source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, output_model_type): logger().info('Generating initial model for BHMM using MLHMM...') from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator mlhmm = MaximumLikelihoodEstimator(self.observations, self.nstates, reversible=self.reversible, output=output_model_type) model = mlhmm.fit() return model
generateInitialModel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_model_type):\n logger().info('Generating initial model for BHMM using MLHMM...')\n from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator\n mlhmm = MaximumLikelihoodEstimator(self.observations, self.nstates,\n reversible=self.reversible, output=output_model_type)\n model = mlhmm.fit()\n return model\n", "role": "user" }, { "content": "generateInitialModel", "role": "assistant" } ]
def x(dtraj): if is_int_vector(dtraj): return dtraj elif is_list_of_int(dtraj): return np.array(dtraj, dtype=int) else: raise TypeError( 'Argument dtraj is not a discrete trajectory - only list of integers or int-ndarrays are allowed. Check type.' )
ensure_dtraj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dtraj):\n if is_int_vector(dtraj):\n return dtraj\n elif is_list_of_int(dtraj):\n return np.array(dtraj, dtype=int)\n else:\n raise TypeError(\n 'Argument dtraj is not a discrete trajectory - only list of integers or int-ndarrays are allowed. Check type.'\n )\n", "role": "user" }, { "content": "ensure_dtraj", "role": "assistant" } ]
def x(dtrajs): if isinstance(dtrajs, list): if is_list_of_int(dtrajs): return [np.array(dtrajs, dtype=int)] else: for i in range(len(dtrajs)): dtrajs[i] = ensure_dtraj(dtrajs[i]) return dtrajs else: return [ensure_dtraj(dtrajs)]
ensure_dtraj_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dtrajs):\n if isinstance(dtrajs, list):\n if is_list_of_int(dtrajs):\n return [np.array(dtrajs, dtype=int)]\n else:\n for i in range(len(dtrajs)):\n dtrajs[i] = ensure_dtraj(dtrajs[i])\n return dtrajs\n else:\n return [ensure_dtraj(dtrajs)]\n", "role": "user" }, { "content": "ensure_dtraj_list", "role": "assistant" } ]
def x(C, mincount_connectivity=0, strong=True): import msmtools.estimation as msmest Cconn = C.copy() Cconn[np.where(C <= mincount_connectivity)] = 0 S = msmest.connected_sets(Cconn, directed=strong) return S
connected_sets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C, mincount_connectivity=0, strong=True):\n import msmtools.estimation as msmest\n Cconn = C.copy()\n Cconn[np.where(C <= mincount_connectivity)] = 0\n S = msmest.connected_sets(Cconn, directed=strong)\n return S\n", "role": "user" }, { "content": "connected_sets", "role": "assistant" } ]
def x(C, mincount_connectivity=0): n = np.shape(C)[0] S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=True) closed = [] for s in S: mask = np.zeros(n, dtype=bool) mask[s] = True if C[np.ix_(mask, ~mask)].sum() == 0: closed.append(s) return closed
closed_sets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C, mincount_connectivity=0):\n n = np.shape(C)[0]\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=True)\n closed = []\n for s in S:\n mask = np.zeros(n, dtype=bool)\n mask[s] = True\n if C[np.ix_(mask, ~mask)].sum() == 0:\n closed.append(s)\n return closed\n", "role": "user" }, { "content": "closed_sets", "role": "assistant" } ]
def x(C, mincount_connectivity=0): if mincount_connectivity > 0: C = C.copy() C[np.where(C < mincount_connectivity)] = 0 return np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]
nonempty_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C, mincount_connectivity=0):\n if mincount_connectivity > 0:\n C = C.copy()\n C[np.where(C < mincount_connectivity)] = 0\n return np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]\n", "role": "user" }, { "content": "nonempty_set", "role": "assistant" } ]
def x(C, reversible=True, fixed_statdist=None, maxiter=1000000, maxerr= 1e-08, mincount_connectivity=0): import msmtools.estimation as msmest n = np.shape(C)[0] P = np.eye(n, dtype=np.float64) if reversible and fixed_statdist is None: S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=True) for s in S: mask = np.zeros(n, dtype=bool) mask[s] = True if C[np.ix_(mask, ~mask)].sum() > np.finfo(C.dtype).eps: transition_matrix_partial_rev(C, P, mask, maxiter=maxiter, maxerr=maxerr) else: I = np.ix_(mask, mask) if s.size > 1: P[I] = msmest.transition_matrix(C[I], reversible=True, warn_not_converged=False, maxiter=maxiter, maxerr= maxerr) else: S = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=False) for s in S: I = np.ix_(s, s) if not reversible: Csub = C[I] zero_rows = np.where(Csub.sum(axis=1) == 0)[0] Csub[zero_rows, zero_rows] = 1.0 P[I] = msmest.transition_matrix(Csub, reversible=False) elif reversible and fixed_statdist is not None: P[I] = msmest.transition_matrix(C[I], reversible=True, fixed_statdist=fixed_statdist, maxiter=maxiter, maxerr= maxerr) else: raise NotImplementedError( 'Transition estimation for the case reversible=' + str( reversible) + ' fixed_statdist=' + str(fixed_statdist is not None) + ' not implemented.') return P
estimate_P
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C, reversible=True, fixed_statdist=None, maxiter=1000000, maxerr=\n 1e-08, mincount_connectivity=0):\n import msmtools.estimation as msmest\n n = np.shape(C)[0]\n P = np.eye(n, dtype=np.float64)\n if reversible and fixed_statdist is None:\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=True)\n for s in S:\n mask = np.zeros(n, dtype=bool)\n mask[s] = True\n if C[np.ix_(mask, ~mask)].sum() > np.finfo(C.dtype).eps:\n transition_matrix_partial_rev(C, P, mask, maxiter=maxiter,\n maxerr=maxerr)\n else:\n I = np.ix_(mask, mask)\n if s.size > 1:\n P[I] = msmest.transition_matrix(C[I], reversible=True,\n warn_not_converged=False, maxiter=maxiter, maxerr=\n maxerr)\n else:\n S = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=False)\n for s in S:\n I = np.ix_(s, s)\n if not reversible:\n Csub = C[I]\n zero_rows = np.where(Csub.sum(axis=1) == 0)[0]\n Csub[zero_rows, zero_rows] = 1.0\n P[I] = msmest.transition_matrix(Csub, reversible=False)\n elif reversible and fixed_statdist is not None:\n P[I] = msmest.transition_matrix(C[I], reversible=True,\n fixed_statdist=fixed_statdist, maxiter=maxiter, maxerr=\n maxerr)\n else:\n raise NotImplementedError(\n 'Transition estimation for the case reversible=' + str(\n reversible) + ' fixed_statdist=' + str(fixed_statdist\n is not None) + ' not implemented.')\n return P\n", "role": "user" }, { "content": "estimate_P", "role": "assistant" } ]
def x(C, P, S, maxiter=1000000, maxerr=1e-08): assert np.array_equal(C.shape, P.shape) A = C[S][:, S] B = C[S][:, ~S] ATA = A + A.T countsums = C[S].sum(axis=1) X = 0.5 * ATA Y = C[S][:, ~S] totalsum = X.sum() + Y.sum() X /= totalsum Y /= totalsum rowsums = X.sum(axis=1) + Y.sum(axis=1) err = 1.0 it = 0 while err > maxerr and it < maxiter: d = countsums / rowsums X = ATA / (d[:, None] + d) Y = B / d[:, None] totalsum = X.sum() + Y.sum() X /= totalsum Y /= totalsum rowsums_new = X.sum(axis=1) + Y.sum(axis=1) err = np.max(np.abs(rowsums_new - rowsums)) rowsums = rowsums_new it += 1 P[np.ix_(S, S)] = X P[np.ix_(S, ~S)] = Y P[S] /= P[S].sum(axis=1)[:, None]
transition_matrix_partial_rev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C, P, S, maxiter=1000000, maxerr=1e-08):\n assert np.array_equal(C.shape, P.shape)\n A = C[S][:, S]\n B = C[S][:, ~S]\n ATA = A + A.T\n countsums = C[S].sum(axis=1)\n X = 0.5 * ATA\n Y = C[S][:, ~S]\n totalsum = X.sum() + Y.sum()\n X /= totalsum\n Y /= totalsum\n rowsums = X.sum(axis=1) + Y.sum(axis=1)\n err = 1.0\n it = 0\n while err > maxerr and it < maxiter:\n d = countsums / rowsums\n X = ATA / (d[:, None] + d)\n Y = B / d[:, None]\n totalsum = X.sum() + Y.sum()\n X /= totalsum\n Y /= totalsum\n rowsums_new = X.sum(axis=1) + Y.sum(axis=1)\n err = np.max(np.abs(rowsums_new - rowsums))\n rowsums = rowsums_new\n it += 1\n P[np.ix_(S, S)] = X\n P[np.ix_(S, ~S)] = Y\n P[S] /= P[S].sum(axis=1)[:, None]\n", "role": "user" }, { "content": "transition_matrix_partial_rev", "role": "assistant" } ]
def x(P): import msmtools.analysis as msmana n = np.shape(P)[0] Prev = P.copy() sets = closed_sets(P) for s in sets: I = np.ix_(s, s) pi_s = msmana.stationary_distribution(P[I]) X_s = pi_s[:, None] * P[I] X_s = 0.5 * (X_s + X_s.T) Prev[I] = X_s / X_s.sum(axis=1)[:, None] return Prev
enforce_reversible_on_closed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(P):\n import msmtools.analysis as msmana\n n = np.shape(P)[0]\n Prev = P.copy()\n sets = closed_sets(P)\n for s in sets:\n I = np.ix_(s, s)\n pi_s = msmana.stationary_distribution(P[I])\n X_s = pi_s[:, None] * P[I]\n X_s = 0.5 * (X_s + X_s.T)\n Prev[I] = X_s / X_s.sum(axis=1)[:, None]\n return Prev\n", "role": "user" }, { "content": "enforce_reversible_on_closed", "role": "assistant" } ]
def x(P): import msmtools.analysis as msmana sets = connected_sets(P, strong=False) for s in sets: Ps = P[s, :][:, s] if not msmana.is_transition_matrix(Ps): return False pi = msmana.stationary_distribution(Ps) X = pi[:, None] * Ps if not np.allclose(X, X.T): return False return True
is_reversible
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(P):\n import msmtools.analysis as msmana\n sets = connected_sets(P, strong=False)\n for s in sets:\n Ps = P[s, :][:, s]\n if not msmana.is_transition_matrix(Ps):\n return False\n pi = msmana.stationary_distribution(Ps)\n X = pi[:, None] * Ps\n if not np.allclose(X, X.T):\n return False\n return True\n", "role": "user" }, { "content": "is_reversible", "role": "assistant" } ]
def x(P, C=None, mincount_connectivity=0): from msmtools.analysis.dense.stationary_vector import stationary_distribution as msmstatdist if C is None: if is_connected(P, strong=True): return msmstatdist(P) else: raise ValueError( 'Computing stationary distribution for disconnected matrix. Need count matrix.' ) n = np.shape(C)[0] ctot = np.sum(C) pi = np.zeros(n) sets = connected_sets(C, mincount_connectivity=mincount_connectivity, strong=False) for s in sets: w = np.sum(C[s, :]) / ctot pi[s] = w * msmstatdist(P[s, :][:, s]) pi /= np.sum(pi) return pi
stationary_distribution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(P, C=None, mincount_connectivity=0):\n from msmtools.analysis.dense.stationary_vector import stationary_distribution as msmstatdist\n if C is None:\n if is_connected(P, strong=True):\n return msmstatdist(P)\n else:\n raise ValueError(\n 'Computing stationary distribution for disconnected matrix. Need count matrix.'\n )\n n = np.shape(C)[0]\n ctot = np.sum(C)\n pi = np.zeros(n)\n sets = connected_sets(C, mincount_connectivity=mincount_connectivity,\n strong=False)\n for s in sets:\n w = np.sum(C[s, :]) / ctot\n pi[s] = w * msmstatdist(P[s, :][:, s])\n pi /= np.sum(pi)\n return pi\n", "role": "user" }, { "content": "stationary_distribution", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates, self.dimension), dtype= config.dtype) for i in range(self.nsamples): for j in range(self.nstates): res[i, j, :] = self._sampled_hmms[i].means[j] return res
means_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=\n config.dtype)\n for i in range(self.nsamples):\n for j in range(self.nstates):\n res[i, j, :] = self._sampled_hmms[i].means[j]\n return res\n", "role": "user" }, { "content": "means_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates, self.dimension), dtype= config.dtype) for i in range(self.nsamples): for j in range(self.nstates): res[i, j, :] = self._sampled_hmms[i].sigmas[j] return res
sigmas_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.dimension), dtype=\n config.dtype)\n for i in range(self.nsamples):\n for j in range(self.nstates):\n res[i, j, :] = self._sampled_hmms[i].sigmas[j]\n return res\n", "role": "user" }, { "content": "sigmas_samples", "role": "assistant" } ]
def x(observations): from bhmm.util import types as _types o1 = _np.array(observations[0]) if _types.is_int_vector(o1): return 'discrete' if _np.allclose(o1, _np.round(o1)): isintegral = True for i in range(1, len(observations)): if not _np.allclose(observations[i], _np.round(observations[i])): isintegral = False break if isintegral: return 'discrete' if _types.is_float_vector(o1): return 'gaussian' raise TypeError( 'Observations is neither sequences of integers nor 1D-sequences of floats. The current versiondoes not support your input.' )
guess_output_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations):\n from bhmm.util import types as _types\n o1 = _np.array(observations[0])\n if _types.is_int_vector(o1):\n return 'discrete'\n if _np.allclose(o1, _np.round(o1)):\n isintegral = True\n for i in range(1, len(observations)):\n if not _np.allclose(observations[i], _np.round(observations[i])):\n isintegral = False\n break\n if isintegral:\n return 'discrete'\n if _types.is_float_vector(o1):\n return 'gaussian'\n raise TypeError(\n 'Observations is neither sequences of integers nor 1D-sequences of floats. The current versiondoes not support your input.'\n )\n", "role": "user" }, { "content": "guess_output_type", "role": "assistant" } ]
def x(observations, lag, stride=1): obsnew = [] for obs in observations: for shift in range(0, lag, stride): obs_lagged = obs[shift:][::lag] if len(obs_lagged) > 1: obsnew.append(obs_lagged) return obsnew
lag_observations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, lag, stride=1):\n obsnew = []\n for obs in observations:\n for shift in range(0, lag, stride):\n obs_lagged = obs[shift:][::lag]\n if len(obs_lagged) > 1:\n obsnew.append(obs_lagged)\n return obsnew\n", "role": "user" }, { "content": "lag_observations", "role": "assistant" } ]
def x(pi, P, means, sigmas): from bhmm.hmm.gaussian_hmm import GaussianHMM from bhmm.output_models.gaussian import GaussianOutputModel nstates = _np.array(P).shape[0] output_model = GaussianOutputModel(nstates, means, sigmas) from bhmm.hmm.generic_hmm import HMM as _HMM ghmm = _HMM(pi, P, output_model) ghmm = GaussianHMM(ghmm) return ghmm
gaussian_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pi, P, means, sigmas):\n from bhmm.hmm.gaussian_hmm import GaussianHMM\n from bhmm.output_models.gaussian import GaussianOutputModel\n nstates = _np.array(P).shape[0]\n output_model = GaussianOutputModel(nstates, means, sigmas)\n from bhmm.hmm.generic_hmm import HMM as _HMM\n ghmm = _HMM(pi, P, output_model)\n ghmm = GaussianHMM(ghmm)\n return ghmm\n", "role": "user" }, { "content": "gaussian_hmm", "role": "assistant" } ]
def x(pi, P, pout): from bhmm.hmm.discrete_hmm import DiscreteHMM from bhmm.output_models.discrete import DiscreteOutputModel output_model = DiscreteOutputModel(pout) from bhmm.hmm.generic_hmm import HMM as _HMM dhmm = _HMM(pi, P, output_model) dhmm = DiscreteHMM(dhmm) return dhmm
discrete_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pi, P, pout):\n from bhmm.hmm.discrete_hmm import DiscreteHMM\n from bhmm.output_models.discrete import DiscreteOutputModel\n output_model = DiscreteOutputModel(pout)\n from bhmm.hmm.generic_hmm import HMM as _HMM\n dhmm = _HMM(pi, P, output_model)\n dhmm = DiscreteHMM(dhmm)\n return dhmm\n", "role": "user" }, { "content": "discrete_hmm", "role": "assistant" } ]
def x(observations, nstates, lag=1, output=None, reversible=True): if output is None: output = _guess_output_type(observations) if output == 'discrete': return init_discrete_hmm(observations, nstates, lag=lag, reversible =reversible) elif output == 'gaussian': return init_gaussian_hmm(observations, nstates, lag=lag, reversible =reversible) else: raise NotImplementedError('output model type ' + str(output) + ' not yet implemented.')
init_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, nstates, lag=1, output=None, reversible=True):\n if output is None:\n output = _guess_output_type(observations)\n if output == 'discrete':\n return init_discrete_hmm(observations, nstates, lag=lag, reversible\n =reversible)\n elif output == 'gaussian':\n return init_gaussian_hmm(observations, nstates, lag=lag, reversible\n =reversible)\n else:\n raise NotImplementedError('output model type ' + str(output) +\n ' not yet implemented.')\n", "role": "user" }, { "content": "init_hmm", "role": "assistant" } ]
def x(observations, nstates, lag=1, reversible=True): from bhmm.init import gaussian if lag > 1: observations = lag_observations(observations, lag) hmm0 = gaussian.init_model_gaussian1d(observations, nstates, reversible =reversible) hmm0._lag = lag return hmm0
init_gaussian_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, nstates, lag=1, reversible=True):\n from bhmm.init import gaussian\n if lag > 1:\n observations = lag_observations(observations, lag)\n hmm0 = gaussian.init_model_gaussian1d(observations, nstates, reversible\n =reversible)\n hmm0._lag = lag\n return hmm0\n", "role": "user" }, { "content": "init_gaussian_hmm", "role": "assistant" } ]
def x(observations, nstates, lag=1, reversible=True, stationary=True, regularize=True, method='connect-spectral', separate=None): import msmtools.estimation as msmest from bhmm.init.discrete import init_discrete_hmm_spectral C = msmest.count_matrix(observations, lag).toarray() if regularize: eps_A = None eps_B = None else: eps_A = 0 eps_B = 0 if not stationary: raise NotImplementedError( 'Discrete-HMM initialization with stationary=False is not yet implemented.' ) if method == 'lcs-spectral': lcs = msmest.largest_connected_set(C) p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible= reversible, stationary=stationary, active_set=lcs, separate= separate, eps_A=eps_A, eps_B=eps_B) elif method == 'connect-spectral': C += msmest.prior_neighbor(C, 0.001) nonempty = _np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0] C[nonempty, nonempty] = _np.maximum(C[nonempty, nonempty], 0.001) p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible= reversible, stationary=stationary, active_set=nonempty, separate=separate, eps_A=eps_A, eps_B=eps_B) elif method == 'spectral': p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible= reversible, stationary=stationary, active_set=None, separate= separate, eps_A=eps_A, eps_B=eps_B) else: raise NotImplementedError( 'Unknown discrete-HMM initialization method ' + str(method)) hmm0 = discrete_hmm(p0, P, B) hmm0._lag = lag return hmm0
init_discrete_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, nstates, lag=1, reversible=True, stationary=True,\n regularize=True, method='connect-spectral', separate=None):\n import msmtools.estimation as msmest\n from bhmm.init.discrete import init_discrete_hmm_spectral\n C = msmest.count_matrix(observations, lag).toarray()\n if regularize:\n eps_A = None\n eps_B = None\n else:\n eps_A = 0\n eps_B = 0\n if not stationary:\n raise NotImplementedError(\n 'Discrete-HMM initialization with stationary=False is not yet implemented.'\n )\n if method == 'lcs-spectral':\n lcs = msmest.largest_connected_set(C)\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=lcs, separate=\n separate, eps_A=eps_A, eps_B=eps_B)\n elif method == 'connect-spectral':\n C += msmest.prior_neighbor(C, 0.001)\n nonempty = _np.where(C.sum(axis=0) + C.sum(axis=1) > 0)[0]\n C[nonempty, nonempty] = _np.maximum(C[nonempty, nonempty], 0.001)\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=nonempty,\n separate=separate, eps_A=eps_A, eps_B=eps_B)\n elif method == 'spectral':\n p0, P, B = init_discrete_hmm_spectral(C, nstates, reversible=\n reversible, stationary=stationary, active_set=None, separate=\n separate, eps_A=eps_A, eps_B=eps_B)\n else:\n raise NotImplementedError(\n 'Unknown discrete-HMM initialization method ' + str(method))\n hmm0 = discrete_hmm(p0, P, B)\n hmm0._lag = lag\n return hmm0\n", "role": "user" }, { "content": "init_discrete_hmm", "role": "assistant" } ]
def x(observations, nstates, lag=1, initial_model=None, output=None, reversible=True, stationary=False, p=None, accuracy=0.001, maxit=1000, maxit_P=100000, mincount_connectivity=0.01): if output is None: output = _guess_output_type(observations) if lag > 1: observations = lag_observations(observations, lag) from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator as _MaximumLikelihoodEstimator est = _MaximumLikelihoodEstimator(observations, nstates, initial_model= initial_model, output=output, reversible=reversible, stationary= stationary, p=p, accuracy=accuracy, maxit=maxit, maxit_P=maxit_P) est.fit() est.hmm._lag = lag return est.hmm
estimate_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, nstates, lag=1, initial_model=None, output=None,\n reversible=True, stationary=False, p=None, accuracy=0.001, maxit=1000,\n maxit_P=100000, mincount_connectivity=0.01):\n if output is None:\n output = _guess_output_type(observations)\n if lag > 1:\n observations = lag_observations(observations, lag)\n from bhmm.estimators.maximum_likelihood import MaximumLikelihoodEstimator as _MaximumLikelihoodEstimator\n est = _MaximumLikelihoodEstimator(observations, nstates, initial_model=\n initial_model, output=output, reversible=reversible, stationary=\n stationary, p=p, accuracy=accuracy, maxit=maxit, maxit_P=maxit_P)\n est.fit()\n est.hmm._lag = lag\n return est.hmm\n", "role": "user" }, { "content": "estimate_hmm", "role": "assistant" } ]
def x(observations, estimated_hmm, nsample=100, reversible=True, stationary =False, p0_prior='mixed', transition_matrix_prior='mixed', store_hidden =False, call_back=None): from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as _BHMM sampler = _BHMM(observations, estimated_hmm.nstates, initial_model= estimated_hmm, reversible=reversible, stationary=stationary, transition_matrix_sampling_steps=1000, p0_prior=p0_prior, transition_matrix_prior=transition_matrix_prior, output= estimated_hmm.output_model.model_type) sampled_hmms = sampler.sample(nsamples=nsample, save_hidden_state_trajectory=store_hidden, call_back=call_back) from bhmm.hmm.generic_sampled_hmm import SampledHMM return SampledHMM(estimated_hmm, sampled_hmms)
bayesian_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, estimated_hmm, nsample=100, reversible=True, stationary\n =False, p0_prior='mixed', transition_matrix_prior='mixed', store_hidden\n =False, call_back=None):\n from bhmm.estimators.bayesian_sampling import BayesianHMMSampler as _BHMM\n sampler = _BHMM(observations, estimated_hmm.nstates, initial_model=\n estimated_hmm, reversible=reversible, stationary=stationary,\n transition_matrix_sampling_steps=1000, p0_prior=p0_prior,\n transition_matrix_prior=transition_matrix_prior, output=\n estimated_hmm.output_model.model_type)\n sampled_hmms = sampler.sample(nsamples=nsample,\n save_hidden_state_trajectory=store_hidden, call_back=call_back)\n from bhmm.hmm.generic_sampled_hmm import SampledHMM\n return SampledHMM(estimated_hmm, sampled_hmms)\n", "role": "user" }, { "content": "bayesian_hmm", "role": "assistant" } ]
def x(arr, axis=0): arr = np.rollaxis(arr, axis) vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out
logsumexp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, axis=0):\n arr = np.rollaxis(arr, axis)\n vmax = arr.max(axis=0)\n out = np.log(np.sum(np.exp(arr - vmax), axis=0))\n out += vmax\n return out\n", "role": "user" }, { "content": "logsumexp", "role": "assistant" } ]
def x(spmatrix, accept_sparse, dtype, order, copy, force_all_finite): if accept_sparse is None: raise TypeError( 'A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.' ) sparse_type = spmatrix.format if dtype is None: dtype = spmatrix.dtype if sparse_type in accept_sparse: if dtype == spmatrix.dtype: if copy: spmatrix = spmatrix.copy() else: spmatrix = spmatrix.astype(dtype) else: spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype) if force_all_finite: if not hasattr(spmatrix, 'data'): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) if hasattr(spmatrix, 'data'): spmatrix.data = np.array(spmatrix.data, copy=False, order=order) return spmatrix
ensure_sparse_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spmatrix, accept_sparse, dtype, order, copy, force_all_finite):\n if accept_sparse is None:\n raise TypeError(\n 'A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.'\n )\n sparse_type = spmatrix.format\n if dtype is None:\n dtype = spmatrix.dtype\n if sparse_type in accept_sparse:\n if dtype == spmatrix.dtype:\n if copy:\n spmatrix = spmatrix.copy()\n else:\n spmatrix = spmatrix.astype(dtype)\n else:\n spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype)\n if force_all_finite:\n if not hasattr(spmatrix, 'data'):\n warnings.warn(\"Can't check %s sparse matrix for nan or inf.\" %\n spmatrix.format)\n else:\n _assert_all_finite(spmatrix.data)\n if hasattr(spmatrix, 'data'):\n spmatrix.data = np.array(spmatrix.data, copy=False, order=order)\n return spmatrix\n", "role": "user" }, { "content": "ensure_sparse_format", "role": "assistant" } ]
def x(array, accept_sparse=None, dtype='numeric', order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1): if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] dtype_numeric = dtype == 'numeric' if sp.issparse(array): if dtype_numeric: dtype = None array = _ensure_sparse_format(array, accept_sparse, dtype, order, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) if dtype_numeric: if hasattr(array, 'dtype') and getattr(array.dtype, 'kind', None ) == 'O': dtype = np.float64 else: dtype = None array = np.array(array, dtype=dtype, order=order, copy=copy) if dtype_numeric and array.dtype.kind == 'O': array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError('Found array with dim %d. Expected <= 2' % array.ndim) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError( 'Found array with %d sample(s) (shape=%s) while a minimum of %d is required.' % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError( 'Found array with %d feature(s) (shape=%s) while a minimum of %d is required.' % (n_features, shape_repr, ensure_min_features)) return array
check_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array, accept_sparse=None, dtype='numeric', order=None, copy=False,\n force_all_finite=True, ensure_2d=True, allow_nd=False,\n ensure_min_samples=1, ensure_min_features=1):\n if isinstance(accept_sparse, str):\n accept_sparse = [accept_sparse]\n dtype_numeric = dtype == 'numeric'\n if sp.issparse(array):\n if dtype_numeric:\n dtype = None\n array = _ensure_sparse_format(array, accept_sparse, dtype, order,\n copy, force_all_finite)\n else:\n if ensure_2d:\n array = np.atleast_2d(array)\n if dtype_numeric:\n if hasattr(array, 'dtype') and getattr(array.dtype, 'kind', None\n ) == 'O':\n dtype = np.float64\n else:\n dtype = None\n array = np.array(array, dtype=dtype, order=order, copy=copy)\n if dtype_numeric and array.dtype.kind == 'O':\n array = array.astype(np.float64)\n if not allow_nd and array.ndim >= 3:\n raise ValueError('Found array with dim %d. Expected <= 2' %\n array.ndim)\n if force_all_finite:\n _assert_all_finite(array)\n shape_repr = _shape_repr(array.shape)\n if ensure_min_samples > 0:\n n_samples = _num_samples(array)\n if n_samples < ensure_min_samples:\n raise ValueError(\n 'Found array with %d sample(s) (shape=%s) while a minimum of %d is required.'\n % (n_samples, shape_repr, ensure_min_samples))\n if ensure_min_features > 0 and array.ndim == 2:\n n_features = array.shape[1]\n if n_features < ensure_min_features:\n raise ValueError(\n 'Found array with %d feature(s) (shape=%s) while a minimum of %d is required.'\n % (n_features, shape_repr, ensure_min_features))\n return array\n", "role": "user" }, { "content": "check_array", "role": "assistant" } ]
def x(ci_X, ntrials, ci=0.95): ci_low = 0.5 - ci / 2 ci_high = 0.5 + ci / 2 from scipy.stats import beta Plow = ci_X * 0.0 Phigh = ci_X * 0.0 for i in range(ci_X.shape[0]): for j in range(ci_X.shape[1]): Plow[i, j] = beta.ppf(ci_low, a=ci_X[i, j] * ntrials, b=(1 - ci_X[i, j]) * ntrials) Phigh[i, j] = beta.ppf(ci_high, a=ci_X[i, j] * ntrials, b=(1 - ci_X[i, j]) * ntrials) return [Plow, Phigh]
beta_confidence_intervals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ci_X, ntrials, ci=0.95):\n ci_low = 0.5 - ci / 2\n ci_high = 0.5 + ci / 2\n from scipy.stats import beta\n Plow = ci_X * 0.0\n Phigh = ci_X * 0.0\n for i in range(ci_X.shape[0]):\n for j in range(ci_X.shape[1]):\n Plow[i, j] = beta.ppf(ci_low, a=ci_X[i, j] * ntrials, b=(1 -\n ci_X[i, j]) * ntrials)\n Phigh[i, j] = beta.ppf(ci_high, a=ci_X[i, j] * ntrials, b=(1 -\n ci_X[i, j]) * ntrials)\n return [Plow, Phigh]\n", "role": "user" }, { "content": "beta_confidence_intervals", "role": "assistant" } ]
def x(sample, interval=0.95): sample = np.sort(sample) N = len(sample) low_index = int(np.round((N - 1) * (0.5 - interval / 2))) + 1 high_index = int(np.round((N - 1) * (0.5 + interval / 2))) + 1 low = sample[low_index] high = sample[high_index] return [low, high]
empirical_confidence_interval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample, interval=0.95):\n sample = np.sort(sample)\n N = len(sample)\n low_index = int(np.round((N - 1) * (0.5 - interval / 2))) + 1\n high_index = int(np.round((N - 1) * (0.5 + interval / 2))) + 1\n low = sample[low_index]\n high = sample[high_index]\n return [low, high]\n", "role": "user" }, { "content": "empirical_confidence_interval", "role": "assistant" } ]
def x(sampled_hmm, conf=0.95, dt=1, time_unit='ms', obs_name='force', obs_units='pN', caption='', outfile=None): from bhmm.hmm.generic_sampled_hmm import SampledHMM from bhmm.hmm.gaussian_hmm import SampledGaussianHMM assert issubclass(sampled_hmm.__class__, SampledHMM ), 'sampled_hmm ist not a SampledHMM' sampled_hmm.set_confidence(conf) dt = float(dt) nstates = sampled_hmm.nstates table = """ \\begin{table} \\begin{tabular*}{\\columnwidth}{@{\\extracolsep{\\fill}}lcc} \\hline {\\bf Property} & {\\bf Symbol} & {\\bf Value} \\\\ \\hline """ p = sampled_hmm.stationary_distribution_mean p_lo, p_hi = sampled_hmm.stationary_distribution_conf for i in range(nstates): if i == 0: table += '\t\tEquilibrium probability ' table += '\t\t& $\\pi_{%d}$ & $%0.3f_{\\:%0.3f}^{\\:%0.3f}$ \\\\' % ( i + 1, p[i], p_lo[i], p_hi[i]) + '\n' table += '\t\t\\hline' + '\n' P = sampled_hmm.transition_matrix_mean P_lo, P_hi = sampled_hmm.transition_matrix_conf for i in range(nstates): for j in range(nstates): if i == 0 and j == 0: table += '\t\tTransition probability ($\\Delta t = $%s) ' % ( str(dt) + ' ' + time_unit) table += ( '\t\t& $T_{%d%d}$ & $%0.4f_{\\:%0.4f}^{\\:%0.4f}$ \\\\' % ( i + 1, j + 1, P[i, j], P_lo[i, j], P_hi[i, j]) + '\n') table += '\t\t\\hline' + '\n' table += '\t\t\\hline' + '\n' K = P - np.eye(sampled_hmm.nstates) K /= dt K_lo = P_lo - np.eye(sampled_hmm.nstates) K_lo /= dt K_hi = P_hi - np.eye(sampled_hmm.nstates) K_hi /= dt for i in range(nstates): for j in range(nstates): if i == 0 and j == 0: table += '\t\tTransition rate (%s$^{-1}$) ' % time_unit if i != j: table += ( '\t\t& $k_{%d%d}$ & $%2.4f_{\\:%2.4f}^{\\:%2.4f}$ \\\\' % (i + 1, j + 1, K[i, j], K_lo[i, j], K_hi[i, j]) + '\n') table += '\t\t\\hline' + '\n' l = sampled_hmm.lifetimes_mean l *= dt l_lo, l_hi = sampled_hmm.lifetimes_conf l_lo *= dt l_hi *= dt for i in range(nstates): if i == 0: table += '\t\tState mean lifetime (%s) ' % time_unit table += '\t\t& $t_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % (i + 1, l[i], l_lo[i], l_hi[i]) + '\n' table += '\t\t\\hline' + '\n' t = sampled_hmm.timescales_mean t *= dt t_lo, t_hi = sampled_hmm.timescales_conf t_lo *= dt t_hi *= dt for i in range(nstates - 1): if i == 0: table += '\t\tRelaxation time (%s) ' % time_unit table += '\t\t& $\\tau_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % ( i + 1, t[i], t_lo[i], t_hi[i]) + '\n' table += '\t\t\\hline' + '\n' if issubclass(sampled_hmm.__class__, SampledGaussianHMM): table += '\t\t\\hline' + '\n' m = sampled_hmm.means_mean m_lo, m_hi = sampled_hmm.means_conf for i in range(nstates): if i == 0: table += '\t\tState %s mean (%s) ' % (obs_name, obs_units) table += '\t\t& $\\mu_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % ( i + 1, m[i], m_lo[i], m_hi[i]) + '\n' table += '\t\t\\hline' + '\n' s = sampled_hmm.sigmas_mean s_lo, s_hi = sampled_hmm.sigmas_conf for i in range(nstates): if i == 0: table += '\t\tState %s std dev (%s) ' % (obs_name, obs_units) table += '\t\t& $s_{%d}$ & $%.3f_{\\:%.3f}^{\\:%.3f}$ \\\\' % ( i + 1, s[i], s_lo[i], s_hi[i]) + '\n' table += '\t\t\\hline' + '\n' table += ( """ \\hline \\end{tabular*} \\caption{{\\bf %s}} \\end{table} """ % caption) if outfile is not None: f = open(outfile, 'w') f.write(table) f.close() return table
generate_latex_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sampled_hmm, conf=0.95, dt=1, time_unit='ms', obs_name='force',\n obs_units='pN', caption='', outfile=None):\n from bhmm.hmm.generic_sampled_hmm import SampledHMM\n from bhmm.hmm.gaussian_hmm import SampledGaussianHMM\n assert issubclass(sampled_hmm.__class__, SampledHMM\n ), 'sampled_hmm ist not a SampledHMM'\n sampled_hmm.set_confidence(conf)\n dt = float(dt)\n nstates = sampled_hmm.nstates\n table = \"\"\"\n\\\\begin{table}\n \\\\begin{tabular*}{\\\\columnwidth}{@{\\\\extracolsep{\\\\fill}}lcc}\n \\\\hline\n {\\\\bf Property} & {\\\\bf Symbol} & {\\\\bf Value} \\\\\\\\\n \\\\hline\n \"\"\"\n p = sampled_hmm.stationary_distribution_mean\n p_lo, p_hi = sampled_hmm.stationary_distribution_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tEquilibrium probability '\n table += '\\t\\t& $\\\\pi_{%d}$ & $%0.3f_{\\\\:%0.3f}^{\\\\:%0.3f}$ \\\\\\\\' % (\n i + 1, p[i], p_lo[i], p_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n P = sampled_hmm.transition_matrix_mean\n P_lo, P_hi = sampled_hmm.transition_matrix_conf\n for i in range(nstates):\n for j in range(nstates):\n if i == 0 and j == 0:\n table += '\\t\\tTransition probability ($\\\\Delta t = $%s) ' % (\n str(dt) + ' ' + time_unit)\n table += (\n '\\t\\t& $T_{%d%d}$ & $%0.4f_{\\\\:%0.4f}^{\\\\:%0.4f}$ \\\\\\\\' % (\n i + 1, j + 1, P[i, j], P_lo[i, j], P_hi[i, j]) + '\\n')\n table += '\\t\\t\\\\hline' + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n K = P - np.eye(sampled_hmm.nstates)\n K /= dt\n K_lo = P_lo - np.eye(sampled_hmm.nstates)\n K_lo /= dt\n K_hi = P_hi - np.eye(sampled_hmm.nstates)\n K_hi /= dt\n for i in range(nstates):\n for j in range(nstates):\n if i == 0 and j == 0:\n table += '\\t\\tTransition rate (%s$^{-1}$) ' % time_unit\n if i != j:\n table += (\n '\\t\\t& $k_{%d%d}$ & $%2.4f_{\\\\:%2.4f}^{\\\\:%2.4f}$ \\\\\\\\' %\n (i + 1, j + 1, K[i, j], K_lo[i, j], K_hi[i, j]) + '\\n')\n table += '\\t\\t\\\\hline' + '\\n'\n l = sampled_hmm.lifetimes_mean\n l *= dt\n l_lo, l_hi = sampled_hmm.lifetimes_conf\n l_lo *= dt\n l_hi *= dt\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState mean lifetime (%s) ' % time_unit\n table += '\\t\\t& $t_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (i + \n 1, l[i], l_lo[i], l_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n t = sampled_hmm.timescales_mean\n t *= dt\n t_lo, t_hi = sampled_hmm.timescales_conf\n t_lo *= dt\n t_hi *= dt\n for i in range(nstates - 1):\n if i == 0:\n table += '\\t\\tRelaxation time (%s) ' % time_unit\n table += '\\t\\t& $\\\\tau_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, t[i], t_lo[i], t_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n if issubclass(sampled_hmm.__class__, SampledGaussianHMM):\n table += '\\t\\t\\\\hline' + '\\n'\n m = sampled_hmm.means_mean\n m_lo, m_hi = sampled_hmm.means_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState %s mean (%s) ' % (obs_name, obs_units)\n table += '\\t\\t& $\\\\mu_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, m[i], m_lo[i], m_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n s = sampled_hmm.sigmas_mean\n s_lo, s_hi = sampled_hmm.sigmas_conf\n for i in range(nstates):\n if i == 0:\n table += '\\t\\tState %s std dev (%s) ' % (obs_name, obs_units)\n table += '\\t\\t& $s_{%d}$ & $%.3f_{\\\\:%.3f}^{\\\\:%.3f}$ \\\\\\\\' % (\n i + 1, s[i], s_lo[i], s_hi[i]) + '\\n'\n table += '\\t\\t\\\\hline' + '\\n'\n table += (\n \"\"\"\n \\\\hline\n \\\\end{tabular*}\n \\\\caption{{\\\\bf %s}}\n\\\\end{table}\n \"\"\"\n % caption)\n if outfile is not None:\n f = open(outfile, 'w')\n f.write(table)\n f.close()\n return table\n", "role": "user" }, { "content": "generate_latex_table", "role": "assistant" } ]
def x(data, alpha): if alpha < 0 or alpha > 1: raise ValueError('Not a meaningful confidence level: ' + str(alpha)) m = np.mean(data) sdata = np.sort(data) im = np.searchsorted(sdata, m) if im == 0 or im == len(sdata): pm = im else: pm = im - 1 + (m - sdata[im - 1]) / (sdata[im] - sdata[im - 1]) pl = pm - alpha * pm il1 = max(0, int(math.floor(pl))) il2 = min(len(sdata) - 1, int(math.ceil(pl))) l = sdata[il1] + (pl - il1) * (sdata[il2] - sdata[il1]) pr = pm + alpha * (len(data) - im) ir1 = max(0, int(math.floor(pr))) ir2 = min(len(sdata) - 1, int(math.ceil(pr))) r = sdata[ir1] + (pr - ir1) * (sdata[ir2] - sdata[ir1]) return m, l, r
confidence_interval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, alpha):\n if alpha < 0 or alpha > 1:\n raise ValueError('Not a meaningful confidence level: ' + str(alpha))\n m = np.mean(data)\n sdata = np.sort(data)\n im = np.searchsorted(sdata, m)\n if im == 0 or im == len(sdata):\n pm = im\n else:\n pm = im - 1 + (m - sdata[im - 1]) / (sdata[im] - sdata[im - 1])\n pl = pm - alpha * pm\n il1 = max(0, int(math.floor(pl)))\n il2 = min(len(sdata) - 1, int(math.ceil(pl)))\n l = sdata[il1] + (pl - il1) * (sdata[il2] - sdata[il1])\n pr = pm + alpha * (len(data) - im)\n ir1 = max(0, int(math.floor(pr)))\n ir2 = min(len(sdata) - 1, int(math.ceil(pr)))\n r = sdata[ir1] + (pr - ir1) * (sdata[ir2] - sdata[ir1])\n return m, l, r\n", "role": "user" }, { "content": "confidence_interval", "role": "assistant" } ]
def x(data, conf=0.95): if conf < 0 or conf > 1: raise ValueError('Not a meaningful confidence level: ' + str(conf)) if types.is_list(data) or isinstance(data, np.ndarray) and np.ndim(data ) == 1: newshape = tuple([len(data)] + list(data[0].shape)) newdata = np.zeros(newshape) for i in range(len(data)): newdata[i, :] = data[i] data = newdata if types.is_float_array(data): I = _indexes(data[0]) lower = np.zeros(data[0].shape) upper = np.zeros(data[0].shape) for i in I: col = _column(data, i) m, lower[i], upper[i] = confidence_interval(col, conf) return lower, upper else: raise TypeError('data cannot be converted to an ndarray')
confidence_interval_arr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, conf=0.95):\n if conf < 0 or conf > 1:\n raise ValueError('Not a meaningful confidence level: ' + str(conf))\n if types.is_list(data) or isinstance(data, np.ndarray) and np.ndim(data\n ) == 1:\n newshape = tuple([len(data)] + list(data[0].shape))\n newdata = np.zeros(newshape)\n for i in range(len(data)):\n newdata[i, :] = data[i]\n data = newdata\n if types.is_float_array(data):\n I = _indexes(data[0])\n lower = np.zeros(data[0].shape)\n upper = np.zeros(data[0].shape)\n for i in I:\n col = _column(data, i)\n m, lower[i], upper[i] = confidence_interval(col, conf)\n return lower, upper\n else:\n raise TypeError('data cannot be converted to an ndarray')\n", "role": "user" }, { "content": "confidence_interval_arr", "role": "assistant" } ]
def x(self, remote=False): if remote: components = urlparse.urlparse(self.endpoint) try: result = self.session.get(components[0] + '://' + components[1] + '/status', timeout=self.timeout) except Exception as e: if self.logger: self.logger.debug('Failed to connect to server for status: %s', e) result = None if result and result.status_code == 200: self.server_status = result.json() self.server_status['endpoint'] = self.endpoint elif result: if self.logger: self.logger.debug( 'Server status response not understandable: Status: %d, Body: %s' , result.status_code, result.text) self.server_status = {'endpoint': self.endpoint, 'status': 'Unexpected HTTP status ' + str(result.status_code) + ' at: ' + strftime('%d %b %Y %H:%M:%S +0000', gmtime())} else: self.server_status = {'endpoint': self.endpoint, 'status': 'Unreachable at: ' + strftime('%d %b %Y %H:%M:%S +0000', gmtime())} return self.local_status, self.server_status
status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, remote=False):\n if remote:\n components = urlparse.urlparse(self.endpoint)\n try:\n result = self.session.get(components[0] + '://' + components[1] +\n '/status', timeout=self.timeout)\n except Exception as e:\n if self.logger:\n self.logger.debug('Failed to connect to server for status: %s',\n e)\n result = None\n if result and result.status_code == 200:\n self.server_status = result.json()\n self.server_status['endpoint'] = self.endpoint\n elif result:\n if self.logger:\n self.logger.debug(\n 'Server status response not understandable: Status: %d, Body: %s'\n , result.status_code, result.text)\n self.server_status = {'endpoint': self.endpoint, 'status': \n 'Unexpected HTTP status ' + str(result.status_code) +\n ' at: ' + strftime('%d %b %Y %H:%M:%S +0000', gmtime())}\n else:\n self.server_status = {'endpoint': self.endpoint, 'status': \n 'Unreachable at: ' + strftime('%d %b %Y %H:%M:%S +0000',\n gmtime())}\n return self.local_status, self.server_status\n", "role": "user" }, { "content": "status", "role": "assistant" } ]
def x(self, object_type, url_params, query_params=None): self.local_status['single-query-count'] += 1 query_type = object_type + 's' query_path = '/organizations/{}/{}'.format(self.org_id, query_type) for component in (url_params if url_params else []): query_path += '/' + urlparse.quote(component, safe='/@') if query_params: query_path += '?' + urlparse.urlencode(query_params) try: result = self.make_call(query_path) body = result.json() except RequestError as re: if re.result.status_code == 404: if self.logger: self.logger.debug('Ran %s query: %s %s (0 found)', object_type, url_params, query_params) return {} else: raise re if body.get('result') == 'success': value = body.get(object_type, {}) if self.logger: self.logger.debug('Ran %s query: %s %s (1 found)', object_type, url_params, query_params) return value else: raise ClientError("OK status but no 'success' result", result)
query_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, object_type, url_params, query_params=None):\n self.local_status['single-query-count'] += 1\n query_type = object_type + 's'\n query_path = '/organizations/{}/{}'.format(self.org_id, query_type)\n for component in (url_params if url_params else []):\n query_path += '/' + urlparse.quote(component, safe='/@')\n if query_params:\n query_path += '?' + urlparse.urlencode(query_params)\n try:\n result = self.make_call(query_path)\n body = result.json()\n except RequestError as re:\n if re.result.status_code == 404:\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (0 found)',\n object_type, url_params, query_params)\n return {}\n else:\n raise re\n if body.get('result') == 'success':\n value = body.get(object_type, {})\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (1 found)', object_type,\n url_params, query_params)\n return value\n else:\n raise ClientError(\"OK status but no 'success' result\", result)\n", "role": "user" }, { "content": "query_single", "role": "assistant" } ]
def x(self, object_type, page=0, url_params=None, query_params=None): self.local_status['multiple-query-count'] += 1 if object_type in ('user', 'group'): query_path = '/{}s/{}/{:d}'.format(object_type, self.org_id, page) if url_params: query_path += '/' + '/'.join([urlparse.quote(c) for c in url_params]) if query_params: query_path += '?' + urlparse.urlencode(query_params) elif object_type == 'user-group': query_path = '/{}/user-groups'.format(self.org_id) if url_params: query_path += '/' + '/'.join([urlparse.quote(c) for c in url_params]) query_path += '?page={:d}'.format(page + 1) if query_params: query_path += '&' + urlparse.urlencode(query_params) else: raise ArgumentError( "Unknown query object type ({}): must be 'user' or 'group'". format(object_type)) try: result = self.make_call(query_path) body = result.json() except RequestError as re: if re.result.status_code == 404: if self.logger: self.logger.debug('Ran %s query: %s %s (0 found)', object_type, url_params, query_params) return [], True else: raise re if object_type in ('user', 'group'): if body.get('result') == 'success': values = body.get(object_type + 's', []) last_page = body.get('lastPage', False) if self.logger: self.logger.debug( 'Ran multi-%s query: %s %s (page %d: %d found)', object_type, url_params, query_params, page, len(values)) return values, last_page else: raise ClientError("OK status but no 'success' result", result) elif object_type == 'user-group': page_number = result.headers.get('X-Current-Page', '1') page_count = result.headers.get('X-Page-Count', '1') if self.logger: self.logger.debug( 'Ran multi-group query: %s %s (page %d: %d found)', url_params, query_params, page, len(body)) return body, int(page_number) >= int(page_count) else: raise ArgumentError( "Unknown query object type ({}): must be 'user' or 'group'". format(object_type))
query_multiple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, object_type, page=0, url_params=None, query_params=None):\n self.local_status['multiple-query-count'] += 1\n if object_type in ('user', 'group'):\n query_path = '/{}s/{}/{:d}'.format(object_type, self.org_id, page)\n if url_params:\n query_path += '/' + '/'.join([urlparse.quote(c) for c in\n url_params])\n if query_params:\n query_path += '?' + urlparse.urlencode(query_params)\n elif object_type == 'user-group':\n query_path = '/{}/user-groups'.format(self.org_id)\n if url_params:\n query_path += '/' + '/'.join([urlparse.quote(c) for c in\n url_params])\n query_path += '?page={:d}'.format(page + 1)\n if query_params:\n query_path += '&' + urlparse.urlencode(query_params)\n else:\n raise ArgumentError(\n \"Unknown query object type ({}): must be 'user' or 'group'\".\n format(object_type))\n try:\n result = self.make_call(query_path)\n body = result.json()\n except RequestError as re:\n if re.result.status_code == 404:\n if self.logger:\n self.logger.debug('Ran %s query: %s %s (0 found)',\n object_type, url_params, query_params)\n return [], True\n else:\n raise re\n if object_type in ('user', 'group'):\n if body.get('result') == 'success':\n values = body.get(object_type + 's', [])\n last_page = body.get('lastPage', False)\n if self.logger:\n self.logger.debug(\n 'Ran multi-%s query: %s %s (page %d: %d found)',\n object_type, url_params, query_params, page, len(values))\n return values, last_page\n else:\n raise ClientError(\"OK status but no 'success' result\", result)\n elif object_type == 'user-group':\n page_number = result.headers.get('X-Current-Page', '1')\n page_count = result.headers.get('X-Page-Count', '1')\n if self.logger:\n self.logger.debug(\n 'Ran multi-group query: %s %s (page %d: %d found)',\n url_params, query_params, page, len(body))\n return body, int(page_number) >= int(page_count)\n else:\n raise ArgumentError(\n \"Unknown query object type ({}): must be 'user' or 'group'\".\n format(object_type))\n", "role": "user" }, { "content": "query_multiple", "role": "assistant" } ]
def x(self, action, immediate=False): return self.execute_multiple([action], immediate=immediate)
execute_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action, immediate=False):\n return self.execute_multiple([action], immediate=immediate)\n", "role": "user" }, { "content": "execute_single", "role": "assistant" } ]
def x(self, actions, immediate=True): split_actions = [] exceptions = [] for a in actions: if len(a.commands) == 0: if self.logger: self.logger.warning('Sending action with no commands: %s', a.frame) try: if a.maybe_split_groups(self.throttle_groups): if self.logger: self.logger.debug( 'Throttling actions %s to have a maximum of %d entries in group lists.' , a.frame, self.throttle_groups) except AttributeError: pass if len(a.commands) > self.throttle_commands: if self.logger: self.logger.debug( 'Throttling action %s to have a maximum of %d commands.', a.frame, self.throttle_commands) split_actions += a.split(self.throttle_commands) else: split_actions.append(a) actions = self.action_queue + split_actions sent = completed = 0 batch_size = self.throttle_actions min_size = 1 if immediate else batch_size while len(actions) >= min_size: batch, actions = actions[0:batch_size], actions[batch_size:] if self.logger: self.logger.debug('Executing %d actions (%d remaining).', len( batch), len(actions)) sent += len(batch) try: completed += self._execute_batch(batch) except Exception as e: exceptions.append(e) self.action_queue = actions self.local_status['actions-queued'] = queued = len(actions) self.local_status['actions-sent'] += sent self.local_status['actions-completed'] += completed if exceptions: raise BatchError(exceptions, queued, sent, completed) return queued, sent, completed
execute_multiple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, actions, immediate=True):\n split_actions = []\n exceptions = []\n for a in actions:\n if len(a.commands) == 0:\n if self.logger:\n self.logger.warning('Sending action with no commands: %s',\n a.frame)\n try:\n if a.maybe_split_groups(self.throttle_groups):\n if self.logger:\n self.logger.debug(\n 'Throttling actions %s to have a maximum of %d entries in group lists.'\n , a.frame, self.throttle_groups)\n except AttributeError:\n pass\n if len(a.commands) > self.throttle_commands:\n if self.logger:\n self.logger.debug(\n 'Throttling action %s to have a maximum of %d commands.',\n a.frame, self.throttle_commands)\n split_actions += a.split(self.throttle_commands)\n else:\n split_actions.append(a)\n actions = self.action_queue + split_actions\n sent = completed = 0\n batch_size = self.throttle_actions\n min_size = 1 if immediate else batch_size\n while len(actions) >= min_size:\n batch, actions = actions[0:batch_size], actions[batch_size:]\n if self.logger:\n self.logger.debug('Executing %d actions (%d remaining).', len(\n batch), len(actions))\n sent += len(batch)\n try:\n completed += self._execute_batch(batch)\n except Exception as e:\n exceptions.append(e)\n self.action_queue = actions\n self.local_status['actions-queued'] = queued = len(actions)\n self.local_status['actions-sent'] += sent\n self.local_status['actions-completed'] += completed\n if exceptions:\n raise BatchError(exceptions, queued, sent, completed)\n return queued, sent, completed\n", "role": "user" }, { "content": "execute_multiple", "role": "assistant" } ]
def x(self, actions): wire_form = [a.wire_dict() for a in actions] if self.test_mode: result = self.make_call('/action/%s?testOnly=true' % self.org_id, wire_form) else: result = self.make_call('/action/%s' % self.org_id, wire_form) body = result.json() if body.get('errors', None) is None: if body.get('result') != 'success': if self.logger: self.logger.warning( 'Server action result: no errors, but no success:\n%s', body) return len(actions) try: if body.get('result') == 'success': if self.logger: self.logger.warning( 'Server action result: errors, but success report:\n%s', body) for error in body['errors']: actions[error['index']].report_command_error(error) except: raise ClientError(str(body), result) return body.get('completed', 0)
execute_batch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, actions):\n wire_form = [a.wire_dict() for a in actions]\n if self.test_mode:\n result = self.make_call('/action/%s?testOnly=true' % self.org_id,\n wire_form)\n else:\n result = self.make_call('/action/%s' % self.org_id, wire_form)\n body = result.json()\n if body.get('errors', None) is None:\n if body.get('result') != 'success':\n if self.logger:\n self.logger.warning(\n 'Server action result: no errors, but no success:\\n%s',\n body)\n return len(actions)\n try:\n if body.get('result') == 'success':\n if self.logger:\n self.logger.warning(\n 'Server action result: errors, but success report:\\n%s',\n body)\n for error in body['errors']:\n actions[error['index']].report_command_error(error)\n except:\n raise ClientError(str(body), result)\n return body.get('completed', 0)\n", "role": "user" }, { "content": "execute_batch", "role": "assistant" } ]
def x(self, path, body=None, delete=False): if body: request_body = json.dumps(body) def x(): return self.session.post(self.endpoint + path, auth=self.auth, data=request_body, timeout=self.timeout) elif not delete: def x(): return self.session.get(self.endpoint + path, auth=self.auth, timeout=self.timeout) else: def x(): return self.session.delete(self.endpoint + path, auth=self.auth, timeout=self.timeout) start_time = time() result = None for num_attempts in range(1, self.retry_max_attempts + 1): try: result = call() if result.status_code in [200, 201, 204]: return result elif result.status_code in [429, 502, 503, 504]: if self.logger: self.logger.warning( 'UMAPI timeout...service unavailable (code %d on try %d)' , result.status_code, num_attempts) retry_wait = 0 if 'Retry-After' in result.headers: advice = result.headers['Retry-After'] advised_time = parsedate_tz(advice) if advised_time is not None: retry_wait = int(mktime_tz(advised_time) - time()) else: retry_wait = int(advice) if retry_wait <= 0: delay = randint(0, self.retry_random_delay) retry_wait = int(pow(2, num_attempts - 1) ) * self.retry_first_delay + delay elif 201 <= result.status_code < 400: raise ClientError('Unexpected HTTP Status {:d}: {}'.format( result.status_code, result.text), result) elif 400 <= result.status_code < 500: raise RequestError(result) else: raise ServerError(result) except requests.Timeout: if self.logger: self.logger.warning( 'UMAPI connection timeout...(%d seconds on try %d)', self.timeout, num_attempts) retry_wait = 0 result = None if num_attempts < self.retry_max_attempts: if retry_wait > 0: if self.logger: self.logger.warning('Next retry in %d seconds...', retry_wait) sleep(retry_wait) elif self.logger: self.logger.warning('Immediate retry...') total_time = int(time() - start_time) if self.logger: self.logger.error( 'UMAPI timeout...giving up after %d attempts (%d seconds).', self.retry_max_attempts, total_time) raise UnavailableError(self.retry_max_attempts, total_time, result)
make_call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, body=None, delete=False):\n if body:\n request_body = json.dumps(body)\n\n def x():\n return self.session.post(self.endpoint + path, auth=self.auth,\n data=request_body, timeout=self.timeout)\n elif not delete:\n\n def x():\n return self.session.get(self.endpoint + path, auth=self.auth,\n timeout=self.timeout)\n else:\n\n def x():\n return self.session.delete(self.endpoint + path, auth=self.auth,\n timeout=self.timeout)\n start_time = time()\n result = None\n for num_attempts in range(1, self.retry_max_attempts + 1):\n try:\n result = call()\n if result.status_code in [200, 201, 204]:\n return result\n elif result.status_code in [429, 502, 503, 504]:\n if self.logger:\n self.logger.warning(\n 'UMAPI timeout...service unavailable (code %d on try %d)'\n , result.status_code, num_attempts)\n retry_wait = 0\n if 'Retry-After' in result.headers:\n advice = result.headers['Retry-After']\n advised_time = parsedate_tz(advice)\n if advised_time is not None:\n retry_wait = int(mktime_tz(advised_time) - time())\n else:\n retry_wait = int(advice)\n if retry_wait <= 0:\n delay = randint(0, self.retry_random_delay)\n retry_wait = int(pow(2, num_attempts - 1)\n ) * self.retry_first_delay + delay\n elif 201 <= result.status_code < 400:\n raise ClientError('Unexpected HTTP Status {:d}: {}'.format(\n result.status_code, result.text), result)\n elif 400 <= result.status_code < 500:\n raise RequestError(result)\n else:\n raise ServerError(result)\n except requests.Timeout:\n if self.logger:\n self.logger.warning(\n 'UMAPI connection timeout...(%d seconds on try %d)',\n self.timeout, num_attempts)\n retry_wait = 0\n result = None\n if num_attempts < self.retry_max_attempts:\n if retry_wait > 0:\n if self.logger:\n self.logger.warning('Next retry in %d seconds...',\n retry_wait)\n sleep(retry_wait)\n elif self.logger:\n self.logger.warning('Immediate retry...')\n total_time = int(time() - start_time)\n if self.logger:\n self.logger.error(\n 'UMAPI timeout...giving up after %d attempts (%d seconds).',\n self.retry_max_attempts, total_time)\n raise UnavailableError(self.retry_max_attempts, total_time, result)\n", "role": "user" }, { "content": "make_call", "role": "assistant" } ]
def x(query, org_id, max_pages=maxsize, max_records=maxsize): page_count = 0 record_count = 0 records = [] while page_count < max_pages and record_count < max_records: res = make_call(query, org_id, page_count) page_count += 1 if 'groups' in res: records += res['groups'] elif 'users' in res: records += res['users'] record_count = len(records) if res.get('lastPage'): break return records
paginate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(query, org_id, max_pages=maxsize, max_records=maxsize):\n page_count = 0\n record_count = 0\n records = []\n while page_count < max_pages and record_count < max_records:\n res = make_call(query, org_id, page_count)\n page_count += 1\n if 'groups' in res:\n records += res['groups']\n elif 'users' in res:\n records += res['users']\n record_count = len(records)\n if res.get('lastPage'):\n break\n return records\n", "role": "user" }, { "content": "paginate", "role": "assistant" } ]
def x(query, org_id, page): wait_time = 0 num_attempts = 0 while num_attempts < retry_max_attempts: if wait_time > 0: sleep(wait_time) wait_time = 0 try: num_attempts += 1 return query(org_id, page) except UMAPIRetryError as e: logger.warning( 'UMAPI service temporarily unavailable (attempt %d) -- %s', num_attempts, e.res.status_code) if 'Retry-After' in e.res.headers: advice = e.res.headers['Retry-After'] advised_time = parsedate_tz(advice) if advised_time is not None: wait_time = int(mktime_tz(advised_time) - time()) else: wait_time = int(advice) if wait_time <= 0: delay = randint(0, retry_random_delay_max) wait_time = int(pow(2, num_attempts) ) * retry_exponential_backoff_factor + delay logger.warning('Next retry in %d seconds...', wait_time) continue except UMAPIRequestError as e: logger.warning('UMAPI error processing request -- %s', e.code) return {} except UMAPIError as e: logger.warning('HTTP error processing request -- %s: %s', e.res .status_code, e.res.text) return {} logger.error( 'UMAPI timeout...giving up on results page %d after %d attempts.', page, retry_max_attempts) return {}
make_call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(query, org_id, page):\n wait_time = 0\n num_attempts = 0\n while num_attempts < retry_max_attempts:\n if wait_time > 0:\n sleep(wait_time)\n wait_time = 0\n try:\n num_attempts += 1\n return query(org_id, page)\n except UMAPIRetryError as e:\n logger.warning(\n 'UMAPI service temporarily unavailable (attempt %d) -- %s',\n num_attempts, e.res.status_code)\n if 'Retry-After' in e.res.headers:\n advice = e.res.headers['Retry-After']\n advised_time = parsedate_tz(advice)\n if advised_time is not None:\n wait_time = int(mktime_tz(advised_time) - time())\n else:\n wait_time = int(advice)\n if wait_time <= 0:\n delay = randint(0, retry_random_delay_max)\n wait_time = int(pow(2, num_attempts)\n ) * retry_exponential_backoff_factor + delay\n logger.warning('Next retry in %d seconds...', wait_time)\n continue\n except UMAPIRequestError as e:\n logger.warning('UMAPI error processing request -- %s', e.code)\n return {}\n except UMAPIError as e:\n logger.warning('HTTP error processing request -- %s: %s', e.res\n .status_code, e.res.text)\n return {}\n logger.error(\n 'UMAPI timeout...giving up on results page %d after %d attempts.',\n page, retry_max_attempts)\n return {}\n", "role": "user" }, { "content": "make_call", "role": "assistant" } ]
def x(self, **kwargs): for k, v in list(six.iteritems(kwargs)): if k.startswith('create') or k.startswith('addAdobe') or k.startswith( 'removeFrom'): self.commands.append({k: v}) del kwargs[k] for k, v in sorted(six.iteritems(kwargs)): if k in ['add', 'remove']: self.commands.append({k: {'product': v}}) else: self.commands.append({k: v}) return self
do
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n for k, v in list(six.iteritems(kwargs)):\n if k.startswith('create') or k.startswith('addAdobe') or k.startswith(\n 'removeFrom'):\n self.commands.append({k: v})\n del kwargs[k]\n for k, v in sorted(six.iteritems(kwargs)):\n if k in ['add', 'remove']:\n self.commands.append({k: {'product': v}})\n else:\n self.commands.append({k: v})\n return self\n", "role": "user" }, { "content": "do", "role": "assistant" } ]
def x(self, max_commands): a_prior = Action(**self.frame) a_prior.commands = list(self.commands) self.split_actions = [a_prior] while len(a_prior.commands) > max_commands: a_next = Action(**self.frame) a_prior.commands, a_next.commands = a_prior.commands[0:max_commands ], a_prior.commands[max_commands:] self.split_actions.append(a_next) a_prior = a_next return self.split_actions
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_commands):\n a_prior = Action(**self.frame)\n a_prior.commands = list(self.commands)\n self.split_actions = [a_prior]\n while len(a_prior.commands) > max_commands:\n a_next = Action(**self.frame)\n a_prior.commands, a_next.commands = a_prior.commands[0:max_commands\n ], a_prior.commands[max_commands:]\n self.split_actions.append(a_next)\n a_prior = a_next\n return self.split_actions\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(self, **kwargs): for k, v in six.iteritems(kwargs): self.commands.append({k: v}) return self
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n for k, v in six.iteritems(kwargs):\n self.commands.append({k: v})\n return self\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(self, **kwargs): for k, v in six.iteritems(kwargs): self.commands.insert(0, {k: v}) return self
insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n for k, v in six.iteritems(kwargs):\n self.commands.insert(0, {k: v})\n return self\n", "role": "user" }, { "content": "insert", "role": "assistant" } ]
def x(self, error_dict): error = dict(error_dict) error['command'] = self.commands[error_dict['step']] error['target'] = self.frame del error['index'] del error['step'] self.errors.append(error)
report_command_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, error_dict):\n error = dict(error_dict)\n error['command'] = self.commands[error_dict['step']]\n error['target'] = self.frame\n del error['index']\n del error['step']\n self.errors.append(error)\n", "role": "user" }, { "content": "report_command_error", "role": "assistant" } ]
def x(self): if self.split_actions: return [dict(e) for s in self.split_actions for e in s.errors] else: return [dict(e) for e in self.errors]
execution_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.split_actions:\n return [dict(e) for s in self.split_actions for e in s.errors]\n else:\n return [dict(e) for e in self.errors]\n", "role": "user" }, { "content": "execution_errors", "role": "assistant" } ]
def x(self, max_groups): split_commands = [] maybe_split = False valid_step_keys = ['add', 'addRoles', 'remove'] for command in self.commands: step_key, step_args = next(six.iteritems(command)) if step_key not in valid_step_keys or not isinstance(step_args, dict): split_commands.append(command) continue new_commands = [command] while True: new_command = {step_key: {}} for group_type, groups in six.iteritems(command[step_key]): if len(groups) > max_groups: command[step_key][group_type], new_command[step_key][ group_type] = groups[0:max_groups], groups[max_groups:] if new_command[step_key]: new_commands.append(new_command) command = new_command maybe_split = True else: break split_commands += new_commands self.commands = split_commands return maybe_split
maybe_split_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_groups):\n split_commands = []\n maybe_split = False\n valid_step_keys = ['add', 'addRoles', 'remove']\n for command in self.commands:\n step_key, step_args = next(six.iteritems(command))\n if step_key not in valid_step_keys or not isinstance(step_args, dict):\n split_commands.append(command)\n continue\n new_commands = [command]\n while True:\n new_command = {step_key: {}}\n for group_type, groups in six.iteritems(command[step_key]):\n if len(groups) > max_groups:\n command[step_key][group_type], new_command[step_key][\n group_type] = groups[0:max_groups], groups[max_groups:]\n if new_command[step_key]:\n new_commands.append(new_command)\n command = new_command\n maybe_split = True\n else:\n break\n split_commands += new_commands\n self.commands = split_commands\n return maybe_split\n", "role": "user" }, { "content": "maybe_split_groups", "role": "assistant" } ]
def x(self): self._results = [] self._next_item_index = 0 self._next_page_index = 0 self._last_page_seen = False
reload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._results = []\n self._next_item_index = 0\n self._next_page_index = 0\n self._last_page_seen = False\n", "role": "user" }, { "content": "reload", "role": "assistant" } ]
def x(self): if self._last_page_seen: raise StopIteration new, self._last_page_seen = self.conn.query_multiple(self.object_type, self._next_page_index, self.url_params, self.query_params) self._next_page_index += 1 if len(new) == 0: self._last_page_seen = True else: self._results += new
next_page
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._last_page_seen:\n raise StopIteration\n new, self._last_page_seen = self.conn.query_multiple(self.object_type,\n self._next_page_index, self.url_params, self.query_params)\n self._next_page_index += 1\n if len(new) == 0:\n self._last_page_seen = True\n else:\n self._results += new\n", "role": "user" }, { "content": "next_page", "role": "assistant" } ]
def x(self): while not self._last_page_seen: self._next_page() self._next_item_index = len(self._results) return list(self._results)
all_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n while not self._last_page_seen:\n self._next_page()\n self._next_item_index = len(self._results)\n return list(self._results)\n", "role": "user" }, { "content": "all_results", "role": "assistant" } ]
def x(self): self._result = self.conn.query_single(self.object_type, self.url_params, self.query_params)
fetch_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._result = self.conn.query_single(self.object_type, self.url_params,\n self.query_params)\n", "role": "user" }, { "content": "fetch_result", "role": "assistant" } ]
def x(self, first_name=None, last_name=None, country=None, email=None, on_conflict=IfAlreadyExistsOptions.ignoreIfAlreadyExists): create_params = {} if email is None: if not self.email: raise ArgumentError('You must specify email when creating a user') elif self.email is None: self.email = email elif self.email.lower() != email.lower(): raise ArgumentError( "Specified email (%s) doesn't match user's email (%s)" % (email, self.email)) create_params['email'] = self.email if on_conflict in IfAlreadyExistsOptions.__members__: on_conflict = IfAlreadyExistsOptions[on_conflict] if on_conflict not in IfAlreadyExistsOptions: raise ArgumentError('on_conflict must be one of {}'.format([o.name for o in IfAlreadyExistsOptions])) if on_conflict != IfAlreadyExistsOptions.errorIfAlreadyExists: create_params['option'] = on_conflict.name if first_name: create_params['firstname'] = first_name if last_name: create_params['lastname'] = last_name if country: create_params['country'] = country if self.id_type == IdentityTypes.adobeID: return self.insert(addAdobeID=dict(**create_params)) elif self.id_type == IdentityTypes.enterpriseID: return self.insert(createEnterpriseID=dict(**create_params)) else: return self.insert(createFederatedID=dict(**create_params))
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, first_name=None, last_name=None, country=None, email=None,\n on_conflict=IfAlreadyExistsOptions.ignoreIfAlreadyExists):\n create_params = {}\n if email is None:\n if not self.email:\n raise ArgumentError('You must specify email when creating a user')\n elif self.email is None:\n self.email = email\n elif self.email.lower() != email.lower():\n raise ArgumentError(\n \"Specified email (%s) doesn't match user's email (%s)\" % (email,\n self.email))\n create_params['email'] = self.email\n if on_conflict in IfAlreadyExistsOptions.__members__:\n on_conflict = IfAlreadyExistsOptions[on_conflict]\n if on_conflict not in IfAlreadyExistsOptions:\n raise ArgumentError('on_conflict must be one of {}'.format([o.name for\n o in IfAlreadyExistsOptions]))\n if on_conflict != IfAlreadyExistsOptions.errorIfAlreadyExists:\n create_params['option'] = on_conflict.name\n if first_name:\n create_params['firstname'] = first_name\n if last_name:\n create_params['lastname'] = last_name\n if country:\n create_params['country'] = country\n if self.id_type == IdentityTypes.adobeID:\n return self.insert(addAdobeID=dict(**create_params))\n elif self.id_type == IdentityTypes.enterpriseID:\n return self.insert(createEnterpriseID=dict(**create_params))\n else:\n return self.insert(createFederatedID=dict(**create_params))\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, email=None, username=None, first_name=None, last_name=None, country=None): if username and self.id_type != IdentityTypes.federatedID: raise ArgumentError('You cannot set username except for a federated ID' ) if username and '@' in username and not email: raise ArgumentError( 'Cannot update email-type username when email is not specified') if email and username and email.lower() == username.lower(): raise ArgumentError( 'Specify just email to set both email and username for a federated ID' ) updates = {} for k, v in six.iteritems(dict(email=email, username=username, firstname=first_name, lastname=last_name, country=country)): if v: updates[k] = v return self.append(update=updates)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, email=None, username=None, first_name=None, last_name=None,\n country=None):\n if username and self.id_type != IdentityTypes.federatedID:\n raise ArgumentError('You cannot set username except for a federated ID'\n )\n if username and '@' in username and not email:\n raise ArgumentError(\n 'Cannot update email-type username when email is not specified')\n if email and username and email.lower() == username.lower():\n raise ArgumentError(\n 'Specify just email to set both email and username for a federated ID'\n )\n updates = {}\n for k, v in six.iteritems(dict(email=email, username=username,\n firstname=first_name, lastname=last_name, country=country)):\n if v:\n updates[k] = v\n return self.append(update=updates)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, groups=None, all_groups=False, group_type=None): if all_groups: if groups or group_type: raise ArgumentError( 'When adding to all groups, do not specify specific groups or types' ) glist = 'all' else: if not groups: groups = [] if not group_type: group_type = GroupTypes.product elif group_type in GroupTypes.__members__: group_type = GroupTypes[group_type] if group_type not in GroupTypes: raise ArgumentError( 'You must specify a GroupType value for argument group_type') glist = {group_type.name: [group for group in groups]} return self.append(add=glist)
add_to_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, groups=None, all_groups=False, group_type=None):\n if all_groups:\n if groups or group_type:\n raise ArgumentError(\n 'When adding to all groups, do not specify specific groups or types'\n )\n glist = 'all'\n else:\n if not groups:\n groups = []\n if not group_type:\n group_type = GroupTypes.product\n elif group_type in GroupTypes.__members__:\n group_type = GroupTypes[group_type]\n if group_type not in GroupTypes:\n raise ArgumentError(\n 'You must specify a GroupType value for argument group_type')\n glist = {group_type.name: [group for group in groups]}\n return self.append(add=glist)\n", "role": "user" }, { "content": "add_to_groups", "role": "assistant" } ]
def x(self, groups=None, all_groups=False, group_type=None): if all_groups: if groups or group_type: raise ArgumentError( 'When removing from all groups, do not specify specific groups or types' ) glist = 'all' else: if not groups: raise ArgumentError( 'You must specify groups from which to remove the user') if not group_type: group_type = GroupTypes.product elif group_type in GroupTypes.__members__: group_type = GroupTypes[group_type] if group_type not in GroupTypes: raise ArgumentError( 'You must specify a GroupType value for argument group_type') glist = {group_type.name: [group for group in groups]} return self.append(remove=glist)
remove_from_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, groups=None, all_groups=False, group_type=None):\n if all_groups:\n if groups or group_type:\n raise ArgumentError(\n 'When removing from all groups, do not specify specific groups or types'\n )\n glist = 'all'\n else:\n if not groups:\n raise ArgumentError(\n 'You must specify groups from which to remove the user')\n if not group_type:\n group_type = GroupTypes.product\n elif group_type in GroupTypes.__members__:\n group_type = GroupTypes[group_type]\n if group_type not in GroupTypes:\n raise ArgumentError(\n 'You must specify a GroupType value for argument group_type')\n glist = {group_type.name: [group for group in groups]}\n return self.append(remove=glist)\n", "role": "user" }, { "content": "remove_from_groups", "role": "assistant" } ]
def x(self, groups=None, role_type=RoleTypes.admin): if not groups: raise ArgumentError( 'You must specify groups to which to add the role for this user') if role_type in RoleTypes.__members__: role_type = RoleTypes[role_type] if role_type not in RoleTypes: raise ArgumentError( 'You must specify a RoleType value for argument role_type') glist = {role_type.name: [group for group in groups]} return self.append(addRoles=glist)
add_role
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, groups=None, role_type=RoleTypes.admin):\n if not groups:\n raise ArgumentError(\n 'You must specify groups to which to add the role for this user')\n if role_type in RoleTypes.__members__:\n role_type = RoleTypes[role_type]\n if role_type not in RoleTypes:\n raise ArgumentError(\n 'You must specify a RoleType value for argument role_type')\n glist = {role_type.name: [group for group in groups]}\n return self.append(addRoles=glist)\n", "role": "user" }, { "content": "add_role", "role": "assistant" } ]
def x(self, groups=None, role_type=RoleTypes.admin): if not groups: raise ArgumentError( 'You must specify groups from which to remove the role for this user' ) if role_type in RoleTypes.__members__: role_type = RoleTypes[role_type] if role_type not in RoleTypes: raise ArgumentError( 'You must specify a RoleType value for argument role_type') glist = {role_type.name: [group for group in groups]} return self.append(removeRoles=glist)
remove_role
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, groups=None, role_type=RoleTypes.admin):\n if not groups:\n raise ArgumentError(\n 'You must specify groups from which to remove the role for this user'\n )\n if role_type in RoleTypes.__members__:\n role_type = RoleTypes[role_type]\n if role_type not in RoleTypes:\n raise ArgumentError(\n 'You must specify a RoleType value for argument role_type')\n glist = {role_type.name: [group for group in groups]}\n return self.append(removeRoles=glist)\n", "role": "user" }, { "content": "remove_role", "role": "assistant" } ]
def x(self, delete_account=False): self.append(removeFromOrg={'deleteAccount': True if delete_account else False}) return None
remove_from_organization
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, delete_account=False):\n self.append(removeFromOrg={'deleteAccount': True if delete_account else\n False})\n return None\n", "role": "user" }, { "content": "remove_from_organization", "role": "assistant" } ]
def x(self): if self.id_type == IdentityTypes.adobeID: raise ArgumentError('You cannot delete an Adobe ID account.') self.append(removeFromDomain={}) return None
delete_account
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.id_type == IdentityTypes.adobeID:\n raise ArgumentError('You cannot delete an Adobe ID account.')\n self.append(removeFromDomain={})\n return None\n", "role": "user" }, { "content": "delete_account", "role": "assistant" } ]
def x(cls, group_name): if group_name and not cls._group_name_regex.match(group_name): raise ArgumentError("'%s': Illegal group name" % (group_name,)) if group_name and len(group_name) > 255: raise ArgumentError("'%s': Group name is too long" % (group_name,))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, group_name):\n if group_name and not cls._group_name_regex.match(group_name):\n raise ArgumentError(\"'%s': Illegal group name\" % (group_name,))\n if group_name and len(group_name) > 255:\n raise ArgumentError(\"'%s': Group name is too long\" % (group_name,))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, products=None, all_products=False): if all_products: if products: raise ArgumentError( 'When adding to all products, do not specify specific products' ) plist = 'all' else: if not products: raise ArgumentError( 'You must specify products to which to add the user group') plist = {GroupTypes.productConfiguration.name: [product for product in products]} return self.append(add=plist)
add_to_products
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, products=None, all_products=False):\n if all_products:\n if products:\n raise ArgumentError(\n 'When adding to all products, do not specify specific products'\n )\n plist = 'all'\n else:\n if not products:\n raise ArgumentError(\n 'You must specify products to which to add the user group')\n plist = {GroupTypes.productConfiguration.name: [product for product in\n products]}\n return self.append(add=plist)\n", "role": "user" }, { "content": "add_to_products", "role": "assistant" } ]
def x(self, products=None, all_products=False): if all_products: if products: raise ArgumentError( 'When removing from all products, do not specify specific products' ) plist = 'all' else: if not products: raise ArgumentError( 'You must specify products from which to remove the user group' ) plist = {GroupTypes.productConfiguration.name: [product for product in products]} return self.append(remove=plist)
remove_from_products
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, products=None, all_products=False):\n if all_products:\n if products:\n raise ArgumentError(\n 'When removing from all products, do not specify specific products'\n )\n plist = 'all'\n else:\n if not products:\n raise ArgumentError(\n 'You must specify products from which to remove the user group'\n )\n plist = {GroupTypes.productConfiguration.name: [product for product in\n products]}\n return self.append(remove=plist)\n", "role": "user" }, { "content": "remove_from_products", "role": "assistant" } ]
def x(self, users=None): if not users: raise ArgumentError( 'You must specify emails for users to add to the user group') ulist = {'user': [user for user in users]} return self.append(add=ulist)
add_users
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, users=None):\n if not users:\n raise ArgumentError(\n 'You must specify emails for users to add to the user group')\n ulist = {'user': [user for user in users]}\n return self.append(add=ulist)\n", "role": "user" }, { "content": "add_users", "role": "assistant" } ]
def x(self, users=None): if not users: raise ArgumentError( 'You must specify emails for users to remove from the user group') ulist = {'user': [user for user in users]} return self.append(remove=ulist)
remove_users
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, users=None):\n if not users:\n raise ArgumentError(\n 'You must specify emails for users to remove from the user group')\n ulist = {'user': [user for user in users]}\n return self.append(remove=ulist)\n", "role": "user" }, { "content": "remove_users", "role": "assistant" } ]
def x(self, surface): assert self._scale == 2 return self._pygame.transform.scale2x(surface)
scale2x
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, surface):\n assert self._scale == 2\n return self._pygame.transform.scale2x(surface)\n", "role": "user" }, { "content": "scale2x", "role": "assistant" } ]
def x(self, surface): return self._pygame.transform.smoothscale(surface, self._output_size)
smoothscale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, surface):\n return self._pygame.transform.smoothscale(surface, self._output_size)\n", "role": "user" }, { "content": "smoothscale", "role": "assistant" } ]
def x(self, surface): return self._pygame.transform.scale(surface, self._output_size)
identity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, surface):\n return self._pygame.transform.scale(surface, self._output_size)\n", "role": "user" }, { "content": "identity", "role": "assistant" } ]
def x(self, surface): scale = self._led_on.get_width() w, h = self._input_size pix = self._pygame.PixelArray(surface) img = self._pygame.Surface((w * scale, h * scale)) for y in range(h): for x in range(w): led = self._led_on if pix[x, y] & 16777215 > 0 else self._led_off img.blit(led, (x * scale, y * scale)) return img
led_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, surface):\n scale = self._led_on.get_width()\n w, h = self._input_size\n pix = self._pygame.PixelArray(surface)\n img = self._pygame.Surface((w * scale, h * scale))\n for y in range(h):\n for x in range(w):\n led = self._led_on if pix[x, y] & 16777215 > 0 else self._led_off\n img.blit(led, (x * scale, y * scale))\n return img\n", "role": "user" }, { "content": "led_matrix", "role": "assistant" } ]
def x(r, g, b): r, g, b = [len(tuple(s for s in snaps if s < x)) for x in (r, g, b)] return r * 36 + g * 6 + b + 16
rgb2short
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r, g, b):\n r, g, b = [len(tuple(s for s in snaps if s < x)) for x in (r, g, b)]\n return r * 36 + g * 6 + b + 16\n", "role": "user" }, { "content": "rgb2short", "role": "assistant" } ]
def x(self, image, alpha=1.0): assert 0.0 <= alpha <= 1.0 if alpha < 1.0: im = image.convert('RGBA') black = Image.new(im.mode, im.size, 'black') im = Image.blend(black, im, alpha) else: im = image.convert('RGB') mode = im.mode size = im.size data = im.tobytes() del im surface = self._pygame.image.fromstring(data, size, mode) return self._transform(surface)
to_surface
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, alpha=1.0):\n assert 0.0 <= alpha <= 1.0\n if alpha < 1.0:\n im = image.convert('RGBA')\n black = Image.new(im.mode, im.size, 'black')\n im = Image.blend(black, im, alpha)\n else:\n im = image.convert('RGB')\n mode = im.mode\n size = im.size\n data = im.tobytes()\n del im\n surface = self._pygame.image.fromstring(data, size, mode)\n return self._transform(surface)\n", "role": "user" }, { "content": "to_surface", "role": "assistant" } ]
def x(self, image): assert image.size == self.size self._last_image = image self._count += 1 filename = self._file_template.format(self._count) image = self.preprocess(image) surface = self.to_surface(image, alpha=self._contrast) logger.debug('Writing: {0}'.format(filename)) self._pygame.image.save(surface, filename)
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n self._count += 1\n filename = self._file_template.format(self._count)\n image = self.preprocess(image)\n surface = self.to_surface(image, alpha=self._contrast)\n logger.debug('Writing: {0}'.format(filename))\n self._pygame.image.save(surface, filename)\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, image): assert image.size == self.size self._last_image = image image = self.preprocess(image) surface = self.to_surface(image, alpha=self._contrast) rawbytes = self._pygame.image.tostring(surface, 'RGB', False) im = Image.frombytes('RGB', surface.get_size(), rawbytes) self._images.append(im) self._count += 1 logger.debug('Recording frame: {0}'.format(self._count)) if self._max_frames and self._count >= self._max_frames: sys.exit(0)
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n image = self.preprocess(image)\n surface = self.to_surface(image, alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n im = Image.frombytes('RGB', surface.get_size(), rawbytes)\n self._images.append(im)\n self._count += 1\n logger.debug('Recording frame: {0}'.format(self._count))\n if self._max_frames and self._count >= self._max_frames:\n sys.exit(0)\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, image): assert image.size == self.size self._last_image = image image = self.preprocess(image) self._clock.tick(self._fps) self._pygame.event.pump() if self._abort(): self._pygame.quit() sys.exit() surface = self.to_surface(image, alpha=self._contrast) if self._screen is None: self._screen = self._pygame.display.set_mode(surface.get_size()) self._screen.blit(surface, (0, 0)) self._pygame.display.flip()
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n image = self.preprocess(image)\n self._clock.tick(self._fps)\n self._pygame.event.pump()\n if self._abort():\n self._pygame.quit()\n sys.exit()\n surface = self.to_surface(image, alpha=self._contrast)\n if self._screen is None:\n self._screen = self._pygame.display.set_mode(surface.get_size())\n self._screen.blit(surface, (0, 0))\n self._pygame.display.flip()\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, c, font=ImageFont.load_default()): image = Image.new('1', font.getsize(c), color=255) draw = ImageDraw.Draw(image) draw.text((0, 0), c, fill='white', font=font) return collections.Counter(image.getdata())[0]
char_density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, c, font=ImageFont.load_default()):\n image = Image.new('1', font.getsize(c), color=255)\n draw = ImageDraw.Draw(image)\n draw.text((0, 0), c, fill='white', font=font)\n return collections.Counter(image.getdata())[0]\n", "role": "user" }, { "content": "char_density", "role": "assistant" } ]
def x(self, image, width, height): height = int(height * self._char_width / float(self._char_height)) image = image.resize((width, height), Image.ANTIALIAS).convert('RGB') for r, g, b in image.getdata(): greyscale = int(0.299 * r + 0.587 * g + 0.114 * b) ch = self._chars[int(greyscale / 255.0 * (len(self._chars) - 1) + 0.5)] yield ch, rgb2short(r, g, b)
generate_art
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, width, height):\n height = int(height * self._char_width / float(self._char_height))\n image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')\n for r, g, b in image.getdata():\n greyscale = int(0.299 * r + 0.587 * g + 0.114 * b)\n ch = self._chars[int(greyscale / 255.0 * (len(self._chars) - 1) + 0.5)]\n yield ch, rgb2short(r, g, b)\n", "role": "user" }, { "content": "generate_art", "role": "assistant" } ]
def x(self, image): assert image.size == self.size self._last_image = image surface = self.to_surface(self.preprocess(image), alpha=self._contrast) rawbytes = self._pygame.image.tostring(surface, 'RGB', False) image = Image.frombytes('RGB', surface.get_size(), rawbytes) scr_width = self._stdscr.getmaxyx()[1] scale = float(scr_width) / image.width self._stdscr.erase() self._stdscr.move(0, 0) try: for ch, color in self._generate_art(image, int(image.width * scale), int(image.height * scale)): self._stdscr.addstr(ch, curses.color_pair(color)) except curses.error: pass self._stdscr.refresh()
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n surface = self.to_surface(self.preprocess(image), alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n image = Image.frombytes('RGB', surface.get_size(), rawbytes)\n scr_width = self._stdscr.getmaxyx()[1]\n scale = float(scr_width) / image.width\n self._stdscr.erase()\n self._stdscr.move(0, 0)\n try:\n for ch, color in self._generate_art(image, int(image.width * scale),\n int(image.height * scale)):\n self._stdscr.addstr(ch, curses.color_pair(color))\n except curses.error:\n pass\n self._stdscr.refresh()\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, image, width, height): image = image.resize((width, height), Image.ANTIALIAS).convert('RGB') pixels = list(image.getdata()) for y in range(0, height - 1, 2): for x in range(width): i = y * width + x bg = rgb2short(*pixels[i]) fg = rgb2short(*pixels[i + width]) yield fg, bg
generate_art
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, width, height):\n image = image.resize((width, height), Image.ANTIALIAS).convert('RGB')\n pixels = list(image.getdata())\n for y in range(0, height - 1, 2):\n for x in range(width):\n i = y * width + x\n bg = rgb2short(*pixels[i])\n fg = rgb2short(*pixels[i + width])\n yield fg, bg\n", "role": "user" }, { "content": "generate_art", "role": "assistant" } ]
def x(self, cmd): sys.stdout.write('\x1b[') sys.stdout.write(cmd)
CSI
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmd):\n sys.stdout.write('\\x1b[')\n sys.stdout.write(cmd)\n", "role": "user" }, { "content": "CSI", "role": "assistant" } ]
def x(self, image): assert image.size == self.size self._last_image = image surface = self.to_surface(self.preprocess(image), alpha=self._contrast) rawbytes = self._pygame.image.tostring(surface, 'RGB', False) image = Image.frombytes('RGB', surface.get_size(), rawbytes) scr_width = self._terminal_size()[1] scale = float(scr_width) / image.width self._CSI('1;1H') for fg, bg in self._generate_art(image, int(image.width * scale), int( image.height * scale)): self._CSI('38;5;{0};48;5;{1}m'.format(fg, bg)) sys.stdout.write('▄') self._CSI('0m') sys.stdout.flush()
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n assert image.size == self.size\n self._last_image = image\n surface = self.to_surface(self.preprocess(image), alpha=self._contrast)\n rawbytes = self._pygame.image.tostring(surface, 'RGB', False)\n image = Image.frombytes('RGB', surface.get_size(), rawbytes)\n scr_width = self._terminal_size()[1]\n scale = float(scr_width) / image.width\n self._CSI('1;1H')\n for fg, bg in self._generate_art(image, int(image.width * scale), int(\n image.height * scale)):\n self._CSI('38;5;{0};48;5;{1}m'.format(fg, bg))\n sys.stdout.write('▄')\n self._CSI('0m')\n sys.stdout.flush()\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(sequence, chunk_length): for index in range(0, len(sequence), chunk_length): yield sequence[index:index + chunk_length]
chunk_sequence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sequence, chunk_length):\n for index in range(0, len(sequence), chunk_length):\n yield sequence[index:index + chunk_length]\n", "role": "user" }, { "content": "chunk_sequence", "role": "assistant" } ]
def x(routes, board, railroad): chicago_space = board.get_space(CHICAGO_CELL) chicago_neighbor_cells = [cell for cell in CHICAGO_CELL.neighbors. values() if cell != CHICAGO_CONNECTIONS_CELL] stations = board.stations(railroad.name) valid_routes = set() for route in routes: if len(route.cities) < 2: continue if isinstance(route.cities[0], EastTerminalCity) and isinstance(route .cities[-1], EastTerminalCity): continue if route.contains_cell(CHICAGO_CONNECTIONS_CELL) and len(route.cities ) != 2: all_chicago_subroutes = [subroute for subroute in route. subroutes(CHICAGO_CONNECTIONS_CELL) if len(subroute) == 3] chicago_subroute = all_chicago_subroutes[0 ] if all_chicago_subroutes else None for cell in chicago_neighbor_cells: chicago_exit = (chicago_subroute and chicago_subroute. contains_cell(cell)) if chicago_exit and chicago_space.passable(cell, railroad): break else: continue stations_on_route = [station for station in stations if route. contains_cell(station.cell)] if not stations_on_route: continue elif [CHICAGO_CELL] == [station.cell for station in stations_on_route]: exit_cell = board.get_space(CHICAGO_CELL).get_station_exit_cell( stations_on_route[0]) chicago_exit_route = Route.create([chicago_space, board. get_space(exit_cell)]) if not (len(route) == 2 and route.contains_cell( CHICAGO_CONNECTIONS_CELL)) and not route.overlap( chicago_exit_route): continue valid_routes.add(route) return valid_routes
filter_invalid_routes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(routes, board, railroad):\n chicago_space = board.get_space(CHICAGO_CELL)\n chicago_neighbor_cells = [cell for cell in CHICAGO_CELL.neighbors.\n values() if cell != CHICAGO_CONNECTIONS_CELL]\n stations = board.stations(railroad.name)\n valid_routes = set()\n for route in routes:\n if len(route.cities) < 2:\n continue\n if isinstance(route.cities[0], EastTerminalCity) and isinstance(route\n .cities[-1], EastTerminalCity):\n continue\n if route.contains_cell(CHICAGO_CONNECTIONS_CELL) and len(route.cities\n ) != 2:\n all_chicago_subroutes = [subroute for subroute in route.\n subroutes(CHICAGO_CONNECTIONS_CELL) if len(subroute) == 3]\n chicago_subroute = all_chicago_subroutes[0\n ] if all_chicago_subroutes else None\n for cell in chicago_neighbor_cells:\n chicago_exit = (chicago_subroute and chicago_subroute.\n contains_cell(cell))\n if chicago_exit and chicago_space.passable(cell, railroad):\n break\n else:\n continue\n stations_on_route = [station for station in stations if route.\n contains_cell(station.cell)]\n if not stations_on_route:\n continue\n elif [CHICAGO_CELL] == [station.cell for station in stations_on_route]:\n exit_cell = board.get_space(CHICAGO_CELL).get_station_exit_cell(\n stations_on_route[0])\n chicago_exit_route = Route.create([chicago_space, board.\n get_space(exit_cell)])\n if not (len(route) == 2 and route.contains_cell(\n CHICAGO_CONNECTIONS_CELL)) and not route.overlap(\n chicago_exit_route):\n continue\n valid_routes.add(route)\n return valid_routes\n", "role": "user" }, { "content": "filter_invalid_routes", "role": "assistant" } ]
def x(path, level=None, message=None, time_lower=None, time_upper=None, case_sensitive=False): if level: level = level.upper() if not case_sensitive: message = message.lower() with open(path, 'r') as f: result = Result(path=path, level=level, message=message, time_lower =time_lower, time_upper=time_upper, case_sensitive=case_sensitive) for line in f: try: _time, _level, _message = [i.strip() for i in line.split(';')] if level: if _level != level: continue if time_lower: if _time < time_lower: continue if time_upper: if _time > time_upper: continue if message: if not case_sensitive: _message = _message.lower() if message not in _message: continue result.lines.append(line) except Exception as e: print(e) return result
find
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, level=None, message=None, time_lower=None, time_upper=None,\n case_sensitive=False):\n if level:\n level = level.upper()\n if not case_sensitive:\n message = message.lower()\n with open(path, 'r') as f:\n result = Result(path=path, level=level, message=message, time_lower\n =time_lower, time_upper=time_upper, case_sensitive=case_sensitive)\n for line in f:\n try:\n _time, _level, _message = [i.strip() for i in line.split(';')]\n if level:\n if _level != level:\n continue\n if time_lower:\n if _time < time_lower:\n continue\n if time_upper:\n if _time > time_upper:\n continue\n if message:\n if not case_sensitive:\n _message = _message.lower()\n if message not in _message:\n continue\n result.lines.append(line)\n except Exception as e:\n print(e)\n return result\n", "role": "user" }, { "content": "find", "role": "assistant" } ]
def x(name=None, rand_name=False, charset=Charset.HEX): if rand_name: name = rand_str(charset) logger = logging.getLogger(name) return logger
get_logger_by_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name=None, rand_name=False, charset=Charset.HEX):\n if rand_name:\n name = rand_str(charset)\n logger = logging.getLogger(name)\n return logger\n", "role": "user" }, { "content": "get_logger_by_name", "role": "assistant" } ]
def x(self, msg, indent=0, **kwargs): return self.logger.debug(self._indent(msg, indent), **kwargs)
debug
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.debug(self._indent(msg, indent), **kwargs)\n", "role": "user" }, { "content": "debug", "role": "assistant" } ]
def x(self, msg, indent=0, **kwargs): return self.logger.info(self._indent(msg, indent), **kwargs)
info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.info(self._indent(msg, indent), **kwargs)\n", "role": "user" }, { "content": "info", "role": "assistant" } ]
def x(self, msg, indent=0, **kwargs): return self.logger.warning(self._indent(msg, indent), **kwargs)
warning
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.warning(self._indent(msg, indent), **kwargs)\n", "role": "user" }, { "content": "warning", "role": "assistant" } ]
def x(self, msg, indent=0, **kwargs): return self.logger.error(self._indent(msg, indent), **kwargs)
error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.error(self._indent(msg, indent), **kwargs)\n", "role": "user" }, { "content": "error", "role": "assistant" } ]
def x(self, msg, indent=0, **kwargs): return self.logger.critical(self._indent(msg, indent), **kwargs)
critical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, **kwargs):\n return self.logger.critical(self._indent(msg, indent), **kwargs)\n", "role": "user" }, { "content": "critical", "role": "assistant" } ]
def x(self, msg, indent=0, style='', **kwargs): if self.enable_verbose: new_msg = self.MessageTemplate.with_style.format(indent=self.tab * indent, style=style, msg=msg) print(new_msg, **kwargs)
show
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg, indent=0, style='', **kwargs):\n if self.enable_verbose:\n new_msg = self.MessageTemplate.with_style.format(indent=self.tab *\n indent, style=style, msg=msg)\n print(new_msg, **kwargs)\n", "role": "user" }, { "content": "show", "role": "assistant" } ]
def x(self): for handler in self.logger.handlers[:]: self.logger.removeHandler(handler) self._handler_cache.append(handler)
remove_all_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for handler in self.logger.handlers[:]:\n self.logger.removeHandler(handler)\n self._handler_cache.append(handler)\n", "role": "user" }, { "content": "remove_all_handler", "role": "assistant" } ]
def x(self): for handler in self._handler_cache: self.logger.addHandler(handler) self._handler_cache = list()
recover_all_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for handler in self._handler_cache:\n self.logger.addHandler(handler)\n self._handler_cache = list()\n", "role": "user" }, { "content": "recover_all_handler", "role": "assistant" } ]
def x(cls, proto: LinkItemProto) ->LinkItem: if proto.name == '': raise ValueError( 'name of LinkItem does not exist or is empty inside the protobuf.') return cls(proto.name, Timestamp.ToDatetime(proto.time))
from_protobuf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, proto: LinkItemProto) ->LinkItem:\n if proto.name == '':\n raise ValueError(\n 'name of LinkItem does not exist or is empty inside the protobuf.')\n return cls(proto.name, Timestamp.ToDatetime(proto.time))\n", "role": "user" }, { "content": "from_protobuf", "role": "assistant" } ]
def x(self) ->LinkItemProto: result = LinkItemProto() result.name = self._name result.time.CopyFrom(datetime_to_timestamp(self._time)) return result
to_protobuf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->LinkItemProto:\n result = LinkItemProto()\n result.name = self._name\n result.time.CopyFrom(datetime_to_timestamp(self._time))\n return result\n", "role": "user" }, { "content": "to_protobuf", "role": "assistant" } ]
def x(self, fname): ltfh = FileHandler(fname) self._log.addHandler(ltfh)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname):\n ltfh = FileHandler(fname)\n self._log.addHandler(ltfh)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(path: Path): if not path.exists() or not path.is_dir(): return for sub in path.iterdir(): if sub.is_dir(): delete_dir_rec(sub) else: sub.unlink() path.rmdir()
delete_dir_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path: Path):\n if not path.exists() or not path.is_dir():\n return\n for sub in path.iterdir():\n if sub.is_dir():\n delete_dir_rec(sub)\n else:\n sub.unlink()\n path.rmdir()\n", "role": "user" }, { "content": "delete_dir_rec", "role": "assistant" } ]
def x(path: Path): if not path.exists(): Path.mkdir(path, parents=True, exist_ok=True)
create_dir_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path: Path):\n if not path.exists():\n Path.mkdir(path, parents=True, exist_ok=True)\n", "role": "user" }, { "content": "create_dir_rec", "role": "assistant" } ]
def x(time: datetime) ->Timestamp: protime = Timestamp() protime.FromDatetime(time) return protime
datetime_to_timestamp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(time: datetime) ->Timestamp:\n protime = Timestamp()\n protime.FromDatetime(time)\n return protime\n", "role": "user" }, { "content": "datetime_to_timestamp", "role": "assistant" } ]
def x(plugins: Dict[str, pkg_resources.EntryPoint]): for trigger, entry_point in plugins.items(): try: plugin_class = entry_point.load() version = str(plugin_class._info.version) print(f'{trigger} (ok)\n {version}') except Exception: print(f'{trigger} (failed)')
print_plugin_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plugins: Dict[str, pkg_resources.EntryPoint]):\n for trigger, entry_point in plugins.items():\n try:\n plugin_class = entry_point.load()\n version = str(plugin_class._info.version)\n print(f'{trigger} (ok)\\n {version}')\n except Exception:\n print(f'{trigger} (failed)')\n", "role": "user" }, { "content": "print_plugin_list", "role": "assistant" } ]
def x(xl1, yl1, nx1, ny1, xl2, yl2, nx2, ny2): return (xl2 < xl1 + nx1 and xl2 + nx2 > xl1 and yl2 < yl1 + ny1 and yl2 + ny2 > yl1)
overlap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xl1, yl1, nx1, ny1, xl2, yl2, nx2, ny2):\n return (xl2 < xl1 + nx1 and xl2 + nx2 > xl1 and yl2 < yl1 + ny1 and yl2 +\n ny2 > yl1)\n", "role": "user" }, { "content": "overlap", "role": "assistant" } ]
def x(g, data, backup=False): if not backup: fname = filedialog.asksaveasfilename(defaultextension='.json', filetypes=[('json files', '.json')], initialdir=g.cpars[ 'app_directory']) else: fname = os.path.join(os.path.expanduser('~/.hdriver'), 'app.json') if not fname: g.clog.warn('Aborted save to disk') return False with open(fname, 'w') as of: of.write(json.dumps(data, sort_keys=True, indent=4, separators=(',', ': '))) g.clog.info('Saved setup to' + fname) return True
saveJSON
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, data, backup=False):\n if not backup:\n fname = filedialog.asksaveasfilename(defaultextension='.json',\n filetypes=[('json files', '.json')], initialdir=g.cpars[\n 'app_directory'])\n else:\n fname = os.path.join(os.path.expanduser('~/.hdriver'), 'app.json')\n if not fname:\n g.clog.warn('Aborted save to disk')\n return False\n with open(fname, 'w') as of:\n of.write(json.dumps(data, sort_keys=True, indent=4, separators=(',',\n ': ')))\n g.clog.info('Saved setup to' + fname)\n return True\n", "role": "user" }, { "content": "saveJSON", "role": "assistant" } ]
def x(g, data): g.clog.debug('Entering postJSON') json_data = json.dumps(data).encode('utf-8') url = urllib.parse.urljoin(g.cpars['hipercam_server'], g.SERVER_POST_PATH) g.clog.debug('Server URL = ' + url) opener = urllib.request.build_opener() g.clog.debug('content length = ' + str(len(json_data))) req = urllib.request.Request(url, data=json_data, headers={ 'Content-type': 'application/json'}) response = opener.open(req, timeout=15).read() g.rlog.debug('Server response: ' + response.decode()) csr = ReadServer(response, status_msg=False) if not csr.ok: g.clog.warn('Server response was not OK') g.rlog.warn('postJSON response: ' + response.decode()) g.clog.warn('Server error = ' + csr.err) return False if g.cpars['telins_name'] == 'GTC': url = urllib.parse.urljoin(g.cpars['gtc_offset_server'], 'setup') g.clog.debug('Offset Server URL = ' + url) opener = urllib.request.build_opener() try: req = urllib.request.Request(url, data=json_data, headers={ 'Content-type': 'application/json'}) response = opener.open(req, timeout=5).read().decode() except Exception as err: g.clog.warn('Could not communicate with GTC offsetter') g.clog.warn(str(err)) return False g.rlog.info('Offset Server Response: ' + response) if not json.loads(response)['status'] == 'OK': g.clog.warn('Offset Server response was not OK') return False g.clog.debug('Leaving postJSON') return True
postJSON
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, data):\n g.clog.debug('Entering postJSON')\n json_data = json.dumps(data).encode('utf-8')\n url = urllib.parse.urljoin(g.cpars['hipercam_server'], g.SERVER_POST_PATH)\n g.clog.debug('Server URL = ' + url)\n opener = urllib.request.build_opener()\n g.clog.debug('content length = ' + str(len(json_data)))\n req = urllib.request.Request(url, data=json_data, headers={\n 'Content-type': 'application/json'})\n response = opener.open(req, timeout=15).read()\n g.rlog.debug('Server response: ' + response.decode())\n csr = ReadServer(response, status_msg=False)\n if not csr.ok:\n g.clog.warn('Server response was not OK')\n g.rlog.warn('postJSON response: ' + response.decode())\n g.clog.warn('Server error = ' + csr.err)\n return False\n if g.cpars['telins_name'] == 'GTC':\n url = urllib.parse.urljoin(g.cpars['gtc_offset_server'], 'setup')\n g.clog.debug('Offset Server URL = ' + url)\n opener = urllib.request.build_opener()\n try:\n req = urllib.request.Request(url, data=json_data, headers={\n 'Content-type': 'application/json'})\n response = opener.open(req, timeout=5).read().decode()\n except Exception as err:\n g.clog.warn('Could not communicate with GTC offsetter')\n g.clog.warn(str(err))\n return False\n g.rlog.info('Offset Server Response: ' + response)\n if not json.loads(response)['status'] == 'OK':\n g.clog.warn('Offset Server response was not OK')\n return False\n g.clog.debug('Leaving postJSON')\n return True\n", "role": "user" }, { "content": "postJSON", "role": "assistant" } ]