source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, output_model_type):
logger().info('Generating initial model for BHMM using MLHMM...')
from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator
mlhmm = MaximumLikelihoodEstimator(self.observations, self.nstates,
reversible=self.reversible, output=output_model_type)
model = mlhmm.fit()
return model
|
generateInitialModel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output_model_type):\n logger().info('Generating initial model for BHMM using MLHMM...')\n from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator\n mlhmm = MaximumLikelihoodEstimator(self.observations, self.nstates,\n reversible=self.reversible, output=output_model_type)\n model = mlhmm.fit()\n return model\n",
"role": "user"
},
{
"content": "generateInitialModel",
"role": "assistant"
}
] |
def x(dtraj):
if is_int_vector(dtraj):
return dtraj
elif is_list_of_int(dtraj):
return np.array(dtraj, dtype=int)
else:
raise TypeError(
'Argument dtraj is not a discrete trajectory - only list of integers or int-ndarrays are allowed. Check type.'
)
|
ensure_dtraj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dtraj):\n if is_int_vector(dtraj):\n return dtraj\n elif is_list_of_int(dtraj):\n return np.array(dtraj, dtype=int)\n else:\n raise TypeError(\n 'Argument dtraj is not a discrete trajectory - only list of integers or int-ndarrays are allowed. Check type.'\n )\n",
"role": "user"
},
{
"content": "ensure_dtraj",
"role": "assistant"
}
] |
def x(dtrajs):
if isinstance(dtrajs, list):
if is_list_of_int(dtrajs):
return [np.array(dtrajs, dtype=int)]
else:
for i in range(len(dtrajs)):
dtrajs[i] = ensure_dtraj(dtrajs[i])
return dtrajs
else:
return [ensure_dtraj(dtrajs)]
|
ensure_dtraj_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dtrajs):\n if isinstance(dtrajs, list):\n if is_list_of_int(dtrajs):\n return [np.array(dtrajs, dtype=int)]\n else:\n for i in range(len(dtrajs)):\n dtrajs[i] = ensure_dtraj(dtrajs[i])\n return dtrajs\n else:\n return [ensure_dtraj(dtrajs)]\n",
"role": "user"
},
{
"content": "ensure_dtraj_list",
"role": "assistant"
}
] |
def x(C, mincount_connectivity=0, strong=True):
import msmtools.estimation as msmest
Cconn = C.copy()
Cconn[np.where(C <= mincount_connectivity)] = 0
S = msmest.connected_sets(Cconn, directed=strong)
return S
|
connected_sets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C, mincount_connectivity=0, strong=True):\n import msmtools.estimation as msmest\n Cconn = C.copy()\n Cconn[np.where(C <= mincount_connectivity)] = 0\n S = msmest.connected_sets(Cconn, directed=strong)\n return S\n",
"role": "user"
},
{
"content": "connected_sets",
"role": "assistant"
}
] |
def x(C, mincount_connectivity=0):
n = np.shape(C)[0]
S = connected_sets(C, mincount_connectivity=mincount_connectivity,
strong=True)
closed = []
for s in S:
mask = np.zeros(n, dtype=bool)
mask[s] = True
if C[np.ix_(mask, ~mask)].sum() == 0:
closed.append(s)
return closed
|
closed_sets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C, mincount_connectivity=0):\n n = np.shape(C)[0]\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=True)\n closed = []\n for s in S:\n mask = np.zeros(n, dtype=bool)\n mask[s] = True\n if C[np.ix_(mask, ~mask)].sum() == 0:\n closed.append(s)\n return closed\n",
"role": "user"
},
{
"content": "closed_sets",
"role": "assistant"
}
] |
def x(C, mincount_connectivity=0):
if mincount_connectivity > 0:
C = C.copy()
C[np.where(C < mincount_connectivity)] = 0
return np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]
|
nonempty_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C, mincount_connectivity=0):\n if mincount_connectivity > 0:\n C = C.copy()\n C[np.where(C < mincount_connectivity)] = 0\n return np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]\n",
"role": "user"
},
{
"content": "nonempty_set",
"role": "assistant"
}
] |
def x(C, reversible=True, fixed_statdist=None, maxiter=1000000, maxerr=
1e-08, mincount_connectivity=0):
import msmtools.estimation as msmest
n = np.shape(C)[0]
P = np.eye(n, dtype=np.float64)
if reversible and fixed_statdist is None:
S = connected_sets(C, mincount_connectivity=mincount_connectivity,
strong=True)
for s in S:
mask = np.zeros(n, dtype=bool)
mask[s] = True
if C[np.ix_(mask, ~mask)].sum() > np.finfo(C.dtype).eps:
transition_matrix_partial_rev(C, P, mask, maxiter=maxiter,
maxerr=maxerr)
else:
I = np.ix_(mask, mask)
if s.size > 1:
P[I] = msmest.transition_matrix(C[I], reversible=True,
warn_not_converged=False, maxiter=maxiter, maxerr=
maxerr)
else:
S = connected_sets(C, mincount_connectivity=mincount_connectivity,
strong=False)
for s in S:
I = np.ix_(s, s)
if not reversible:
Csub = C[I]
zero_rows = np.where(Csub.sum(axis=1) == 0)[0]
Csub[zero_rows, zero_rows] = 1.0
P[I] = msmest.transition_matrix(Csub, reversible=False)
elif reversible and fixed_statdist is not None:
P[I] = msmest.transition_matrix(C[I], reversible=True,
fixed_statdist=fixed_statdist, maxiter=maxiter, maxerr=
maxerr)
else:
raise NotImplementedError(
'Transition estimation for the case reversible=' + str(
reversible) + ' fixed_statdist=' + str(fixed_statdist
is not None) + ' not implemented.')
return P
|
estimate_P
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C, reversible=True, fixed_statdist=None, maxiter=1000000, maxerr=\n 1e-08, mincount_connectivity=0):\n import msmtools.estimation as msmest\n n = np.shape(C)[0]\n P = np.eye(n, dtype=np.float64)\n if reversible and fixed_statdist is None:\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=True)\n for s in S:\n mask = np.zeros(n, dtype=bool)\n mask[s] = True\n if C[np.ix_(mask, ~mask)].sum() > np.finfo(C.dtype).eps:\n transition_matrix_partial_rev(C, P, mask, maxiter=maxiter,\n maxerr=maxerr)\n else:\n I = np.ix_(mask, mask)\n if s.size > 1:\n P[I] = msmest.transition_matrix(C[I], reversible=True,\n warn_not_converged=False, maxiter=maxiter, maxerr=\n maxerr)\n else:\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=False)\n for s in S:\n I = np.ix_(s, s)\n if not reversible:\n Csub = C[I]\n zero_rows = np.where(Csub.sum(axis=1) == 0)[0]\n Csub[zero_rows, zero_rows] = 1.0\n P[I] = msmest.transition_matrix(Csub, reversible=False)\n elif reversible and fixed_statdist is not None:\n P[I] = msmest.transition_matrix(C[I], reversible=True,\n fixed_statdist=fixed_statdist, maxiter=maxiter, maxerr=\n maxerr)\n else:\n raise NotImplementedError(\n 'Transition estimation for the case reversible=' + str(\n reversible) + ' fixed_statdist=' + str(fixed_statdist\n is not None) + ' not implemented.')\n return P\n",
"role": "user"
},
{
"content": "estimate_P",
"role": "assistant"
}
] |
def x(C, P, S, maxiter=1000000, maxerr=1e-08):
assert np.array_equal(C.shape, P.shape)
A = C[S][:, S]
B = C[S][:, ~S]
ATA = A + A.T
countsums = C[S].sum(axis=1)
X = 0.5 * ATA
Y = C[S][:, ~S]
totalsum = X.sum() + Y.sum()
X /= totalsum
Y /= totalsum
rowsums = X.sum(axis=1) + Y.sum(axis=1)
err = 1.0
it = 0
while err > maxerr and it < maxiter:
d = countsums / rowsums
X = ATA / (d[:, None] + d)
Y = B / d[:, None]
totalsum = X.sum() + Y.sum()
X /= totalsum
Y /= totalsum
rowsums_new = X.sum(axis=1) + Y.sum(axis=1)
err = np.max(np.abs(rowsums_new - rowsums))
rowsums = rowsums_new
it += 1
P[np.ix_(S, S)] = X
P[np.ix_(S, ~S)] = Y
P[S] /= P[S].sum(axis=1)[:, None]
|
transition_matrix_partial_rev
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C, P, S, maxiter=1000000, maxerr=1e-08):\n assert np.array_equal(C.shape, P.shape)\n A = C[S][:, S]\n B = C[S][:, ~S]\n ATA = A + A.T\n countsums = C[S].sum(axis=1)\n X = 0.5 * ATA\n Y = C[S][:, ~S]\n totalsum = X.sum() + Y.sum()\n X /= totalsum\n Y /= totalsum\n rowsums = X.sum(axis=1) + Y.sum(axis=1)\n err = 1.0\n it = 0\n while err > maxerr and it < maxiter:\n d = countsums / rowsums\n X = ATA / (d[:, None] + d)\n Y = B / d[:, None]\n totalsum = X.sum() + Y.sum()\n X /= totalsum\n Y /= totalsum\n rowsums_new = X.sum(axis=1) + Y.sum(axis=1)\n err = np.max(np.abs(rowsums_new - rowsums))\n rowsums = rowsums_new\n it += 1\n P[np.ix_(S, S)] = X\n P[np.ix_(S, ~S)] = Y\n P[S] /= P[S].sum(axis=1)[:, None]\n",
"role": "user"
},
{
"content": "transition_matrix_partial_rev",
"role": "assistant"
}
] |
def x(P):
import msmtools.analysis as msmana
n = np.shape(P)[0]
Prev = P.copy()
sets = closed_sets(P)
for s in sets:
I = np.ix_(s, s)
pi_s = msmana.stationary_distribution(P[I])
X_s = pi_s[:, None] * P[I]
X_s = 0.5 * (X_s + X_s.T)
Prev[I] = X_s / X_s.sum(axis=1)[:, None]
return Prev
|
enforce_reversible_on_closed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(P):\n import msmtools.analysis as msmana\n n = np.shape(P)[0]\n Prev = P.copy()\n sets = closed_sets(P)\n for s in sets:\n I = np.ix_(s, s)\n pi_s = msmana.stationary_distribution(P[I])\n X_s = pi_s[:, None] * P[I]\n X_s = 0.5 * (X_s + X_s.T)\n Prev[I] = X_s / X_s.sum(axis=1)[:, None]\n return Prev\n",
"role": "user"
},
{
"content": "enforce_reversible_on_closed",
"role": "assistant"
}
] |
def x(P):
import msmtools.analysis as msmana
sets = connected_sets(P, strong=False)
for s in sets:
Ps = P[s, :][:, s]
if not msmana.is_transition_matrix(Ps):
return False
pi = msmana.stationary_distribution(Ps)
X = pi[:, None] * Ps
if not np.allclose(X, X.T):
return False
return True
|
is_reversible
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(P):\n import msmtools.analysis as msmana\n sets = connected_sets(P, strong=False)\n for s in sets:\n Ps = P[s, :][:, s]\n if not msmana.is_transition_matrix(Ps):\n return False\n pi = msmana.stationary_distribution(Ps)\n X = pi[:, None] * Ps\n if not np.allclose(X, X.T):\n return False\n return True\n",
"role": "user"
},
{
"content": "is_reversible",
"role": "assistant"
}
] |
def x(P, C=None, mincount_connectivity=0):
from msmtools.analysis.dense.stationary_vector import stationary_distribution as msmstatdist
if C is None:
if is_connected(P, strong=True):
return msmstatdist(P)
else:
raise ValueError(
'Computing stationary distribution for disconnected matrix. Need count matrix.'
)
n = np.shape(C)[0]
ctot = np.sum(C)
pi = np.zeros(n)
sets = connected_sets(C, mincount_connectivity=mincount_connectivity,
strong=False)
for s in sets:
w = np.sum(C[s, :]) / ctot
pi[s] = w * msmstatdist(P[s, :][:, s])
pi /= np.sum(pi)
return pi
|
stationary_distribution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(P, C=None, mincount_connectivity=0):\n from msmtools.analysis.dense.stationary_vector import stationary_distribution as msmstatdist\n if C is None:\n if is_connected(P, strong=True):\n return msmstatdist(P)\n else:\n raise ValueError(\n 'Computing stationary distribution for disconnected matrix. Need count matrix.'\n )\n n = np.shape(C)[0]\n ctot = np.sum(C)\n pi = np.zeros(n)\n sets = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=False)\n for s in sets:\n w = np.sum(C[s, :]) / ctot\n pi[s] = w * msmstatdist(P[s, :][:, s])\n pi /= np.sum(pi)\n return pi\n",
"role": "user"
},
{
"content": "stationary_distribution",
"role": "assistant"
}
] |
def x(self):
res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=
config.dtype)
for i in range(self.nsamples):
for j in range(self.nstates):
res[i, j, :] = self._sampled_hmms[i].means[j]
return res
|
means_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=\n config.dtype)\n for i in range(self.nsamples):\n for j in range(self.nstates):\n res[i, j, :] = self._sampled_hmms[i].means[j]\n return res\n",
"role": "user"
},
{
"content": "means_samples",
"role": "assistant"
}
] |
def x(self):
res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=
config.dtype)
for i in range(self.nsamples):
for j in range(self.nstates):
res[i, j, :] = self._sampled_hmms[i].sigmas[j]
return res
|
sigmas_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=\n config.dtype)\n for i in range(self.nsamples):\n for j in range(self.nstates):\n res[i, j, :] = self._sampled_hmms[i].sigmas[j]\n return res\n",
"role": "user"
},
{
"content": "sigmas_samples",
"role": "assistant"
}
] |
def x(observations):
from bhmm.util import types as _types
o1 = _np.array(observations[0])
if _types.is_int_vector(o1):
return 'discrete'
if _np.allclose(o1, _np.round(o1)):
isintegral = True
for i in range(1, len(observations)):
if not _np.allclose(observations[i], _np.round(observations[i])):
isintegral = False
break
if isintegral:
return 'discrete'
if _types.is_float_vector(o1):
return 'gaussian'
raise TypeError(
'Observations is neither sequences of integers nor 1D-sequences of floats. The current versiondoes not support your input.'
)
|
guess_output_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations):\n from bhmm.util import types as _types\n o1 = _np.array(observations[0])\n if _types.is_int_vector(o1):\n return 'discrete'\n if _np.allclose(o1, _np.round(o1)):\n isintegral = True\n for i in range(1, len(observations)):\n if not _np.allclose(observations[i], _np.round(observations[i])):\n isintegral = False\n break\n if isintegral:\n return 'discrete'\n if _types.is_float_vector(o1):\n return 'gaussian'\n raise TypeError(\n 'Observations is neither sequences of integers nor 1D-sequences of floats. The current versiondoes not support your input.'\n )\n",
"role": "user"
},
{
"content": "guess_output_type",
"role": "assistant"
}
] |
def x(observations, lag, stride=1):
obsnew = []
for obs in observations:
for shift in range(0, lag, stride):
obs_lagged = obs[shift:][::lag]
if len(obs_lagged) > 1:
obsnew.append(obs_lagged)
return obsnew
|
lag_observations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, lag, stride=1):\n obsnew = []\n for obs in observations:\n for shift in range(0, lag, stride):\n obs_lagged = obs[shift:][::lag]\n if len(obs_lagged) > 1:\n obsnew.append(obs_lagged)\n return obsnew\n",
"role": "user"
},
{
"content": "lag_observations",
"role": "assistant"
}
] |
def x(pi, P, means, sigmas):
from bhmm.hmm.gaussian_hmm import GaussianHMM
from bhmm.output_models.gaussian import GaussianOutputModel
nstates = _np.array(P).shape[0]
output_model = GaussianOutputModel(nstates, means, sigmas)
from bhmm.hmm.generic_hmm import HMM as _HMM
ghmm = _HMM(pi, P, output_model)
ghmm = GaussianHMM(ghmm)
return ghmm
|
gaussian_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pi, P, means, sigmas):\n from bhmm.hmm.gaussian_hmm import GaussianHMM\n from bhmm.output_models.gaussian import GaussianOutputModel\n nstates = _np.array(P).shape[0]\n output_model = GaussianOutputModel(nstates, means, sigmas)\n from bhmm.hmm.generic_hmm import HMM as _HMM\n ghmm = _HMM(pi, P, output_model)\n ghmm = GaussianHMM(ghmm)\n return ghmm\n",
"role": "user"
},
{
"content": "gaussian_hmm",
"role": "assistant"
}
] |
def x(pi, P, pout):
from bhmm.hmm.discrete_hmm import DiscreteHMM
from bhmm.output_models.discrete import DiscreteOutputModel
output_model = DiscreteOutputModel(pout)
from bhmm.hmm.generic_hmm import HMM as _HMM
dhmm = _HMM(pi, P, output_model)
dhmm = DiscreteHMM(dhmm)
return dhmm
|
discrete_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pi, P, pout):\n from bhmm.hmm.discrete_hmm import DiscreteHMM\n from bhmm.output_models.discrete import DiscreteOutputModel\n output_model = DiscreteOutputModel(pout)\n from bhmm.hmm.generic_hmm import HMM as _HMM\n dhmm = _HMM(pi, P, output_model)\n dhmm = DiscreteHMM(dhmm)\n return dhmm\n",
"role": "user"
},
{
"content": "discrete_hmm",
"role": "assistant"
}
] |
def x(observations, nstates, lag=1, output=None, reversible=True):
if output is None:
output = _guess_output_type(observations)
if output == 'discrete':
return init_discrete_hmm(observations, nstates, lag=lag, reversible
=reversible)
elif output == 'gaussian':
return init_gaussian_hmm(observations, nstates, lag=lag, reversible
=reversible)
else:
raise NotImplementedError('output model type ' + str(output) +
' not yet implemented.')
|
init_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, nstates, lag=1, output=None, reversible=True):\n if output is None:\n output = _guess_output_type(observations)\n if output == 'discrete':\n return init_discrete_hmm(observations, nstates, lag=lag, reversible\n =reversible)\n elif output == 'gaussian':\n return init_gaussian_hmm(observations, nstates, lag=lag, reversible\n =reversible)\n else:\n raise NotImplementedError('output model type ' + str(output) +\n ' not yet implemented.')\n",
"role": "user"
},
{
"content": "init_hmm",
"role": "assistant"
}
] |
def x(observations, nstates, lag=1, reversible=True):
from bhmm.init import gaussian
if lag > 1:
observations = lag_observations(observations, lag)
hmm0 = gaussian.init_model_gaussian1d(observations, nstates, reversible
=reversible)
hmm0._lag = lag
return hmm0
|
init_gaussian_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, nstates, lag=1, reversible=True):\n from bhmm.init import gaussian\n if lag > 1:\n observations = lag_observations(observations, lag)\n hmm0 = gaussian.init_model_gaussian1d(observations, nstates, reversible\n =reversible)\n hmm0._lag = lag\n return hmm0\n",
"role": "user"
},
{
"content": "init_gaussian_hmm",
"role": "assistant"
}
] |
def x(observations, nstates, lag=1, reversible=True, stationary=True,
regularize=True, method='connect-spectral', separate=None):
import msmtools.estimation as msmest
from bhmm.init.discrete import init_discrete_hmm_spectral
C = msmest.count_matrix(observations, lag).toarray()
if regularize:
eps_A = None
eps_B = None
else:
eps_A = 0
eps_B = 0
if not stationary:
raise NotImplementedError(
'Discrete-HMM initialization with stationary=False is not yet implemented.'
)
if method == 'lcs-spectral':
lcs = msmest.largest_connected_set(C)
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=
reversible, stationary=stationary, active_set=lcs, separate=
separate, eps_A=eps_A, eps_B=eps_B)
elif method == 'connect-spectral':
C += msmest.prior_neighbor(C, 0.001)
nonempty = _np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]
C[nonempty, nonempty] = _np.maximum(C[nonempty, nonempty], 0.001)
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=
reversible, stationary=stationary, active_set=nonempty,
separate=separate, eps_A=eps_A, eps_B=eps_B)
elif method == 'spectral':
p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=
reversible, stationary=stationary, active_set=None, separate=
separate, eps_A=eps_A, eps_B=eps_B)
else:
raise NotImplementedError(
'Unknown discrete-HMM initialization method ' + str(method))
hmm0 = discrete_hmm(p0, P, B)
hmm0._lag = lag
return hmm0
|
init_discrete_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, nstates, lag=1, reversible=True, stationary=True,\n regularize=True, method='connect-spectral', separate=None):\n import msmtools.estimation as msmest\n from bhmm.init.discrete import init_discrete_hmm_spectral\n C = msmest.count_matrix(observations, lag).toarray()\n if regularize:\n eps_A = None\n eps_B = None\n else:\n eps_A = 0\n eps_B = 0\n if not stationary:\n raise NotImplementedError(\n 'Discrete-HMM initialization with stationary=False is not yet implemented.'\n )\n if method == 'lcs-spectral':\n lcs = msmest.largest_connected_set(C)\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=lcs, separate=\n separate, eps_A=eps_A, eps_B=eps_B)\n elif method == 'connect-spectral':\n C += msmest.prior_neighbor(C, 0.001)\n nonempty = _np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]\n C[nonempty, nonempty] = _np.maximum(C[nonempty, nonempty], 0.001)\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=nonempty,\n separate=separate, eps_A=eps_A, eps_B=eps_B)\n elif method == 'spectral':\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=None, separate=\n separate, eps_A=eps_A, eps_B=eps_B)\n else:\n raise NotImplementedError(\n 'Unknown discrete-HMM initialization method ' + str(method))\n hmm0 = discrete_hmm(p0, P, B)\n hmm0._lag = lag\n return hmm0\n",
"role": "user"
},
{
"content": "init_discrete_hmm",
"role": "assistant"
}
] |
def x(observations, nstates, lag=1, initial_model=None, output=None,
reversible=True, stationary=False, p=None, accuracy=0.001, maxit=1000,
maxit_P=100000, mincount_connectivity=0.01):
if output is None:
output = _guess_output_type(observations)
if lag > 1:
observations = lag_observations(observations, lag)
from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator as _MaximumLikelihoodEstimator
est = _MaximumLikelihoodEstimator(observations, nstates, initial_model=
initial_model, output=output, reversible=reversible, stationary=
stationary, p=p, accuracy=accuracy, maxit=maxit, maxit_P=maxit_P)
est.fit()
est.hmm._lag = lag
return est.hmm
|
estimate_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, nstates, lag=1, initial_model=None, output=None,\n reversible=True, stationary=False, p=None, accuracy=0.001, maxit=1000,\n maxit_P=100000, mincount_connectivity=0.01):\n if output is None:\n output = _guess_output_type(observations)\n if lag > 1:\n observations = lag_observations(observations, lag)\n from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator as _MaximumLikelihoodEstimator\n est = _MaximumLikelihoodEstimator(observations, nstates, initial_model=\n initial_model, output=output, reversible=reversible, stationary=\n stationary, p=p, accuracy=accuracy, maxit=maxit, maxit_P=maxit_P)\n est.fit()\n est.hmm._lag = lag\n return est.hmm\n",
"role": "user"
},
{
"content": "estimate_hmm",
"role": "assistant"
}
] |
def x(observations, estimated_hmm, nsample=100, reversible=True, stationary
=False, p0_prior='mixed', transition_matrix_prior='mixed', store_hidden
=False, call_back=None):
from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as _BHMM
sampler = _BHMM(observations, estimated_hmm.nstates, initial_model=
estimated_hmm, reversible=reversible, stationary=stationary,
transition_matrix_sampling_steps=1000, p0_prior=p0_prior,
transition_matrix_prior=transition_matrix_prior, output=
estimated_hmm.output_model.model_type)
sampled_hmms = sampler.sample(nsamples=nsample,
save_hidden_state_trajectory=store_hidden, call_back=call_back)
from bhmm.hmm.generic_sampled_hmm import SampledHMM
return SampledHMM(estimated_hmm, sampled_hmms)
|
bayesian_hmm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(observations, estimated_hmm, nsample=100, reversible=True, stationary\n =False, p0_prior='mixed', transition_matrix_prior='mixed', store_hidden\n =False, call_back=None):\n from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as _BHMM\n sampler = _BHMM(observations, estimated_hmm.nstates, initial_model=\n estimated_hmm, reversible=reversible, stationary=stationary,\n transition_matrix_sampling_steps=1000, p0_prior=p0_prior,\n transition_matrix_prior=transition_matrix_prior, output=\n estimated_hmm.output_model.model_type)\n sampled_hmms = sampler.sample(nsamples=nsample,\n save_hidden_state_trajectory=store_hidden, call_back=call_back)\n from bhmm.hmm.generic_sampled_hmm import SampledHMM\n return SampledHMM(estimated_hmm, sampled_hmms)\n",
"role": "user"
},
{
"content": "bayesian_hmm",
"role": "assistant"
}
] |
def x(arr, axis=0):
arr = np.rollaxis(arr, axis)
vmax = arr.max(axis=0)
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
out += vmax
return out
|
logsumexp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, axis=0):\n arr = np.rollaxis(arr, axis)\n vmax = arr.max(axis=0)\n out = np.log(np.sum(np.exp(arr - vmax), axis=0))\n out += vmax\n return out\n",
"role": "user"
},
{
"content": "logsumexp",
"role": "assistant"
}
] |
def x(spmatrix, accept_sparse, dtype, order, copy, force_all_finite):
if accept_sparse is None:
raise TypeError(
'A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.'
)
sparse_type = spmatrix.format
if dtype is None:
dtype = spmatrix.dtype
if sparse_type in accept_sparse:
if dtype == spmatrix.dtype:
if copy:
spmatrix = spmatrix.copy()
else:
spmatrix = spmatrix.astype(dtype)
else:
spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype)
if force_all_finite:
if not hasattr(spmatrix, 'data'):
warnings.warn("Can't check %s sparse matrix for nan or inf." %
spmatrix.format)
else:
_assert_all_finite(spmatrix.data)
if hasattr(spmatrix, 'data'):
spmatrix.data = np.array(spmatrix.data, copy=False, order=order)
return spmatrix
|
ensure_sparse_format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spmatrix, accept_sparse, dtype, order, copy, force_all_finite):\n if accept_sparse is None:\n raise TypeError(\n 'A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.'\n )\n sparse_type = spmatrix.format\n if dtype is None:\n dtype = spmatrix.dtype\n if sparse_type in accept_sparse:\n if dtype == spmatrix.dtype:\n if copy:\n spmatrix = spmatrix.copy()\n else:\n spmatrix = spmatrix.astype(dtype)\n else:\n spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype)\n if force_all_finite:\n if not hasattr(spmatrix, 'data'):\n warnings.warn(\"Can't check %s sparse matrix for nan or inf.\" %\n spmatrix.format)\n else:\n _assert_all_finite(spmatrix.data)\n if hasattr(spmatrix, 'data'):\n spmatrix.data = np.array(spmatrix.data, copy=False, order=order)\n return spmatrix\n",
"role": "user"
},
{
"content": "ensure_sparse_format",
"role": "assistant"
}
] |
def x(array, accept_sparse=None, dtype='numeric', order=None, copy=False,
force_all_finite=True, ensure_2d=True, allow_nd=False,
ensure_min_samples=1, ensure_min_features=1):
if isinstance(accept_sparse, str):
accept_sparse = [accept_sparse]
dtype_numeric = dtype == 'numeric'
if sp.issparse(array):
if dtype_numeric:
dtype = None
array = _ensure_sparse_format(array, accept_sparse, dtype, order,
copy, force_all_finite)
else:
if ensure_2d:
array = np.atleast_2d(array)
if dtype_numeric:
if hasattr(array, 'dtype') and getattr(array.dtype, 'kind', None
) == 'O':
dtype = np.float64
else:
dtype = None
array = np.array(array, dtype=dtype, order=order, copy=copy)
if dtype_numeric and array.dtype.kind == 'O':
array = array.astype(np.float64)
if not allow_nd and array.ndim >= 3:
raise ValueError('Found array with dim %d. Expected <= 2' %
array.ndim)
if force_all_finite:
_assert_all_finite(array)
shape_repr = _shape_repr(array.shape)
if ensure_min_samples > 0:
n_samples = _num_samples(array)
if n_samples < ensure_min_samples:
raise ValueError(
'Found array with %d sample(s) (shape=%s) while a minimum of %d is required.'
% (n_samples, shape_repr, ensure_min_samples))
if ensure_min_features > 0 and array.ndim == 2:
n_features = array.shape[1]
if n_features < ensure_min_features:
raise ValueError(
'Found array with %d feature(s) (shape=%s) while a minimum of %d is required.'
% (n_features, shape_repr, ensure_min_features))
return array
|
check_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(array, accept_sparse=None, dtype='numeric', order=None, copy=False,\n force_all_finite=True, ensure_2d=True, allow_nd=False,\n ensure_min_samples=1, ensure_min_features=1):\n if isinstance(accept_sparse, str):\n accept_sparse = [accept_sparse]\n dtype_numeric = dtype == 'numeric'\n if sp.issparse(array):\n if dtype_numeric:\n dtype = None\n array = _ensure_sparse_format(array, accept_sparse, dtype, order,\n copy, force_all_finite)\n else:\n if ensure_2d:\n array = np.atleast_2d(array)\n if dtype_numeric:\n if hasattr(array, 'dtype') and getattr(array.dtype, 'kind', None\n ) == 'O':\n dtype = np.float64\n else:\n dtype = None\n array = np.array(array, dtype=dtype, order=order, copy=copy)\n if dtype_numeric and array.dtype.kind == 'O':\n array = array.astype(np.float64)\n if not allow_nd and array.ndim >= 3:\n raise ValueError('Found array with dim %d. Expected <= 2' %\n array.ndim)\n if force_all_finite:\n _assert_all_finite(array)\n shape_repr = _shape_repr(array.shape)\n if ensure_min_samples > 0:\n n_samples = _num_samples(array)\n if n_samples < ensure_min_samples:\n raise ValueError(\n 'Found array with %d sample(s) (shape=%s) while a minimum of %d is required.'\n % (n_samples, shape_repr, ensure_min_samples))\n if ensure_min_features > 0 and array.ndim == 2:\n n_features = array.shape[1]\n if n_features < ensure_min_features:\n raise ValueError(\n 'Found array with %d feature(s) (shape=%s) while a minimum of %d is required.'\n % (n_features, shape_repr, ensure_min_features))\n return array\n",
"role": "user"
},
{
"content": "check_array",
"role": "assistant"
}
] |
def x(ci_X, ntrials, ci=0.95):
ci_low = 0.5 - ci / 2
ci_high = 0.5 + ci / 2
from scipy.stats import beta
Plow = ci_X * 0.0
Phigh = ci_X * 0.0
for i in range(ci_X.shape[0]):
for j in range(ci_X.shape[1]):
Plow[i, j] = beta.ppf(ci_low, a=ci_X[i, j] * ntrials, b=(1 -
ci_X[i, j]) * ntrials)
Phigh[i, j] = beta.ppf(ci_high, a=ci_X[i, j] * ntrials, b=(1 -
ci_X[i, j]) * ntrials)
return [Plow, Phigh]
|
beta_confidence_intervals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ci_X, ntrials, ci=0.95):\n ci_low = 0.5 - ci / 2\n ci_high = 0.5 + ci / 2\n from scipy.stats import beta\n Plow = ci_X * 0.0\n Phigh = ci_X * 0.0\n for i in range(ci_X.shape[0]):\n for j in range(ci_X.shape[1]):\n Plow[i, j] = beta.ppf(ci_low, a=ci_X[i, j] * ntrials, b=(1 -\n ci_X[i, j]) * ntrials)\n Phigh[i, j] = beta.ppf(ci_high, a=ci_X[i, j] * ntrials, b=(1 -\n ci_X[i, j]) * ntrials)\n return [Plow, Phigh]\n",
"role": "user"
},
{
"content": "beta_confidence_intervals",
"role": "assistant"
}
] |
def x(sample, interval=0.95):
sample = np.sort(sample)
N = len(sample)
low_index = int(np.round((N - 1) * (0.5 - interval / 2))) + 1
high_index = int(np.round((N - 1) * (0.5 + interval / 2))) + 1
low = sample[low_index]
high = sample[high_index]
return [low, high]
|
empirical_confidence_interval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample, interval=0.95):\n sample = np.sort(sample)\n N = len(sample)\n low_index = int(np.round((N - 1) * (0.5 - interval / 2))) + 1\n high_index = int(np.round((N - 1) * (0.5 + interval / 2))) + 1\n low = sample[low_index]\n high = sample[high_index]\n return [low, high]\n",
"role": "user"
},
{
"content": "empirical_confidence_interval",
"role": "assistant"
}
] |
def x(sampled_hmm, conf=0.95, dt=1, time_unit='ms', obs_name='force',
obs_units='pN', caption='', outfile=None):
from bhmm.hmm.generic_sampled_hmm import SampledHMM
from bhmm.hmm.gaussian_hmm import SampledGaussianHMM
assert issubclass(sampled_hmm.__class__, SampledHMM
), 'sampled_hmm ist not a SampledHMM'
sampled_hmm.set_confidence(conf)
dt = float(dt)
nstates = sampled_hmm.nstates
table = """
\\begin{table}
\\begin{tabular*}{\\columnwidth}{@{\\extracolsep{\\fill}}lcc}
\\hline
{\\bf Property} & {\\bf Symbol} & {\\bf Value} \\\\
\\hline
"""
p = sampled_hmm.stationary_distribution_mean
p_lo, p_hi = sampled_hmm.stationary_distribution_conf
for i in range(nstates):
if i == 0:
table += '\t\tEquilibrium probability '
table += '\t\t& $\\pi_{%d}$ & $%0.3f_{\\:%0.3f}^{\\:%0.3f}$ \\\\' % (
i + 1, p[i], p_lo[i], p_hi[i]) + '\n'
table += '\t\t\\hline' + '\n'
P = sampled_hmm.transition_matrix_mean
P_lo, P_hi = sampled_hmm.transition_matrix_conf
for i in range(nstates):
for j in range(nstates):
if i == 0 and j == 0:
table += '\t\tTransition probability ($\\Delta t = $%s) ' % (
str(dt) + ' ' + time_unit)
table += (
'\t\t& $T_{%d%d}$ & $%0.4f_{\\:%0.4f}^{\\:%0.4f}$ \\\\' % (
i + 1, j + 1, P[i, j], P_lo[i, j], P_hi[i, j]) + '\n')
table += '\t\t\\hline' + '\n'
table += '\t\t\\hline' + '\n'
K = P - np.eye(sampled_hmm.nstates)
K /= dt
K_lo = P_lo - np.eye(sampled_hmm.nstates)
K_lo /= dt
K_hi = P_hi - np.eye(sampled_hmm.nstates)
K_hi /= dt
for i in range(nstates):
for j in range(nstates):
if i == 0 and j == 0:
table += '\t\tTransition rate (%s$^{-1}$) ' % time_unit
if i != j:
table += (
'\t\t& $k_{%d%d}$ & $%2.4f_{\\:%2.4f}^{\\:%2.4f}$ \\\\' %
(i + 1, j + 1, K[i, j], K_lo[i, j], K_hi[i, j]) + '\n')
table += '\t\t\\hline' + '\n'
l = sampled_hmm.lifetimes_mean
l *= dt
l_lo, l_hi = sampled_hmm.lifetimes_conf
l_lo *= dt
l_hi *= dt
for i in range(nstates):
if i == 0:
table += '\t\tState mean lifetime (%s) ' % time_unit
table += '\t\t& $t_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % (i +
1, l[i], l_lo[i], l_hi[i]) + '\n'
table += '\t\t\\hline' + '\n'
t = sampled_hmm.timescales_mean
t *= dt
t_lo, t_hi = sampled_hmm.timescales_conf
t_lo *= dt
t_hi *= dt
for i in range(nstates - 1):
if i == 0:
table += '\t\tRelaxation time (%s) ' % time_unit
table += '\t\t& $\\tau_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % (
i + 1, t[i], t_lo[i], t_hi[i]) + '\n'
table += '\t\t\\hline' + '\n'
if issubclass(sampled_hmm.__class__, SampledGaussianHMM):
table += '\t\t\\hline' + '\n'
m = sampled_hmm.means_mean
m_lo, m_hi = sampled_hmm.means_conf
for i in range(nstates):
if i == 0:
table += '\t\tState %s mean (%s) ' % (obs_name, obs_units)
table += '\t\t& $\\mu_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % (
i + 1, m[i], m_lo[i], m_hi[i]) + '\n'
table += '\t\t\\hline' + '\n'
s = sampled_hmm.sigmas_mean
s_lo, s_hi = sampled_hmm.sigmas_conf
for i in range(nstates):
if i == 0:
table += '\t\tState %s std dev (%s) ' % (obs_name, obs_units)
table += '\t\t& $s_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % (
i + 1, s[i], s_lo[i], s_hi[i]) + '\n'
table += '\t\t\\hline' + '\n'
table += (
"""
\\hline
\\end{tabular*}
\\caption{{\\bf %s}}
\\end{table}
"""
% caption)
if outfile is not None:
f = open(outfile, 'w')
f.write(table)
f.close()
return table
|
generate_latex_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sampled_hmm, conf=0.95, dt=1, time_unit='ms', obs_name='force',\n obs_units='pN', caption='', outfile=None):\n from bhmm.hmm.generic_sampled_hmm import SampledHMM\n from bhmm.hmm.gaussian_hmm import SampledGaussianHMM\n assert issubclass(sampled_hmm.__class__, SampledHMM\n ), 'sampled_hmm ist not a SampledHMM'\n sampled_hmm.set_confidence(conf)\n dt = float(dt)\n nstates = sampled_hmm.nstates\n table = \"\"\"\n\\\\begin{table}\n \\\\begin{tabular*}{\\\\columnwidth}{@{\\\\extracolsep{\\\\fill}}lcc}\n \\\\hline\n {\\\\bf Property} & {\\\\bf Symbol} & {\\\\bf Value} \\\\\\\\\n \\\\hline\n \"\"\"\n p = sampled_hmm.stationary_distribution_mean\n p_lo, p_hi = sampled_hmm.stationary_distribution_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tEquilibrium probability '\n table += '\\t\\t& $\\\\pi_{%d}$ & $%0.3f_{\\\\:%0.3f}^{\\\\:%0.3f}$ \\\\\\\\' % (\n i + 1, p[i], p_lo[i], p_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n P = sampled_hmm.transition_matrix_mean\n P_lo, P_hi = sampled_hmm.transition_matrix_conf\n for i in range(nstates):\n for j in range(nstates):\n if i == 0 and j == 0:\n table += '\\t\\tTransition probability ($\\\\Delta t = $%s) ' % (\n str(dt) + ' ' + time_unit)\n table += (\n '\\t\\t& $T_{%d%d}$ & $%0.4f_{\\\\:%0.4f}^{\\\\:%0.4f}$ \\\\\\\\' % (\n i + 1, j + 1, P[i, j], P_lo[i, j], P_hi[i, j]) + '\\n')\n table += '\\t\\t\\\\hline' + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n K = P - np.eye(sampled_hmm.nstates)\n K /= dt\n K_lo = P_lo - np.eye(sampled_hmm.nstates)\n K_lo /= dt\n K_hi = P_hi - np.eye(sampled_hmm.nstates)\n K_hi /= dt\n for i in range(nstates):\n for j in range(nstates):\n if i == 0 and j == 0:\n table += '\\t\\tTransition rate (%s$^{-1}$) ' % time_unit\n if i != j:\n table += (\n '\\t\\t& $k_{%d%d}$ & $%2.4f_{\\\\:%2.4f}^{\\\\:%2.4f}$ \\\\\\\\' %\n (i + 1, j + 1, K[i, j], K_lo[i, j], K_hi[i, j]) + '\\n')\n table += '\\t\\t\\\\hline' + '\\n'\n l = sampled_hmm.lifetimes_mean\n l *= dt\n l_lo, l_hi = sampled_hmm.lifetimes_conf\n l_lo *= dt\n l_hi *= dt\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState mean lifetime (%s) ' % time_unit\n table += '\\t\\t& $t_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (i + \n 1, l[i], l_lo[i], l_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n t = sampled_hmm.timescales_mean\n t *= dt\n t_lo, t_hi = sampled_hmm.timescales_conf\n t_lo *= dt\n t_hi *= dt\n for i in range(nstates - 1):\n if i == 0:\n table += '\\t\\tRelaxation time (%s) ' % time_unit\n table += '\\t\\t& $\\\\tau_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, t[i], t_lo[i], t_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n if issubclass(sampled_hmm.__class__, SampledGaussianHMM):\n table += '\\t\\t\\\\hline' + '\\n'\n m = sampled_hmm.means_mean\n m_lo, m_hi = sampled_hmm.means_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState %s mean (%s) ' % (obs_name, obs_units)\n table += '\\t\\t& $\\\\mu_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, m[i], m_lo[i], m_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n s = sampled_hmm.sigmas_mean\n s_lo, s_hi = sampled_hmm.sigmas_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState %s std dev (%s) ' % (obs_name, obs_units)\n table += '\\t\\t& $s_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, s[i], s_lo[i], s_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n table += (\n \"\"\"\n \\\\hline\n \\\\end{tabular*}\n \\\\caption{{\\\\bf %s}}\n\\\\end{table}\n \"\"\"\n % caption)\n if outfile is not None:\n f = open(outfile, 'w')\n f.write(table)\n f.close()\n return table\n",
"role": "user"
},
{
"content": "generate_latex_table",
"role": "assistant"
}
] |
def x(data, alpha):
if alpha < 0 or alpha > 1:
raise ValueError('Not a meaningful confidence level: ' + str(alpha))
m = np.mean(data)
sdata = np.sort(data)
im = np.searchsorted(sdata, m)
if im == 0 or im == len(sdata):
pm = im
else:
pm = im - 1 + (m - sdata[im - 1]) / (sdata[im] - sdata[im - 1])
pl = pm - alpha * pm
il1 = max(0, int(math.floor(pl)))
il2 = min(len(sdata) - 1, int(math.ceil(pl)))
l = sdata[il1] + (pl - il1) * (sdata[il2] - sdata[il1])
pr = pm + alpha * (len(data) - im)
ir1 = max(0, int(math.floor(pr)))
ir2 = min(len(sdata) - 1, int(math.ceil(pr)))
r = sdata[ir1] + (pr - ir1) * (sdata[ir2] - sdata[ir1])
return m, l, r
|
confidence_interval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, alpha):\n if alpha < 0 or alpha > 1:\n raise ValueError('Not a meaningful confidence level: ' + str(alpha))\n m = np.mean(data)\n sdata = np.sort(data)\n im = np.searchsorted(sdata, m)\n if im == 0 or im == len(sdata):\n pm = im\n else:\n pm = im - 1 + (m - sdata[im - 1]) / (sdata[im] - sdata[im - 1])\n pl = pm - alpha * pm\n il1 = max(0, int(math.floor(pl)))\n il2 = min(len(sdata) - 1, int(math.ceil(pl)))\n l = sdata[il1] + (pl - il1) * (sdata[il2] - sdata[il1])\n pr = pm + alpha * (len(data) - im)\n ir1 = max(0, int(math.floor(pr)))\n ir2 = min(len(sdata) - 1, int(math.ceil(pr)))\n r = sdata[ir1] + (pr - ir1) * (sdata[ir2] - sdata[ir1])\n return m, l, r\n",
"role": "user"
},
{
"content": "confidence_interval",
"role": "assistant"
}
] |
def x(data, conf=0.95):
if conf < 0 or conf > 1:
raise ValueError('Not a meaningful confidence level: ' + str(conf))
if types.is_list(data) or isinstance(data, np.ndarray) and np.ndim(data
) == 1:
newshape = tuple([len(data)] + list(data[0].shape))
newdata = np.zeros(newshape)
for i in range(len(data)):
newdata[i, :] = data[i]
data = newdata
if types.is_float_array(data):
I = _indexes(data[0])
lower = np.zeros(data[0].shape)
upper = np.zeros(data[0].shape)
for i in I:
col = _column(data, i)
m, lower[i], upper[i] = confidence_interval(col, conf)
return lower, upper
else:
raise TypeError('data cannot be converted to an ndarray')
|
confidence_interval_arr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, conf=0.95):\n if conf < 0 or conf > 1:\n raise ValueError('Not a meaningful confidence level: ' + str(conf))\n if types.is_list(data) or isinstance(data, np.ndarray) and np.ndim(data\n ) == 1:\n newshape = tuple([len(data)] + list(data[0].shape))\n newdata = np.zeros(newshape)\n for i in range(len(data)):\n newdata[i, :] = data[i]\n data = newdata\n if types.is_float_array(data):\n I = _indexes(data[0])\n lower = np.zeros(data[0].shape)\n upper = np.zeros(data[0].shape)\n for i in I:\n col = _column(data, i)\n m, lower[i], upper[i] = confidence_interval(col, conf)\n return lower, upper\n else:\n raise TypeError('data cannot be converted to an ndarray')\n",
"role": "user"
},
{
"content": "confidence_interval_arr",
"role": "assistant"
}
] |
def x(self, remote=False):
if remote:
components = urlparse.urlparse(self.endpoint)
try:
result = self.session.get(components[0] + '://' + components[1] +
'/status', timeout=self.timeout)
except Exception as e:
if self.logger:
self.logger.debug('Failed to connect to server for status: %s',
e)
result = None
if result and result.status_code == 200:
self.server_status = result.json()
self.server_status['endpoint'] = self.endpoint
elif result:
if self.logger:
self.logger.debug(
'Server status response not understandable: Status: %d, Body: %s'
, result.status_code, result.text)
self.server_status = {'endpoint': self.endpoint, 'status':
'Unexpected HTTP status ' + str(result.status_code) +
' at: ' + strftime('%d %b %Y %H:%M:%S +0000', gmtime())}
else:
self.server_status = {'endpoint': self.endpoint, 'status':
'Unreachable at: ' + strftime('%d %b %Y %H:%M:%S +0000',
gmtime())}
return self.local_status, self.server_status
|
status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, remote=False):\n if remote:\n components = urlparse.urlparse(self.endpoint)\n try:\n result = self.session.get(components[0] + '://' + components[1] +\n '/status', timeout=self.timeout)\n except Exception as e:\n if self.logger:\n self.logger.debug('Failed to connect to server for status: %s',\n e)\n result = None\n if result and result.status_code == 200:\n self.server_status = result.json()\n self.server_status['endpoint'] = self.endpoint\n elif result:\n if self.logger:\n self.logger.debug(\n 'Server status response not understandable: Status: %d, Body: %s'\n , result.status_code, result.text)\n self.server_status = {'endpoint': self.endpoint, 'status': \n 'Unexpected HTTP status ' + str(result.status_code) +\n ' at: ' + strftime('%d %b %Y %H:%M:%S +0000', gmtime())}\n else:\n self.server_status = {'endpoint': self.endpoint, 'status': \n 'Unreachable at: ' + strftime('%d %b %Y %H:%M:%S +0000',\n gmtime())}\n return self.local_status, self.server_status\n",
"role": "user"
},
{
"content": "status",
"role": "assistant"
}
] |
def x(self, object_type, url_params, query_params=None):
self.local_status['single-query-count'] += 1
query_type = object_type + 's'
query_path = '/organizations/{}/{}'.format(self.org_id, query_type)
for component in (url_params if url_params else []):
query_path += '/' + urlparse.quote(component, safe='/@')
if query_params:
query_path += '?' + urlparse.urlencode(query_params)
try:
result = self.make_call(query_path)
body = result.json()
except RequestError as re:
if re.result.status_code == 404:
if self.logger:
self.logger.debug('Ran %s query: %s %s (0 found)',
object_type, url_params, query_params)
return {}
else:
raise re
if body.get('result') == 'success':
value = body.get(object_type, {})
if self.logger:
self.logger.debug('Ran %s query: %s %s (1 found)', object_type,
url_params, query_params)
return value
else:
raise ClientError("OK status but no 'success' result", result)
|
query_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, object_type, url_params, query_params=None):\n self.local_status['single-query-count'] += 1\n query_type = object_type + 's'\n query_path = '/organizations/{}/{}'.format(self.org_id, query_type)\n for component in (url_params if url_params else []):\n query_path += '/' + urlparse.quote(component, safe='/@')\n if query_params:\n query_path += '?' + urlparse.urlencode(query_params)\n try:\n result = self.make_call(query_path)\n body = result.json()\n except RequestError as re:\n if re.result.status_code == 404:\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (0 found)',\n object_type, url_params, query_params)\n return {}\n else:\n raise re\n if body.get('result') == 'success':\n value = body.get(object_type, {})\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (1 found)', object_type,\n url_params, query_params)\n return value\n else:\n raise ClientError(\"OK status but no 'success' result\", result)\n",
"role": "user"
},
{
"content": "query_single",
"role": "assistant"
}
] |
def x(self, object_type, page=0, url_params=None, query_params=None):
self.local_status['multiple-query-count'] += 1
if object_type in ('user', 'group'):
query_path = '/{}s/{}/{:d}'.format(object_type, self.org_id, page)
if url_params:
query_path += '/' + '/'.join([urlparse.quote(c) for c in
url_params])
if query_params:
query_path += '?' + urlparse.urlencode(query_params)
elif object_type == 'user-group':
query_path = '/{}/user-groups'.format(self.org_id)
if url_params:
query_path += '/' + '/'.join([urlparse.quote(c) for c in
url_params])
query_path += '?page={:d}'.format(page + 1)
if query_params:
query_path += '&' + urlparse.urlencode(query_params)
else:
raise ArgumentError(
"Unknown query object type ({}): must be 'user' or 'group'".
format(object_type))
try:
result = self.make_call(query_path)
body = result.json()
except RequestError as re:
if re.result.status_code == 404:
if self.logger:
self.logger.debug('Ran %s query: %s %s (0 found)',
object_type, url_params, query_params)
return [], True
else:
raise re
if object_type in ('user', 'group'):
if body.get('result') == 'success':
values = body.get(object_type + 's', [])
last_page = body.get('lastPage', False)
if self.logger:
self.logger.debug(
'Ran multi-%s query: %s %s (page %d: %d found)',
object_type, url_params, query_params, page, len(values))
return values, last_page
else:
raise ClientError("OK status but no 'success' result", result)
elif object_type == 'user-group':
page_number = result.headers.get('X-Current-Page', '1')
page_count = result.headers.get('X-Page-Count', '1')
if self.logger:
self.logger.debug(
'Ran multi-group query: %s %s (page %d: %d found)',
url_params, query_params, page, len(body))
return body, int(page_number) >= int(page_count)
else:
raise ArgumentError(
"Unknown query object type ({}): must be 'user' or 'group'".
format(object_type))
|
query_multiple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, object_type, page=0, url_params=None, query_params=None):\n self.local_status['multiple-query-count'] += 1\n if object_type in ('user', 'group'):\n query_path = '/{}s/{}/{:d}'.format(object_type, self.org_id, page)\n if url_params:\n query_path += '/' + '/'.join([urlparse.quote(c) for c in\n url_params])\n if query_params:\n query_path += '?' + urlparse.urlencode(query_params)\n elif object_type == 'user-group':\n query_path = '/{}/user-groups'.format(self.org_id)\n if url_params:\n query_path += '/' + '/'.join([urlparse.quote(c) for c in\n url_params])\n query_path += '?page={:d}'.format(page + 1)\n if query_params:\n query_path += '&' + urlparse.urlencode(query_params)\n else:\n raise ArgumentError(\n \"Unknown query object type ({}): must be 'user' or 'group'\".\n format(object_type))\n try:\n result = self.make_call(query_path)\n body = result.json()\n except RequestError as re:\n if re.result.status_code == 404:\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (0 found)',\n object_type, url_params, query_params)\n return [], True\n else:\n raise re\n if object_type in ('user', 'group'):\n if body.get('result') == 'success':\n values = body.get(object_type + 's', [])\n last_page = body.get('lastPage', False)\n if self.logger:\n self.logger.debug(\n 'Ran multi-%s query: %s %s (page %d: %d found)',\n object_type, url_params, query_params, page, len(values))\n return values, last_page\n else:\n raise ClientError(\"OK status but no 'success' result\", result)\n elif object_type == 'user-group':\n page_number = result.headers.get('X-Current-Page', '1')\n page_count = result.headers.get('X-Page-Count', '1')\n if self.logger:\n self.logger.debug(\n 'Ran multi-group query: %s %s (page %d: %d found)',\n url_params, query_params, page, len(body))\n return body, int(page_number) >= int(page_count)\n else:\n raise ArgumentError(\n \"Unknown query object type ({}): must be 'user' or 'group'\".\n format(object_type))\n",
"role": "user"
},
{
"content": "query_multiple",
"role": "assistant"
}
] |
def x(self, action, immediate=False):
return self.execute_multiple([action], immediate=immediate)
|
execute_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action, immediate=False):\n return self.execute_multiple([action], immediate=immediate)\n",
"role": "user"
},
{
"content": "execute_single",
"role": "assistant"
}
] |
def x(self, actions, immediate=True):
split_actions = []
exceptions = []
for a in actions:
if len(a.commands) == 0:
if self.logger:
self.logger.warning('Sending action with no commands: %s',
a.frame)
try:
if a.maybe_split_groups(self.throttle_groups):
if self.logger:
self.logger.debug(
'Throttling actions %s to have a maximum of %d entries in group lists.'
, a.frame, self.throttle_groups)
except AttributeError:
pass
if len(a.commands) > self.throttle_commands:
if self.logger:
self.logger.debug(
'Throttling action %s to have a maximum of %d commands.',
a.frame, self.throttle_commands)
split_actions += a.split(self.throttle_commands)
else:
split_actions.append(a)
actions = self.action_queue + split_actions
sent = completed = 0
batch_size = self.throttle_actions
min_size = 1 if immediate else batch_size
while len(actions) >= min_size:
batch, actions = actions[0:batch_size], actions[batch_size:]
if self.logger:
self.logger.debug('Executing %d actions (%d remaining).', len(
batch), len(actions))
sent += len(batch)
try:
completed += self._execute_batch(batch)
except Exception as e:
exceptions.append(e)
self.action_queue = actions
self.local_status['actions-queued'] = queued = len(actions)
self.local_status['actions-sent'] += sent
self.local_status['actions-completed'] += completed
if exceptions:
raise BatchError(exceptions, queued, sent, completed)
return queued, sent, completed
|
execute_multiple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, actions, immediate=True):\n split_actions = []\n exceptions = []\n for a in actions:\n if len(a.commands) == 0:\n if self.logger:\n self.logger.warning('Sending action with no commands: %s',\n a.frame)\n try:\n if a.maybe_split_groups(self.throttle_groups):\n if self.logger:\n self.logger.debug(\n 'Throttling actions %s to have a maximum of %d entries in group lists.'\n , a.frame, self.throttle_groups)\n except AttributeError:\n pass\n if len(a.commands) > self.throttle_commands:\n if self.logger:\n self.logger.debug(\n 'Throttling action %s to have a maximum of %d commands.',\n a.frame, self.throttle_commands)\n split_actions += a.split(self.throttle_commands)\n else:\n split_actions.append(a)\n actions = self.action_queue + split_actions\n sent = completed = 0\n batch_size = self.throttle_actions\n min_size = 1 if immediate else batch_size\n while len(actions) >= min_size:\n batch, actions = actions[0:batch_size], actions[batch_size:]\n if self.logger:\n self.logger.debug('Executing %d actions (%d remaining).', len(\n batch), len(actions))\n sent += len(batch)\n try:\n completed += self._execute_batch(batch)\n except Exception as e:\n exceptions.append(e)\n self.action_queue = actions\n self.local_status['actions-queued'] = queued = len(actions)\n self.local_status['actions-sent'] += sent\n self.local_status['actions-completed'] += completed\n if exceptions:\n raise BatchError(exceptions, queued, sent, completed)\n return queued, sent, completed\n",
"role": "user"
},
{
"content": "execute_multiple",
"role": "assistant"
}
] |
def x(self, actions):
wire_form = [a.wire_dict() for a in actions]
if self.test_mode:
result = self.make_call('/action/%s?testOnly=true' % self.org_id,
wire_form)
else:
result = self.make_call('/action/%s' % self.org_id, wire_form)
body = result.json()
if body.get('errors', None) is None:
if body.get('result') != 'success':
if self.logger:
self.logger.warning(
'Server action result: no errors, but no success:\n%s',
body)
return len(actions)
try:
if body.get('result') == 'success':
if self.logger:
self.logger.warning(
'Server action result: errors, but success report:\n%s',
body)
for error in body['errors']:
actions[error['index']].report_command_error(error)
except:
raise ClientError(str(body), result)
return body.get('completed', 0)
|
execute_batch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, actions):\n wire_form = [a.wire_dict() for a in actions]\n if self.test_mode:\n result = self.make_call('/action/%s?testOnly=true' % self.org_id,\n wire_form)\n else:\n result = self.make_call('/action/%s' % self.org_id, wire_form)\n body = result.json()\n if body.get('errors', None) is None:\n if body.get('result') != 'success':\n if self.logger:\n self.logger.warning(\n 'Server action result: no errors, but no success:\\n%s',\n body)\n return len(actions)\n try:\n if body.get('result') == 'success':\n if self.logger:\n self.logger.warning(\n 'Server action result: errors, but success report:\\n%s',\n body)\n for error in body['errors']:\n actions[error['index']].report_command_error(error)\n except:\n raise ClientError(str(body), result)\n return body.get('completed', 0)\n",
"role": "user"
},
{
"content": "execute_batch",
"role": "assistant"
}
] |
def x(self, path, body=None, delete=False):
if body:
request_body = json.dumps(body)
def x():
return self.session.post(self.endpoint + path, auth=self.auth,
data=request_body, timeout=self.timeout)
elif not delete:
def x():
return self.session.get(self.endpoint + path, auth=self.auth,
timeout=self.timeout)
else:
def x():
return self.session.delete(self.endpoint + path, auth=self.auth,
timeout=self.timeout)
start_time = time()
result = None
for num_attempts in range(1, self.retry_max_attempts + 1):
try:
result = call()
if result.status_code in [200, 201, 204]:
return result
elif result.status_code in [429, 502, 503, 504]:
if self.logger:
self.logger.warning(
'UMAPI timeout...service unavailable (code %d on try %d)'
, result.status_code, num_attempts)
retry_wait = 0
if 'Retry-After' in result.headers:
advice = result.headers['Retry-After']
advised_time = parsedate_tz(advice)
if advised_time is not None:
retry_wait = int(mktime_tz(advised_time) - time())
else:
retry_wait = int(advice)
if retry_wait <= 0:
delay = randint(0, self.retry_random_delay)
retry_wait = int(pow(2, num_attempts - 1)
) * self.retry_first_delay + delay
elif 201 <= result.status_code < 400:
raise ClientError('Unexpected HTTP Status {:d}: {}'.format(
result.status_code, result.text), result)
elif 400 <= result.status_code < 500:
raise RequestError(result)
else:
raise ServerError(result)
except requests.Timeout:
if self.logger:
self.logger.warning(
'UMAPI connection timeout...(%d seconds on try %d)',
self.timeout, num_attempts)
retry_wait = 0
result = None
if num_attempts < self.retry_max_attempts:
if retry_wait > 0:
if self.logger:
self.logger.warning('Next retry in %d seconds...',
retry_wait)
sleep(retry_wait)
elif self.logger:
self.logger.warning('Immediate retry...')
total_time = int(time() - start_time)
if self.logger:
self.logger.error(
'UMAPI timeout...giving up after %d attempts (%d seconds).',
self.retry_max_attempts, total_time)
raise UnavailableError(self.retry_max_attempts, total_time, result)
|
make_call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, body=None, delete=False):\n if body:\n request_body = json.dumps(body)\n\n def x():\n return self.session.post(self.endpoint + path, auth=self.auth,\n data=request_body, timeout=self.timeout)\n elif not delete:\n\n def x():\n return self.session.get(self.endpoint + path, auth=self.auth,\n timeout=self.timeout)\n else:\n\n def x():\n return self.session.delete(self.endpoint + path, auth=self.auth,\n timeout=self.timeout)\n start_time = time()\n result = None\n for num_attempts in range(1, self.retry_max_attempts + 1):\n try:\n result = call()\n if result.status_code in [200, 201, 204]:\n return result\n elif result.status_code in [429, 502, 503, 504]:\n if self.logger:\n self.logger.warning(\n 'UMAPI timeout...service unavailable (code %d on try %d)'\n , result.status_code, num_attempts)\n retry_wait = 0\n if 'Retry-After' in result.headers:\n advice = result.headers['Retry-After']\n advised_time = parsedate_tz(advice)\n if advised_time is not None:\n retry_wait = int(mktime_tz(advised_time) - time())\n else:\n retry_wait = int(advice)\n if retry_wait <= 0:\n delay = randint(0, self.retry_random_delay)\n retry_wait = int(pow(2, num_attempts - 1)\n ) * self.retry_first_delay + delay\n elif 201 <= result.status_code < 400:\n raise ClientError('Unexpected HTTP Status {:d}: {}'.format(\n result.status_code, result.text), result)\n elif 400 <= result.status_code < 500:\n raise RequestError(result)\n else:\n raise ServerError(result)\n except requests.Timeout:\n if self.logger:\n self.logger.warning(\n 'UMAPI connection timeout...(%d seconds on try %d)',\n self.timeout, num_attempts)\n retry_wait = 0\n result = None\n if num_attempts < self.retry_max_attempts:\n if retry_wait > 0:\n if self.logger:\n self.logger.warning('Next retry in %d seconds...',\n retry_wait)\n sleep(retry_wait)\n elif self.logger:\n self.logger.warning('Immediate retry...')\n total_time = int(time() - start_time)\n if self.logger:\n self.logger.error(\n 'UMAPI timeout...giving up after %d attempts (%d seconds).',\n self.retry_max_attempts, total_time)\n raise UnavailableError(self.retry_max_attempts, total_time, result)\n",
"role": "user"
},
{
"content": "make_call",
"role": "assistant"
}
] |
def x(query, org_id, max_pages=maxsize, max_records=maxsize):
page_count = 0
record_count = 0
records = []
while page_count < max_pages and record_count < max_records:
res = make_call(query, org_id, page_count)
page_count += 1
if 'groups' in res:
records += res['groups']
elif 'users' in res:
records += res['users']
record_count = len(records)
if res.get('lastPage'):
break
return records
|
paginate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(query, org_id, max_pages=maxsize, max_records=maxsize):\n page_count = 0\n record_count = 0\n records = []\n while page_count < max_pages and record_count < max_records:\n res = make_call(query, org_id, page_count)\n page_count += 1\n if 'groups' in res:\n records += res['groups']\n elif 'users' in res:\n records += res['users']\n record_count = len(records)\n if res.get('lastPage'):\n break\n return records\n",
"role": "user"
},
{
"content": "paginate",
"role": "assistant"
}
] |
def x(query, org_id, page):
wait_time = 0
num_attempts = 0
while num_attempts < retry_max_attempts:
if wait_time > 0:
sleep(wait_time)
wait_time = 0
try:
num_attempts += 1
return query(org_id, page)
except UMAPIRetryError as e:
logger.warning(
'UMAPI service temporarily unavailable (attempt %d) -- %s',
num_attempts, e.res.status_code)
if 'Retry-After' in e.res.headers:
advice = e.res.headers['Retry-After']
advised_time = parsedate_tz(advice)
if advised_time is not None:
wait_time = int(mktime_tz(advised_time) - time())
else:
wait_time = int(advice)
if wait_time <= 0:
delay = randint(0, retry_random_delay_max)
wait_time = int(pow(2, num_attempts)
) * retry_exponential_backoff_factor + delay
logger.warning('Next retry in %d seconds...', wait_time)
continue
except UMAPIRequestError as e:
logger.warning('UMAPI error processing request -- %s', e.code)
return {}
except UMAPIError as e:
logger.warning('HTTP error processing request -- %s: %s', e.res
.status_code, e.res.text)
return {}
logger.error(
'UMAPI timeout...giving up on results page %d after %d attempts.',
page, retry_max_attempts)
return {}
|
make_call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(query, org_id, page):\n wait_time = 0\n num_attempts = 0\n while num_attempts < retry_max_attempts:\n if wait_time > 0:\n sleep(wait_time)\n wait_time = 0\n try:\n num_attempts += 1\n return query(org_id, page)\n except UMAPIRetryError as e:\n logger.warning(\n 'UMAPI service temporarily unavailable (attempt %d) -- %s',\n num_attempts, e.res.status_code)\n if 'Retry-After' in e.res.headers:\n advice = e.res.headers['Retry-After']\n advised_time = parsedate_tz(advice)\n if advised_time is not None:\n wait_time = int(mktime_tz(advised_time) - time())\n else:\n wait_time = int(advice)\n if wait_time <= 0:\n delay = randint(0, retry_random_delay_max)\n wait_time = int(pow(2, num_attempts)\n ) * retry_exponential_backoff_factor + delay\n logger.warning('Next retry in %d seconds...', wait_time)\n continue\n except UMAPIRequestError as e:\n logger.warning('UMAPI error processing request -- %s', e.code)\n return {}\n except UMAPIError as e:\n logger.warning('HTTP error processing request -- %s: %s', e.res\n .status_code, e.res.text)\n return {}\n logger.error(\n 'UMAPI timeout...giving up on results page %d after %d attempts.',\n page, retry_max_attempts)\n return {}\n",
"role": "user"
},
{
"content": "make_call",
"role": "assistant"
}
] |
def x(self, **kwargs):
for k, v in list(six.iteritems(kwargs)):
if k.startswith('create') or k.startswith('addAdobe') or k.startswith(
'removeFrom'):
self.commands.append({k: v})
del kwargs[k]
for k, v in sorted(six.iteritems(kwargs)):
if k in ['add', 'remove']:
self.commands.append({k: {'product': v}})
else:
self.commands.append({k: v})
return self
|
do
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n for k, v in list(six.iteritems(kwargs)):\n if k.startswith('create') or k.startswith('addAdobe') or k.startswith(\n 'removeFrom'):\n self.commands.append({k: v})\n del kwargs[k]\n for k, v in sorted(six.iteritems(kwargs)):\n if k in ['add', 'remove']:\n self.commands.append({k: {'product': v}})\n else:\n self.commands.append({k: v})\n return self\n",
"role": "user"
},
{
"content": "do",
"role": "assistant"
}
] |
def x(self, max_commands):
a_prior = Action(**self.frame)
a_prior.commands = list(self.commands)
self.split_actions = [a_prior]
while len(a_prior.commands) > max_commands:
a_next = Action(**self.frame)
a_prior.commands, a_next.commands = a_prior.commands[0:max_commands
], a_prior.commands[max_commands:]
self.split_actions.append(a_next)
a_prior = a_next
return self.split_actions
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_commands):\n a_prior = Action(**self.frame)\n a_prior.commands = list(self.commands)\n self.split_actions = [a_prior]\n while len(a_prior.commands) > max_commands:\n a_next = Action(**self.frame)\n a_prior.commands, a_next.commands = a_prior.commands[0:max_commands\n ], a_prior.commands[max_commands:]\n self.split_actions.append(a_next)\n a_prior = a_next\n return self.split_actions\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(self, **kwargs):
for k, v in six.iteritems(kwargs):
self.commands.append({k: v})
return self
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n for k, v in six.iteritems(kwargs):\n self.commands.append({k: v})\n return self\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self, **kwargs):
for k, v in six.iteritems(kwargs):
self.commands.insert(0, {k: v})
return self
|
insert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n for k, v in six.iteritems(kwargs):\n self.commands.insert(0, {k: v})\n return self\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
] |
def x(self, error_dict):
error = dict(error_dict)
error['command'] = self.commands[error_dict['step']]
error['target'] = self.frame
del error['index']
del error['step']
self.errors.append(error)
|
report_command_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, error_dict):\n error = dict(error_dict)\n error['command'] = self.commands[error_dict['step']]\n error['target'] = self.frame\n del error['index']\n del error['step']\n self.errors.append(error)\n",
"role": "user"
},
{
"content": "report_command_error",
"role": "assistant"
}
] |
def x(self):
if self.split_actions:
return [dict(e) for s in self.split_actions for e in s.errors]
else:
return [dict(e) for e in self.errors]
|
execution_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.split_actions:\n return [dict(e) for s in self.split_actions for e in s.errors]\n else:\n return [dict(e) for e in self.errors]\n",
"role": "user"
},
{
"content": "execution_errors",
"role": "assistant"
}
] |
def x(self, max_groups):
split_commands = []
maybe_split = False
valid_step_keys = ['add', 'addRoles', 'remove']
for command in self.commands:
step_key, step_args = next(six.iteritems(command))
if step_key not in valid_step_keys or not isinstance(step_args, dict):
split_commands.append(command)
continue
new_commands = [command]
while True:
new_command = {step_key: {}}
for group_type, groups in six.iteritems(command[step_key]):
if len(groups) > max_groups:
command[step_key][group_type], new_command[step_key][
group_type] = groups[0:max_groups], groups[max_groups:]
if new_command[step_key]:
new_commands.append(new_command)
command = new_command
maybe_split = True
else:
break
split_commands += new_commands
self.commands = split_commands
return maybe_split
|
maybe_split_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_groups):\n split_commands = []\n maybe_split = False\n valid_step_keys = ['add', 'addRoles', 'remove']\n for command in self.commands:\n step_key, step_args = next(six.iteritems(command))\n if step_key not in valid_step_keys or not isinstance(step_args, dict):\n split_commands.append(command)\n continue\n new_commands = [command]\n while True:\n new_command = {step_key: {}}\n for group_type, groups in six.iteritems(command[step_key]):\n if len(groups) > max_groups:\n command[step_key][group_type], new_command[step_key][\n group_type] = groups[0:max_groups], groups[max_groups:]\n if new_command[step_key]:\n new_commands.append(new_command)\n command = new_command\n maybe_split = True\n else:\n break\n split_commands += new_commands\n self.commands = split_commands\n return maybe_split\n",
"role": "user"
},
{
"content": "maybe_split_groups",
"role": "assistant"
}
] |
def x(self):
self._results = []
self._next_item_index = 0
self._next_page_index = 0
self._last_page_seen = False
|
reload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._results = []\n self._next_item_index = 0\n self._next_page_index = 0\n self._last_page_seen = False\n",
"role": "user"
},
{
"content": "reload",
"role": "assistant"
}
] |
def x(self):
if self._last_page_seen:
raise StopIteration
new, self._last_page_seen = self.conn.query_multiple(self.object_type,
self._next_page_index, self.url_params, self.query_params)
self._next_page_index += 1
if len(new) == 0:
self._last_page_seen = True
else:
self._results += new
|
next_page
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._last_page_seen:\n raise StopIteration\n new, self._last_page_seen = self.conn.query_multiple(self.object_type,\n self._next_page_index, self.url_params, self.query_params)\n self._next_page_index += 1\n if len(new) == 0:\n self._last_page_seen = True\n else:\n self._results += new\n",
"role": "user"
},
{
"content": "next_page",
"role": "assistant"
}
] |
def x(self):
while not self._last_page_seen:
self._next_page()
self._next_item_index = len(self._results)
return list(self._results)
|
all_results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while not self._last_page_seen:\n self._next_page()\n self._next_item_index = len(self._results)\n return list(self._results)\n",
"role": "user"
},
{
"content": "all_results",
"role": "assistant"
}
] |
def x(self):
self._result = self.conn.query_single(self.object_type, self.url_params,
self.query_params)
|
fetch_result
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._result = self.conn.query_single(self.object_type, self.url_params,\n self.query_params)\n",
"role": "user"
},
{
"content": "fetch_result",
"role": "assistant"
}
] |
def x(self, first_name=None, last_name=None, country=None, email=None,
on_conflict=IfAlreadyExistsOptions.ignoreIfAlreadyExists):
create_params = {}
if email is None:
if not self.email:
raise ArgumentError('You must specify email when creating a user')
elif self.email is None:
self.email = email
elif self.email.lower() != email.lower():
raise ArgumentError(
"Specified email (%s) doesn't match user's email (%s)" % (email,
self.email))
create_params['email'] = self.email
if on_conflict in IfAlreadyExistsOptions.__members__:
on_conflict = IfAlreadyExistsOptions[on_conflict]
if on_conflict not in IfAlreadyExistsOptions:
raise ArgumentError('on_conflict must be one of {}'.format([o.name for
o in IfAlreadyExistsOptions]))
if on_conflict != IfAlreadyExistsOptions.errorIfAlreadyExists:
create_params['option'] = on_conflict.name
if first_name:
create_params['firstname'] = first_name
if last_name:
create_params['lastname'] = last_name
if country:
create_params['country'] = country
if self.id_type == IdentityTypes.adobeID:
return self.insert(addAdobeID=dict(**create_params))
elif self.id_type == IdentityTypes.enterpriseID:
return self.insert(createEnterpriseID=dict(**create_params))
else:
return self.insert(createFederatedID=dict(**create_params))
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, first_name=None, last_name=None, country=None, email=None,\n on_conflict=IfAlreadyExistsOptions.ignoreIfAlreadyExists):\n create_params = {}\n if email is None:\n if not self.email:\n raise ArgumentError('You must specify email when creating a user')\n elif self.email is None:\n self.email = email\n elif self.email.lower() != email.lower():\n raise ArgumentError(\n \"Specified email (%s) doesn't match user's email (%s)\" % (email,\n self.email))\n create_params['email'] = self.email\n if on_conflict in IfAlreadyExistsOptions.__members__:\n on_conflict = IfAlreadyExistsOptions[on_conflict]\n if on_conflict not in IfAlreadyExistsOptions:\n raise ArgumentError('on_conflict must be one of {}'.format([o.name for\n o in IfAlreadyExistsOptions]))\n if on_conflict != IfAlreadyExistsOptions.errorIfAlreadyExists:\n create_params['option'] = on_conflict.name\n if first_name:\n create_params['firstname'] = first_name\n if last_name:\n create_params['lastname'] = last_name\n if country:\n create_params['country'] = country\n if self.id_type == IdentityTypes.adobeID:\n return self.insert(addAdobeID=dict(**create_params))\n elif self.id_type == IdentityTypes.enterpriseID:\n return self.insert(createEnterpriseID=dict(**create_params))\n else:\n return self.insert(createFederatedID=dict(**create_params))\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, email=None, username=None, first_name=None, last_name=None,
country=None):
if username and self.id_type != IdentityTypes.federatedID:
raise ArgumentError('You cannot set username except for a federated ID'
)
if username and '@' in username and not email:
raise ArgumentError(
'Cannot update email-type username when email is not specified')
if email and username and email.lower() == username.lower():
raise ArgumentError(
'Specify just email to set both email and username for a federated ID'
)
updates = {}
for k, v in six.iteritems(dict(email=email, username=username,
firstname=first_name, lastname=last_name, country=country)):
if v:
updates[k] = v
return self.append(update=updates)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, email=None, username=None, first_name=None, last_name=None,\n country=None):\n if username and self.id_type != IdentityTypes.federatedID:\n raise ArgumentError('You cannot set username except for a federated ID'\n )\n if username and '@' in username and not email:\n raise ArgumentError(\n 'Cannot update email-type username when email is not specified')\n if email and username and email.lower() == username.lower():\n raise ArgumentError(\n 'Specify just email to set both email and username for a federated ID'\n )\n updates = {}\n for k, v in six.iteritems(dict(email=email, username=username,\n firstname=first_name, lastname=last_name, country=country)):\n if v:\n updates[k] = v\n return self.append(update=updates)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, groups=None, all_groups=False, group_type=None):
if all_groups:
if groups or group_type:
raise ArgumentError(
'When adding to all groups, do not specify specific groups or types'
)
glist = 'all'
else:
if not groups:
groups = []
if not group_type:
group_type = GroupTypes.product
elif group_type in GroupTypes.__members__:
group_type = GroupTypes[group_type]
if group_type not in GroupTypes:
raise ArgumentError(
'You must specify a GroupType value for argument group_type')
glist = {group_type.name: [group for group in groups]}
return self.append(add=glist)
|
add_to_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, groups=None, all_groups=False, group_type=None):\n if all_groups:\n if groups or group_type:\n raise ArgumentError(\n 'When adding to all groups, do not specify specific groups or types'\n )\n glist = 'all'\n else:\n if not groups:\n groups = []\n if not group_type:\n group_type = GroupTypes.product\n elif group_type in GroupTypes.__members__:\n group_type = GroupTypes[group_type]\n if group_type not in GroupTypes:\n raise ArgumentError(\n 'You must specify a GroupType value for argument group_type')\n glist = {group_type.name: [group for group in groups]}\n return self.append(add=glist)\n",
"role": "user"
},
{
"content": "add_to_groups",
"role": "assistant"
}
] |
def x(self, groups=None, all_groups=False, group_type=None):
if all_groups:
if groups or group_type:
raise ArgumentError(
'When removing from all groups, do not specify specific groups or types'
)
glist = 'all'
else:
if not groups:
raise ArgumentError(
'You must specify groups from which to remove the user')
if not group_type:
group_type = GroupTypes.product
elif group_type in GroupTypes.__members__:
group_type = GroupTypes[group_type]
if group_type not in GroupTypes:
raise ArgumentError(
'You must specify a GroupType value for argument group_type')
glist = {group_type.name: [group for group in groups]}
return self.append(remove=glist)
|
remove_from_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, groups=None, all_groups=False, group_type=None):\n if all_groups:\n if groups or group_type:\n raise ArgumentError(\n 'When removing from all groups, do not specify specific groups or types'\n )\n glist = 'all'\n else:\n if not groups:\n raise ArgumentError(\n 'You must specify groups from which to remove the user')\n if not group_type:\n group_type = GroupTypes.product\n elif group_type in GroupTypes.__members__:\n group_type = GroupTypes[group_type]\n if group_type not in GroupTypes:\n raise ArgumentError(\n 'You must specify a GroupType value for argument group_type')\n glist = {group_type.name: [group for group in groups]}\n return self.append(remove=glist)\n",
"role": "user"
},
{
"content": "remove_from_groups",
"role": "assistant"
}
] |
def x(self, groups=None, role_type=RoleTypes.admin):
if not groups:
raise ArgumentError(
'You must specify groups to which to add the role for this user')
if role_type in RoleTypes.__members__:
role_type = RoleTypes[role_type]
if role_type not in RoleTypes:
raise ArgumentError(
'You must specify a RoleType value for argument role_type')
glist = {role_type.name: [group for group in groups]}
return self.append(addRoles=glist)
|
add_role
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, groups=None, role_type=RoleTypes.admin):\n if not groups:\n raise ArgumentError(\n 'You must specify groups to which to add the role for this user')\n if role_type in RoleTypes.__members__:\n role_type = RoleTypes[role_type]\n if role_type not in RoleTypes:\n raise ArgumentError(\n 'You must specify a RoleType value for argument role_type')\n glist = {role_type.name: [group for group in groups]}\n return self.append(addRoles=glist)\n",
"role": "user"
},
{
"content": "add_role",
"role": "assistant"
}
] |
def x(self, groups=None, role_type=RoleTypes.admin):
if not groups:
raise ArgumentError(
'You must specify groups from which to remove the role for this user'
)
if role_type in RoleTypes.__members__:
role_type = RoleTypes[role_type]
if role_type not in RoleTypes:
raise ArgumentError(
'You must specify a RoleType value for argument role_type')
glist = {role_type.name: [group for group in groups]}
return self.append(removeRoles=glist)
|
remove_role
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, groups=None, role_type=RoleTypes.admin):\n if not groups:\n raise ArgumentError(\n 'You must specify groups from which to remove the role for this user'\n )\n if role_type in RoleTypes.__members__:\n role_type = RoleTypes[role_type]\n if role_type not in RoleTypes:\n raise ArgumentError(\n 'You must specify a RoleType value for argument role_type')\n glist = {role_type.name: [group for group in groups]}\n return self.append(removeRoles=glist)\n",
"role": "user"
},
{
"content": "remove_role",
"role": "assistant"
}
] |
def x(self, delete_account=False):
self.append(removeFromOrg={'deleteAccount': True if delete_account else
False})
return None
|
remove_from_organization
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, delete_account=False):\n self.append(removeFromOrg={'deleteAccount': True if delete_account else\n False})\n return None\n",
"role": "user"
},
{
"content": "remove_from_organization",
"role": "assistant"
}
] |
def x(self):
if self.id_type == IdentityTypes.adobeID:
raise ArgumentError('You cannot delete an Adobe ID account.')
self.append(removeFromDomain={})
return None
|
delete_account
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.id_type == IdentityTypes.adobeID:\n raise ArgumentError('You cannot delete an Adobe ID account.')\n self.append(removeFromDomain={})\n return None\n",
"role": "user"
},
{
"content": "delete_account",
"role": "assistant"
}
] |
def x(cls, group_name):
if group_name and not cls._group_name_regex.match(group_name):
raise ArgumentError("'%s': Illegal group name" % (group_name,))
if group_name and len(group_name) > 255:
raise ArgumentError("'%s': Group name is too long" % (group_name,))
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, group_name):\n if group_name and not cls._group_name_regex.match(group_name):\n raise ArgumentError(\"'%s': Illegal group name\" % (group_name,))\n if group_name and len(group_name) > 255:\n raise ArgumentError(\"'%s': Group name is too long\" % (group_name,))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, products=None, all_products=False):
if all_products:
if products:
raise ArgumentError(
'When adding to all products, do not specify specific products'
)
plist = 'all'
else:
if not products:
raise ArgumentError(
'You must specify products to which to add the user group')
plist = {GroupTypes.productConfiguration.name: [product for product in
products]}
return self.append(add=plist)
|
add_to_products
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, products=None, all_products=False):\n if all_products:\n if products:\n raise ArgumentError(\n 'When adding to all products, do not specify specific products'\n )\n plist = 'all'\n else:\n if not products:\n raise ArgumentError(\n 'You must specify products to which to add the user group')\n plist = {GroupTypes.productConfiguration.name: [product for product in\n products]}\n return self.append(add=plist)\n",
"role": "user"
},
{
"content": "add_to_products",
"role": "assistant"
}
] |
def x(self, products=None, all_products=False):
if all_products:
if products:
raise ArgumentError(
'When removing from all products, do not specify specific products'
)
plist = 'all'
else:
if not products:
raise ArgumentError(
'You must specify products from which to remove the user group'
)
plist = {GroupTypes.productConfiguration.name: [product for product in
products]}
return self.append(remove=plist)
|
remove_from_products
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, products=None, all_products=False):\n if all_products:\n if products:\n raise ArgumentError(\n 'When removing from all products, do not specify specific products'\n )\n plist = 'all'\n else:\n if not products:\n raise ArgumentError(\n 'You must specify products from which to remove the user group'\n )\n plist = {GroupTypes.productConfiguration.name: [product for product in\n products]}\n return self.append(remove=plist)\n",
"role": "user"
},
{
"content": "remove_from_products",
"role": "assistant"
}
] |
def x(self, users=None):
if not users:
raise ArgumentError(
'You must specify emails for users to add to the user group')
ulist = {'user': [user for user in users]}
return self.append(add=ulist)
|
add_users
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, users=None):\n if not users:\n raise ArgumentError(\n 'You must specify emails for users to add to the user group')\n ulist = {'user': [user for user in users]}\n return self.append(add=ulist)\n",
"role": "user"
},
{
"content": "add_users",
"role": "assistant"
}
] |
def x(self, users=None):
if not users:
raise ArgumentError(
'You must specify emails for users to remove from the user group')
ulist = {'user': [user for user in users]}
return self.append(remove=ulist)
|
remove_users
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, users=None):\n if not users:\n raise ArgumentError(\n 'You must specify emails for users to remove from the user group')\n ulist = {'user': [user for user in users]}\n return self.append(remove=ulist)\n",
"role": "user"
},
{
"content": "remove_users",
"role": "assistant"
}
] |
def x(self, surface):
assert self._scale == 2
return self._pygame.transform.scale2x(surface)
|
scale2x
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, surface):\n assert self._scale == 2\n return self._pygame.transform.scale2x(surface)\n",
"role": "user"
},
{
"content": "scale2x",
"role": "assistant"
}
] |
def x(self, surface):
return self._pygame.transform.smoothscale(surface, self._output_size)
|
smoothscale
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, surface):\n return self._pygame.transform.smoothscale(surface, self._output_size)\n",
"role": "user"
},
{
"content": "smoothscale",
"role": "assistant"
}
] |
def x(self, surface):
return self._pygame.transform.scale(surface, self._output_size)
|
identity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, surface):\n return self._pygame.transform.scale(surface, self._output_size)\n",
"role": "user"
},
{
"content": "identity",
"role": "assistant"
}
] |
def x(self, surface):
scale = self._led_on.get_width()
w, h = self._input_size
pix = self._pygame.PixelArray(surface)
img = self._pygame.Surface((w * scale, h * scale))
for y in range(h):
for x in range(w):
led = self._led_on if pix[x, y] & 16777215 > 0 else self._led_off
img.blit(led, (x * scale, y * scale))
return img
|
led_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, surface):\n scale = self._led_on.get_width()\n w, h = self._input_size\n pix = self._pygame.PixelArray(surface)\n img = self._pygame.Surface((w * scale, h * scale))\n for y in range(h):\n for x in range(w):\n led = self._led_on if pix[x, y] & 16777215 > 0 else self._led_off\n img.blit(led, (x * scale, y * scale))\n return img\n",
"role": "user"
},
{
"content": "led_matrix",
"role": "assistant"
}
] |
def x(r, g, b):
r, g, b = [len(tuple(s for s in snaps if s < x)) for x in (r, g, b)]
return r * 36 + g * 6 + b + 16
|
rgb2short
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r, g, b):\n r, g, b = [len(tuple(s for s in snaps if s < x)) for x in (r, g, b)]\n return r * 36 + g * 6 + b + 16\n",
"role": "user"
},
{
"content": "rgb2short",
"role": "assistant"
}
] |
def x(self, image, alpha=1.0):
assert 0.0 <= alpha <= 1.0
if alpha < 1.0:
im = image.convert('RGBA')
black = Image.new(im.mode, im.size, 'black')
im = Image.blend(black, im, alpha)
else:
im = image.convert('RGB')
mode = im.mode
size = im.size
data = im.tobytes()
del im
surface = self._pygame.image.fromstring(data, size, mode)
return self._transform(surface)
|
to_surface
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, alpha=1.0):\n assert 0.0 <= alpha <= 1.0\n if alpha < 1.0:\n im = image.convert('RGBA')\n black = Image.new(im.mode, im.size, 'black')\n im = Image.blend(black, im, alpha)\n else:\n im = image.convert('RGB')\n mode = im.mode\n size = im.size\n data = im.tobytes()\n del im\n surface = self._pygame.image.fromstring(data, size, mode)\n return self._transform(surface)\n",
"role": "user"
},
{
"content": "to_surface",
"role": "assistant"
}
] |
def x(self, image):
assert image.size == self.size
self._last_image = image
self._count += 1
filename = self._file_template.format(self._count)
image = self.preprocess(image)
surface = self.to_surface(image, alpha=self._contrast)
logger.debug('Writing: {0}'.format(filename))
self._pygame.image.save(surface, filename)
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n self._count += 1\n filename = self._file_template.format(self._count)\n image = self.preprocess(image)\n surface = self.to_surface(image, alpha=self._contrast)\n logger.debug('Writing: {0}'.format(filename))\n self._pygame.image.save(surface, filename)\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, image):
assert image.size == self.size
self._last_image = image
image = self.preprocess(image)
surface = self.to_surface(image, alpha=self._contrast)
rawbytes = self._pygame.image.tostring(surface, 'RGB', False)
im = Image.frombytes('RGB', surface.get_size(), rawbytes)
self._images.append(im)
self._count += 1
logger.debug('Recording frame: {0}'.format(self._count))
if self._max_frames and self._count >= self._max_frames:
sys.exit(0)
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n image = self.preprocess(image)\n surface = self.to_surface(image, alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n im = Image.frombytes('RGB', surface.get_size(), rawbytes)\n self._images.append(im)\n self._count += 1\n logger.debug('Recording frame: {0}'.format(self._count))\n if self._max_frames and self._count >= self._max_frames:\n sys.exit(0)\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, image):
assert image.size == self.size
self._last_image = image
image = self.preprocess(image)
self._clock.tick(self._fps)
self._pygame.event.pump()
if self._abort():
self._pygame.quit()
sys.exit()
surface = self.to_surface(image, alpha=self._contrast)
if self._screen is None:
self._screen = self._pygame.display.set_mode(surface.get_size())
self._screen.blit(surface, (0, 0))
self._pygame.display.flip()
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n image = self.preprocess(image)\n self._clock.tick(self._fps)\n self._pygame.event.pump()\n if self._abort():\n self._pygame.quit()\n sys.exit()\n surface = self.to_surface(image, alpha=self._contrast)\n if self._screen is None:\n self._screen = self._pygame.display.set_mode(surface.get_size())\n self._screen.blit(surface, (0, 0))\n self._pygame.display.flip()\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, c, font=ImageFont.load_default()):
image = Image.new('1', font.getsize(c), color=255)
draw = ImageDraw.Draw(image)
draw.text((0, 0), c, fill='white', font=font)
return collections.Counter(image.getdata())[0]
|
char_density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, c, font=ImageFont.load_default()):\n image = Image.new('1', font.getsize(c), color=255)\n draw = ImageDraw.Draw(image)\n draw.text((0, 0), c, fill='white', font=font)\n return collections.Counter(image.getdata())[0]\n",
"role": "user"
},
{
"content": "char_density",
"role": "assistant"
}
] |
def x(self, image, width, height):
height = int(height * self._char_width / float(self._char_height))
image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')
for r, g, b in image.getdata():
greyscale = int(0.299 * r + 0.587 * g + 0.114 * b)
ch = self._chars[int(greyscale / 255.0 * (len(self._chars) - 1) + 0.5)]
yield ch, rgb2short(r, g, b)
|
generate_art
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, width, height):\n height = int(height * self._char_width / float(self._char_height))\n image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')\n for r, g, b in image.getdata():\n greyscale = int(0.299 * r + 0.587 * g + 0.114 * b)\n ch = self._chars[int(greyscale / 255.0 * (len(self._chars) - 1) + 0.5)]\n yield ch, rgb2short(r, g, b)\n",
"role": "user"
},
{
"content": "generate_art",
"role": "assistant"
}
] |
def x(self, image):
assert image.size == self.size
self._last_image = image
surface = self.to_surface(self.preprocess(image), alpha=self._contrast)
rawbytes = self._pygame.image.tostring(surface, 'RGB', False)
image = Image.frombytes('RGB', surface.get_size(), rawbytes)
scr_width = self._stdscr.getmaxyx()[1]
scale = float(scr_width) / image.width
self._stdscr.erase()
self._stdscr.move(0, 0)
try:
for ch, color in self._generate_art(image, int(image.width * scale),
int(image.height * scale)):
self._stdscr.addstr(ch, curses.color_pair(color))
except curses.error:
pass
self._stdscr.refresh()
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n surface = self.to_surface(self.preprocess(image), alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n image = Image.frombytes('RGB', surface.get_size(), rawbytes)\n scr_width = self._stdscr.getmaxyx()[1]\n scale = float(scr_width) / image.width\n self._stdscr.erase()\n self._stdscr.move(0, 0)\n try:\n for ch, color in self._generate_art(image, int(image.width * scale),\n int(image.height * scale)):\n self._stdscr.addstr(ch, curses.color_pair(color))\n except curses.error:\n pass\n self._stdscr.refresh()\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, image, width, height):
image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')
pixels = list(image.getdata())
for y in range(0, height - 1, 2):
for x in range(width):
i = y * width + x
bg = rgb2short(*pixels[i])
fg = rgb2short(*pixels[i + width])
yield fg, bg
|
generate_art
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, width, height):\n image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')\n pixels = list(image.getdata())\n for y in range(0, height - 1, 2):\n for x in range(width):\n i = y * width + x\n bg = rgb2short(*pixels[i])\n fg = rgb2short(*pixels[i + width])\n yield fg, bg\n",
"role": "user"
},
{
"content": "generate_art",
"role": "assistant"
}
] |
def x(self, cmd):
sys.stdout.write('\x1b[')
sys.stdout.write(cmd)
|
CSI
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmd):\n sys.stdout.write('\\x1b[')\n sys.stdout.write(cmd)\n",
"role": "user"
},
{
"content": "CSI",
"role": "assistant"
}
] |
def x(self, image):
assert image.size == self.size
self._last_image = image
surface = self.to_surface(self.preprocess(image), alpha=self._contrast)
rawbytes = self._pygame.image.tostring(surface, 'RGB', False)
image = Image.frombytes('RGB', surface.get_size(), rawbytes)
scr_width = self._terminal_size()[1]
scale = float(scr_width) / image.width
self._CSI('1;1H')
for fg, bg in self._generate_art(image, int(image.width * scale), int(
image.height * scale)):
self._CSI('38;5;{0};48;5;{1}m'.format(fg, bg))
sys.stdout.write('▄')
self._CSI('0m')
sys.stdout.flush()
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n surface = self.to_surface(self.preprocess(image), alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n image = Image.frombytes('RGB', surface.get_size(), rawbytes)\n scr_width = self._terminal_size()[1]\n scale = float(scr_width) / image.width\n self._CSI('1;1H')\n for fg, bg in self._generate_art(image, int(image.width * scale), int(\n image.height * scale)):\n self._CSI('38;5;{0};48;5;{1}m'.format(fg, bg))\n sys.stdout.write('▄')\n self._CSI('0m')\n sys.stdout.flush()\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(sequence, chunk_length):
for index in range(0, len(sequence), chunk_length):
yield sequence[index:index + chunk_length]
|
chunk_sequence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sequence, chunk_length):\n for index in range(0, len(sequence), chunk_length):\n yield sequence[index:index + chunk_length]\n",
"role": "user"
},
{
"content": "chunk_sequence",
"role": "assistant"
}
] |
def x(routes, board, railroad):
chicago_space = board.get_space(CHICAGO_CELL)
chicago_neighbor_cells = [cell for cell in CHICAGO_CELL.neighbors.
values() if cell != CHICAGO_CONNECTIONS_CELL]
stations = board.stations(railroad.name)
valid_routes = set()
for route in routes:
if len(route.cities) < 2:
continue
if isinstance(route.cities[0], EastTerminalCity) and isinstance(route
.cities[-1], EastTerminalCity):
continue
if route.contains_cell(CHICAGO_CONNECTIONS_CELL) and len(route.cities
) != 2:
all_chicago_subroutes = [subroute for subroute in route.
subroutes(CHICAGO_CONNECTIONS_CELL) if len(subroute) == 3]
chicago_subroute = all_chicago_subroutes[0
] if all_chicago_subroutes else None
for cell in chicago_neighbor_cells:
chicago_exit = (chicago_subroute and chicago_subroute.
contains_cell(cell))
if chicago_exit and chicago_space.passable(cell, railroad):
break
else:
continue
stations_on_route = [station for station in stations if route.
contains_cell(station.cell)]
if not stations_on_route:
continue
elif [CHICAGO_CELL] == [station.cell for station in stations_on_route]:
exit_cell = board.get_space(CHICAGO_CELL).get_station_exit_cell(
stations_on_route[0])
chicago_exit_route = Route.create([chicago_space, board.
get_space(exit_cell)])
if not (len(route) == 2 and route.contains_cell(
CHICAGO_CONNECTIONS_CELL)) and not route.overlap(
chicago_exit_route):
continue
valid_routes.add(route)
return valid_routes
|
filter_invalid_routes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(routes, board, railroad):\n chicago_space = board.get_space(CHICAGO_CELL)\n chicago_neighbor_cells = [cell for cell in CHICAGO_CELL.neighbors.\n values() if cell != CHICAGO_CONNECTIONS_CELL]\n stations = board.stations(railroad.name)\n valid_routes = set()\n for route in routes:\n if len(route.cities) < 2:\n continue\n if isinstance(route.cities[0], EastTerminalCity) and isinstance(route\n .cities[-1], EastTerminalCity):\n continue\n if route.contains_cell(CHICAGO_CONNECTIONS_CELL) and len(route.cities\n ) != 2:\n all_chicago_subroutes = [subroute for subroute in route.\n subroutes(CHICAGO_CONNECTIONS_CELL) if len(subroute) == 3]\n chicago_subroute = all_chicago_subroutes[0\n ] if all_chicago_subroutes else None\n for cell in chicago_neighbor_cells:\n chicago_exit = (chicago_subroute and chicago_subroute.\n contains_cell(cell))\n if chicago_exit and chicago_space.passable(cell, railroad):\n break\n else:\n continue\n stations_on_route = [station for station in stations if route.\n contains_cell(station.cell)]\n if not stations_on_route:\n continue\n elif [CHICAGO_CELL] == [station.cell for station in stations_on_route]:\n exit_cell = board.get_space(CHICAGO_CELL).get_station_exit_cell(\n stations_on_route[0])\n chicago_exit_route = Route.create([chicago_space, board.\n get_space(exit_cell)])\n if not (len(route) == 2 and route.contains_cell(\n CHICAGO_CONNECTIONS_CELL)) and not route.overlap(\n chicago_exit_route):\n continue\n valid_routes.add(route)\n return valid_routes\n",
"role": "user"
},
{
"content": "filter_invalid_routes",
"role": "assistant"
}
] |
def x(path, level=None, message=None, time_lower=None, time_upper=None,
case_sensitive=False):
if level:
level = level.upper()
if not case_sensitive:
message = message.lower()
with open(path, 'r') as f:
result = Result(path=path, level=level, message=message, time_lower
=time_lower, time_upper=time_upper, case_sensitive=case_sensitive)
for line in f:
try:
_time, _level, _message = [i.strip() for i in line.split(';')]
if level:
if _level != level:
continue
if time_lower:
if _time < time_lower:
continue
if time_upper:
if _time > time_upper:
continue
if message:
if not case_sensitive:
_message = _message.lower()
if message not in _message:
continue
result.lines.append(line)
except Exception as e:
print(e)
return result
|
find
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, level=None, message=None, time_lower=None, time_upper=None,\n case_sensitive=False):\n if level:\n level = level.upper()\n if not case_sensitive:\n message = message.lower()\n with open(path, 'r') as f:\n result = Result(path=path, level=level, message=message, time_lower\n =time_lower, time_upper=time_upper, case_sensitive=case_sensitive)\n for line in f:\n try:\n _time, _level, _message = [i.strip() for i in line.split(';')]\n if level:\n if _level != level:\n continue\n if time_lower:\n if _time < time_lower:\n continue\n if time_upper:\n if _time > time_upper:\n continue\n if message:\n if not case_sensitive:\n _message = _message.lower()\n if message not in _message:\n continue\n result.lines.append(line)\n except Exception as e:\n print(e)\n return result\n",
"role": "user"
},
{
"content": "find",
"role": "assistant"
}
] |
def x(name=None, rand_name=False, charset=Charset.HEX):
if rand_name:
name = rand_str(charset)
logger = logging.getLogger(name)
return logger
|
get_logger_by_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name=None, rand_name=False, charset=Charset.HEX):\n if rand_name:\n name = rand_str(charset)\n logger = logging.getLogger(name)\n return logger\n",
"role": "user"
},
{
"content": "get_logger_by_name",
"role": "assistant"
}
] |
def x(self, msg, indent=0, **kwargs):
return self.logger.debug(self._indent(msg, indent), **kwargs)
|
debug
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.debug(self._indent(msg, indent), **kwargs)\n",
"role": "user"
},
{
"content": "debug",
"role": "assistant"
}
] |
def x(self, msg, indent=0, **kwargs):
return self.logger.info(self._indent(msg, indent), **kwargs)
|
info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.info(self._indent(msg, indent), **kwargs)\n",
"role": "user"
},
{
"content": "info",
"role": "assistant"
}
] |
def x(self, msg, indent=0, **kwargs):
return self.logger.warning(self._indent(msg, indent), **kwargs)
|
warning
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.warning(self._indent(msg, indent), **kwargs)\n",
"role": "user"
},
{
"content": "warning",
"role": "assistant"
}
] |
def x(self, msg, indent=0, **kwargs):
return self.logger.error(self._indent(msg, indent), **kwargs)
|
error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.error(self._indent(msg, indent), **kwargs)\n",
"role": "user"
},
{
"content": "error",
"role": "assistant"
}
] |
def x(self, msg, indent=0, **kwargs):
return self.logger.critical(self._indent(msg, indent), **kwargs)
|
critical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.critical(self._indent(msg, indent), **kwargs)\n",
"role": "user"
},
{
"content": "critical",
"role": "assistant"
}
] |
def x(self, msg, indent=0, style='', **kwargs):
if self.enable_verbose:
new_msg = self.MessageTemplate.with_style.format(indent=self.tab *
indent, style=style, msg=msg)
print(new_msg, **kwargs)
|
show
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg, indent=0, style='', **kwargs):\n if self.enable_verbose:\n new_msg = self.MessageTemplate.with_style.format(indent=self.tab *\n indent, style=style, msg=msg)\n print(new_msg, **kwargs)\n",
"role": "user"
},
{
"content": "show",
"role": "assistant"
}
] |
def x(self):
for handler in self.logger.handlers[:]:
self.logger.removeHandler(handler)
self._handler_cache.append(handler)
|
remove_all_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for handler in self.logger.handlers[:]:\n self.logger.removeHandler(handler)\n self._handler_cache.append(handler)\n",
"role": "user"
},
{
"content": "remove_all_handler",
"role": "assistant"
}
] |
def x(self):
for handler in self._handler_cache:
self.logger.addHandler(handler)
self._handler_cache = list()
|
recover_all_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for handler in self._handler_cache:\n self.logger.addHandler(handler)\n self._handler_cache = list()\n",
"role": "user"
},
{
"content": "recover_all_handler",
"role": "assistant"
}
] |
def x(cls, proto: LinkItemProto) ->LinkItem:
if proto.name == '':
raise ValueError(
'name of LinkItem does not exist or is empty inside the protobuf.')
return cls(proto.name, Timestamp.ToDatetime(proto.time))
|
from_protobuf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, proto: LinkItemProto) ->LinkItem:\n if proto.name == '':\n raise ValueError(\n 'name of LinkItem does not exist or is empty inside the protobuf.')\n return cls(proto.name, Timestamp.ToDatetime(proto.time))\n",
"role": "user"
},
{
"content": "from_protobuf",
"role": "assistant"
}
] |
def x(self) ->LinkItemProto:
result = LinkItemProto()
result.name = self._name
result.time.CopyFrom(datetime_to_timestamp(self._time))
return result
|
to_protobuf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->LinkItemProto:\n result = LinkItemProto()\n result.name = self._name\n result.time.CopyFrom(datetime_to_timestamp(self._time))\n return result\n",
"role": "user"
},
{
"content": "to_protobuf",
"role": "assistant"
}
] |
def x(self, fname):
ltfh = FileHandler(fname)
self._log.addHandler(ltfh)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname):\n ltfh = FileHandler(fname)\n self._log.addHandler(ltfh)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(path: Path):
if not path.exists() or not path.is_dir():
return
for sub in path.iterdir():
if sub.is_dir():
delete_dir_rec(sub)
else:
sub.unlink()
path.rmdir()
|
delete_dir_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path: Path):\n if not path.exists() or not path.is_dir():\n return\n for sub in path.iterdir():\n if sub.is_dir():\n delete_dir_rec(sub)\n else:\n sub.unlink()\n path.rmdir()\n",
"role": "user"
},
{
"content": "delete_dir_rec",
"role": "assistant"
}
] |
def x(path: Path):
if not path.exists():
Path.mkdir(path, parents=True, exist_ok=True)
|
create_dir_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path: Path):\n if not path.exists():\n Path.mkdir(path, parents=True, exist_ok=True)\n",
"role": "user"
},
{
"content": "create_dir_rec",
"role": "assistant"
}
] |
def x(time: datetime) ->Timestamp:
protime = Timestamp()
protime.FromDatetime(time)
return protime
|
datetime_to_timestamp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(time: datetime) ->Timestamp:\n protime = Timestamp()\n protime.FromDatetime(time)\n return protime\n",
"role": "user"
},
{
"content": "datetime_to_timestamp",
"role": "assistant"
}
] |
def x(plugins: Dict[str, pkg_resources.EntryPoint]):
for trigger, entry_point in plugins.items():
try:
plugin_class = entry_point.load()
version = str(plugin_class._info.version)
print(f'{trigger} (ok)\n {version}')
except Exception:
print(f'{trigger} (failed)')
|
print_plugin_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plugins: Dict[str, pkg_resources.EntryPoint]):\n for trigger, entry_point in plugins.items():\n try:\n plugin_class = entry_point.load()\n version = str(plugin_class._info.version)\n print(f'{trigger} (ok)\\n {version}')\n except Exception:\n print(f'{trigger} (failed)')\n",
"role": "user"
},
{
"content": "print_plugin_list",
"role": "assistant"
}
] |
def x(xl1, yl1, nx1, ny1, xl2, yl2, nx2, ny2):
return (xl2 < xl1 + nx1 and xl2 + nx2 > xl1 and yl2 < yl1 + ny1 and yl2 +
ny2 > yl1)
|
overlap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xl1, yl1, nx1, ny1, xl2, yl2, nx2, ny2):\n return (xl2 < xl1 + nx1 and xl2 + nx2 > xl1 and yl2 < yl1 + ny1 and yl2 +\n ny2 > yl1)\n",
"role": "user"
},
{
"content": "overlap",
"role": "assistant"
}
] |
def x(g, data, backup=False):
if not backup:
fname = filedialog.asksaveasfilename(defaultextension='.json',
filetypes=[('json files', '.json')], initialdir=g.cpars[
'app_directory'])
else:
fname = os.path.join(os.path.expanduser('~/.hdriver'), 'app.json')
if not fname:
g.clog.warn('Aborted save to disk')
return False
with open(fname, 'w') as of:
of.write(json.dumps(data, sort_keys=True, indent=4, separators=(',',
': ')))
g.clog.info('Saved setup to' + fname)
return True
|
saveJSON
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, data, backup=False):\n if not backup:\n fname = filedialog.asksaveasfilename(defaultextension='.json',\n filetypes=[('json files', '.json')], initialdir=g.cpars[\n 'app_directory'])\n else:\n fname = os.path.join(os.path.expanduser('~/.hdriver'), 'app.json')\n if not fname:\n g.clog.warn('Aborted save to disk')\n return False\n with open(fname, 'w') as of:\n of.write(json.dumps(data, sort_keys=True, indent=4, separators=(',',\n ': ')))\n g.clog.info('Saved setup to' + fname)\n return True\n",
"role": "user"
},
{
"content": "saveJSON",
"role": "assistant"
}
] |
def x(g, data):
g.clog.debug('Entering postJSON')
json_data = json.dumps(data).encode('utf-8')
url = urllib.parse.urljoin(g.cpars['hipercam_server'], g.SERVER_POST_PATH)
g.clog.debug('Server URL = ' + url)
opener = urllib.request.build_opener()
g.clog.debug('content length = ' + str(len(json_data)))
req = urllib.request.Request(url, data=json_data, headers={
'Content-type': 'application/json'})
response = opener.open(req, timeout=15).read()
g.rlog.debug('Server response: ' + response.decode())
csr = ReadServer(response, status_msg=False)
if not csr.ok:
g.clog.warn('Server response was not OK')
g.rlog.warn('postJSON response: ' + response.decode())
g.clog.warn('Server error = ' + csr.err)
return False
if g.cpars['telins_name'] == 'GTC':
url = urllib.parse.urljoin(g.cpars['gtc_offset_server'], 'setup')
g.clog.debug('Offset Server URL = ' + url)
opener = urllib.request.build_opener()
try:
req = urllib.request.Request(url, data=json_data, headers={
'Content-type': 'application/json'})
response = opener.open(req, timeout=5).read().decode()
except Exception as err:
g.clog.warn('Could not communicate with GTC offsetter')
g.clog.warn(str(err))
return False
g.rlog.info('Offset Server Response: ' + response)
if not json.loads(response)['status'] == 'OK':
g.clog.warn('Offset Server response was not OK')
return False
g.clog.debug('Leaving postJSON')
return True
|
postJSON
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, data):\n g.clog.debug('Entering postJSON')\n json_data = json.dumps(data).encode('utf-8')\n url = urllib.parse.urljoin(g.cpars['hipercam_server'], g.SERVER_POST_PATH)\n g.clog.debug('Server URL = ' + url)\n opener = urllib.request.build_opener()\n g.clog.debug('content length = ' + str(len(json_data)))\n req = urllib.request.Request(url, data=json_data, headers={\n 'Content-type': 'application/json'})\n response = opener.open(req, timeout=15).read()\n g.rlog.debug('Server response: ' + response.decode())\n csr = ReadServer(response, status_msg=False)\n if not csr.ok:\n g.clog.warn('Server response was not OK')\n g.rlog.warn('postJSON response: ' + response.decode())\n g.clog.warn('Server error = ' + csr.err)\n return False\n if g.cpars['telins_name'] == 'GTC':\n url = urllib.parse.urljoin(g.cpars['gtc_offset_server'], 'setup')\n g.clog.debug('Offset Server URL = ' + url)\n opener = urllib.request.build_opener()\n try:\n req = urllib.request.Request(url, data=json_data, headers={\n 'Content-type': 'application/json'})\n response = opener.open(req, timeout=5).read().decode()\n except Exception as err:\n g.clog.warn('Could not communicate with GTC offsetter')\n g.clog.warn(str(err))\n return False\n g.rlog.info('Offset Server Response: ' + response)\n if not json.loads(response)['status'] == 'OK':\n g.clog.warn('Offset Server response was not OK')\n return False\n g.clog.debug('Leaving postJSON')\n return True\n",
"role": "user"
},
{
"content": "postJSON",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.