @require_torch class __lowercase( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase = 2 # number of steps of autoregressive prediction we will perform _lowerCAmelCase = 10 # defined by the RL environment, may be normalized _lowerCAmelCase = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _lowerCAmelCase = model.to(_lowerCAmelCase ) _lowerCAmelCase = model.config torch.manual_seed(0 ) _lowerCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ) # env.reset() _lowerCAmelCase = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=_lowerCAmelCase ) _lowerCAmelCase = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCAmelCase = state _lowerCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa ) _lowerCAmelCase = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa ) _lowerCAmelCase = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCAmelCase ): _lowerCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCAmelCase = action_pred[0, -1] _lowerCAmelCase = torch.cat([states, state] , dim=1 ) _lowerCAmelCase = returns_to_go[0, -1] - reward _lowerCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCAmelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
713
def _a ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__SCREAMING_SNAKE_CASE ): return None _lowerCAmelCase = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCAmelCase = left _lowerCAmelCase = point elif point > right: _lowerCAmelCase = right _lowerCAmelCase = point else: if item < current_item: _lowerCAmelCase = point - 1 else: _lowerCAmelCase = point + 1 return None def _a ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCAmelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , point + 1 , __SCREAMING_SNAKE_CASE ) def _a ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if collection != sorted(__SCREAMING_SNAKE_CASE ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _UpperCamelCase: Tuple =0 if debug == 1: _UpperCamelCase: int =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') _UpperCamelCase: str =67 _UpperCamelCase: List[str] =interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print('Not found')
585
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = [0] * len(SCREAMING_SNAKE_CASE ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming lowerCAmelCase : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCAmelCase : Dict = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCAmelCase : List[str] = j return prefix_result def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return max(prefix_function(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
645
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A = logging.get_logger(__name__) A = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = 'umt5' snake_case_ = ['past_key_values'] def __init__( self : List[str] , snake_case : List[Any]=25_0112 , snake_case : Optional[Any]=512 , snake_case : List[str]=64 , snake_case : str=1024 , snake_case : str=8 , snake_case : int=None , snake_case : str=6 , snake_case : List[str]=32 , snake_case : int=128 , snake_case : Any=0.1 , snake_case : Optional[Any]=1e-6 , snake_case : Dict=1.0 , snake_case : Any="gated-gelu" , snake_case : Tuple=True , snake_case : Union[str, Any]=True , snake_case : Any="T5Tokenizer" , snake_case : Optional[int]=True , snake_case : Optional[int]=0 , snake_case : str=1 , snake_case : Any=0 , **snake_case : List[Any] , ) -> str: '''simple docstring''' super().__init__( is_encoder_decoder=snake_case , tokenizer_class=snake_case , tie_word_embeddings=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , ) __magic_name__ : Optional[int] = vocab_size __magic_name__ : Dict = d_model __magic_name__ : Optional[int] = d_kv __magic_name__ : Optional[Any] = d_ff __magic_name__ : Dict = num_layers __magic_name__ : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __magic_name__ : List[str] = num_heads __magic_name__ : Any = relative_attention_num_buckets __magic_name__ : List[str] = relative_attention_max_distance __magic_name__ : str = dropout_rate __magic_name__ : Optional[Any] = layer_norm_epsilon __magic_name__ : Dict = initializer_factor __magic_name__ : List[Any] = feed_forward_proj __magic_name__ : Optional[Any] = use_cache __magic_name__ : List[Any] = self.feed_forward_proj.split('''-''' ) __magic_name__ : List[Any] = act_info[-1] __magic_name__ : List[str] = act_info[0] == '''gated''' if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": __magic_name__ : Optional[Any] = '''gelu_new''' @property def _UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' return self.d_model @property def _UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' return self.num_heads @property def _UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' return self.num_layers class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __magic_name__ : Optional[int] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __magic_name__ : Tuple = '''past_encoder_sequence + sequence''' __magic_name__ : List[str] = {0: '''batch'''} __magic_name__ : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __magic_name__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} __magic_name__ : str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' return 13 @property def _UpperCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' return 5e-4
147
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = 10 def _UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Optional[int] = [1, 2, 3, 4] __magic_name__ : Optional[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __magic_name__ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __magic_name__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def _UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __magic_name__ , __magic_name__ : Optional[Any] = process_story(snake_case ) self.assertEqual(snake_case , [] ) def _UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' __magic_name__ : List[str] = '''''' __magic_name__ , __magic_name__ : Optional[int] = process_story(snake_case ) self.assertEqual(snake_case , [] ) self.assertEqual(snake_case , [] ) def _UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' __magic_name__ : Optional[Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __magic_name__ , __magic_name__ : Union[str, Any] = process_story(snake_case ) __magic_name__ : int = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(snake_case , snake_case ) __magic_name__ : Tuple = ['''It was the best of times.'''] self.assertEqual(snake_case , snake_case ) def _UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[int] = torch.tensor([1, 2, 3, 4] ) __magic_name__ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(snake_case , 0 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __magic_name__ : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 23 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' __magic_name__ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __magic_name__ : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 1 ).numpy() , expected.numpy() ) def _UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' __magic_name__ : List[str] = 101 __magic_name__ : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __magic_name__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __magic_name__ : List[str] = compute_token_type_ids(snake_case , snake_case ) np.testing.assert_array_equal(snake_case , snake_case )
147
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def A__ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.dummy_uncond_unet UpperCamelCase = ScoreSdeVeScheduler() UpperCamelCase = ScoreSdeVePipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) sde_ve.to(_SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_SCREAMING_SNAKE_CASE ).images UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE )[ 0 ] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = """google/ncsnpp-church-256""" UpperCamelCase = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ScoreSdeVePipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) sde_ve.to(_SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=_SCREAMING_SNAKE_CASE ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
301
'''simple docstring''' import math import sys def lowercase__ ( __UpperCamelCase )-> int: if number != int(__UpperCamelCase ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 UpperCamelCase = [-1] * (number + 1) UpperCamelCase = 0 for i in range(1 , number + 1 ): UpperCamelCase = sys.maxsize UpperCamelCase = int(math.sqrt(__UpperCamelCase ) ) for j in range(1 , root + 1 ): UpperCamelCase = 1 + answers[i - (j**2)] UpperCamelCase = min(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
301
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ : str = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Union[str, Any] = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __magic_name__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A__ ( A_ , A_ , A_ , A_ , A_ , A_ ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: _lowercase = ksize + 1 _lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A_ ): for x in range(A_ ): # distance from center _lowercase = x - ksize // 2 _lowercase = y - ksize // 2 # degree to radiant _lowercase = theta / 180 * np.pi _lowercase = np.cos(_theta ) _lowercase = np.sin(_theta ) # get kernel x _lowercase = cos_theta * px + sin_theta * py # get kernel y _lowercase = -sin_theta * px + cos_theta * py # fill kernel _lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ : List[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ : int = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ : int = out / out.max() * 255 __magic_name__ : str = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
602
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' def decorator(__UpperCamelCase : Union[str, Any] ): __lowercase = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator def lowercase__ ( *__UpperCamelCase : List[str] ): '''simple docstring''' def decorator(__UpperCamelCase : List[str] ): __lowercase = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator class lowerCamelCase__( snake_case_ ): def __new__( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = super().__new__(cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not hasattr(__UpperCAmelCase , """key_handler""" ): setattr(__UpperCAmelCase , """key_handler""" , {} ) setattr(__UpperCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowercase = getattr(__UpperCAmelCase , """handle_key""" , [] ) for key in handled_keys: __lowercase = value return new_cls @staticmethod def __magic_name__ ( cls ): """simple docstring""" __lowercase = get_character() if char != KEYMAP["undefined"]: __lowercase = ord(__UpperCAmelCase ) __lowercase = cls.key_handler.get(__UpperCAmelCase ) if handler: __lowercase = char return handler(cls ) else: return None def lowercase__ ( cls : Union[str, Any] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
566
'''simple docstring''' def lowercase__ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ): '''simple docstring''' __lowercase = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
1
from __future__ import annotations def snake_case (__lowercase ) -> list[int]: '''simple docstring''' _snake_case : Optional[int] = [True] * limit _snake_case : Optional[int] = False _snake_case : Tuple = False _snake_case : Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _snake_case : Optional[int] = i * 2 while index < limit: _snake_case : Any = False _snake_case : List[str] = index + i _snake_case : List[Any] = [2] for i in range(3 , __lowercase , 2 ): if is_prime[i]: primes.append(__lowercase ) return primes def snake_case (__lowercase = 1_000_000 ) -> int: '''simple docstring''' _snake_case : str = prime_sieve(__lowercase ) _snake_case : Union[str, Any] = 0 _snake_case : Optional[int] = 0 for i in range(len(__lowercase ) ): for j in range(i + length , len(__lowercase ) ): _snake_case : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _snake_case : List[Any] = j - i _snake_case : Tuple = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
580
from math import pi def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
580
1
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _SCREAMING_SNAKE_CASE ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1.0 , lowerCamelCase__ = None , ) -> Tuple: super().__init__() lowercase__ : int = initial_learning_rate lowercase__ : Any = warmup_steps lowercase__ : Tuple = power lowercase__ : str = decay_schedule_fn lowercase__ : str = name def __call__( self , lowerCamelCase__ ) -> Any: with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase__ : Optional[Any] = tf.cast(lowerCamelCase__ , tf.floataa ) lowercase__ : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowercase__ : Optional[int] = global_step_float / warmup_steps_float lowercase__ : str = self.initial_learning_rate * tf.math.pow(lowerCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase__ , ) def UpperCAmelCase__( self ) -> List[str]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : int = 0.0 , lowerCamelCase__ : Any = 0.9 , lowerCamelCase__ : Optional[int] = 0.999 , lowerCamelCase__ : Tuple = 1E-8 , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : Optional[Any] = None , lowerCamelCase__ : List[str] = 0.0 , lowerCamelCase__ : List[str] = 1.0 , lowerCamelCase__ : Dict = None , ): lowercase__ : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase__ , ) if num_warmup_steps: lowercase__ : Tuple = WarmUp( initial_learning_rate=lowercase__ , decay_schedule_fn=lowercase__ , warmup_steps=lowercase__ , ) if weight_decay_rate > 0.0: lowercase__ : Any = AdamWeightDecay( learning_rate=lowercase__ , weight_decay_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowercase__ , ) else: lowercase__ : int = tf.keras.optimizers.Adam( learning_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" def __init__( self , lowerCamelCase__ = 0.001 , lowerCamelCase__ = 0.9 , lowerCamelCase__ = 0.999 , lowerCamelCase__ = 1E-7 , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "AdamWeightDecay" , **lowerCamelCase__ , ) -> int: super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) lowercase__ : Optional[int] = weight_decay_rate lowercase__ : Any = include_in_weight_decay lowercase__ : List[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase__( cls , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Optional[int] = {"""WarmUp""": WarmUp} return super(lowerCamelCase__ , cls ).from_config(lowerCamelCase__ , custom_objects=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: super(lowerCamelCase__ , self )._prepare_local(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: lowercase__ : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ) -> Optional[int]: lowercase__ , lowercase__ : List[str] = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__ , self ).apply_gradients(zip(lowerCamelCase__ , lowerCamelCase__ ) , name=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase__ : int = apply_state or {} lowercase__ : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase__ : Dict = self._fallback_apply_state(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: lowercase__ , lowercase__ : int = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) lowercase__ : Tuple = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_dense(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) lowercase__ : Dict = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_sparse(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return False return True class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" def __init__( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = [] lowercase__ : int = None @property def UpperCAmelCase__( self ) -> Dict: if self._accum_steps is None: lowercase__ : Optional[int] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase__( self ) -> List[Any]: if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowerCamelCase__ ) -> str: if not self._gradients: lowercase__ : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients , lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def UpperCAmelCase__( self ) -> Optional[Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
200
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
0
# Algorithm for the pigeonhole sorting def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE = 0 for count in range(UpperCAmelCase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE = count + min_val i += 1 def __lowerCamelCase (): SCREAMING_SNAKE_CASE = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCAmelCase__ ) print("Sorted order is:" , " ".join(UpperCAmelCase__ ) ) if __name__ == "__main__": main()
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[int] = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
647
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=1000 , _SCREAMING_SNAKE_CASE=[3, 3, 6, 4] , _SCREAMING_SNAKE_CASE=[48, 56, 112, 220] , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = num_labels _UpperCAmelCase = image_size _UpperCAmelCase = layer_depths _UpperCAmelCase = embed_dims def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_SCREAMING_SNAKE_CASE , layer_scale_init_value=1e-5 , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = SwiftFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = self.prepare_config_and_inputs() _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _a : List[str] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) _a : str = False _a : Union[str, Any] = False _a : Optional[Any] = False _a : Dict = False _a : int = False def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = SwiftFormerModelTester(self ) _UpperCAmelCase = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self ) -> int: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwiftFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 8 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" def _config_zero_init(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = copy.deepcopy(_SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1e-1_0 ) if isinstance(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = _config_zero_init(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return configs_no_init _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" pass def lowerCAmelCase__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
618
import math import qiskit def lowerCAmelCase__ ( a__: int = 1 , a__: int = 1 , a__: int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(a__ , a__ ) or isinstance(a__ , a__ ) or isinstance(a__ , a__ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers _UpperCAmelCase = qiskit.QuantumRegister(4 , 'qr' ) _UpperCAmelCase = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries _UpperCAmelCase = [input_a, input_a, carry_in] _UpperCAmelCase = qiskit.QuantumCircuit(a__ , a__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a__ ) # measure the last two qbits _UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) _UpperCAmelCase = qiskit.execute(a__ , a__ , shots=1_0_0_0 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
618
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[Any] ={ '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _lowercase : str =False _lowercase : Optional[Any] =False def A__ ( lowercase: Namespace ) -> Optional[int]: return TrainCommand(lowercase ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]: A : Optional[int] =logging.get_logger('transformers-cli/training' ) A : Dict ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =args.output A : List[str] =args.column_label A : int =args.column_text A : Union[str, Any] =args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) A : Tuple =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Dict =None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) A : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Optional[Any] =args.validation_split A : str =args.train_batch_size A : Any =args.valid_batch_size A : Dict =args.learning_rate A : List[str] =args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
661
0
"""simple docstring""" def lowercase__ ( snake_case_ :int = 4_000_000 ): __UpperCAmelCase = [0, 1] __UpperCAmelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase = 0 for j in range(len(snake_case_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
49
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
1
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ ( lowerCAmelCase__ ): def __init__( self: List[str]): '''simple docstring''' __lowerCAmelCase = [] def _lowercase ( self: Dict, _lowercase: Any, _lowercase: Tuple, _lowercase: Optional[Any], **_lowercase: Any): '''simple docstring''' self.events.append("""on_init_end""") def _lowercase ( self: Tuple, _lowercase: Optional[int], _lowercase: int, _lowercase: Tuple, **_lowercase: List[Any]): '''simple docstring''' self.events.append("""on_train_begin""") def _lowercase ( self: Dict, _lowercase: Tuple, _lowercase: Optional[Any], _lowercase: List[str], **_lowercase: str): '''simple docstring''' self.events.append("""on_train_end""") def _lowercase ( self: int, _lowercase: Union[str, Any], _lowercase: Any, _lowercase: str, **_lowercase: List[str]): '''simple docstring''' self.events.append("""on_epoch_begin""") def _lowercase ( self: List[Any], _lowercase: str, _lowercase: Dict, _lowercase: Optional[Any], **_lowercase: int): '''simple docstring''' self.events.append("""on_epoch_end""") def _lowercase ( self: Optional[Any], _lowercase: List[str], _lowercase: List[Any], _lowercase: Union[str, Any], **_lowercase: Union[str, Any]): '''simple docstring''' self.events.append("""on_step_begin""") def _lowercase ( self: Dict, _lowercase: Dict, _lowercase: Tuple, _lowercase: Any, **_lowercase: str): '''simple docstring''' self.events.append("""on_step_end""") def _lowercase ( self: Union[str, Any], _lowercase: str, _lowercase: List[Any], _lowercase: List[str], **_lowercase: List[str]): '''simple docstring''' self.events.append("""on_evaluate""") def _lowercase ( self: Optional[int], _lowercase: List[Any], _lowercase: List[Any], _lowercase: List[Any], **_lowercase: str): '''simple docstring''' self.events.append("""on_predict""") def _lowercase ( self: str, _lowercase: List[Any], _lowercase: int, _lowercase: Dict, **_lowercase: int): '''simple docstring''' self.events.append("""on_save""") def _lowercase ( self: Any, _lowercase: int, _lowercase: List[Any], _lowercase: List[Any], **_lowercase: List[str]): '''simple docstring''' self.events.append("""on_log""") def _lowercase ( self: Optional[Any], _lowercase: Optional[int], _lowercase: int, _lowercase: int, **_lowercase: Union[str, Any]): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class lowercase_ ( unittest.TestCase ): def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = tempfile.mkdtemp() def _lowercase ( self: Optional[Any]): '''simple docstring''' shutil.rmtree(self.output_dir) def _lowercase ( self: int, _lowercase: List[Any]=0, _lowercase: Optional[int]=0, _lowercase: Optional[Any]=64, _lowercase: Tuple=64, _lowercase: int=None, _lowercase: int=False, **_lowercase: Dict): '''simple docstring''' __lowerCAmelCase = RegressionDataset(length=_lowercase) __lowerCAmelCase = RegressionDataset(length=_lowercase) __lowerCAmelCase = RegressionModelConfig(a=_lowercase, b=_lowercase) __lowerCAmelCase = RegressionPreTrainedModel(_lowercase) __lowerCAmelCase = TrainingArguments(self.output_dir, disable_tqdm=_lowercase, report_to=[], **_lowercase) return Trainer( _lowercase, _lowercase, train_dataset=_lowercase, eval_dataset=_lowercase, callbacks=_lowercase, ) def _lowercase ( self: Any, _lowercase: str, _lowercase: List[str]): '''simple docstring''' self.assertEqual(len(_lowercase), len(_lowercase)) # Order doesn't matter __lowerCAmelCase = sorted(_lowercase, key=lambda _lowercase: cb.__name__ if isinstance(_lowercase, _lowercase) else cb.__class__.__name__) __lowerCAmelCase = sorted(_lowercase, key=lambda _lowercase: cb.__name__ if isinstance(_lowercase, _lowercase) else cb.__class__.__name__) for cba, cba in zip(_lowercase, _lowercase): if isinstance(_lowercase, _lowercase) and isinstance(_lowercase, _lowercase): self.assertEqual(_lowercase, _lowercase) elif isinstance(_lowercase, _lowercase) and not isinstance(_lowercase, _lowercase): self.assertEqual(_lowercase, cba.__class__) elif not isinstance(_lowercase, _lowercase) and isinstance(_lowercase, _lowercase): self.assertEqual(cba.__class__, _lowercase) else: self.assertEqual(_lowercase, _lowercase) def _lowercase ( self: Tuple, _lowercase: Union[str, Any]): '''simple docstring''' __lowerCAmelCase = ["""on_init_end""", """on_train_begin"""] __lowerCAmelCase = 0 __lowerCAmelCase = len(trainer.get_eval_dataloader()) __lowerCAmelCase = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(_lowercase): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowercase ( self: Union[str, Any]): '''simple docstring''' __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) # Callbacks passed at init are added to the default callbacks __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(_lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowerCAmelCase = self.get_trainer(disable_tqdm=_lowercase) __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowerCAmelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_lowercase) expected_callbacks.remove(_lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.pop_callback(_lowercase) self.assertEqual(cb.__class__, _lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) trainer.add_callback(_lowercase) expected_callbacks.insert(0, _lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) # We can also add, pop, or remove by instance __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(_lowercase) expected_callbacks.remove(_lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) __lowerCAmelCase = self.get_trainer() __lowerCAmelCase = trainer.callback_handler.callbacks[0] __lowerCAmelCase = trainer.pop_callback(_lowercase) self.assertEqual(_lowercase, _lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) trainer.add_callback(_lowercase) expected_callbacks.insert(0, _lowercase) self.check_callbacks_equality(trainer.callback_handler.callbacks, _lowercase) def _lowercase ( self: str): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""", category=_lowercase) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) # Independent log/save/eval __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, evaluation_strategy="""steps""") trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) __lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback], evaluation_strategy="""epoch""") trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) # A bit of everything __lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback], logging_steps=3, save_steps=10, eval_steps=5, evaluation_strategy="""steps""", ) trainer.train() __lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(_lowercase, self.get_expected_events(_lowercase)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: __lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback], ) assert str(_lowercase) in warn_mock.call_args[0][0]
334
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __A : int = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BeitFeatureExtractor"] __A : List[str] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase = (720, 1_280) # Height, Width _lowerCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase = 1 / 100 _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = 250 def _snake_case ( ): _UpperCamelCase , _UpperCamelCase = get_dataset(__snake_case , __snake_case ) for index in range(__snake_case ): _UpperCamelCase = random.sample(range(len(__snake_case ) ) , 4 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = update_image_and_anno( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , filter_scale=__snake_case , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase = random_chars(32 ) _UpperCamelCase = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] _UpperCamelCase = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , __snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _UpperCamelCase = [] for anno in new_annos: _UpperCamelCase = anno[3] - anno[1] _UpperCamelCase = anno[4] - anno[2] _UpperCamelCase = anno[1] + width / 2 _UpperCamelCase = anno[2] + height / 2 _UpperCamelCase = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(__snake_case ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = [] for label_file in glob.glob(os.path.join(__snake_case , '''*.txt''' ) ): _UpperCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__snake_case ) as in_file: _UpperCamelCase = in_file.readlines() _UpperCamelCase = os.path.join(__snake_case , f"""{label_name}.jpg""" ) _UpperCamelCase = [] for obj_list in obj_lists: _UpperCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) _UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2 _UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2 _UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2 _UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 0.0 , ): _UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCamelCase = int(scale_x * output_size[1] ) _UpperCamelCase = int(scale_y * output_size[0] ) _UpperCamelCase = [] _UpperCamelCase = [] for i, index in enumerate(__snake_case ): _UpperCamelCase = all_img_list[index] path_list.append(__snake_case ) _UpperCamelCase = all_annos[index] _UpperCamelCase = cva.imread(__snake_case ) if i == 0: # top-left _UpperCamelCase = cva.resize(__snake_case , (divid_point_x, divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = bbox[1] * scale_x _UpperCamelCase = bbox[2] * scale_y _UpperCamelCase = bbox[3] * scale_x _UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _UpperCamelCase = cva.resize(__snake_case , (output_size[1] - divid_point_x, divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase = bbox[2] * scale_y _UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _UpperCamelCase = cva.resize(__snake_case , (divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = bbox[1] * scale_x _UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase = bbox[3] * scale_x _UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _UpperCamelCase = cva.resize( __snake_case , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _UpperCamelCase = img for bbox in img_annos: _UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _UpperCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _snake_case ( __snake_case ): assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print("DONE ✅")
10
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ): _UpperCamelCase = [] def UpperCamelCase_ ( self : Any , _A : str ): return self.node_position[vertex] def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ): _UpperCamelCase = pos def UpperCamelCase_ ( self : Any , _A : List[str] , _A : int , _A : Optional[Any] , _A : Union[str, Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : int , _A : Optional[int] ): _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , _A ) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , _A ) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(_A , 0 ) def UpperCamelCase_ ( self : int , _A : Tuple , _A : int ): _UpperCamelCase = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCamelCase_ ( self : Any , _A : int , _A : List[str] ): _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def _snake_case ( __snake_case ): _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase = int(input("Enter number of edges: ").strip()) _lowerCAmelCase = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a_( lowercase__ ): """simple docstring""" def __UpperCamelCase ( self : Any) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = 8 # DPR tok SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'dpr_tokenizer') os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) # BART tok SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'bart_tokenizer') os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['vocab_file']) SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase__) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase__)) def __UpperCamelCase ( self : Tuple) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def __UpperCamelCase ( self : int) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer')) def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname) @require_tokenizers def __UpperCamelCase ( self : int) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , 'rag_tokenizer') SCREAMING_SNAKE_CASE = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) SCREAMING_SNAKE_CASE = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(lowerCAmelCase__) rag_tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def __UpperCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained('facebook/rag-token-nq') SCREAMING_SNAKE_CASE = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow def __UpperCamelCase ( self : int) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained('facebook/rag-sequence-nq') SCREAMING_SNAKE_CASE = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__)
259
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def A_ ( ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('-f' ) SCREAMING_SNAKE_CASE = parser.parse_args() return args.f class a_( lowercase__ ): """simple docstring""" def __UpperCamelCase ( self : Optional[Any]) -> None: """simple docstring""" SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(lowerCAmelCase__) def __UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : List[Any]) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(lowerCAmelCase__ , 'argv' , lowerCAmelCase__): SCREAMING_SNAKE_CASE = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.6_66) @slow @require_torch_non_multi_gpu def __UpperCamelCase ( self : Any) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCAmelCase__) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCAmelCase__) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCAmelCase__)
259
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
656
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : Any = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] __A : Optional[int] = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def lowercase ( UpperCamelCase : Tuple ): """simple docstring""" A__ : Union[str, Any] =torch.load(UpperCamelCase , map_location="cpu" ) return sd def lowercase ( UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : int=rename_keys_prefix ): """simple docstring""" A__ : List[str] =OrderedDict() A__ : str =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A__ : Optional[Any] =key for name_pair in rename_keys_prefix: A__ : int =new_key.replace(name_pair[0] , name_pair[1] ) A__ : Dict =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A__ : Optional[int] =new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowercase ( UpperCamelCase : Dict , UpperCamelCase : List[str] ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: A__ : Any ="pretraining" if "vcr" in checkpoint_path: A__ : Union[str, Any] ={"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: A__ : Optional[Any] ={"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: A__ : Optional[int] ={"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: A__ : List[str] ={"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: A__ : Optional[int] ={"visual_embedding_dim": 512} A__ : List[str] ="multichoice" elif "vqa_advanced" in checkpoint_path: A__ : Any ={"visual_embedding_dim": 2048} A__ : str ="vqa_advanced" elif "vqa" in checkpoint_path: A__ : Optional[int] ={"visual_embedding_dim": 2048, "num_labels": 3129} A__ : str ="vqa" elif "nlvr" in checkpoint_path: A__ : str ={ "visual_embedding_dim": 1024, "num_labels": 2, } A__ : Dict ="nlvr" A__ : Union[str, Any] =VisualBertConfig(**UpperCamelCase ) # Load State Dict A__ : int =load_state_dict(UpperCamelCase ) A__ : Tuple =get_new_dict(UpperCamelCase , UpperCamelCase ) if model_type == "pretraining": A__ : str =VisualBertForPreTraining(UpperCamelCase ) elif model_type == "vqa": A__ : Optional[int] =VisualBertForQuestionAnswering(UpperCamelCase ) elif model_type == "nlvr": A__ : Union[str, Any] =VisualBertForVisualReasoning(UpperCamelCase ) elif model_type == "multichoice": A__ : Union[str, Any] =VisualBertForMultipleChoice(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # Save Checkpoints Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") __A : str = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
656
1
"""simple docstring""" def _snake_case ( _snake_case : int ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
505
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger a = get_logger(__name__) a = Path(__file__).parent / '''model_card_template.md''' a = uuida().hex a = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES a = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES a = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def _snake_case ( _snake_case : Union[Dict, str, None] = None ) -> str: '''simple docstring''' _A = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def _snake_case ( _snake_case : str , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ) -> List[Any]: '''simple docstring''' if token is None: _A = HfFolder.get_token() if organization is None: _A = whoami(_snake_case )['name'] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def _snake_case ( _snake_case : Optional[int] , _snake_case : int ) -> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(_snake_case , 'local_rank' ) and args.local_rank not in [-1, 0]: return _A = args.hub_token if hasattr(_snake_case , 'hub_token' ) else None _A = get_full_repo_name(_snake_case , token=_snake_case ) _A = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(_snake_case , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) _A = os.path.join(args.output_dir , 'README.md' ) model_card.save(_snake_case ) def _snake_case ( _snake_case : Optional[str] , _snake_case : Optional[str] = None ) -> Optional[int]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash _A = str(Path(_snake_case ).as_posix() ) _A = re.search(R'snapshots/([^/]+)/' , _snake_case ) if search is None: return None _A = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. a = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) a = os.path.join(hf_cache_home, '''diffusers''') def _snake_case ( _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ) -> None: '''simple docstring''' if new_cache_dir is None: _A = DIFFUSERS_CACHE if old_cache_dir is None: _A = old_diffusers_cache _A = Path(_snake_case ).expanduser() _A = Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _A = new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). a = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): a = 0 else: with open(cache_version_file) as f: try: a = int(f.read()) except ValueError: a = 0 if cache_version < 1: a = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: a = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' '''the directory exists and can be written to.''' ) def _snake_case ( _snake_case : str , _snake_case : Optional[str] = None ) -> str: '''simple docstring''' if variant is not None: _A = weights_name.split('.' ) _A = splits[:-1] + [variant] + splits[-1:] _A = '.'.join(_snake_case ) return weights_name def _snake_case ( _snake_case : Tuple , *, _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Any , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : List[str]=None , ) -> int: '''simple docstring''' _A = str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint _A = os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): _A = os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse('0.20.0' ) ): try: _A = hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.''' , _snake_case , ) try: # 2. Load model file as usual _A = hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' 'this model name. Check the model page at ' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
505
1
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ = 1 / 1_2345 ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 3 while True: _SCREAMING_SNAKE_CASE : Optional[int] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : int = int(SCREAMING_SNAKE_CASE__ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
533
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return "".join(chr(ord(SCREAMING_SNAKE_CASE__ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
533
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class __a( _a ): """simple docstring""" lowerCAmelCase = '''fnet''' def __init__( self ,_SCREAMING_SNAKE_CASE=32_000 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu_new" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,**_SCREAMING_SNAKE_CASE ,) -> Union[str, Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Optional[int] = use_tpu_fourier_optimizations UpperCAmelCase_ : Any = tpu_short_seq_length
710
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Dict = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase_ : int = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase_ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase_ : str = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname ,_SCREAMING_SNAKE_CASE ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) # load decoder from hub UpperCAmelCase_ : str = '''hf-internal-testing/ngram-beam-search-decoder''' def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = self.add_kwargs_tokens_map.copy() kwargs.update(_SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_feature_extractor() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase_ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def a__ ( self ) -> Dict: UpperCAmelCase_ : str = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = floats_list((3, 1_000) ) UpperCAmelCase_ : Any = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : Any = processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = '''This is a test string''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ,_SCREAMING_SNAKE_CASE=(2, 10, 16) ,_SCREAMING_SNAKE_CASE=77 ) -> int: np.random.seed(_SCREAMING_SNAKE_CASE ) return np.random.rand(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : int = self.get_feature_extractor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase_ : Optional[Any] = processor.decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = decoder.decode_beams(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_feature_extractor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase_ : Dict = processor.batch_decode(_SCREAMING_SNAKE_CASE ) else: with get_context(_SCREAMING_SNAKE_CASE ).Pool() as pool: UpperCAmelCase_ : str = processor.batch_decode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.logit_score ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.lm_score ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Any = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 15 UpperCAmelCase_ : Optional[Any] = -20.0 UpperCAmelCase_ : Tuple = -4.0 UpperCAmelCase_ : Union[str, Any] = processor.batch_decode( _SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = decoded_processor_out.text UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : str = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase_ : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase_ : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 2.0 UpperCAmelCase_ : Optional[int] = 5.0 UpperCAmelCase_ : List[Any] = -20.0 UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : str = processor.batch_decode( _SCREAMING_SNAKE_CASE ,alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Tuple = decoded_processor_out.text UpperCAmelCase_ : Optional[Any] = list(_SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : Optional[int] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : Dict = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : Any = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : int = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : List[str] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : List[Any] = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = os.listdir(_SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase_ : Optional[Any] = processor_wavaveca(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : List[str] = processor_auto(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase_ : Any = self._get_dummy_logits() UpperCAmelCase_ : int = processor_wavaveca.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = processor_auto.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Any = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def a__ ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : int = [d[key] for d in offsets] return retrieved_list def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Union[str, Any] = self._get_dummy_logits()[0] UpperCAmelCase_ : Tuple = processor.decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : int = self._get_dummy_logits() UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self ) -> Union[str, Any]: import torch UpperCAmelCase_ : List[str] = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase_ : Tuple = iter(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = next(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase_ : Dict = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase_ : List[str] = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ).logits.cpu().numpy() UpperCAmelCase_ : str = processor.decode(logits[0] ,output_word_offsets=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase_ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase_ : Any = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,output.text ) # output times UpperCAmelCase_ : List[Any] = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''start_time''' ) ) UpperCAmelCase_ : str = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''end_time''' ) ) # fmt: off UpperCAmelCase_ : str = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCAmelCase_ : Optional[int] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) )
300
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 0 _lowercase = False _lowercase = 3.0 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __lowerCamelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE_ : Tuple =GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE_ : Any =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE_ : List[Any] =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[Any] =['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __SCREAMING_SNAKE_CASE = Accelerator(kwargs_handlers=[ddp_scaler]) __SCREAMING_SNAKE_CASE = torch.nn.Linear(100, 200) __SCREAMING_SNAKE_CASE = accelerator.prepare(model) # Check the values changed in kwargs __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
220
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert' __SCREAMING_SNAKE_CASE = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __SCREAMING_SNAKE_CASE = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] =cached_file(__UpperCAmelCase , __UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) ) with open(os.path.join(__UpperCAmelCase , 'refs' , 'main' ) ) as f: SCREAMING_SNAKE_CASE_ : int =f.read() self.assertEqual(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'snapshots' , __UpperCAmelCase , __UpperCAmelCase ) ) self.assertTrue(os.path.isfile(__UpperCAmelCase ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE_ : Optional[int] =cached_file(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE_ : Optional[int] =cached_file(__UpperCAmelCase , __UpperCAmelCase , revision='9b8c223' ) self.assertEqual(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'snapshots' , __UpperCAmelCase , __UpperCAmelCase ) ) def __lowerCamelCase ( self ): with self.assertRaisesRegex(__UpperCAmelCase , 'is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ : Dict =cached_file('tiny-random-bert' , __UpperCAmelCase ) with self.assertRaisesRegex(__UpperCAmelCase , 'is not a valid git identifier' ): SCREAMING_SNAKE_CASE_ : List[Any] =cached_file(__UpperCAmelCase , __UpperCAmelCase , revision='aaaa' ) with self.assertRaisesRegex(__UpperCAmelCase , 'does not appear to have a file named' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =cached_file(__UpperCAmelCase , 'conf' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex(__UpperCAmelCase , 'does not appear to have a file named' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =cached_file(__UpperCAmelCase , 'conf' ) with open(os.path.join(__UpperCAmelCase , 'refs' , 'main' ) ) as f: SCREAMING_SNAKE_CASE_ : Any =f.read() self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , '.no_exist' , __UpperCAmelCase , 'conf' ) ) ) SCREAMING_SNAKE_CASE_ : str =cached_file(__UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=__UpperCAmelCase ) self.assertIsNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =cached_file(__UpperCAmelCase , 'conf' , local_files_only=__UpperCAmelCase , _raise_exceptions_for_missing_entries=__UpperCAmelCase ) self.assertIsNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =mock.Mock() SCREAMING_SNAKE_CASE_ : List[str] =500 SCREAMING_SNAKE_CASE_ : Tuple ={} SCREAMING_SNAKE_CASE_ : str =HTTPError SCREAMING_SNAKE_CASE_ : Optional[int] ={} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__UpperCAmelCase ) as mock_head: SCREAMING_SNAKE_CASE_ : Union[str, Any] =cached_file(__UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=__UpperCAmelCase ) self.assertIsNone(__UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , __UpperCAmelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __UpperCAmelCase ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , __UpperCAmelCase ) ) def __lowerCamelCase ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__UpperCAmelCase , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , __UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__UpperCAmelCase , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , __UpperCAmelCase , revision='ahaha' ) SCREAMING_SNAKE_CASE_ : Tuple =get_file_from_repo('bert-base-cased' , __UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE_ : List[str] =json.loads(open(__UpperCAmelCase , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : int =Path(__UpperCAmelCase ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(__UpperCAmelCase , 'a.txt' ) , str(__UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(__UpperCAmelCase , 'b.txt' ) )
220
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase =params __UpperCAmelCase =np.array(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =np.array([len(__SCREAMING_SNAKE_CASE ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : int , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: return (self.token_ids[index], self.lengths[index]) def __len__( self : int ) -> Optional[Any]: return len(self.lengths ) def _a ( self : Dict ) -> List[str]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _a ( self : List[Any] ) -> List[Any]: __UpperCAmelCase =self.params.max_model_input_size __UpperCAmelCase =self.lengths > max_len logger.info(f'''Splitting {sum(__SCREAMING_SNAKE_CASE )} too long sequences.''' ) def divide_chunks(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ): return [l[i : i + n] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )] __UpperCAmelCase =[] __UpperCAmelCase =[] if self.params.mlm: __UpperCAmelCase , __UpperCAmelCase =self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __UpperCAmelCase , __UpperCAmelCase =self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCAmelCase =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCAmelCase =np.insert(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE ) if sub_s[-1] != sep_id: __UpperCAmelCase =np.insert(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__SCREAMING_SNAKE_CASE ) new_tok_ids.extend(__SCREAMING_SNAKE_CASE ) new_lengths.extend([len(__SCREAMING_SNAKE_CASE ) for l in sub_seqs] ) __UpperCAmelCase =np.array(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =np.array(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase =len(self ) __UpperCAmelCase =self.lengths > 11 __UpperCAmelCase =self.token_ids[indices] __UpperCAmelCase =self.lengths[indices] __UpperCAmelCase =len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _a ( self : int ) -> Any: if "unk_token" not in self.params.special_tok_ids: return else: __UpperCAmelCase =self.params.special_tok_ids["""unk_token"""] __UpperCAmelCase =len(self ) __UpperCAmelCase =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCAmelCase =(unk_occs / self.lengths) < 0.5 __UpperCAmelCase =self.token_ids[indices] __UpperCAmelCase =self.lengths[indices] __UpperCAmelCase =len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _a ( self : Any ) -> Tuple: if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: __UpperCAmelCase =[t[0] for t in batch] __UpperCAmelCase =[t[1] for t in batch] assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) # Max for paddings __UpperCAmelCase =max(__SCREAMING_SNAKE_CASE ) # Pad token ids if self.params.mlm: __UpperCAmelCase =self.params.special_tok_ids["""pad_token"""] else: __UpperCAmelCase =self.params.special_tok_ids["""unk_token"""] __UpperCAmelCase =[list(t.astype(__SCREAMING_SNAKE_CASE ) ) + [pad_idx] * (max_seq_len_ - len(__SCREAMING_SNAKE_CASE )) for t in token_ids] assert len(tk_ ) == len(__SCREAMING_SNAKE_CASE ) assert all(len(__SCREAMING_SNAKE_CASE ) == max_seq_len_ for t in tk_ ) __UpperCAmelCase =torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCAmelCase =torch.tensor(__SCREAMING_SNAKE_CASE ) # (bs) return tk_t, lg_t
68
def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __UpperCAmelCase ( )-> None: """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
604
0
import os import sys import unittest UpperCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__ = os.path.join(git_repo_path, '''src''', '''transformers''') UpperCamelCase__ = ''' {0} = None ''' UpperCamelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' UpperCamelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class __lowercase ( unittest.TestCase ): def __magic_name__ ( self : List[Any] ): a_ = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowercase__ ) a_ = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowercase__ , '''tokenizers''' ) a_ = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowercase__ , '''tensorflow_text''' ) a_ = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers''' ) a_ = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowercase__ , '''sentencepiece_and_tensorflow_text''' ) a_ = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__ ( self : str ): a_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowercase__ ) self.assertIn('''tensorflow_text''' , lowercase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowercase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__ ( self : Optional[int] ): a_ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowercase__ , '''\nCONSTANT = None\n''' ) a_ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowercase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) a_ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' a_ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowercase__ , lowercase__ ) def __magic_name__ ( self : Optional[Any] ): a_ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' a_ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowercase__ )
702
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCamelCase__ = HUGGINGFACE_HUB_CACHE UpperCamelCase__ = '''config.json''' UpperCamelCase__ = '''diffusion_pytorch_model.bin''' UpperCamelCase__ = '''diffusion_flax_model.msgpack''' UpperCamelCase__ = '''model.onnx''' UpperCamelCase__ = '''diffusion_pytorch_model.safetensors''' UpperCamelCase__ = '''weights.pb''' UpperCamelCase__ = '''https://huggingface.co''' UpperCamelCase__ = default_cache_path UpperCamelCase__ = '''diffusers_modules''' UpperCamelCase__ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) UpperCamelCase__ = ['''fp16''', '''non-ema'''] UpperCamelCase__ = '''.self_attn'''
143
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( __UpperCamelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Tuple: _UpperCAmelCase : Union[str, Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = StableDiffusionLatentUpscalePipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } _lowercase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase = frozenset([] ) _lowercase = True @property def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Dict = (16, 16) _UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=A_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=A_ , only_cross_attention=A_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) _UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) _UpperCAmelCase : Union[str, Any] = EulerDiscreteScheduler(prediction_type="sample" ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="quick_gelu" , projection_dim=512 , ) _UpperCAmelCase : Optional[Any] = CLIPTextModel(A_ ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : List[Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _UpperCAmelCase ( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(A_ ) else: _UpperCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCAmelCase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "cpu" _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Any = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = self.get_dummy_inputs(A_ ) _UpperCAmelCase : Optional[Any] = pipe(**A_ ).images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCAmelCase : List[str] = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) _UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ , 1e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : Any = self.pipeline_class(**A_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : Tuple = self.get_dummy_inputs(A_ ) _UpperCAmelCase : List[Any] = 2 _UpperCAmelCase : Union[str, Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase : List[Any] = getattr(A_ , scheduler_enum.name ) _UpperCAmelCase : int = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCAmelCase : Tuple = pipe(**A_ )[0] outputs.append(A_ ) assert check_same_shape(A_ ) @require_torch_gpu @slow class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) _UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) _UpperCAmelCase : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _UpperCAmelCase : List[str] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" _UpperCAmelCase : int = pipe(A_ , generator=A_ , output_type="latent" ).images _UpperCAmelCase : List[Any] = upscaler( prompt=A_ , image=A_ , num_inference_steps=20 , guidance_scale=0 , generator=A_ , output_type="np" , ).images[0] _UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = torch.manual_seed(33 ) _UpperCAmelCase : str = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _UpperCAmelCase : str = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) _UpperCAmelCase : int = upscaler( prompt=A_ , image=A_ , num_inference_steps=20 , guidance_scale=0 , generator=A_ , output_type="np" , ).images[0] _UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
467
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: Any=None , **lowerCAmelCase: Any ) -> Dict: _UpperCAmelCase : Optional[Any] = [x.strip() for x in open(lowerCAmelCase ).readlines()] _UpperCAmelCase : str = [x.strip() for x in open(lowerCAmelCase ).readlines()][: len(lowerCAmelCase )] _UpperCAmelCase : str = calculate_rouge(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) if save_path is not None: save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
467
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase : List[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Optional[Any] = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCamelCase_ ( ) -> Union[str, Any]: a__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) a__ : Dict = bs[:] a__ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(__a ) cs.append(2**8 + n ) n += 1 a__ : Any = [chr(__a ) for n in cs] return dict(zip(__a , __a ) ) def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = set() a__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ : Dict = char return pairs class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict="replace" , lowerCamelCase__ : int="<s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="</s>" , lowerCamelCase__ : Dict="<s>" , lowerCamelCase__ : Union[str, Any]="<unk>" , lowerCamelCase__ : Optional[int]="<pad>" , lowerCamelCase__ : Dict="<mask>" , lowerCamelCase__ : Optional[int]=False , **lowerCamelCase__ : int , ): a__ : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token a__ : List[str] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token a__ : Dict = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token a__ : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token a__ : Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token a__ : Tuple = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: a__ : List[str] = json.load(lowerCamelCase__ ) a__ : List[str] = {v: k for k, v in self.encoder.items()} a__ : int = errors # how to handle errors in decoding a__ : List[str] = bytes_to_unicode() a__ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding="utf-8" ) as merges_handle: a__ : List[str] = merges_handle.read().split("\n" )[1:-1] a__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] a__ : Tuple = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Union[str, Any] = {} a__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCamelCase( self : Dict ): return len(self.encoder ) def _UpperCamelCase( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ): if token in self.cache: return self.cache[token] a__ : str = tuple(lowerCamelCase__ ) a__ : Dict = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: a__ : List[str] = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a__, a__ : Union[str, Any] = bigram a__ : Any = [] a__ : Union[str, Any] = 0 while i < len(lowerCamelCase__ ): try: a__ : Dict = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : List[str] = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : Tuple = tuple(lowerCamelCase__ ) a__ : Union[str, Any] = new_word if len(lowerCamelCase__ ) == 1: break else: a__ : str = get_pairs(lowerCamelCase__ ) a__ : Union[str, Any] = " ".join(lowerCamelCase__ ) a__ : Union[str, Any] = word return word def _UpperCamelCase( self : int , lowerCamelCase__ : Tuple ): a__ : Optional[int] = [] for token in re.findall(self.pat , lowerCamelCase__ ): a__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(" " ) ) return bpe_tokens def _UpperCamelCase( self : Tuple , lowerCamelCase__ : Any ): return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ): return self.decoder.get(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Any ): a__ : Optional[Any] = "".join(lowerCamelCase__ ) a__ : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Dict = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a__ : List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + "\n" ) a__ : Dict = 0 with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) a__ : List[Any] = token_index writer.write(" ".join(lowerCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : str = [self.cls_token_id] a__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def _UpperCamelCase( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : int = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int]=False , **lowerCamelCase__ : List[Any] ): a__ : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): a__ : List[Any] = " " + text return (text, kwargs) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : Dict = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : int = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : int = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Dict = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
437
0
def a_ ( _A = 600851475143 ) -> int: """simple docstring""" try: snake_case__ = int(_A ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) snake_case__ = 1 snake_case__ = 2 while i * i <= n: while n % i == 0: snake_case__ = i n //= i i += 1 if n > 1: snake_case__ = n return int(_A ) if __name__ == "__main__": print(f'''{solution() = }''')
702
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase : Optional[Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Path , UpperCamelCase: Union[str, None] = None , UpperCamelCase: Union[List[str], None] = None , UpperCamelCase: Union[str, List[str], None] = None , UpperCamelCase: bool = True , ) -> int: snake_case__ = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )] if identifier is not None: snake_case__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase , UpperCamelCase ): for n_ in n_identifier: snake_case__ = [file for file in files if n_ not in file] else: snake_case__ = [file for file in files if n_identifier not in file] snake_case__ = ignore_files or [] ignore_files.append('__init__.py' ) snake_case__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase ) if only_modules: snake_case__ = file.split('.' )[0] try: snake_case__ = getattr(UpperCamelCase , UpperCamelCase ) snake_case__ = doctest.DocTestSuite(UpperCamelCase ) snake_case__ = unittest.TextTestRunner().run(UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: snake_case__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase_ ( self: Tuple ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'modeling' snake_case__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = Path('src/transformers' ) snake_case__ = 'tokenization' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'configuration' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = Path('src/transformers' ) snake_case__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple ) -> Union[str, Any]: snake_case__ = Path('docs/source' ) snake_case__ = ['favicon.ico'] self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
372
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def _UpperCamelCase ( ) -> Generator[int, None, None]: '''simple docstring''' snake_case : Dict = {} snake_case : Optional[Any] = 2 while True: snake_case : Union[str, Any] = factor_map.pop(_UpperCAmelCase , _UpperCAmelCase ) if factor: snake_case : List[str] = factor + prime while x in factor_map: x += factor snake_case : Union[str, Any] = factor else: snake_case : Any = prime yield prime prime += 1 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 1E1_0 ) -> int: '''simple docstring''' snake_case : str = sieve() snake_case : str = 1 while True: snake_case : Optional[int] = next(_UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
638
from math import pi, sqrt, tan def UpperCAmelCase_ ( _UpperCAmelCase :float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_ ( _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_ ( _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) A_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(_UpperCAmelCase , 2 ) * torus_radius * tube_radius def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_ ( _UpperCAmelCase :float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) A_ = (sidea + sidea + sidea) / 2 A_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_ ( _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_ ( _UpperCAmelCase :float , _UpperCAmelCase :float ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_ ( _UpperCAmelCase :int , _UpperCAmelCase :float ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
188
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _UpperCAmelCase ( self , a=0 ) -> Optional[Any]: lowercase__ : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(a ) ) lowercase__ : List[Any] = np.random.RandomState(a ) lowercase__ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = self.get_dummy_inputs() lowercase__ : Optional[Any] = pipe(**a ).images lowercase__ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[Any] = self.get_dummy_inputs() lowercase__ : str = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Union[str, Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> str: lowercase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations lowercase__ : str = pipe(**self.get_dummy_inputs() ) lowercase__ : Optional[int] = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : str = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : List[str] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = self.get_dummy_inputs() lowercase__ : int = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[Any] = self.get_dummy_inputs() lowercase__ : Tuple = pipe(**a ).images lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowercase__ : List[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def _UpperCAmelCase ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Any: lowercase__ : Tuple = ort.SessionOptions() lowercase__ : List[Any] = False return options def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default lowercase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = 'A fantasy landscape, trending on artstation' lowercase__ : int = np.random.RandomState(0 ) lowercase__ : str = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=a , output_type='np' , ) lowercase__ : List[str] = output.images lowercase__ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : Optional[Any] = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) lowercase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowercase__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = 'A fantasy landscape, trending on artstation' lowercase__ : Any = np.random.RandomState(0 ) lowercase__ : Optional[int] = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=a , output_type='np' , ) lowercase__ : str = output.images lowercase__ : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowercase__ : List[str] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
708
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : @staticmethod def _UpperCAmelCase ( *a , **a ) -> int: pass def a_ ( _lowerCAmelCase : Image ): '''simple docstring''' lowercase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Union[str, Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , a , a ) -> Optional[int]: lowercase__ : Tuple = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , a ) import datasets lowercase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowercase__ : List[Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Tuple = 'Intel/dpt-large' lowercase__ : Optional[int] = pipeline('depth-estimation' , model=a ) lowercase__ : List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowercase__ : Optional[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
645
0