source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(knots, order): if isinstance(knots, np.ndarray) and knots.ndim > 1: raise ValueError('knots must be a list or a rank-1 array') knots = list(knots) return np.array([knots[0]] * order + knots + [knots[-1]] * order)
augknt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(knots, order):\n if isinstance(knots, np.ndarray) and knots.ndim > 1:\n raise ValueError('knots must be a list or a rank-1 array')\n knots = list(knots)\n return np.array([knots[0]] * order + knots + [knots[-1]] * order)\n", "role": "user" }, { "content": "augknt", "role": "assistant" } ]
def x(t, k): t = np.atleast_1d(t) if t.ndim > 1: raise ValueError('t must be a list or a rank-1 array') n = t.shape[0] u = max(0, n - (k - 1)) out = np.empty((u,), dtype=t.dtype) for j in range(u): out[j] = sum(t[j:j + k]) / k return out
aveknt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t, k):\n t = np.atleast_1d(t)\n if t.ndim > 1:\n raise ValueError('t must be a list or a rank-1 array')\n n = t.shape[0]\n u = max(0, n - (k - 1))\n out = np.empty((u,), dtype=t.dtype)\n for j in range(u):\n out[j] = sum(t[j:j + k]) / k\n return out\n", "role": "user" }, { "content": "aveknt", "role": "assistant" } ]
def x(tau, order): tau = np.atleast_1d(tau) k = order + 1 if tau.ndim > 1: raise ValueError('tau must be a list or a rank-1 array') if len(tau) < k: k = len(tau) if not (tau == sorted(tau)).all(): raise ValueError('tau must be nondecreasing') u = len(tau) - k for i in range(u): if tau[i + k - 1] == tau[i]: raise ValueError( 'k-fold (or higher) repeated sites not allowed, but tau[i+k-1] == tau[i] for i = %d, k = %d' % (i, k)) prefix = [tau[0]] * k suffix = [tau[-1]] * k tmp = aveknt(tau[1:-1], k - 1) middle = tmp.tolist() return np.array(prefix + middle + suffix, dtype=tmp.dtype)
aptknt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tau, order):\n tau = np.atleast_1d(tau)\n k = order + 1\n if tau.ndim > 1:\n raise ValueError('tau must be a list or a rank-1 array')\n if len(tau) < k:\n k = len(tau)\n if not (tau == sorted(tau)).all():\n raise ValueError('tau must be nondecreasing')\n u = len(tau) - k\n for i in range(u):\n if tau[i + k - 1] == tau[i]:\n raise ValueError(\n 'k-fold (or higher) repeated sites not allowed, but tau[i+k-1] == tau[i] for i = %d, k = %d'\n % (i, k))\n prefix = [tau[0]] * k\n suffix = [tau[-1]] * k\n tmp = aveknt(tau[1:-1], k - 1)\n middle = tmp.tolist()\n return np.array(prefix + middle + suffix, dtype=tmp.dtype)\n", "role": "user" }, { "content": "aptknt", "role": "assistant" } ]
def x(t): t = np.atleast_1d(t) if t.ndim > 1: raise ValueError('t must be a list or a rank-1 array') out = [] e = None for k in range(t.shape[0]): if t[k] != e: e = t[k] count = 0 else: count += 1 out.append(count) return np.array(out)
knt2mlt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t):\n t = np.atleast_1d(t)\n if t.ndim > 1:\n raise ValueError('t must be a list or a rank-1 array')\n out = []\n e = None\n for k in range(t.shape[0]):\n if t[k] != e:\n e = t[k]\n count = 0\n else:\n count += 1\n out.append(count)\n return np.array(out)\n", "role": "user" }, { "content": "knt2mlt", "role": "assistant" } ]
def x(knots, order, tau): m = knt2mlt(tau) B = bspline.Bspline(knots, order) dummy = B(0.0) nbasis = len(dummy) A = np.empty((tau.shape[0], nbasis), dtype=dummy.dtype) for i, item in enumerate(zip(tau, m)): taui, mi = item f = B.diff(order=mi) A[i, :] = f(taui) return A
spcol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(knots, order, tau):\n m = knt2mlt(tau)\n B = bspline.Bspline(knots, order)\n dummy = B(0.0)\n nbasis = len(dummy)\n A = np.empty((tau.shape[0], nbasis), dtype=dummy.dtype)\n for i, item in enumerate(zip(tau, m)):\n taui, mi = item\n f = B.diff(order=mi)\n A[i, :] = f(taui)\n return A\n", "role": "user" }, { "content": "spcol", "role": "assistant" } ]
def x(self, xi): return np.where(np.all([self.knot_vector[:-1] <= xi, xi < self. knot_vector[1:]], axis=0), 1.0, 0.0)
basis0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xi):\n return np.where(np.all([self.knot_vector[:-1] <= xi, xi < self.\n knot_vector[1:]], axis=0), 1.0, 0.0)\n", "role": "user" }, { "content": "basis0", "role": "assistant" } ]
def x(self, xi, p, compute_derivatives=False): if p == 0: return self.__basis0(xi) else: basis_p_minus_1 = self.__basis(xi, p - 1) first_term_numerator = xi - self.knot_vector[:-p] first_term_denominator = self.knot_vector[p:] - self.knot_vector[:-p] second_term_numerator = self.knot_vector[p + 1:] - xi second_term_denominator = self.knot_vector[p + 1:] - self.knot_vector[1:-p] if compute_derivatives and p == self.p: first_term_numerator = p second_term_numerator = -p with np.errstate(divide='ignore', invalid='ignore'): first_term = np.where(first_term_denominator != 0.0, first_term_numerator / first_term_denominator, 0.0) second_term = np.where(second_term_denominator != 0.0, second_term_numerator / second_term_denominator, 0.0) return first_term[:-1] * basis_p_minus_1[:-1 ] + second_term * basis_p_minus_1[1:]
basis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xi, p, compute_derivatives=False):\n if p == 0:\n return self.__basis0(xi)\n else:\n basis_p_minus_1 = self.__basis(xi, p - 1)\n first_term_numerator = xi - self.knot_vector[:-p]\n first_term_denominator = self.knot_vector[p:] - self.knot_vector[:-p]\n second_term_numerator = self.knot_vector[p + 1:] - xi\n second_term_denominator = self.knot_vector[p + 1:] - self.knot_vector[1:-p]\n if compute_derivatives and p == self.p:\n first_term_numerator = p\n second_term_numerator = -p\n with np.errstate(divide='ignore', invalid='ignore'):\n first_term = np.where(first_term_denominator != 0.0, \n first_term_numerator / first_term_denominator, 0.0)\n second_term = np.where(second_term_denominator != 0.0, \n second_term_numerator / second_term_denominator, 0.0)\n return first_term[:-1] * basis_p_minus_1[:-1\n ] + second_term * basis_p_minus_1[1:]\n", "role": "user" }, { "content": "basis", "role": "assistant" } ]
def x(self, xi): return self.__basis(xi, self.p, compute_derivatives=True)
d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xi):\n return self.__basis(xi, self.p, compute_derivatives=True)\n", "role": "user" }, { "content": "d", "role": "assistant" } ]
def x(self): try: import matplotlib.pyplot as plt except ImportError: from sys import stderr print( 'ERROR: matplotlib.pyplot not found, matplotlib must be installed to use this function' , file=stderr) raise x_min = np.min(self.knot_vector) x_max = np.max(self.knot_vector) x = np.linspace(x_min, x_max, num=1000) N = np.array([self(i) for i in x]).T for n in N: plt.plot(x, n) return plt.show()
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n import matplotlib.pyplot as plt\n except ImportError:\n from sys import stderr\n print(\n 'ERROR: matplotlib.pyplot not found, matplotlib must be installed to use this function'\n , file=stderr)\n raise\n x_min = np.min(self.knot_vector)\n x_max = np.max(self.knot_vector)\n x = np.linspace(x_min, x_max, num=1000)\n N = np.array([self(i) for i in x]).T\n for n in N:\n plt.plot(x, n)\n return plt.show()\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self): assert self.p > 0, 'order of Bspline must be > 0' t = self.knot_vector p = self.p Bi = Bspline(t[:-1], p - 1) Bip1 = Bspline(t[1:], p - 1) numer1 = +p numer2 = -p denom1 = t[p:-1] - t[:-(p + 1)] denom2 = t[p + 1:] - t[1:-p] with np.errstate(divide='ignore', invalid='ignore'): ci = np.where(denom1 != 0.0, numer1 / denom1, 0.0) cip1 = np.where(denom2 != 0.0, numer2 / denom2, 0.0) return (ci, Bi), (cip1, Bip1)
diff_internal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n assert self.p > 0, 'order of Bspline must be > 0'\n t = self.knot_vector\n p = self.p\n Bi = Bspline(t[:-1], p - 1)\n Bip1 = Bspline(t[1:], p - 1)\n numer1 = +p\n numer2 = -p\n denom1 = t[p:-1] - t[:-(p + 1)]\n denom2 = t[p + 1:] - t[1:-p]\n with np.errstate(divide='ignore', invalid='ignore'):\n ci = np.where(denom1 != 0.0, numer1 / denom1, 0.0)\n cip1 = np.where(denom2 != 0.0, numer2 / denom2, 0.0)\n return (ci, Bi), (cip1, Bip1)\n", "role": "user" }, { "content": "diff_internal", "role": "assistant" } ]
def x(self, order=1): order = int(order) if order < 0: raise ValueError('order must be >= 0, got %d' % order) if order == 0: return self.__call__ if order > self.p: dummy = self.__call__(0.0) nbasis = dummy.shape[0] return lambda x: np.zeros((nbasis,), dtype=dummy.dtype) terms = [(1.0, self)] for k in range(order): tmp = [] for Ci, Bi in terms: tmp.extend((Ci * cn, Bn) for cn, Bn in Bi.__diff_internal()) terms = tmp return lambda x: sum(ci * Bi(x) for ci, Bi in terms)
diff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, order=1):\n order = int(order)\n if order < 0:\n raise ValueError('order must be >= 0, got %d' % order)\n if order == 0:\n return self.__call__\n if order > self.p:\n dummy = self.__call__(0.0)\n nbasis = dummy.shape[0]\n return lambda x: np.zeros((nbasis,), dtype=dummy.dtype)\n terms = [(1.0, self)]\n for k in range(order):\n tmp = []\n for Ci, Bi in terms:\n tmp.extend((Ci * cn, Bn) for cn, Bn in Bi.__diff_internal())\n terms = tmp\n return lambda x: sum(ci * Bi(x) for ci, Bi in terms)\n", "role": "user" }, { "content": "diff", "role": "assistant" } ]
def x(self, tau, deriv_order=0): dummy = self.__call__(0.0) nbasis = dummy.shape[0] tau = np.atleast_1d(tau) if tau.ndim > 1: raise ValueError('tau must be a list or a rank-1 array') A = np.empty((tau.shape[0], nbasis), dtype=dummy.dtype) f = self.diff(order=deriv_order) for i, taui in enumerate(tau): A[i, :] = f(taui) return np.squeeze(A)
collmat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tau, deriv_order=0):\n dummy = self.__call__(0.0)\n nbasis = dummy.shape[0]\n tau = np.atleast_1d(tau)\n if tau.ndim > 1:\n raise ValueError('tau must be a list or a rank-1 array')\n A = np.empty((tau.shape[0], nbasis), dtype=dummy.dtype)\n f = self.diff(order=deriv_order)\n for i, taui in enumerate(tau):\n A[i, :] = f(taui)\n return np.squeeze(A)\n", "role": "user" }, { "content": "collmat", "role": "assistant" } ]
def x(interfaces): def x(block, parts): try: method = block['method'].lower() except KeyError: for k, v in compat.iteritems(block): traverse(v, parts + [k]) else: path = '.'.join(parts) try: methods[method] except KeyError: methods[method] = {} methods[method][path] = block methods = {} for key, val in compat.iteritems(interfaces): traverse(val, [key]) return methods
build_interfaces_by_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(interfaces):\n\n def x(block, parts):\n try:\n method = block['method'].lower()\n except KeyError:\n for k, v in compat.iteritems(block):\n traverse(v, parts + [k])\n else:\n path = '.'.join(parts)\n try:\n methods[method]\n except KeyError:\n methods[method] = {}\n methods[method][path] = block\n methods = {}\n for key, val in compat.iteritems(interfaces):\n traverse(val, [key])\n return methods\n", "role": "user" }, { "content": "build_interfaces_by_method", "role": "assistant" } ]
def x(method, url, nonce, params, ext='', body_hash=None): urlparts = urlparse.urlparse(url) if urlparts.query: norm_url = '%s?%s' % (urlparts.path, urlparts.query) elif params: norm_url = '%s?%s' % (urlparts.path, get_normalized_params(params)) else: norm_url = urlparts.path if not body_hash: body_hash = get_body_hash(params) port = urlparts.port if not port: assert urlparts.scheme in ('http', 'https') if urlparts.scheme == 'http': port = 80 elif urlparts.scheme == 'https': port = 443 output = [nonce, method.upper(), norm_url, urlparts.hostname, port, body_hash, ext, ''] return '\n'.join(map(str, output))
get_normalized_request_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method, url, nonce, params, ext='', body_hash=None):\n urlparts = urlparse.urlparse(url)\n if urlparts.query:\n norm_url = '%s?%s' % (urlparts.path, urlparts.query)\n elif params:\n norm_url = '%s?%s' % (urlparts.path, get_normalized_params(params))\n else:\n norm_url = urlparts.path\n if not body_hash:\n body_hash = get_body_hash(params)\n port = urlparts.port\n if not port:\n assert urlparts.scheme in ('http', 'https')\n if urlparts.scheme == 'http':\n port = 80\n elif urlparts.scheme == 'https':\n port = 443\n output = [nonce, method.upper(), norm_url, urlparts.hostname, port,\n body_hash, ext, '']\n return '\\n'.join(map(str, output))\n", "role": "user" }, { "content": "get_normalized_request_string", "role": "assistant" } ]
def x(params): norm_params = get_normalized_params(params) return binascii.b2a_base64(hashlib.sha1(norm_params).digest())[:-1]
get_body_hash
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n norm_params = get_normalized_params(params)\n return binascii.b2a_base64(hashlib.sha1(norm_params).digest())[:-1]\n", "role": "user" }, { "content": "get_body_hash", "role": "assistant" } ]
def x(api_secret, norm_request_string): hashed = hmac.new(str(api_secret), norm_request_string, hashlib.sha1) return binascii.b2a_base64(hashed.digest())[:-1]
get_mac_signature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(api_secret, norm_request_string):\n hashed = hmac.new(str(api_secret), norm_request_string, hashlib.sha1)\n return binascii.b2a_base64(hashed.digest())[:-1]\n", "role": "user" }, { "content": "get_mac_signature", "role": "assistant" } ]
def x(self, access_mode='r'): try: with open(self, access_mode, encoding='utf-8') as file: return file.read() except IOError: print(self + ' File not found.') sys.exit(0)
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, access_mode='r'):\n try:\n with open(self, access_mode, encoding='utf-8') as file:\n return file.read()\n except IOError:\n print(self + ' File not found.')\n sys.exit(0)\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(self, itraj): A = self._hmm.transition_matrix pi = self._hmm.initial_distribution obs = self._observations[itraj] T = len(obs) self._hmm.output_model.p_obs(obs, out=self._pobs) logprob = hidden.forward(A, self._pobs, pi, T=T, alpha_out=self._alpha)[0] hidden.backward(A, self._pobs, T=T, beta_out=self._beta) hidden.state_probabilities(self._alpha, self._beta, T=T, gamma_out=self ._gammas[itraj]) hidden.transition_counts(self._alpha, self._beta, A, self._pobs, T=T, out=self._Cs[itraj]) return logprob
forward_backward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, itraj):\n A = self._hmm.transition_matrix\n pi = self._hmm.initial_distribution\n obs = self._observations[itraj]\n T = len(obs)\n self._hmm.output_model.p_obs(obs, out=self._pobs)\n logprob = hidden.forward(A, self._pobs, pi, T=T, alpha_out=self._alpha)[0]\n hidden.backward(A, self._pobs, T=T, beta_out=self._beta)\n hidden.state_probabilities(self._alpha, self._beta, T=T, gamma_out=self\n ._gammas[itraj])\n hidden.transition_counts(self._alpha, self._beta, A, self._pobs, T=T,\n out=self._Cs[itraj])\n return logprob\n", "role": "user" }, { "content": "forward_backward", "role": "assistant" } ]
def x(self, gammas, count_matrices, maxiter=10000000): gamma0_sum = self._init_counts(gammas) C = self._transition_counts(count_matrices) logger().info('Initial count = \n' + str(gamma0_sum)) logger().info('Count matrix = \n' + str(C)) from bhmm.estimators._tmatrix_disconnected import estimate_P, stationary_distribution T = estimate_P(C, reversible=self._hmm.is_reversible, fixed_statdist= self._fixed_stationary_distribution, maxiter=maxiter, maxerr=1e-12, mincount_connectivity=1e-16) if self._stationary: if self._fixed_stationary_distribution is None: pi = stationary_distribution(T, C=C, mincount_connectivity=1e-16) else: pi = self._fixed_stationary_distribution elif self._fixed_initial_distribution is None: pi = gamma0_sum / np.sum(gamma0_sum) else: pi = self._fixed_initial_distribution self._hmm.update(pi, T) logger().info('T: \n' + str(T)) logger().info('pi: \n' + str(pi)) self._hmm.output_model.estimate(self._observations, gammas)
update_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gammas, count_matrices, maxiter=10000000):\n gamma0_sum = self._init_counts(gammas)\n C = self._transition_counts(count_matrices)\n logger().info('Initial count = \\n' + str(gamma0_sum))\n logger().info('Count matrix = \\n' + str(C))\n from bhmm.estimators._tmatrix_disconnected import estimate_P, stationary_distribution\n T = estimate_P(C, reversible=self._hmm.is_reversible, fixed_statdist=\n self._fixed_stationary_distribution, maxiter=maxiter, maxerr=1e-12,\n mincount_connectivity=1e-16)\n if self._stationary:\n if self._fixed_stationary_distribution is None:\n pi = stationary_distribution(T, C=C, mincount_connectivity=1e-16)\n else:\n pi = self._fixed_stationary_distribution\n elif self._fixed_initial_distribution is None:\n pi = gamma0_sum / np.sum(gamma0_sum)\n else:\n pi = self._fixed_initial_distribution\n self._hmm.update(pi, T)\n logger().info('T: \\n' + str(T))\n logger().info('pi: \\n' + str(pi))\n self._hmm.output_model.estimate(self._observations, gammas)\n", "role": "user" }, { "content": "update_model", "role": "assistant" } ]
def x(self): K = len(self._observations) A = self._hmm.transition_matrix pi = self._hmm.initial_distribution paths = np.empty(K, dtype=object) for itraj in range(K): obs = self._observations[itraj] pobs = self._hmm.output_model.p_obs(obs) paths[itraj] = hidden.viterbi(A, pobs, pi) return paths
compute_viterbi_paths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n K = len(self._observations)\n A = self._hmm.transition_matrix\n pi = self._hmm.initial_distribution\n paths = np.empty(K, dtype=object)\n for itraj in range(K):\n obs = self._observations[itraj]\n pobs = self._hmm.output_model.p_obs(obs)\n paths[itraj] = hidden.viterbi(A, pobs, pi)\n return paths\n", "role": "user" }, { "content": "compute_viterbi_paths", "role": "assistant" } ]
def x(self): logger().info( '=================================================================') logger().info('Running Baum-Welch:') logger().info(' input observations: ' + str(self.nobservations) + ' of lengths ' + str(self.observation_lengths)) logger().info(' initial HMM guess:' + str(self._hmm)) initial_time = time.time() it = 0 self._likelihoods = np.zeros(self.maxit) loglik = 0.0 tmatrix_nonzeros = self.hmm.transition_matrix.nonzero() converged = False while not converged and it < self.maxit: t1 = time.time() loglik = 0.0 for k in range(self._nobs): loglik += self._forward_backward(k) assert np.isfinite(loglik), it t2 = time.time() if it > 0: dL = loglik - self._likelihoods[it - 1] if dL < self._accuracy: converged = True self._update_model(self._gammas, self._Cs, maxiter=self._maxit_P) t3 = time.time() tmatrix_nonzeros_new = self.hmm.transition_matrix.nonzero() if not np.array_equal(tmatrix_nonzeros, tmatrix_nonzeros_new): converged = False tmatrix_nonzeros = tmatrix_nonzeros_new logger().info(str(it) + ' ll = ' + str(loglik)) self._likelihoods[it] = loglik it += 1 self._likelihoods = self._likelihoods[:it] self._hmm.likelihood = loglik self.count_matrix = self._transition_counts(self._Cs) self.initial_count = self._init_counts(self._gammas) final_time = time.time() elapsed_time = final_time - initial_time logger().info('maximum likelihood HMM:' + str(self._hmm)) logger().info('Elapsed time for Baum-Welch solution: %.3f s' % elapsed_time ) logger().info('Computing Viterbi path:') initial_time = time.time() self._hmm.hidden_state_trajectories = self.compute_viterbi_paths() final_time = time.time() elapsed_time = final_time - initial_time logger().info('Elapsed time for Viterbi path computation: %.3f s' % elapsed_time) logger().info( '=================================================================') return self._hmm
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logger().info(\n '=================================================================')\n logger().info('Running Baum-Welch:')\n logger().info(' input observations: ' + str(self.nobservations) +\n ' of lengths ' + str(self.observation_lengths))\n logger().info(' initial HMM guess:' + str(self._hmm))\n initial_time = time.time()\n it = 0\n self._likelihoods = np.zeros(self.maxit)\n loglik = 0.0\n tmatrix_nonzeros = self.hmm.transition_matrix.nonzero()\n converged = False\n while not converged and it < self.maxit:\n t1 = time.time()\n loglik = 0.0\n for k in range(self._nobs):\n loglik += self._forward_backward(k)\n assert np.isfinite(loglik), it\n t2 = time.time()\n if it > 0:\n dL = loglik - self._likelihoods[it - 1]\n if dL < self._accuracy:\n converged = True\n self._update_model(self._gammas, self._Cs, maxiter=self._maxit_P)\n t3 = time.time()\n tmatrix_nonzeros_new = self.hmm.transition_matrix.nonzero()\n if not np.array_equal(tmatrix_nonzeros, tmatrix_nonzeros_new):\n converged = False\n tmatrix_nonzeros = tmatrix_nonzeros_new\n logger().info(str(it) + ' ll = ' + str(loglik))\n self._likelihoods[it] = loglik\n it += 1\n self._likelihoods = self._likelihoods[:it]\n self._hmm.likelihood = loglik\n self.count_matrix = self._transition_counts(self._Cs)\n self.initial_count = self._init_counts(self._gammas)\n final_time = time.time()\n elapsed_time = final_time - initial_time\n logger().info('maximum likelihood HMM:' + str(self._hmm))\n logger().info('Elapsed time for Baum-Welch solution: %.3f s' % elapsed_time\n )\n logger().info('Computing Viterbi path:')\n initial_time = time.time()\n self._hmm.hidden_state_trajectories = self.compute_viterbi_paths()\n final_time = time.time()\n elapsed_time = final_time - initial_time\n logger().info('Elapsed time for Viterbi path computation: %.3f s' %\n elapsed_time)\n logger().info(\n '=================================================================')\n return self._hmm\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(mean, covar, covariance_type='diag', n_samples=1, random_state=None): rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = n_dim, if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T
sample_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mean, covar, covariance_type='diag', n_samples=1, random_state=None):\n rng = check_random_state(random_state)\n n_dim = len(mean)\n rand = rng.randn(n_dim, n_samples)\n if n_samples == 1:\n rand.shape = n_dim,\n if covariance_type == 'spherical':\n rand *= np.sqrt(covar)\n elif covariance_type == 'diag':\n rand = np.dot(np.diag(np.sqrt(covar)), rand)\n else:\n s, U = linalg.eigh(covar)\n s.clip(0, out=s)\n np.sqrt(s, out=s)\n U *= s\n rand = np.dot(U, rand)\n return (rand.T + mean).T\n", "role": "user" }, { "content": "sample_gaussian", "role": "assistant" } ]
def x(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar
covar_mstep_diag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gmm, X, responsibilities, weighted_X_sum, norm, min_covar):\n avg_X2 = np.dot(responsibilities.T, X * X) * norm\n avg_means2 = gmm.means_ ** 2\n avg_X_means = gmm.means_ * weighted_X_sum * norm\n return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar\n", "role": "user" }, { "content": "covar_mstep_diag", "role": "assistant" } ]
def x(*args): cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1]))
covar_mstep_spherical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args):\n cv = _covar_mstep_diag(*args)\n return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1]))\n", "role": "user" }, { "content": "covar_mstep_spherical", "role": "assistant" } ]
def x(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv
covar_mstep_full
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gmm, X, responsibilities, weighted_X_sum, norm, min_covar):\n n_features = X.shape[1]\n cv = np.empty((gmm.n_components, n_features, n_features))\n for c in range(gmm.n_components):\n post = responsibilities[:, c]\n mu = gmm.means_[c]\n diff = X - mu\n with np.errstate(under='ignore'):\n avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS)\n cv[c] = avg_cv + min_covar * np.eye(n_features)\n return cv\n", "role": "user" }, { "content": "covar_mstep_full", "role": "assistant" } ]
def x(self): if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_]
get_covars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.covariance_type == 'full':\n return self.covars_\n elif self.covariance_type == 'diag':\n return [np.diag(cov) for cov in self.covars_]\n elif self.covariance_type == 'tied':\n return [self.covars_] * self.n_components\n elif self.covariance_type == 'spherical':\n return [np.diag(cov) for cov in self.covars_]\n", "role": "user" }, { "content": "get_covars", "role": "assistant" } ]
def x(self, covars): covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars
set_covars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, covars):\n covars = np.asarray(covars)\n _validate_covars(covars, self.covariance_type, self.n_components)\n self.covars_ = covars\n", "role": "user" }, { "content": "set_covars", "role": "assistant" } ]
def x(self, X): check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities
score_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n check_is_fitted(self, 'means_')\n X = check_array(X)\n if X.ndim == 1:\n X = X[:, np.newaxis]\n if X.size == 0:\n return np.array([]), np.empty((0, self.n_components))\n if X.shape[1] != self.means_.shape[1]:\n raise ValueError('The shape of X is not compatible with self')\n lpr = log_multivariate_normal_density(X, self.means_, self.covars_,\n self.covariance_type) + np.log(self.weights_)\n logprob = logsumexp(lpr, axis=1)\n responsibilities = np.exp(lpr - logprob[:, np.newaxis])\n return logprob, responsibilities\n", "role": "user" }, { "content": "score_samples", "role": "assistant" } ]
def x(self, X, y=None): logprob, _ = self.score_samples(X) return logprob
score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, y=None):\n logprob, _ = self.score_samples(X)\n return logprob\n", "role": "user" }, { "content": "score", "role": "assistant" } ]
def x(self, X): logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1)
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n logprob, responsibilities = self.score_samples(X)\n return responsibilities.argmax(axis=1)\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, n_samples=1, random_state=None): check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) comps = weight_cdf.searchsorted(rand) for comp in range(self.n_components): comp_in_X = comp == comps num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian(self.means_[comp], cv, self. covariance_type, num_comp_in_X, random_state=random_state).T return X
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_samples=1, random_state=None):\n check_is_fitted(self, 'means_')\n if random_state is None:\n random_state = self.random_state\n random_state = check_random_state(random_state)\n weight_cdf = np.cumsum(self.weights_)\n X = np.empty((n_samples, self.means_.shape[1]))\n rand = random_state.rand(n_samples)\n comps = weight_cdf.searchsorted(rand)\n for comp in range(self.n_components):\n comp_in_X = comp == comps\n num_comp_in_X = comp_in_X.sum()\n if num_comp_in_X > 0:\n if self.covariance_type == 'tied':\n cv = self.covars_\n elif self.covariance_type == 'spherical':\n cv = self.covars_[comp][0]\n else:\n cv = self.covars_[comp]\n X[comp_in_X] = sample_gaussian(self.means_[comp], cv, self.\n covariance_type, num_comp_in_X, random_state=random_state).T\n return X\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, X, y=None): X = check_array(X, dtype=np.float64) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty for _ in range(self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): if np.issubdtype(X.dtype, np.float32): from bhmm._external.clustering.kmeans_clustering_32 import init_centers elif np.issubdtype(X.dtype, np.float64): from bhmm._external.clustering.kmeans_clustering_64 import init_centers else: raise ValueError( 'Could not handle dtype %s for clustering!' % X.dtype) centers = init_centers(X, 'euclidean', self.n_components) self.means_ = centers if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = 1, 1 self.covars_ = distribute_covar_matrix_to_match_covariance_type(cv, self.covariance_type, self.n_components) current_log_likelihood = None self.converged_ = False tol = self.tol if self.thresh is None else self.thresh / float(X. shape[0]) for i in range(self.n_iter): prev_log_likelihood = current_log_likelihood log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if change < tol: self.converged_ = True break self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self. means_, 'covars': self.covars_} if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( 'EM algorithm was never able to compute a valid likelihood ' + 'given initial parameters. Try different init parameters ' + '(or increasing n_init) or check for degenerate data.') if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] return self
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, y=None):\n X = check_array(X, dtype=np.float64)\n if X.shape[0] < self.n_components:\n raise ValueError(\n 'GMM estimation with %s components, but got only %s samples' %\n (self.n_components, X.shape[0]))\n max_log_prob = -np.infty\n for _ in range(self.n_init):\n if 'm' in self.init_params or not hasattr(self, 'means_'):\n if np.issubdtype(X.dtype, np.float32):\n from bhmm._external.clustering.kmeans_clustering_32 import init_centers\n elif np.issubdtype(X.dtype, np.float64):\n from bhmm._external.clustering.kmeans_clustering_64 import init_centers\n else:\n raise ValueError(\n 'Could not handle dtype %s for clustering!' % X.dtype)\n centers = init_centers(X, 'euclidean', self.n_components)\n self.means_ = centers\n if 'w' in self.init_params or not hasattr(self, 'weights_'):\n self.weights_ = np.tile(1.0 / self.n_components, self.n_components)\n if 'c' in self.init_params or not hasattr(self, 'covars_'):\n cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1])\n if not cv.shape:\n cv.shape = 1, 1\n self.covars_ = distribute_covar_matrix_to_match_covariance_type(cv,\n self.covariance_type, self.n_components)\n current_log_likelihood = None\n self.converged_ = False\n tol = self.tol if self.thresh is None else self.thresh / float(X.\n shape[0])\n for i in range(self.n_iter):\n prev_log_likelihood = current_log_likelihood\n log_likelihoods, responsibilities = self.score_samples(X)\n current_log_likelihood = log_likelihoods.mean()\n if prev_log_likelihood is not None:\n change = abs(current_log_likelihood - prev_log_likelihood)\n if change < tol:\n self.converged_ = True\n break\n self._do_mstep(X, responsibilities, self.params, self.min_covar)\n if self.n_iter:\n if current_log_likelihood > max_log_prob:\n max_log_prob = current_log_likelihood\n best_params = {'weights': self.weights_, 'means': self.\n means_, 'covars': self.covars_}\n if np.isneginf(max_log_prob) and self.n_iter:\n raise RuntimeError(\n 'EM algorithm was never able to compute a valid likelihood ' +\n 'given initial parameters. Try different init parameters ' +\n '(or increasing n_init) or check for degenerate data.')\n if self.n_iter:\n self.covars_ = best_params['covars']\n self.means_ = best_params['means']\n self.weights_ = best_params['weights']\n return self\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, X, responsibilities, params, min_covar=0): weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = weights / (weights.sum() + 10 * EPS) + EPS if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func(self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights
do_mstep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, responsibilities, params, min_covar=0):\n weights = responsibilities.sum(axis=0)\n weighted_X_sum = np.dot(responsibilities.T, X)\n inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS)\n if 'w' in params:\n self.weights_ = weights / (weights.sum() + 10 * EPS) + EPS\n if 'm' in params:\n self.means_ = weighted_X_sum * inverse_weights\n if 'c' in params:\n covar_mstep_func = _covar_mstep_funcs[self.covariance_type]\n self.covars_ = covar_mstep_func(self, X, responsibilities,\n weighted_X_sum, inverse_weights, min_covar)\n return weights\n", "role": "user" }, { "content": "do_mstep", "role": "assistant" } ]
def x(self): ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2.0 elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2.0 elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1)
n_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ndim = self.means_.shape[1]\n if self.covariance_type == 'full':\n cov_params = self.n_components * ndim * (ndim + 1) / 2.0\n elif self.covariance_type == 'diag':\n cov_params = self.n_components * ndim\n elif self.covariance_type == 'tied':\n cov_params = ndim * (ndim + 1) / 2.0\n elif self.covariance_type == 'spherical':\n cov_params = self.n_components\n mean_params = ndim * self.n_components\n return int(cov_params + mean_params + self.n_components - 1)\n", "role": "user" }, { "content": "n_parameters", "role": "assistant" } ]
def x(self, X): return -2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])
bic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n return -2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])\n", "role": "user" }, { "content": "bic", "role": "assistant" } ]
def x(cls): init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: return [] args, varargs, kw, default = inspect.getargspec(init) if varargs is not None: raise RuntimeError( "scikit-learn estimators should always specify their parameters in the signature of their __init__ (no varargs). %s doesn't follow this convention." % (cls,)) args.pop(0) args.sort() return args
get_param_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n init = getattr(cls.__init__, 'deprecated_original', cls.__init__)\n if init is object.__init__:\n return []\n args, varargs, kw, default = inspect.getargspec(init)\n if varargs is not None:\n raise RuntimeError(\n \"scikit-learn estimators should always specify their parameters in the signature of their __init__ (no varargs). %s doesn't follow this convention.\"\n % (cls,))\n args.pop(0)\n args.sort()\n return args\n", "role": "user" }, { "content": "get_param_names", "role": "assistant" } ]
def x(self, **params): if not params: return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: name, sub_name = split if not name in valid_params: raise ValueError('Invalid parameter %s for estimator %s' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: if not key in valid_params: raise ValueError('Invalid parameter %s for estimator %s' % (key, self.__class__.__name__)) setattr(self, key, value) return self
set_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **params):\n if not params:\n return self\n valid_params = self.get_params(deep=True)\n for key, value in six.iteritems(params):\n split = key.split('__', 1)\n if len(split) > 1:\n name, sub_name = split\n if not name in valid_params:\n raise ValueError('Invalid parameter %s for estimator %s' %\n (name, self))\n sub_object = valid_params[name]\n sub_object.set_params(**{sub_name: value})\n else:\n if not key in valid_params:\n raise ValueError('Invalid parameter %s for estimator %s' %\n (key, self.__class__.__name__))\n setattr(self, key, value)\n return self\n", "role": "user" }, { "content": "set_params", "role": "assistant" } ]
def x(observations, nstates, reversible=True): ntrajectories = len(observations) collected_observations = np.array([], dtype=config.dtype) for o_t in observations: collected_observations = np.append(collected_observations, o_t) from bhmm._external.sklearn import mixture gmm = mixture.GMM(n_components=nstates) gmm.fit(collected_observations[:, None]) from bhmm import GaussianOutputModel output_model = GaussianOutputModel(nstates, means=gmm.means_[:, 0], sigmas=np.sqrt(gmm.covars_[:, 0])) logger().info('Gaussian output model:\n' + str(output_model)) Pi = np.zeros([nstates], np.float64) Pi[:] = gmm.weights_[:] logger().info('GMM weights: %s' % str(gmm.weights_)) Nij = np.zeros([nstates, nstates], np.float64) for o_t in observations: T = o_t.shape[0] pobs = output_model.p_obs(o_t) pobs /= pobs.sum(axis=1)[:, None] for t in range(T - 1): Nij[:, :] = Nij[:, :] + np.outer(pobs[t, :], pobs[t + 1, :]) logger().info('Nij\n' + str(Nij)) import msmtools.estimation as msmest import msmtools.analysis as msmana Tij = msmest.transition_matrix(Nij, reversible=reversible) pi = msmana.stationary_distribution(Tij) model = HMM(pi, Tij, output_model) return model
init_model_gaussian1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(observations, nstates, reversible=True):\n ntrajectories = len(observations)\n collected_observations = np.array([], dtype=config.dtype)\n for o_t in observations:\n collected_observations = np.append(collected_observations, o_t)\n from bhmm._external.sklearn import mixture\n gmm = mixture.GMM(n_components=nstates)\n gmm.fit(collected_observations[:, None])\n from bhmm import GaussianOutputModel\n output_model = GaussianOutputModel(nstates, means=gmm.means_[:, 0],\n sigmas=np.sqrt(gmm.covars_[:, 0]))\n logger().info('Gaussian output model:\\n' + str(output_model))\n Pi = np.zeros([nstates], np.float64)\n Pi[:] = gmm.weights_[:]\n logger().info('GMM weights: %s' % str(gmm.weights_))\n Nij = np.zeros([nstates, nstates], np.float64)\n for o_t in observations:\n T = o_t.shape[0]\n pobs = output_model.p_obs(o_t)\n pobs /= pobs.sum(axis=1)[:, None]\n for t in range(T - 1):\n Nij[:, :] = Nij[:, :] + np.outer(pobs[t, :], pobs[t + 1, :])\n logger().info('Nij\\n' + str(Nij))\n import msmtools.estimation as msmest\n import msmtools.analysis as msmana\n Tij = msmest.transition_matrix(Nij, reversible=reversible)\n pi = msmana.stationary_distribution(Tij)\n model = HMM(pi, Tij, output_model)\n return model\n", "role": "user" }, { "content": "init_model_gaussian1d", "role": "assistant" } ]
def x(self, o): if self.__impl__ == self.__IMPL_C__: return gc.p_o(o, self.means, self.sigmas, out=None, dtype=type(o)) elif self.__impl__ == self.__IMPL_PYTHON__: if np.any(self.sigmas < np.finfo(self.sigmas.dtype).eps): raise RuntimeError('at least one sigma is too small to continue.') C = 1.0 / (np.sqrt(2.0 * np.pi) * self.sigmas) Pobs = C * np.exp(-0.5 * ((o - self.means) / self.sigmas) ** 2) return Pobs else: raise RuntimeError('Implementation ' + str(self.__impl__) + ' not available')
p_o
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, o):\n if self.__impl__ == self.__IMPL_C__:\n return gc.p_o(o, self.means, self.sigmas, out=None, dtype=type(o))\n elif self.__impl__ == self.__IMPL_PYTHON__:\n if np.any(self.sigmas < np.finfo(self.sigmas.dtype).eps):\n raise RuntimeError('at least one sigma is too small to continue.')\n C = 1.0 / (np.sqrt(2.0 * np.pi) * self.sigmas)\n Pobs = C * np.exp(-0.5 * ((o - self.means) / self.sigmas) ** 2)\n return Pobs\n else:\n raise RuntimeError('Implementation ' + str(self.__impl__) +\n ' not available')\n", "role": "user" }, { "content": "p_o", "role": "assistant" } ]
def x(self, obs, out=None): if self.__impl__ == self.__IMPL_C__: res = gc.p_obs(obs, self.means, self.sigmas, out=out, dtype=config. dtype) return self._handle_outliers(res) elif self.__impl__ == self.__IMPL_PYTHON__: T = len(obs) if out is None: res = np.zeros((T, self.nstates), dtype=config.dtype) else: res = out for t in range(T): res[t, :] = self._p_o(obs[t]) return self._handle_outliers(res) else: raise RuntimeError('Implementation ' + str(self.__impl__) + ' not available')
p_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obs, out=None):\n if self.__impl__ == self.__IMPL_C__:\n res = gc.p_obs(obs, self.means, self.sigmas, out=out, dtype=config.\n dtype)\n return self._handle_outliers(res)\n elif self.__impl__ == self.__IMPL_PYTHON__:\n T = len(obs)\n if out is None:\n res = np.zeros((T, self.nstates), dtype=config.dtype)\n else:\n res = out\n for t in range(T):\n res[t, :] = self._p_o(obs[t])\n return self._handle_outliers(res)\n else:\n raise RuntimeError('Implementation ' + str(self.__impl__) +\n ' not available')\n", "role": "user" }, { "content": "p_obs", "role": "assistant" } ]
def x(self, observations, weights): N = self.nstates K = len(observations) self._means = np.zeros(N) w_sum = np.zeros(N) for k in range(K): for i in range(N): self.means[i] += np.dot(weights[k][:, i], observations[k]) w_sum += np.sum(weights[k], axis=0) self._means /= w_sum self._sigmas = np.zeros(N) w_sum = np.zeros(N) for k in range(K): for i in range(N): Y = (observations[k] - self.means[i]) ** 2 self.sigmas[i] += np.dot(weights[k][:, i], Y) w_sum += np.sum(weights[k], axis=0) self._sigmas /= w_sum self._sigmas = np.sqrt(self.sigmas) if np.any(self._sigmas < np.finfo(self._sigmas.dtype).eps): raise RuntimeError('at least one sigma is too small to continue.')
estimate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, observations, weights):\n N = self.nstates\n K = len(observations)\n self._means = np.zeros(N)\n w_sum = np.zeros(N)\n for k in range(K):\n for i in range(N):\n self.means[i] += np.dot(weights[k][:, i], observations[k])\n w_sum += np.sum(weights[k], axis=0)\n self._means /= w_sum\n self._sigmas = np.zeros(N)\n w_sum = np.zeros(N)\n for k in range(K):\n for i in range(N):\n Y = (observations[k] - self.means[i]) ** 2\n self.sigmas[i] += np.dot(weights[k][:, i], Y)\n w_sum += np.sum(weights[k], axis=0)\n self._sigmas /= w_sum\n self._sigmas = np.sqrt(self.sigmas)\n if np.any(self._sigmas < np.finfo(self._sigmas.dtype).eps):\n raise RuntimeError('at least one sigma is too small to continue.')\n", "role": "user" }, { "content": "estimate", "role": "assistant" } ]
def x(self, observations, prior=None): for state_index in range(self.nstates): observations_in_state = observations[state_index] nsamples_in_state = len(observations_in_state) if nsamples_in_state == 0: logger().warn('Warning: State %d has no observations.' % state_index) if nsamples_in_state > 0: self.means[state_index] = np.random.randn() * self.sigmas[ state_index] / np.sqrt(nsamples_in_state) + np.mean( observations_in_state) if nsamples_in_state > 1: chisquared = np.random.chisquare(nsamples_in_state - 1) sigmahat2 = np.mean((observations_in_state - self.means[ state_index]) ** 2) self.sigmas[state_index] = np.sqrt(sigmahat2) / np.sqrt( chisquared / nsamples_in_state) return
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, observations, prior=None):\n for state_index in range(self.nstates):\n observations_in_state = observations[state_index]\n nsamples_in_state = len(observations_in_state)\n if nsamples_in_state == 0:\n logger().warn('Warning: State %d has no observations.' %\n state_index)\n if nsamples_in_state > 0:\n self.means[state_index] = np.random.randn() * self.sigmas[\n state_index] / np.sqrt(nsamples_in_state) + np.mean(\n observations_in_state)\n if nsamples_in_state > 1:\n chisquared = np.random.chisquare(nsamples_in_state - 1)\n sigmahat2 = np.mean((observations_in_state - self.means[\n state_index]) ** 2)\n self.sigmas[state_index] = np.sqrt(sigmahat2) / np.sqrt(\n chisquared / nsamples_in_state)\n return\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, state_index): observation = self.sigmas[state_index] * np.random.randn() + self.means[ state_index] return observation
generate_observation_from_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, state_index):\n observation = self.sigmas[state_index] * np.random.randn() + self.means[\n state_index]\n return observation\n", "role": "user" }, { "content": "generate_observation_from_state", "role": "assistant" } ]
def x(self, state_index, nobs): observations = self.sigmas[state_index] * np.random.randn(nobs ) + self.means[state_index] return observations
generate_observations_from_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, state_index, nobs):\n observations = self.sigmas[state_index] * np.random.randn(nobs\n ) + self.means[state_index]\n return observations\n", "role": "user" }, { "content": "generate_observations_from_state", "role": "assistant" } ]
def x(self, s_t): T = s_t.shape[0] o_t = np.zeros([T], dtype=config.dtype) for t in range(T): s = s_t[t] o_t[t] = self.sigmas[s] * np.random.randn() + self.means[s] return o_t
generate_observation_trajectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s_t):\n T = s_t.shape[0]\n o_t = np.zeros([T], dtype=config.dtype)\n for t in range(T):\n s = s_t[t]\n o_t[t] = self.sigmas[s] * np.random.randn() + self.means[s]\n return o_t\n", "role": "user" }, { "content": "generate_observation_trajectory", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates), dtype=config.dtype) for i in range(self.nsamples): res[i, :] = self._sampled_hmms[i].stationary_distribution return res
initial_distribution_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)\n for i in range(self.nsamples):\n res[i, :] = self._sampled_hmms[i].stationary_distribution\n return res\n", "role": "user" }, { "content": "initial_distribution_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates, self.nstates), dtype= config.dtype) for i in range(self.nsamples): res[i, :, :] = self._sampled_hmms[i].transition_matrix return res
transition_matrix_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=\n config.dtype)\n for i in range(self.nsamples):\n res[i, :, :] = self._sampled_hmms[i].transition_matrix\n return res\n", "role": "user" }, { "content": "transition_matrix_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates), dtype=config.dtype) for i in range(self.nsamples): res[i, :] = self._sampled_hmms[i].eigenvalues return res
eigenvalues_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)\n for i in range(self.nsamples):\n res[i, :] = self._sampled_hmms[i].eigenvalues\n return res\n", "role": "user" }, { "content": "eigenvalues_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates, self.nstates), dtype= config.dtype) for i in range(self.nsamples): res[i, :, :] = self._sampled_hmms[i].eigenvectors_left return res
eigenvectors_left_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=\n config.dtype)\n for i in range(self.nsamples):\n res[i, :, :] = self._sampled_hmms[i].eigenvectors_left\n return res\n", "role": "user" }, { "content": "eigenvectors_left_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates, self.nstates), dtype= config.dtype) for i in range(self.nsamples): res[i, :, :] = self._sampled_hmms[i].eigenvectors_right return res
eigenvectors_right_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates, self.nstates), dtype=\n config.dtype)\n for i in range(self.nsamples):\n res[i, :, :] = self._sampled_hmms[i].eigenvectors_right\n return res\n", "role": "user" }, { "content": "eigenvectors_right_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates - 1), dtype=config.dtype) for i in range(self.nsamples): res[i, :] = self._sampled_hmms[i].timescales return res
timescales_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates - 1), dtype=config.dtype)\n for i in range(self.nsamples):\n res[i, :] = self._sampled_hmms[i].timescales\n return res\n", "role": "user" }, { "content": "timescales_samples", "role": "assistant" } ]
def x(self): res = np.empty((self.nsamples, self.nstates), dtype=config.dtype) for i in range(self.nsamples): res[i, :] = self._sampled_hmms[i].lifetimes return res
lifetimes_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = np.empty((self.nsamples, self.nstates), dtype=config.dtype)\n for i in range(self.nsamples):\n res[i, :] = self._sampled_hmms[i].lifetimes\n return res\n", "role": "user" }, { "content": "lifetimes_samples", "role": "assistant" } ]
def x(self, impl): if impl.lower() == 'python': self.__impl__ = self.__IMPL_PYTHON__ elif impl.lower() == 'c': self.__impl__ = self.__IMPL_C__ else: import warnings warnings.warn('Implementation ' + impl + ' is not known. Using the fallback python implementation.') self.__impl__ = self.__IMPL_PYTHON__
set_implementation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, impl):\n if impl.lower() == 'python':\n self.__impl__ = self.__IMPL_PYTHON__\n elif impl.lower() == 'c':\n self.__impl__ = self.__IMPL_C__\n else:\n import warnings\n warnings.warn('Implementation ' + impl +\n ' is not known. Using the fallback python implementation.')\n self.__impl__ = self.__IMPL_PYTHON__\n", "role": "user" }, { "content": "set_implementation", "role": "assistant" } ]
def x(self, obs, out=None, dtype=np.float32): if out is None: return np.log(self.p_obs(obs)) else: self.p_obs(obs, out=out, dtype=dtype) np.log(out, out=out) return out
log_p_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obs, out=None, dtype=np.float32):\n if out is None:\n return np.log(self.p_obs(obs))\n else:\n self.p_obs(obs, out=out, dtype=dtype)\n np.log(out, out=out)\n return out\n", "role": "user" }, { "content": "log_p_obs", "role": "assistant" } ]
def x(self, p_o): if self.ignore_outliers: outliers = np.where(p_o.sum(axis=1) == 0)[0] if outliers.size > 0: p_o[outliers, :] = 1.0 self.found_outliers = True return p_o
handle_outliers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p_o):\n if self.ignore_outliers:\n outliers = np.where(p_o.sum(axis=1) == 0)[0]\n if outliers.size > 0:\n p_o[outliers, :] = 1.0\n self.found_outliers = True\n return p_o\n", "role": "user" }, { "content": "handle_outliers", "role": "assistant" } ]
def x(A, pobs, pi, T=None, alpha_out=None, dtype=np.float32): if T is None: T = pobs.shape[0] elif T > pobs.shape[0]: raise ValueError('T must be at most the length of pobs.') N = A.shape[0] if alpha_out is None: alpha_out = np.zeros((T, N), dtype=dtype) elif T > alpha_out.shape[0]: raise ValueError( 'alpha_out must at least have length T in order to fit trajectory.' ) logprob = 0.0 np.multiply(pi, pobs[0, :], out=alpha_out[0]) scale = np.sum(alpha_out[0, :]) alpha_out[0, :] /= scale logprob += np.log(scale) for t in range(T - 1): np.multiply(np.dot(alpha_out[t, :], A), pobs[t + 1, :], out= alpha_out[t + 1]) scale = np.sum(alpha_out[t + 1, :]) alpha_out[t + 1, :] /= scale logprob += np.log(scale) return logprob, alpha_out
forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, pi, T=None, alpha_out=None, dtype=np.float32):\n if T is None:\n T = pobs.shape[0]\n elif T > pobs.shape[0]:\n raise ValueError('T must be at most the length of pobs.')\n N = A.shape[0]\n if alpha_out is None:\n alpha_out = np.zeros((T, N), dtype=dtype)\n elif T > alpha_out.shape[0]:\n raise ValueError(\n 'alpha_out must at least have length T in order to fit trajectory.'\n )\n logprob = 0.0\n np.multiply(pi, pobs[0, :], out=alpha_out[0])\n scale = np.sum(alpha_out[0, :])\n alpha_out[0, :] /= scale\n logprob += np.log(scale)\n for t in range(T - 1):\n np.multiply(np.dot(alpha_out[t, :], A), pobs[t + 1, :], out=\n alpha_out[t + 1])\n scale = np.sum(alpha_out[t + 1, :])\n alpha_out[t + 1, :] /= scale\n logprob += np.log(scale)\n return logprob, alpha_out\n", "role": "user" }, { "content": "forward", "role": "assistant" } ]
def x(A, pobs, T=None, beta_out=None, dtype=np.float32): if T is None: T = pobs.shape[0] elif T > pobs.shape[0]: raise ValueError('T must be at most the length of pobs.') N = A.shape[0] if beta_out is None: beta_out = np.zeros((T, N), dtype=dtype) elif T > beta_out.shape[0]: raise ValueError( 'beta_out must at least have length T in order to fit trajectory.') beta_out[T - 1, :] = 1.0 scale = np.sum(beta_out[T - 1, :]) beta_out[T - 1, :] /= scale for t in range(T - 2, -1, -1): np.dot(A, beta_out[t + 1, :] * pobs[t + 1, :], out=beta_out[t, :]) scale = np.sum(beta_out[t, :]) beta_out[t, :] /= scale return beta_out
backward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, T=None, beta_out=None, dtype=np.float32):\n if T is None:\n T = pobs.shape[0]\n elif T > pobs.shape[0]:\n raise ValueError('T must be at most the length of pobs.')\n N = A.shape[0]\n if beta_out is None:\n beta_out = np.zeros((T, N), dtype=dtype)\n elif T > beta_out.shape[0]:\n raise ValueError(\n 'beta_out must at least have length T in order to fit trajectory.')\n beta_out[T - 1, :] = 1.0\n scale = np.sum(beta_out[T - 1, :])\n beta_out[T - 1, :] /= scale\n for t in range(T - 2, -1, -1):\n np.dot(A, beta_out[t + 1, :] * pobs[t + 1, :], out=beta_out[t, :])\n scale = np.sum(beta_out[t, :])\n beta_out[t, :] /= scale\n return beta_out\n", "role": "user" }, { "content": "backward", "role": "assistant" } ]
def x(alpha, beta, A, pobs, T=None, out=None, dtype=np.float32): if T is None: T = pobs.shape[0] elif T > pobs.shape[0]: raise ValueError('T must be at most the length of pobs.') N = len(A) if out is None: out = np.zeros((N, N), dtype=dtype, order='C') else: out[:] = 0.0 xi = np.zeros((N, N), dtype=dtype, order='C') for t in range(T - 1): np.dot(alpha[t, :][:, None] * A, np.diag(pobs[t + 1, :] * beta[t + 1, :]), out=xi) xi /= np.sum(xi) np.add(out, xi, out) return out
transition_counts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, beta, A, pobs, T=None, out=None, dtype=np.float32):\n if T is None:\n T = pobs.shape[0]\n elif T > pobs.shape[0]:\n raise ValueError('T must be at most the length of pobs.')\n N = len(A)\n if out is None:\n out = np.zeros((N, N), dtype=dtype, order='C')\n else:\n out[:] = 0.0\n xi = np.zeros((N, N), dtype=dtype, order='C')\n for t in range(T - 1):\n np.dot(alpha[t, :][:, None] * A, np.diag(pobs[t + 1, :] * beta[t + \n 1, :]), out=xi)\n xi /= np.sum(xi)\n np.add(out, xi, out)\n return out\n", "role": "user" }, { "content": "transition_counts", "role": "assistant" } ]
def x(A, pobs, pi, dtype=np.float32): T, N = pobs.shape[0], pobs.shape[1] psi = np.zeros((T, N), dtype=int) v = pi * pobs[0, :] v /= v.sum() psi[0] = 0.0 for t in range(1, T): vA = np.dot(np.diag(v), A) v = pobs[t, :] * np.max(vA, axis=0) v /= v.sum() psi[t] = np.argmax(vA, axis=0) q = np.zeros(T, dtype=int) q[T - 1] = np.argmax(v) for t in range(T - 2, -1, -1): q[t] = psi[t + 1, q[t + 1]] return q
viterbi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, pi, dtype=np.float32):\n T, N = pobs.shape[0], pobs.shape[1]\n psi = np.zeros((T, N), dtype=int)\n v = pi * pobs[0, :]\n v /= v.sum()\n psi[0] = 0.0\n for t in range(1, T):\n vA = np.dot(np.diag(v), A)\n v = pobs[t, :] * np.max(vA, axis=0)\n v /= v.sum()\n psi[t] = np.argmax(vA, axis=0)\n q = np.zeros(T, dtype=int)\n q[T - 1] = np.argmax(v)\n for t in range(T - 2, -1, -1):\n q[t] = psi[t + 1, q[t + 1]]\n return q\n", "role": "user" }, { "content": "viterbi", "role": "assistant" } ]
def x(alpha, A, pobs, T=None, dtype=np.float32): N = pobs.shape[1] if T is None: T = pobs.shape[0] elif T > pobs.shape[0] or T > alpha.shape[0]: raise ValueError('T must be at most the length of pobs and alpha.') S = np.zeros(T, dtype=int) psel = alpha[T - 1, :] psel /= psel.sum() S[T - 1] = np.random.choice(range(N), size=1, p=psel) for t in range(T - 2, -1, -1): psel = alpha[t, :] * A[:, S[t + 1]] psel /= psel.sum() S[t] = np.random.choice(range(N), size=1, p=psel) return S
sample_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, A, pobs, T=None, dtype=np.float32):\n N = pobs.shape[1]\n if T is None:\n T = pobs.shape[0]\n elif T > pobs.shape[0] or T > alpha.shape[0]:\n raise ValueError('T must be at most the length of pobs and alpha.')\n S = np.zeros(T, dtype=int)\n psel = alpha[T - 1, :]\n psel /= psel.sum()\n S[T - 1] = np.random.choice(range(N), size=1, p=psel)\n for t in range(T - 2, -1, -1):\n psel = alpha[t, :] * A[:, S[t + 1]]\n psel /= psel.sum()\n S[t] = np.random.choice(range(N), size=1, p=psel)\n return S\n", "role": "user" }, { "content": "sample_path", "role": "assistant" } ]
def x(P, M): W = np.linalg.inv(np.dot(M.T, M)) A = np.dot(np.dot(M.T, P), M) P_coarse = np.dot(W, A) P_coarse = np.maximum(P_coarse, 0) P_coarse /= P_coarse.sum(axis=1)[:, None] return P_coarse
coarse_grain_transition_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(P, M):\n W = np.linalg.inv(np.dot(M.T, M))\n A = np.dot(np.dot(M.T, P), M)\n P_coarse = np.dot(W, A)\n P_coarse = np.maximum(P_coarse, 0)\n P_coarse /= P_coarse.sum(axis=1)[:, None]\n return P_coarse\n", "role": "user" }, { "content": "coarse_grain_transition_matrix", "role": "assistant" } ]
def x(p0, P, reversible=True, stationary=False, C=None, eps=None): n = P.shape[0] if eps is None: eps = 0.01 / n P = np.maximum(P, eps) P /= P.sum(axis=1)[:, None] if reversible: P = _tmatrix_disconnected.enforce_reversible_on_closed(P) if stationary: _tmatrix_disconnected.stationary_distribution(P, C=C) else: p0 = np.maximum(p0, eps) p0 /= p0.sum() return p0, P
regularize_hidden
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p0, P, reversible=True, stationary=False, C=None, eps=None):\n n = P.shape[0]\n if eps is None:\n eps = 0.01 / n\n P = np.maximum(P, eps)\n P /= P.sum(axis=1)[:, None]\n if reversible:\n P = _tmatrix_disconnected.enforce_reversible_on_closed(P)\n if stationary:\n _tmatrix_disconnected.stationary_distribution(P, C=C)\n else:\n p0 = np.maximum(p0, eps)\n p0 /= p0.sum()\n return p0, P\n", "role": "user" }, { "content": "regularize_hidden", "role": "assistant" } ]
def x(B, nonempty=None, separate=None, eps=None): B = B.copy() n, m = B.shape if eps is None: eps = 0.01 / m if nonempty is None: nonempty = np.arange(m) if separate is None: B[:, nonempty] = np.maximum(B[:, nonempty], eps) else: nonempty_nonseparate = np.array(list(set(nonempty) - set(separate)), dtype=int) nonempty_separate = np.array(list(set(nonempty).intersection(set( separate))), dtype=int) B[:n - 1, nonempty_nonseparate] = np.maximum(B[:n - 1, nonempty_nonseparate], eps) B[n - 1, nonempty_separate] = np.maximum(B[n - 1, nonempty_separate ], eps) B /= B.sum(axis=1)[:, None] return B
regularize_pobs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(B, nonempty=None, separate=None, eps=None):\n B = B.copy()\n n, m = B.shape\n if eps is None:\n eps = 0.01 / m\n if nonempty is None:\n nonempty = np.arange(m)\n if separate is None:\n B[:, nonempty] = np.maximum(B[:, nonempty], eps)\n else:\n nonempty_nonseparate = np.array(list(set(nonempty) - set(separate)),\n dtype=int)\n nonempty_separate = np.array(list(set(nonempty).intersection(set(\n separate))), dtype=int)\n B[:n - 1, nonempty_nonseparate] = np.maximum(B[:n - 1,\n nonempty_nonseparate], eps)\n B[n - 1, nonempty_separate] = np.maximum(B[n - 1, nonempty_separate\n ], eps)\n B /= B.sum(axis=1)[:, None]\n return B\n", "role": "user" }, { "content": "regularize_pobs", "role": "assistant" } ]
def x(C_full, nstates, reversible=True, stationary=True, active_set=None, P =None, eps_A=None, eps_B=None, separate=None): nfull = C_full.shape[0] if eps_A is None: eps_A = 0.01 / nstates if eps_B is None: eps_B = 0.01 / nfull symsum = C_full.sum(axis=0) + C_full.sum(axis=1) nonempty = np.where(symsum > 0)[0] if active_set is None: active_set = nonempty elif np.any(symsum[active_set] == 0): raise ValueError('Given active set has empty states') if P is not None: if np.shape(P)[0] != active_set.size: raise ValueError('Given initial transition matrix P has shape ' + str(np.shape(P)) + 'while active set has size ' + str( active_set.size)) if separate is None: active_nonseparate = active_set.copy() nmeta = nstates else: if np.max(separate) >= nfull: raise ValueError( 'Separate set has indexes that do not exist in full state space: ' + str(np.max(separate))) active_nonseparate = np.array(list(set(active_set) - set(separate))) nmeta = nstates - 1 if active_nonseparate.size < nmeta: raise NotImplementedError('Trying to initialize ' + str(nmeta) + '-state HMM from smaller ' + str(active_nonseparate.size) + '-state MSM.') C_active = C_full[np.ix_(active_set, active_set)] if P is None: P_active = _tmatrix_disconnected.estimate_P(C_active, reversible= reversible, maxiter=10000) else: P_active = P pi_active = _tmatrix_disconnected.stationary_distribution(P_active, C= C_active) pi_full = np.zeros(nfull) pi_full[active_set] = pi_active C_active_nonseparate = C_full[np.ix_(active_nonseparate, active_nonseparate)] if reversible and separate is None: P_active_nonseparate = P_active else: P_active_nonseparate = _tmatrix_disconnected.estimate_P( C_active_nonseparate, reversible=True) if active_nonseparate.size > nmeta: from msmtools.analysis.dense.pcca import PCCA pcca_obj = PCCA(P_active_nonseparate, nmeta) M_active_nonseparate = pcca_obj.memberships B_active_nonseparate = pcca_obj.output_probabilities else: M_active_nonseparate = np.eye(nmeta) B_active_nonseparate = np.eye(nmeta) if separate is None: M_active = M_active_nonseparate else: M_full = np.zeros((nfull, nstates)) M_full[active_nonseparate, :nmeta] = M_active_nonseparate M_full[separate, -1] = 1 M_active = M_full[active_set] P_hmm = coarse_grain_transition_matrix(P_active, M_active) if reversible: P_hmm = _tmatrix_disconnected.enforce_reversible_on_closed(P_hmm) C_hmm = M_active.T.dot(C_active).dot(M_active) pi_hmm = _tmatrix_disconnected.stationary_distribution(P_hmm, C=C_hmm) B_hmm = np.zeros((nstates, nfull)) B_hmm[:nmeta, active_nonseparate] = B_active_nonseparate if separate is not None: B_hmm[-1, separate] = pi_full[separate] pi_hmm, P_hmm = regularize_hidden(pi_hmm, P_hmm, reversible=reversible, stationary=stationary, C=C_hmm, eps=eps_A) B_hmm = regularize_pobs(B_hmm, nonempty=nonempty, separate=separate, eps=eps_B) logger().info('Initial model: ') logger().info('initial distribution = \n' + str(pi_hmm)) logger().info('transition matrix = \n' + str(P_hmm)) logger().info('output matrix = \n' + str(B_hmm.T)) return pi_hmm, P_hmm, B_hmm
init_discrete_hmm_spectral
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C_full, nstates, reversible=True, stationary=True, active_set=None, P\n =None, eps_A=None, eps_B=None, separate=None):\n nfull = C_full.shape[0]\n if eps_A is None:\n eps_A = 0.01 / nstates\n if eps_B is None:\n eps_B = 0.01 / nfull\n symsum = C_full.sum(axis=0) + C_full.sum(axis=1)\n nonempty = np.where(symsum > 0)[0]\n if active_set is None:\n active_set = nonempty\n elif np.any(symsum[active_set] == 0):\n raise ValueError('Given active set has empty states')\n if P is not None:\n if np.shape(P)[0] != active_set.size:\n raise ValueError('Given initial transition matrix P has shape ' +\n str(np.shape(P)) + 'while active set has size ' + str(\n active_set.size))\n if separate is None:\n active_nonseparate = active_set.copy()\n nmeta = nstates\n else:\n if np.max(separate) >= nfull:\n raise ValueError(\n 'Separate set has indexes that do not exist in full state space: '\n + str(np.max(separate)))\n active_nonseparate = np.array(list(set(active_set) - set(separate)))\n nmeta = nstates - 1\n if active_nonseparate.size < nmeta:\n raise NotImplementedError('Trying to initialize ' + str(nmeta) +\n '-state HMM from smaller ' + str(active_nonseparate.size) +\n '-state MSM.')\n C_active = C_full[np.ix_(active_set, active_set)]\n if P is None:\n P_active = _tmatrix_disconnected.estimate_P(C_active, reversible=\n reversible, maxiter=10000)\n else:\n P_active = P\n pi_active = _tmatrix_disconnected.stationary_distribution(P_active, C=\n C_active)\n pi_full = np.zeros(nfull)\n pi_full[active_set] = pi_active\n C_active_nonseparate = C_full[np.ix_(active_nonseparate,\n active_nonseparate)]\n if reversible and separate is None:\n P_active_nonseparate = P_active\n else:\n P_active_nonseparate = _tmatrix_disconnected.estimate_P(\n C_active_nonseparate, reversible=True)\n if active_nonseparate.size > nmeta:\n from msmtools.analysis.dense.pcca import PCCA\n pcca_obj = PCCA(P_active_nonseparate, nmeta)\n M_active_nonseparate = pcca_obj.memberships\n B_active_nonseparate = pcca_obj.output_probabilities\n else:\n M_active_nonseparate = np.eye(nmeta)\n B_active_nonseparate = np.eye(nmeta)\n if separate is None:\n M_active = M_active_nonseparate\n else:\n M_full = np.zeros((nfull, nstates))\n M_full[active_nonseparate, :nmeta] = M_active_nonseparate\n M_full[separate, -1] = 1\n M_active = M_full[active_set]\n P_hmm = coarse_grain_transition_matrix(P_active, M_active)\n if reversible:\n P_hmm = _tmatrix_disconnected.enforce_reversible_on_closed(P_hmm)\n C_hmm = M_active.T.dot(C_active).dot(M_active)\n pi_hmm = _tmatrix_disconnected.stationary_distribution(P_hmm, C=C_hmm)\n B_hmm = np.zeros((nstates, nfull))\n B_hmm[:nmeta, active_nonseparate] = B_active_nonseparate\n if separate is not None:\n B_hmm[-1, separate] = pi_full[separate]\n pi_hmm, P_hmm = regularize_hidden(pi_hmm, P_hmm, reversible=reversible,\n stationary=stationary, C=C_hmm, eps=eps_A)\n B_hmm = regularize_pobs(B_hmm, nonempty=nonempty, separate=separate,\n eps=eps_B)\n logger().info('Initial model: ')\n logger().info('initial distribution = \\n' + str(pi_hmm))\n logger().info('transition matrix = \\n' + str(P_hmm))\n logger().info('output matrix = \\n' + str(B_hmm.T))\n return pi_hmm, P_hmm, B_hmm\n", "role": "user" }, { "content": "init_discrete_hmm_spectral", "role": "assistant" } ]
def x(C_full, nstates, reversible=True, stationary=True, active_set=None, P =None, eps_A=None, eps_B=None, separate=None): raise NotImplementedError('ML-initialization not yet implemented')
init_discrete_hmm_ml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C_full, nstates, reversible=True, stationary=True, active_set=None, P\n =None, eps_A=None, eps_B=None, separate=None):\n raise NotImplementedError('ML-initialization not yet implemented')\n", "role": "user" }, { "content": "init_discrete_hmm_ml", "role": "assistant" } ]
def x(self, Pi, Tij): from msmtools import analysis as msmana self._Tij = np.array(Tij) assert msmana.is_transition_matrix(self._Tij ), 'Given transition matrix is not a stochastic matrix' assert self._Tij.shape[0 ] == self._nstates, 'Given transition matrix has unexpected number of states ' self._spectral_decomp_available = False assert np.all(Pi >= 0 ), 'Given initial distribution contains negative elements.' assert np.any(Pi > 0), 'Given initial distribution is zero' self._Pi = np.array(Pi) / np.sum(Pi)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Pi, Tij):\n from msmtools import analysis as msmana\n self._Tij = np.array(Tij)\n assert msmana.is_transition_matrix(self._Tij\n ), 'Given transition matrix is not a stochastic matrix'\n assert self._Tij.shape[0\n ] == self._nstates, 'Given transition matrix has unexpected number of states '\n self._spectral_decomp_available = False\n assert np.all(Pi >= 0\n ), 'Given initial distribution contains negative elements.'\n assert np.any(Pi > 0), 'Given initial distribution is zero'\n self._Pi = np.array(Pi) / np.sum(Pi)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): return np.allclose(np.dot(self._Pi, self._Tij), self._Pi)
is_stationary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return np.allclose(np.dot(self._Pi, self._Tij), self._Pi)\n", "role": "user" }, { "content": "is_stationary", "role": "assistant" } ]
def x(self): assert _tmatrix_disconnected.is_connected(self._Tij, strong=False ), 'No unique stationary distribution because transition matrix is not connected' import msmtools.analysis as msmana return msmana.stationary_distribution(self._Tij)
stationary_distribution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n assert _tmatrix_disconnected.is_connected(self._Tij, strong=False\n ), 'No unique stationary distribution because transition matrix is not connected'\n import msmtools.analysis as msmana\n return msmana.stationary_distribution(self._Tij)\n", "role": "user" }, { "content": "stationary_distribution", "role": "assistant" } ]
def x(self): from msmtools.analysis.dense.decomposition import timescales_from_eigenvalues as _timescales self._ensure_spectral_decomposition() ts = _timescales(self._eigenvalues, tau=self._lag) return ts[1:]
timescales
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from msmtools.analysis.dense.decomposition import timescales_from_eigenvalues as _timescales\n self._ensure_spectral_decomposition()\n ts = _timescales(self._eigenvalues, tau=self._lag)\n return ts[1:]\n", "role": "user" }, { "content": "timescales", "role": "assistant" } ]
def x(self): return -self._lag / np.log(np.diag(self.transition_matrix))
lifetimes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return -self._lag / np.log(np.diag(self.transition_matrix))\n", "role": "user" }, { "content": "lifetimes", "role": "assistant" } ]
def x(self, states): pi_sub = self._Pi[states] pi_sub /= pi_sub.sum() P_sub = self._Tij[states, :][:, states] assert np.all(P_sub.sum(axis=1) > 0 ), 'Illegal sub_hmm request: transition matrix cannot be normalized on ' + str( states) P_sub /= P_sub.sum(axis=1)[:, None] out_sub = self.output_model.sub_output_model(states) return HMM(pi_sub, P_sub, out_sub, lag=self.lag)
sub_hmm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, states):\n pi_sub = self._Pi[states]\n pi_sub /= pi_sub.sum()\n P_sub = self._Tij[states, :][:, states]\n assert np.all(P_sub.sum(axis=1) > 0\n ), 'Illegal sub_hmm request: transition matrix cannot be normalized on ' + str(\n states)\n P_sub /= P_sub.sum(axis=1)[:, None]\n out_sub = self.output_model.sub_output_model(states)\n return HMM(pi_sub, P_sub, out_sub, lag=self.lag)\n", "role": "user" }, { "content": "sub_hmm", "role": "assistant" } ]
def x(self): if self.hidden_state_trajectories is None: raise RuntimeError('HMM model does not have a hidden state trajectory.' ) C = msmest.count_matrix(self.hidden_state_trajectories, 1, nstates=self ._nstates) return C.toarray()
count_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.hidden_state_trajectories is None:\n raise RuntimeError('HMM model does not have a hidden state trajectory.'\n )\n C = msmest.count_matrix(self.hidden_state_trajectories, 1, nstates=self\n ._nstates)\n return C.toarray()\n", "role": "user" }, { "content": "count_matrix", "role": "assistant" } ]
def x(self): if self.hidden_state_trajectories is None: raise RuntimeError('HMM model does not have a hidden state trajectory.' ) n = [traj[0] for traj in self.hidden_state_trajectories] return np.bincount(n, minlength=self.nstates)
count_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.hidden_state_trajectories is None:\n raise RuntimeError('HMM model does not have a hidden state trajectory.'\n )\n n = [traj[0] for traj in self.hidden_state_trajectories]\n return np.bincount(n, minlength=self.nstates)\n", "role": "user" }, { "content": "count_init", "role": "assistant" } ]
def x(self, observations, state_index): if not self.hidden_state_trajectories: raise RuntimeError('HMM model does not have a hidden state trajectory.' ) dtype = observations[0].dtype collected_observations = np.array([], dtype=dtype) for s_t, o_t in zip(self.hidden_state_trajectories, observations): indices = np.where(s_t == state_index)[0] collected_observations = np.append(collected_observations, o_t[indices] ) return collected_observations
collect_observations_in_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, observations, state_index):\n if not self.hidden_state_trajectories:\n raise RuntimeError('HMM model does not have a hidden state trajectory.'\n )\n dtype = observations[0].dtype\n collected_observations = np.array([], dtype=dtype)\n for s_t, o_t in zip(self.hidden_state_trajectories, observations):\n indices = np.where(s_t == state_index)[0]\n collected_observations = np.append(collected_observations, o_t[indices]\n )\n return collected_observations\n", "role": "user" }, { "content": "collect_observations_in_state", "role": "assistant" } ]
def x(self, nsteps, initial_Pi=None, start=None, stop=None, dtype=np.int32): if initial_Pi is not None and start is not None: raise ValueError( 'Arguments initial_Pi and start are exclusive. Only set one of them.' ) if start is None: if initial_Pi is not None: start = np.random.choice(range(self._nstates), size=1, p=initial_Pi ) else: start = np.random.choice(range(self._nstates), size=1, p=self._Pi) from msmtools import generation as msmgen traj = msmgen.generate_traj(self.transition_matrix, nsteps, start=start, stop=stop, dt=1) return traj.astype(dtype)
generate_synthetic_state_trajectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nsteps, initial_Pi=None, start=None, stop=None, dtype=np.int32):\n if initial_Pi is not None and start is not None:\n raise ValueError(\n 'Arguments initial_Pi and start are exclusive. Only set one of them.'\n )\n if start is None:\n if initial_Pi is not None:\n start = np.random.choice(range(self._nstates), size=1, p=initial_Pi\n )\n else:\n start = np.random.choice(range(self._nstates), size=1, p=self._Pi)\n from msmtools import generation as msmgen\n traj = msmgen.generate_traj(self.transition_matrix, nsteps, start=start,\n stop=stop, dt=1)\n return traj.astype(dtype)\n", "role": "user" }, { "content": "generate_synthetic_state_trajectory", "role": "assistant" } ]
def x(self, length, initial_Pi=None): s_t = self.generate_synthetic_state_trajectory(length, initial_Pi= initial_Pi) o_t = self.output_model.generate_observation_trajectory(s_t) return [o_t, s_t]
generate_synthetic_observation_trajectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, length, initial_Pi=None):\n s_t = self.generate_synthetic_state_trajectory(length, initial_Pi=\n initial_Pi)\n o_t = self.output_model.generate_observation_trajectory(s_t)\n return [o_t, s_t]\n", "role": "user" }, { "content": "generate_synthetic_observation_trajectory", "role": "assistant" } ]
def x(self, ntrajectories, length, initial_Pi=None): O = list() S = list() for trajectory_index in range(ntrajectories): o_t, s_t = self.generate_synthetic_observation_trajectory(length= length, initial_Pi=initial_Pi) O.append(o_t) S.append(s_t) return O, S
generate_synthetic_observation_trajectories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ntrajectories, length, initial_Pi=None):\n O = list()\n S = list()\n for trajectory_index in range(ntrajectories):\n o_t, s_t = self.generate_synthetic_observation_trajectory(length=\n length, initial_Pi=initial_Pi)\n O.append(o_t)\n S.append(s_t)\n return O, S\n", "role": "user" }, { "content": "generate_synthetic_observation_trajectories", "role": "assistant" } ]
def x(nb_path): exporter = python.PythonExporter() output, resources = exporter.from_filename(nb_path) return output
nb_to_python
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nb_path):\n exporter = python.PythonExporter()\n output, resources = exporter.from_filename(nb_path)\n return output\n", "role": "user" }, { "content": "nb_to_python", "role": "assistant" } ]
def x(nb_path): exporter = html.HTMLExporter(template_file='full') output, resources = exporter.from_filename(nb_path) header = output.split('<head>', 1)[1].split('</head>', 1)[0] body = output.split('<body>', 1)[1].split('</body>', 1)[0] header = header.replace('<style', '<style scoped="scoped"') header = header.replace( 'body {\n overflow: visible;\n padding: 8px;\n}\n', '') filter_strings = ['navbar', 'body{', 'alert{', 'uneditable-input{', 'collapse{'] filter_strings.extend([('h%s{' % (i + 1)) for i in range(6)]) header_lines = filter(lambda x: not any([(s in x) for s in filter_strings]), header.split('\n')) header = '\n'.join(header_lines) lines = ['<div class="ipynotebook">'] lines.append(header) lines.append(body) lines.append('</div>') return '\n'.join(lines)
nb_to_html
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nb_path):\n exporter = html.HTMLExporter(template_file='full')\n output, resources = exporter.from_filename(nb_path)\n header = output.split('<head>', 1)[1].split('</head>', 1)[0]\n body = output.split('<body>', 1)[1].split('</body>', 1)[0]\n header = header.replace('<style', '<style scoped=\"scoped\"')\n header = header.replace(\n 'body {\\n overflow: visible;\\n padding: 8px;\\n}\\n', '')\n filter_strings = ['navbar', 'body{', 'alert{', 'uneditable-input{',\n 'collapse{']\n filter_strings.extend([('h%s{' % (i + 1)) for i in range(6)])\n header_lines = filter(lambda x: not any([(s in x) for s in\n filter_strings]), header.split('\\n'))\n header = '\\n'.join(header_lines)\n lines = ['<div class=\"ipynotebook\">']\n lines.append(header)\n lines.append(body)\n lines.append('</div>')\n return '\\n'.join(lines)\n", "role": "user" }, { "content": "nb_to_html", "role": "assistant" } ]
def x(self, obs, out=None): if out is None: out = self._output_probabilities[:, obs].T return self._handle_outliers(out) else: if obs.shape[0] == out.shape[0]: np.copyto(out, self._output_probabilities[:, obs].T) elif obs.shape[0] < out.shape[0]: out[:obs.shape[0], :] = self._output_probabilities[:, obs].T else: raise ValueError('output array out is too small: ' + str(out. shape[0]) + ' < ' + str(obs.shape[0])) return self._handle_outliers(out)
p_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obs, out=None):\n if out is None:\n out = self._output_probabilities[:, obs].T\n return self._handle_outliers(out)\n else:\n if obs.shape[0] == out.shape[0]:\n np.copyto(out, self._output_probabilities[:, obs].T)\n elif obs.shape[0] < out.shape[0]:\n out[:obs.shape[0], :] = self._output_probabilities[:, obs].T\n else:\n raise ValueError('output array out is too small: ' + str(out.\n shape[0]) + ' < ' + str(obs.shape[0]))\n return self._handle_outliers(out)\n", "role": "user" }, { "content": "p_obs", "role": "assistant" } ]
def x(self, observations, weights): N, M = self._output_probabilities.shape K = len(observations) self._output_probabilities = np.zeros((N, M)) if self.__impl__ == self.__IMPL_C__: for k in range(K): dc.update_pout(observations[k], weights[k], self. _output_probabilities, dtype=config.dtype) elif self.__impl__ == self.__IMPL_PYTHON__: for k in range(K): for o in range(M): times = np.where(observations[k] == o)[0] self._output_probabilities[:, o] += np.sum(weights[k][times, :], axis=0) else: raise RuntimeError('Implementation ' + str(self.__impl__) + ' not available') self._output_probabilities /= np.sum(self._output_probabilities, axis=1)[ :, None]
estimate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, observations, weights):\n N, M = self._output_probabilities.shape\n K = len(observations)\n self._output_probabilities = np.zeros((N, M))\n if self.__impl__ == self.__IMPL_C__:\n for k in range(K):\n dc.update_pout(observations[k], weights[k], self.\n _output_probabilities, dtype=config.dtype)\n elif self.__impl__ == self.__IMPL_PYTHON__:\n for k in range(K):\n for o in range(M):\n times = np.where(observations[k] == o)[0]\n self._output_probabilities[:, o] += np.sum(weights[k][times,\n :], axis=0)\n else:\n raise RuntimeError('Implementation ' + str(self.__impl__) +\n ' not available')\n self._output_probabilities /= np.sum(self._output_probabilities, axis=1)[\n :, None]\n", "role": "user" }, { "content": "estimate", "role": "assistant" } ]
def x(self, observations_by_state): from numpy.random import dirichlet N, M = self._output_probabilities.shape for i, obs_by_state in enumerate(observations_by_state): count = np.bincount(obs_by_state, minlength=M).astype(float) count += self.prior[i] positive = count > 0 self._output_probabilities[i, positive] = dirichlet(count[positive])
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, observations_by_state):\n from numpy.random import dirichlet\n N, M = self._output_probabilities.shape\n for i, obs_by_state in enumerate(observations_by_state):\n count = np.bincount(obs_by_state, minlength=M).astype(float)\n count += self.prior[i]\n positive = count > 0\n self._output_probabilities[i, positive] = dirichlet(count[positive])\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, state_index): import scipy.stats gen = scipy.stats.rv_discrete(values=(range(len(self. _output_probabilities[state_index])), self._output_probabilities[ state_index])) gen.rvs(size=1)
generate_observation_from_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, state_index):\n import scipy.stats\n gen = scipy.stats.rv_discrete(values=(range(len(self.\n _output_probabilities[state_index])), self._output_probabilities[\n state_index]))\n gen.rvs(size=1)\n", "role": "user" }, { "content": "generate_observation_from_state", "role": "assistant" } ]
def x(self, state_index, nobs): import scipy.stats gen = scipy.stats.rv_discrete(values=(range(self._nsymbols), self. _output_probabilities[state_index])) gen.rvs(size=nobs)
generate_observations_from_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, state_index, nobs):\n import scipy.stats\n gen = scipy.stats.rv_discrete(values=(range(self._nsymbols), self.\n _output_probabilities[state_index]))\n gen.rvs(size=nobs)\n", "role": "user" }, { "content": "generate_observations_from_state", "role": "assistant" } ]
def x(self, s_t, dtype=None): if dtype is None: dtype = np.int32 T = s_t.shape[0] nsymbols = self._output_probabilities.shape[1] if s_t.max() >= self.nstates or s_t.min() < 0: msg = '' msg += 's_t = %s\n' % s_t msg += 's_t.min() = %d, s_t.max() = %d\n' % (s_t.min(), s_t.max()) msg += 's_t.argmax = %d\n' % s_t.argmax() msg += 'self.nstates = %d\n' % self.nstates msg += 's_t is out of bounds.\n' raise Exception(msg) o_t = np.zeros([T], dtype=dtype) for t in range(T): s = s_t[t] o_t[t] = np.random.choice(nsymbols, p=self._output_probabilities[s, :]) return o_t
generate_observation_trajectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s_t, dtype=None):\n if dtype is None:\n dtype = np.int32\n T = s_t.shape[0]\n nsymbols = self._output_probabilities.shape[1]\n if s_t.max() >= self.nstates or s_t.min() < 0:\n msg = ''\n msg += 's_t = %s\\n' % s_t\n msg += 's_t.min() = %d, s_t.max() = %d\\n' % (s_t.min(), s_t.max())\n msg += 's_t.argmax = %d\\n' % s_t.argmax()\n msg += 'self.nstates = %d\\n' % self.nstates\n msg += 's_t is out of bounds.\\n'\n raise Exception(msg)\n o_t = np.zeros([T], dtype=dtype)\n for t in range(T):\n s = s_t[t]\n o_t[t] = np.random.choice(nsymbols, p=self._output_probabilities[s, :])\n return o_t\n", "role": "user" }, { "content": "generate_observation_trajectory", "role": "assistant" } ]
def x(impl): global __impl__ if impl.lower() == 'python': __impl__ = __IMPL_PYTHON__ elif impl.lower() == 'c': __impl__ = __IMPL_C__ else: import warnings warnings.warn('Implementation ' + impl + ' is not known. Using the fallback python implementation.') __impl__ = __IMPL_PYTHON__
set_implementation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(impl):\n global __impl__\n if impl.lower() == 'python':\n __impl__ = __IMPL_PYTHON__\n elif impl.lower() == 'c':\n __impl__ = __IMPL_C__\n else:\n import warnings\n warnings.warn('Implementation ' + impl +\n ' is not known. Using the fallback python implementation.')\n __impl__ = __IMPL_PYTHON__\n", "role": "user" }, { "content": "set_implementation", "role": "assistant" } ]
def x(A, pobs, pi, T=None, alpha_out=None): if __impl__ == __IMPL_PYTHON__: return ip.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype= config.dtype) elif __impl__ == __IMPL_C__: return ic.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype= config.dtype) else: raise RuntimeError('Nonexisting implementation selected: ' + str( __impl__))
forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, pi, T=None, alpha_out=None):\n if __impl__ == __IMPL_PYTHON__:\n return ip.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype=\n config.dtype)\n elif __impl__ == __IMPL_C__:\n return ic.forward(A, pobs, pi, T=T, alpha_out=alpha_out, dtype=\n config.dtype)\n else:\n raise RuntimeError('Nonexisting implementation selected: ' + str(\n __impl__))\n", "role": "user" }, { "content": "forward", "role": "assistant" } ]
def x(A, pobs, T=None, beta_out=None): if __impl__ == __IMPL_PYTHON__: return ip.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype) elif __impl__ == __IMPL_C__: return ic.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype) else: raise RuntimeError('Nonexisting implementation selected: ' + str( __impl__))
backward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, T=None, beta_out=None):\n if __impl__ == __IMPL_PYTHON__:\n return ip.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype)\n elif __impl__ == __IMPL_C__:\n return ic.backward(A, pobs, T=T, beta_out=beta_out, dtype=config.dtype)\n else:\n raise RuntimeError('Nonexisting implementation selected: ' + str(\n __impl__))\n", "role": "user" }, { "content": "backward", "role": "assistant" } ]
def x(alpha, beta, T=None, gamma_out=None): global ones_size if ones_size != alpha.shape[1]: global ones ones = np.ones(alpha.shape[1])[:, None] ones_size = alpha.shape[1] if alpha.shape[0] != beta.shape[0]: raise ValueError('Inconsistent sizes of alpha and beta.') if T is None: if gamma_out is None: T = alpha.shape[0] else: T = gamma_out.shape[0] if gamma_out is None: gamma_out = alpha * beta if T < gamma_out.shape[0]: gamma_out = gamma_out[:T] elif gamma_out.shape[0] < alpha.shape[0]: np.multiply(alpha[:T], beta[:T], gamma_out) else: np.multiply(alpha, beta, gamma_out) np.divide(gamma_out, np.dot(gamma_out, ones), out=gamma_out) return gamma_out
state_probabilities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, beta, T=None, gamma_out=None):\n global ones_size\n if ones_size != alpha.shape[1]:\n global ones\n ones = np.ones(alpha.shape[1])[:, None]\n ones_size = alpha.shape[1]\n if alpha.shape[0] != beta.shape[0]:\n raise ValueError('Inconsistent sizes of alpha and beta.')\n if T is None:\n if gamma_out is None:\n T = alpha.shape[0]\n else:\n T = gamma_out.shape[0]\n if gamma_out is None:\n gamma_out = alpha * beta\n if T < gamma_out.shape[0]:\n gamma_out = gamma_out[:T]\n elif gamma_out.shape[0] < alpha.shape[0]:\n np.multiply(alpha[:T], beta[:T], gamma_out)\n else:\n np.multiply(alpha, beta, gamma_out)\n np.divide(gamma_out, np.dot(gamma_out, ones), out=gamma_out)\n return gamma_out\n", "role": "user" }, { "content": "state_probabilities", "role": "assistant" } ]
def x(gamma, T, out=None): return np.sum(gamma[0:T], axis=0, out=out)
state_counts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gamma, T, out=None):\n return np.sum(gamma[0:T], axis=0, out=out)\n", "role": "user" }, { "content": "state_counts", "role": "assistant" } ]
def x(alpha, beta, A, pobs, T=None, out=None): if __impl__ == __IMPL_PYTHON__: return ip.transition_counts(alpha, beta, A, pobs, T=T, out=out, dtype=config.dtype) elif __impl__ == __IMPL_C__: return ic.transition_counts(alpha, beta, A, pobs, T=T, out=out, dtype=config.dtype) else: raise RuntimeError('Nonexisting implementation selected: ' + str( __impl__))
transition_counts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, beta, A, pobs, T=None, out=None):\n if __impl__ == __IMPL_PYTHON__:\n return ip.transition_counts(alpha, beta, A, pobs, T=T, out=out,\n dtype=config.dtype)\n elif __impl__ == __IMPL_C__:\n return ic.transition_counts(alpha, beta, A, pobs, T=T, out=out,\n dtype=config.dtype)\n else:\n raise RuntimeError('Nonexisting implementation selected: ' + str(\n __impl__))\n", "role": "user" }, { "content": "transition_counts", "role": "assistant" } ]
def x(A, pobs, pi): if __impl__ == __IMPL_PYTHON__: return ip.viterbi(A, pobs, pi, dtype=config.dtype) elif __impl__ == __IMPL_C__: return ic.viterbi(A, pobs, pi, dtype=config.dtype) else: raise RuntimeError('Nonexisting implementation selected: ' + str( __impl__))
viterbi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, pobs, pi):\n if __impl__ == __IMPL_PYTHON__:\n return ip.viterbi(A, pobs, pi, dtype=config.dtype)\n elif __impl__ == __IMPL_C__:\n return ic.viterbi(A, pobs, pi, dtype=config.dtype)\n else:\n raise RuntimeError('Nonexisting implementation selected: ' + str(\n __impl__))\n", "role": "user" }, { "content": "viterbi", "role": "assistant" } ]
def x(alpha, A, pobs, T=None): if __impl__ == __IMPL_PYTHON__: return ip.sample_path(alpha, A, pobs, T=T, dtype=config.dtype) elif __impl__ == __IMPL_C__: return ic.sample_path(alpha, A, pobs, T=T, dtype=config.dtype) else: raise RuntimeError('Nonexisting implementation selected: ' + str( __impl__))
sample_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, A, pobs, T=None):\n if __impl__ == __IMPL_PYTHON__:\n return ip.sample_path(alpha, A, pobs, T=T, dtype=config.dtype)\n elif __impl__ == __IMPL_C__:\n return ic.sample_path(alpha, A, pobs, T=T, dtype=config.dtype)\n else:\n raise RuntimeError('Nonexisting implementation selected: ' + str(\n __impl__))\n", "role": "user" }, { "content": "sample_path", "role": "assistant" } ]
def x(name='BHMM', pattern= '%(asctime)s %(levelname)s %(name)s: %(message)s', date_format= '%H:%M:%S', handler=logging.StreamHandler(sys.stdout)): _logger = logging.getLogger(name) _logger.setLevel(config.log_level()) if not _logger.handlers: formatter = logging.Formatter(pattern, date_format) handler.setFormatter(formatter) handler.setLevel(config.log_level()) _logger.addHandler(handler) _logger.propagate = False return _logger
logger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name='BHMM', pattern=\n '%(asctime)s %(levelname)s %(name)s: %(message)s', date_format=\n '%H:%M:%S', handler=logging.StreamHandler(sys.stdout)):\n _logger = logging.getLogger(name)\n _logger.setLevel(config.log_level())\n if not _logger.handlers:\n formatter = logging.Formatter(pattern, date_format)\n handler.setFormatter(formatter)\n handler.setLevel(config.log_level())\n _logger.addHandler(handler)\n _logger.propagate = False\n return _logger\n", "role": "user" }, { "content": "logger", "role": "assistant" } ]
def x(self, nsamples, nburn=0, nthin=1, save_hidden_state_trajectory=False, call_back=None): for iteration in range(nburn): logger().info('Burn-in %8d / %8d' % (iteration, nburn)) self._update() models = list() for iteration in range(nsamples): logger().info('Iteration %8d / %8d' % (iteration, nsamples)) for thin in range(nthin): self._update() model_copy = copy.deepcopy(self.model) if not save_hidden_state_trajectory: model_copy.hidden_state_trajectory = None models.append(model_copy) if call_back is not None: call_back() return models
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nsamples, nburn=0, nthin=1, save_hidden_state_trajectory=False,\n call_back=None):\n for iteration in range(nburn):\n logger().info('Burn-in %8d / %8d' % (iteration, nburn))\n self._update()\n models = list()\n for iteration in range(nsamples):\n logger().info('Iteration %8d / %8d' % (iteration, nsamples))\n for thin in range(nthin):\n self._update()\n model_copy = copy.deepcopy(self.model)\n if not save_hidden_state_trajectory:\n model_copy.hidden_state_trajectory = None\n models.append(model_copy)\n if call_back is not None:\n call_back()\n return models\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self): initial_time = time.time() self._updateHiddenStateTrajectories() self._updateEmissionProbabilities() self._updateTransitionMatrix() final_time = time.time() elapsed_time = final_time - initial_time logger().info('BHMM update iteration took %.3f s' % elapsed_time)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n initial_time = time.time()\n self._updateHiddenStateTrajectories()\n self._updateEmissionProbabilities()\n self._updateTransitionMatrix()\n final_time = time.time()\n elapsed_time = final_time - initial_time\n logger().info('BHMM update iteration took %.3f s' % elapsed_time)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): self.model.hidden_state_trajectories = list() for trajectory_index in range(self.nobs): hidden_state_trajectory = self._sampleHiddenStateTrajectory(self. observations[trajectory_index]) self.model.hidden_state_trajectories.append(hidden_state_trajectory) return
updateHiddenStateTrajectories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.model.hidden_state_trajectories = list()\n for trajectory_index in range(self.nobs):\n hidden_state_trajectory = self._sampleHiddenStateTrajectory(self.\n observations[trajectory_index])\n self.model.hidden_state_trajectories.append(hidden_state_trajectory)\n return\n", "role": "user" }, { "content": "updateHiddenStateTrajectories", "role": "assistant" } ]
def x(self, obs, dtype=np.int32): T = obs.shape[0] A = self.model.transition_matrix pi = self.model.initial_distribution self.model.output_model.p_obs(obs, out=self.pobs) logprob = hidden.forward(A, self.pobs, pi, T=T, alpha_out=self.alpha)[0] S = hidden.sample_path(self.alpha, A, self.pobs, T=T) return S
sampleHiddenStateTrajectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obs, dtype=np.int32):\n T = obs.shape[0]\n A = self.model.transition_matrix\n pi = self.model.initial_distribution\n self.model.output_model.p_obs(obs, out=self.pobs)\n logprob = hidden.forward(A, self.pobs, pi, T=T, alpha_out=self.alpha)[0]\n S = hidden.sample_path(self.alpha, A, self.pobs, T=T)\n return S\n", "role": "user" }, { "content": "sampleHiddenStateTrajectory", "role": "assistant" } ]
def x(self): observations_by_state = [self.model.collect_observations_in_state(self. observations, state) for state in range(self.model.nstates)] self.model.output_model.sample(observations_by_state)
updateEmissionProbabilities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n observations_by_state = [self.model.collect_observations_in_state(self.\n observations, state) for state in range(self.model.nstates)]\n self.model.output_model.sample(observations_by_state)\n", "role": "user" }, { "content": "updateEmissionProbabilities", "role": "assistant" } ]
def x(self): C = self.model.count_matrix() + self.prior_C if self.reversible and not _tmatrix_disconnected.is_connected(C, strong =True): raise NotImplementedError( """Encountered disconnected count matrix with sampling option reversible: """ + str(C) + '\nUse prior to ensure connectivity or use reversible=False.') P0 = msmest.transition_matrix(C, reversible=self.reversible, maxiter= 10000, warn_not_converged=False) zeros = np.where(P0 + P0.T == 0) C[zeros] = 0 Tij = msmest.sample_tmatrix(C, nsample=1, nsteps=self. transition_matrix_sampling_steps, reversible=self.reversible) if self.stationary: p0 = _tmatrix_disconnected.stationary_distribution(Tij, C=C) else: n0 = self.model.count_init().astype(float) first_timestep_counts_with_prior = n0 + self.prior_n0 positive = first_timestep_counts_with_prior > 0 p0 = np.zeros_like(n0) p0[positive] = np.random.dirichlet(first_timestep_counts_with_prior [positive]) self.model.update(p0, Tij)
updateTransitionMatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n C = self.model.count_matrix() + self.prior_C\n if self.reversible and not _tmatrix_disconnected.is_connected(C, strong\n =True):\n raise NotImplementedError(\n \"\"\"Encountered disconnected count matrix with sampling option reversible:\n \"\"\"\n + str(C) +\n '\\nUse prior to ensure connectivity or use reversible=False.')\n P0 = msmest.transition_matrix(C, reversible=self.reversible, maxiter=\n 10000, warn_not_converged=False)\n zeros = np.where(P0 + P0.T == 0)\n C[zeros] = 0\n Tij = msmest.sample_tmatrix(C, nsample=1, nsteps=self.\n transition_matrix_sampling_steps, reversible=self.reversible)\n if self.stationary:\n p0 = _tmatrix_disconnected.stationary_distribution(Tij, C=C)\n else:\n n0 = self.model.count_init().astype(float)\n first_timestep_counts_with_prior = n0 + self.prior_n0\n positive = first_timestep_counts_with_prior > 0\n p0 = np.zeros_like(n0)\n p0[positive] = np.random.dirichlet(first_timestep_counts_with_prior\n [positive])\n self.model.update(p0, Tij)\n", "role": "user" }, { "content": "updateTransitionMatrix", "role": "assistant" } ]