source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): mov = self.active.movement if self.orb < 1 and mov == const.SEPARATIVE: mov = const.EXACT return mov
movement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mov = self.active.movement\n if self.orb < 1 and mov == const.SEPARATIVE:\n mov = const.EXACT\n return mov\n", "role": "user" }, { "content": "movement", "role": "assistant" } ]
def x(self, ID): if self.active.id == ID: return {'role': 'active', 'inOrb': self.active.inOrb, 'movement': self.active.movement} elif self.passive.id == ID: return {'role': 'passive', 'inOrb': self.passive.inOrb, 'movement': self.passive.movement} return None
getRole
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ID):\n if self.active.id == ID:\n return {'role': 'active', 'inOrb': self.active.inOrb, 'movement':\n self.active.movement}\n elif self.passive.id == ID:\n return {'role': 'passive', 'inOrb': self.passive.inOrb, 'movement':\n self.passive.movement}\n return None\n", "role": "user" }, { "content": "getRole", "role": "assistant" } ]
def x(variant): global FACES if variant == CHALDEAN_FACES: FACES = tables.CHALDEAN_FACES else: FACES = tables.TRIPLICITY_FACES
setFaces
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant):\n global FACES\n if variant == CHALDEAN_FACES:\n FACES = tables.CHALDEAN_FACES\n else:\n FACES = tables.TRIPLICITY_FACES\n", "role": "user" }, { "content": "setFaces", "role": "assistant" } ]
def x(variant): global TERMS if variant == EGYPTIAN_TERMS: TERMS = tables.EGYPTIAN_TERMS elif variant == TETRABIBLOS_TERMS: TERMS = tables.TETRABIBLOS_TERMS elif variant == LILLY_TERMS: TERMS = tables.LILLY_TERMS
setTerms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant):\n global TERMS\n if variant == EGYPTIAN_TERMS:\n TERMS = tables.EGYPTIAN_TERMS\n elif variant == TETRABIBLOS_TERMS:\n TERMS = tables.TETRABIBLOS_TERMS\n elif variant == LILLY_TERMS:\n TERMS = tables.LILLY_TERMS\n", "role": "user" }, { "content": "setTerms", "role": "assistant" } ]
def x(sign, lon): terms = TERMS[sign] for ID, a, b in terms: if a <= lon < b: return ID return None
term
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sign, lon):\n terms = TERMS[sign]\n for ID, a, b in terms:\n if a <= lon < b:\n return ID\n return None\n", "role": "user" }, { "content": "term", "role": "assistant" } ]
def x(sign, lon): faces = FACES[sign] if lon < 10: return faces[0] elif lon < 20: return faces[1] else: return faces[2]
face
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sign, lon):\n faces = FACES[sign]\n if lon < 10:\n return faces[0]\n elif lon < 20:\n return faces[1]\n else:\n return faces[2]\n", "role": "user" }, { "content": "face", "role": "assistant" } ]
def x(sign, lon): return {'ruler': ruler(sign), 'exalt': exalt(sign), 'dayTrip': dayTrip( sign), 'nightTrip': nightTrip(sign), 'partTrip': partTrip(sign), 'term': term(sign, lon), 'face': face(sign, lon), 'exile': exile( sign), 'fall': fall(sign)}
getInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sign, lon):\n return {'ruler': ruler(sign), 'exalt': exalt(sign), 'dayTrip': dayTrip(\n sign), 'nightTrip': nightTrip(sign), 'partTrip': partTrip(sign),\n 'term': term(sign, lon), 'face': face(sign, lon), 'exile': exile(\n sign), 'fall': fall(sign)}\n", "role": "user" }, { "content": "getInfo", "role": "assistant" } ]
def x(ID, sign, lon): info = getInfo(sign, lon) for dign, objID in info.items(): if dign not in ['exile', 'fall'] and ID == objID: return False return True
isPeregrine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, sign, lon):\n info = getInfo(sign, lon)\n for dign, objID in info.items():\n if dign not in ['exile', 'fall'] and ID == objID:\n return False\n return True\n", "role": "user" }, { "content": "isPeregrine", "role": "assistant" } ]
def x(ID, sign, lon): info = getInfo(sign, lon) dignities = [dign for dign, objID in info.items() if objID == ID] return sum([SCORES[dign] for dign in dignities])
score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, sign, lon):\n info = getInfo(sign, lon)\n dignities = [dign for dign, objID in info.items() if objID == ID]\n return sum([SCORES[dign] for dign in dignities])\n", "role": "user" }, { "content": "score", "role": "assistant" } ]
def x(sign, lon): planets = const.LIST_SEVEN_PLANETS res = [None, 0] for ID in planets: sc = score(ID, sign, lon) if sc > res[1]: res = [ID, sc] return res[0]
almutem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sign, lon):\n planets = const.LIST_SEVEN_PLANETS\n res = [None, 0]\n for ID in planets:\n sc = score(ID, sign, lon)\n if sc > res[1]:\n res = [ID, sc]\n return res[0]\n", "role": "user" }, { "content": "almutem", "role": "assistant" } ]
def x(self): info = self.getInfo() dignities = [dign for dign, objID in info.items() if objID == self.obj.id] return dignities
getDignities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n info = self.getInfo()\n dignities = [dign for dign, objID in info.items() if objID == self.obj.id]\n return dignities\n", "role": "user" }, { "content": "getDignities", "role": "assistant" } ]
def x(self): return isPeregrine(self.obj.id, self.obj.sign, self.obj.signlon)
isPeregrine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return isPeregrine(self.obj.id, self.obj.sign, self.obj.signlon)\n", "role": "user" }, { "content": "isPeregrine", "role": "assistant" } ]
def x(chart, date): pos = chart.pos hsys = chart.hsys IDs = [obj.id for obj in chart.objects] return Chart(date, pos, IDs=IDs, hsys=hsys)
computeChart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chart, date):\n pos = chart.pos\n hsys = chart.hsys\n IDs = [obj.id for obj in chart.objects]\n return Chart(date, pos, IDs=IDs, hsys=hsys)\n", "role": "user" }, { "content": "computeChart", "role": "assistant" } ]
def x(chart, date): sun = chart.getObject(const.SUN) srDate = ephem.nextSolarReturn(date, sun.lon) return _computeChart(chart, srDate)
nextSolarReturn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chart, date):\n sun = chart.getObject(const.SUN)\n srDate = ephem.nextSolarReturn(date, sun.lon)\n return _computeChart(chart, srDate)\n", "role": "user" }, { "content": "nextSolarReturn", "role": "assistant" } ]
def x(date, pos): lastSunrise = ephem.lastSunrise(date, pos) middleSunset = ephem.nextSunset(lastSunrise, pos) nextSunrise = ephem.nextSunrise(date, pos) table = [] length = (middleSunset.jd - lastSunrise.jd) / 12.0 for i in range(12): start = lastSunrise.jd + i * length end = start + length ruler = nthRuler(i, lastSunrise.date.dayofweek()) table.append([start, end, ruler]) length = (nextSunrise.jd - middleSunset.jd) / 12.0 for i in range(12): start = middleSunset.jd + i * length end = start + length ruler = nthRuler(i + 12, lastSunrise.date.dayofweek()) table.append([start, end, ruler]) return table
hourTable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date, pos):\n lastSunrise = ephem.lastSunrise(date, pos)\n middleSunset = ephem.nextSunset(lastSunrise, pos)\n nextSunrise = ephem.nextSunrise(date, pos)\n table = []\n length = (middleSunset.jd - lastSunrise.jd) / 12.0\n for i in range(12):\n start = lastSunrise.jd + i * length\n end = start + length\n ruler = nthRuler(i, lastSunrise.date.dayofweek())\n table.append([start, end, ruler])\n length = (nextSunrise.jd - middleSunset.jd) / 12.0\n for i in range(12):\n start = middleSunset.jd + i * length\n end = start + length\n ruler = nthRuler(i + 12, lastSunrise.date.dayofweek())\n table.append([start, end, ruler])\n return table\n", "role": "user" }, { "content": "hourTable", "role": "assistant" } ]
def x(date, pos): table = hourTable(date, pos) return HourTable(table, date)
getHourTable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date, pos):\n table = hourTable(date, pos)\n return HourTable(table, date)\n", "role": "user" }, { "content": "getHourTable", "role": "assistant" } ]
def x(self, date): for i, (start, end, ruler) in enumerate(self.table): if start <= date.jd <= end: return i return None
index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, date):\n for i, (start, end, ruler) in enumerate(self.table):\n if start <= date.jd <= end:\n return i\n return None\n", "role": "user" }, { "content": "index", "role": "assistant" } ]
def x(self, index): entry = self.table[index] info = {'mode': 'Day', 'ruler': self.dayRuler(), 'dayRuler': self. dayRuler(), 'nightRuler': self.nightRuler(), 'hourRuler': entry[2], 'hourNumber': index + 1, 'tableIndex': index, 'start': Datetime. fromJD(entry[0], self.date.utcoffset), 'end': Datetime.fromJD(entry [1], self.date.utcoffset)} if index >= 12: info.update({'mode': 'Night', 'ruler': info['nightRuler'], 'hourNumber': index + 1 - 12}) return info
indexInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n entry = self.table[index]\n info = {'mode': 'Day', 'ruler': self.dayRuler(), 'dayRuler': self.\n dayRuler(), 'nightRuler': self.nightRuler(), 'hourRuler': entry[2],\n 'hourNumber': index + 1, 'tableIndex': index, 'start': Datetime.\n fromJD(entry[0], self.date.utcoffset), 'end': Datetime.fromJD(entry\n [1], self.date.utcoffset)}\n if index >= 12:\n info.update({'mode': 'Night', 'ruler': info['nightRuler'],\n 'hourNumber': index + 1 - 12})\n return info\n", "role": "user" }, { "content": "indexInfo", "role": "assistant" } ]
def x(chart, date, fixedObjects=False): sun = chart.getObject(const.SUN) prevSr = ephem.prevSolarReturn(date, sun.lon) nextSr = ephem.nextSolarReturn(date, sun.lon) rotation = 30 * (date.jd - prevSr.jd) / (nextSr.jd - prevSr.jd) age = math.floor((date.jd - chart.date.jd) / 365.25) rotation = 30 * age + rotation pChart = chart.copy() for obj in pChart.objects: if not fixedObjects: obj.relocate(obj.lon + rotation) for house in pChart.houses: house.relocate(house.lon + rotation) for angle in pChart.angles: angle.relocate(angle.lon + rotation) return pChart
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chart, date, fixedObjects=False):\n sun = chart.getObject(const.SUN)\n prevSr = ephem.prevSolarReturn(date, sun.lon)\n nextSr = ephem.nextSolarReturn(date, sun.lon)\n rotation = 30 * (date.jd - prevSr.jd) / (nextSr.jd - prevSr.jd)\n age = math.floor((date.jd - chart.date.jd) / 365.25)\n rotation = 30 * age + rotation\n pChart = chart.copy()\n for obj in pChart.objects:\n if not fixedObjects:\n obj.relocate(obj.lon + rotation)\n for house in pChart.houses:\n house.relocate(house.lon + rotation)\n for angle in pChart.angles:\n angle.relocate(angle.lon + rotation)\n return pChart\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(listA, listB): listA = [x.id for x in listA] listB = [x.id for x in listB] listA.extend(listB) set_ = set(listA) return list(set_)
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(listA, listB):\n listA = [x.id for x in listA]\n listB = [x.id for x in listB]\n listA.extend(listB)\n set_ = set(listA)\n return list(set_)\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(chart): factors = [] house1 = chart.getHouse(const.HOUSE1) planetsHouse1 = chart.objects.getObjectsInHouse(house1) asc = chart.getAngle(const.ASC) planetsConjAsc = chart.objects.getObjectsAspecting(asc, [0]) _set = _merge(planetsHouse1, planetsConjAsc) factors.append(['Planets in House1 or Conj Asc', _set]) moon = chart.get(const.MOON) mercury = chart.get(const.MERCURY) planetsConjMoon = chart.objects.getObjectsAspecting(moon, [0]) planetsConjMercury = chart.objects.getObjectsAspecting(mercury, [0]) _set = _merge(planetsConjMoon, planetsConjMercury) factors.append(['Planets Conj Moon or Mercury', _set]) ascRulerID = essential.ruler(asc.sign) ascRuler = chart.getObject(ascRulerID) disposerID = essential.ruler(ascRuler.sign) disposer = chart.getObject(disposerID) _set = [] if aspects.isAspecting(disposer, ascRuler, const.MAJOR_ASPECTS): _set = [ascRuler.id] factors.append(['Asc Ruler if aspected by its disposer', _set]) aspMoon = chart.objects.getObjectsAspecting(moon, [60, 90, 120, 180]) aspMercury = chart.objects.getObjectsAspecting(mercury, [60, 90, 120, 180]) _set = _merge(aspMoon, aspMercury) factors.append(['Planets Asp Moon or Mercury', _set]) return factors
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chart):\n factors = []\n house1 = chart.getHouse(const.HOUSE1)\n planetsHouse1 = chart.objects.getObjectsInHouse(house1)\n asc = chart.getAngle(const.ASC)\n planetsConjAsc = chart.objects.getObjectsAspecting(asc, [0])\n _set = _merge(planetsHouse1, planetsConjAsc)\n factors.append(['Planets in House1 or Conj Asc', _set])\n moon = chart.get(const.MOON)\n mercury = chart.get(const.MERCURY)\n planetsConjMoon = chart.objects.getObjectsAspecting(moon, [0])\n planetsConjMercury = chart.objects.getObjectsAspecting(mercury, [0])\n _set = _merge(planetsConjMoon, planetsConjMercury)\n factors.append(['Planets Conj Moon or Mercury', _set])\n ascRulerID = essential.ruler(asc.sign)\n ascRuler = chart.getObject(ascRulerID)\n disposerID = essential.ruler(ascRuler.sign)\n disposer = chart.getObject(disposerID)\n _set = []\n if aspects.isAspecting(disposer, ascRuler, const.MAJOR_ASPECTS):\n _set = [ascRuler.id]\n factors.append(['Asc Ruler if aspected by its disposer', _set])\n aspMoon = chart.objects.getObjectsAspecting(moon, [60, 90, 120, 180])\n aspMercury = chart.objects.getObjectsAspecting(mercury, [60, 90, 120, 180])\n _set = _merge(aspMoon, aspMercury)\n factors.append(['Planets Asp Moon or Mercury', _set])\n return factors\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(TERMS): res = [] for i, sign in enumerate(SIGN_LIST): termList = TERMS[sign] res.extend([ID, sign, start + 30 * i] for ID, start, end in termList) return res
termLons
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(TERMS):\n res = []\n for i, sign in enumerate(SIGN_LIST):\n termList = TERMS[sign]\n res.extend([ID, sign, start + 30 * i] for ID, start, end in termList)\n return res\n", "role": "user" }, { "content": "termLons", "role": "assistant" } ]
def x(chart): almutems = {} hylegic = [chart.getObject(const.SUN), chart.getObject(const.MOON), chart.getAngle(const.ASC), chart.getObject(const.PARS_FORTUNA), chart.getObject(const.SYZYGY)] for hyleg in hylegic: row = newRow() digInfo = essential.getInfo(hyleg.sign, hyleg.signlon) for dignity in DIGNITY_LIST: objID = digInfo[dignity] if objID: score = essential.SCORES[dignity] row[objID]['string'] += '+%s' % score row[objID]['score'] += score almutems[hyleg.id] = row row = newRow() for objID in OBJECT_LIST: obj = chart.getObject(objID) house = chart.houses.getObjectHouse(obj) score = HOUSE_SCORES[house.id] row[objID]['string'] = '+%s' % score row[objID]['score'] = score almutems['Houses'] = row row = newRow() table = planetarytime.getHourTable(chart.date, chart.pos) ruler = table.currRuler() hourRuler = table.hourRuler() row[ruler] = {'string': '+7', 'score': 7} row[hourRuler] = {'string': '+6', 'score': 6} almutems['Rulers'] = row scores = newRow() for _property, _list in almutems.items(): for objID, values in _list.items(): scores[objID]['string'] += values['string'] scores[objID]['score'] += values['score'] almutems['Score'] = scores return almutems
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chart):\n almutems = {}\n hylegic = [chart.getObject(const.SUN), chart.getObject(const.MOON),\n chart.getAngle(const.ASC), chart.getObject(const.PARS_FORTUNA),\n chart.getObject(const.SYZYGY)]\n for hyleg in hylegic:\n row = newRow()\n digInfo = essential.getInfo(hyleg.sign, hyleg.signlon)\n for dignity in DIGNITY_LIST:\n objID = digInfo[dignity]\n if objID:\n score = essential.SCORES[dignity]\n row[objID]['string'] += '+%s' % score\n row[objID]['score'] += score\n almutems[hyleg.id] = row\n row = newRow()\n for objID in OBJECT_LIST:\n obj = chart.getObject(objID)\n house = chart.houses.getObjectHouse(obj)\n score = HOUSE_SCORES[house.id]\n row[objID]['string'] = '+%s' % score\n row[objID]['score'] = score\n almutems['Houses'] = row\n row = newRow()\n table = planetarytime.getHourTable(chart.date, chart.pos)\n ruler = table.currRuler()\n hourRuler = table.hourRuler()\n row[ruler] = {'string': '+7', 'score': 7}\n row[hourRuler] = {'string': '+6', 'score': 6}\n almutems['Rulers'] = row\n scores = newRow()\n for _property, _list in almutems.items():\n for objID, values in _list.items():\n scores[objID]['string'] += values['string']\n scores[objID]['score'] += values['score']\n almutems['Score'] = scores\n return almutems\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(self, resource_id=None, resource_action=None, resource_cls=None, single_resource=False): endpoint = self.endpoint if not resource_cls: resource_cls = self._cls if resource_id: endpoint = self._build_url(endpoint, resource_id) if resource_action: endpoint = self._build_url(endpoint, resource_action) response = self.api.execute('GET', endpoint) if not response.ok: raise Error.parse(response.json()) if resource_id or single_resource: return resource_cls.parse(response.json()) return [resource_cls.parse(resource) for resource in response.json()]
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resource_id=None, resource_action=None, resource_cls=None,\n single_resource=False):\n endpoint = self.endpoint\n if not resource_cls:\n resource_cls = self._cls\n if resource_id:\n endpoint = self._build_url(endpoint, resource_id)\n if resource_action:\n endpoint = self._build_url(endpoint, resource_action)\n response = self.api.execute('GET', endpoint)\n if not response.ok:\n raise Error.parse(response.json())\n if resource_id or single_resource:\n return resource_cls.parse(response.json())\n return [resource_cls.parse(resource) for resource in response.json()]\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, resource): response = self.api.execute('POST', self.endpoint, json=resource.as_dict()) if not response.ok: raise Error.parse(response.json()) return self._cls.parse(response.json())
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resource):\n response = self.api.execute('POST', self.endpoint, json=resource.as_dict())\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self, resource): endpoint = self.endpoint if resource.id: endpoint = self._build_url(endpoint, resource.id) response = self.api.execute('PUT', endpoint, json=resource.as_dict()) if not response.ok: raise Error.parse(response.json()) return self._cls.parse(response.json())
put
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resource):\n endpoint = self.endpoint\n if resource.id:\n endpoint = self._build_url(endpoint, resource.id)\n response = self.api.execute('PUT', endpoint, json=resource.as_dict())\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n", "role": "user" }, { "content": "put", "role": "assistant" } ]
def x(self, resource_id): endpoint = '{}/{}'.format(self.endpoint, resource_id) response = self.api.execute('DELETE', endpoint) if not response.ok: raise Error.parse(response.json()) return self._cls.parse(response.json())
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, resource_id):\n endpoint = '{}/{}'.format(self.endpoint, resource_id)\n response = self.api.execute('DELETE', endpoint)\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self): result = {} for key in self._valid_properties: val = getattr(self, key) if isinstance(val, datetime): val = val.isoformat() elif val and not Model._is_builtin(val): val = val.as_dict() elif isinstance(val, list): for i in range(len(val)): if Model._is_builtin(val[i]): continue val[i] = val[i].as_dict() elif isinstance(val, bool): result[key] = val if val: result[key] = val return result
as_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = {}\n for key in self._valid_properties:\n val = getattr(self, key)\n if isinstance(val, datetime):\n val = val.isoformat()\n elif val and not Model._is_builtin(val):\n val = val.as_dict()\n elif isinstance(val, list):\n for i in range(len(val)):\n if Model._is_builtin(val[i]):\n continue\n val[i] = val[i].as_dict()\n elif isinstance(val, bool):\n result[key] = val\n if val:\n result[key] = val\n return result\n", "role": "user" }, { "content": "as_dict", "role": "assistant" } ]
def x(self, method, path, **kwargs): url = '{}{}'.format(self.host, path) kwargs.update(self._client_kwargs) response = requests.request(method, url, headers={'Authorization': 'Bearer {}'.format(self.api_key)}, **kwargs) return response
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, path, **kwargs):\n url = '{}{}'.format(self.host, path)\n kwargs.update(self._client_kwargs)\n response = requests.request(method, url, headers={'Authorization':\n 'Bearer {}'.format(self.api_key)}, **kwargs)\n return response\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self, campaign_id): return super(API, self).get(resource_id=campaign_id, resource_action= 'complete')
complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, campaign_id):\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'complete')\n", "role": "user" }, { "content": "complete", "role": "assistant" } ]
def x(self, campaign_id=None): resource_cls = CampaignSummary single_resource = False if not campaign_id: resource_cls = CampaignSummaries single_resource = True return super(API, self).get(resource_id=campaign_id, resource_action= 'summary', resource_cls=resource_cls, single_resource=single_resource)
summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, campaign_id=None):\n resource_cls = CampaignSummary\n single_resource = False\n if not campaign_id:\n resource_cls = CampaignSummaries\n single_resource = True\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'summary', resource_cls=resource_cls, single_resource=single_resource)\n", "role": "user" }, { "content": "summary", "role": "assistant" } ]
def x(self, campaign_id): return super(API, self).get(resource_id=campaign_id, resource_action= 'results', resource_cls=CampaignResults)
results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, campaign_id):\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'results', resource_cls=CampaignResults)\n", "role": "user" }, { "content": "results", "role": "assistant" } ]
def x(self, file_path): if not file_path: self.read_data = self.memory_read self.write_data = self.memory_write elif not is_valid(file_path): self.write_data(file_path, {}) self.path = file_path
set_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, file_path):\n if not file_path:\n self.read_data = self.memory_read\n self.write_data = self.memory_write\n elif not is_valid(file_path):\n self.write_data(file_path, {})\n self.path = file_path\n", "role": "user" }, { "content": "set_path", "role": "assistant" } ]
def x(self, key): obj = self._get_content() obj.pop(key, None) self.write_data(self.path, obj)
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n obj = self._get_content()\n obj.pop(key, None)\n self.write_data(self.path, obj)\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, **kwargs): key = kwargs.pop('key', None) value = kwargs.pop('value', None) dictionary = kwargs.pop('dictionary', None) if (key is not None and dictionary is not None or value is not None and dictionary is not None): raise ValueError if key is not None and value is None: return self._get_content(key) if key is not None and value is not None: self._set_content(key, value) if dictionary is not None: for key in dictionary.keys(): value = dictionary[key] self._set_content(key, value) return self._get_content()
data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n key = kwargs.pop('key', None)\n value = kwargs.pop('value', None)\n dictionary = kwargs.pop('dictionary', None)\n if (key is not None and dictionary is not None or value is not None and\n dictionary is not None):\n raise ValueError\n if key is not None and value is None:\n return self._get_content(key)\n if key is not None and value is not None:\n self._set_content(key, value)\n if dictionary is not None:\n for key in dictionary.keys():\n value = dictionary[key]\n self._set_content(key, value)\n return self._get_content()\n", "role": "user" }, { "content": "data", "role": "assistant" } ]
def x(self, filter_arguments): results = self._get_content() if isinstance(filter_arguments, dict): for item, content in iteritems(self._get_content()): for key, value in iteritems(filter_arguments): keys = key.split('.') value = filter_arguments[key] if not self._contains_value({item: content}, keys, value): del results[item] if isinstance(filter_arguments, str): if filter_arguments in results: return [{filter_arguments: results[filter_arguments]}] else: return [] return results
filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filter_arguments):\n results = self._get_content()\n if isinstance(filter_arguments, dict):\n for item, content in iteritems(self._get_content()):\n for key, value in iteritems(filter_arguments):\n keys = key.split('.')\n value = filter_arguments[key]\n if not self._contains_value({item: content}, keys, value):\n del results[item]\n if isinstance(filter_arguments, str):\n if filter_arguments in results:\n return [{filter_arguments: results[filter_arguments]}]\n else:\n return []\n return results\n", "role": "user" }, { "content": "filter", "role": "assistant" } ]
def x(self): import os if self.path: if os.path.exists(self.path): os.remove(self.path) else: self._data = {}
drop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n import os\n if self.path:\n if os.path.exists(self.path):\n os.remove(self.path)\n else:\n self._data = {}\n", "role": "user" }, { "content": "drop", "role": "assistant" } ]
def x(file_path): if not is_valid(file_path): write_data(file_path, {}) db = open_file_for_reading(file_path) content = db.read() obj = decode(content) db.close() return obj
read_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n if not is_valid(file_path):\n write_data(file_path, {})\n db = open_file_for_reading(file_path)\n content = db.read()\n obj = decode(content)\n db.close()\n return obj\n", "role": "user" }, { "content": "read_data", "role": "assistant" } ]
def x(path, obj): with open_file_for_writing(path) as db: db.write(encode(obj)) return obj
write_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, obj):\n with open_file_for_writing(path) as db:\n db.write(encode(obj))\n return obj\n", "role": "user" }, { "content": "write_data", "role": "assistant" } ]
def x(file_path): from os import path, stat can_open = False try: with open(file_path) as fp: can_open = True except IOError: return False is_file = path.isfile(file_path) return path.exists(file_path) and is_file and stat(file_path).st_size > 0
is_valid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n from os import path, stat\n can_open = False\n try:\n with open(file_path) as fp:\n can_open = True\n except IOError:\n return False\n is_file = path.isfile(file_path)\n return path.exists(file_path) and is_file and stat(file_path).st_size > 0\n", "role": "user" }, { "content": "is_valid", "role": "assistant" } ]
def x(node_coords, cells_nodes, edge_nodes, cells_edges): num_nodes = len(node_coords) num_new_nodes = len(edge_nodes) node_coords.resize(num_nodes + num_new_nodes, 3, refcheck=False) new_node_gid = num_nodes num_edges = len(edge_nodes) num_cells = len(cells_nodes) assert num_cells == len(cells_edges) num_new_edges = 2 * num_edges + 3 * num_cells new_edges_nodes = numpy.empty(num_new_edges, dtype=numpy.dtype((int, 2))) new_edge_gid = 0 num_new_cells = 4 * num_cells new_cells_nodes = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3))) new_cells_edges = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3))) new_cell_gid = 0 is_edge_divided = numpy.zeros(num_edges, dtype=bool) edge_midpoint_gids = numpy.empty(num_edges, dtype=int) edge_newedges_gids = numpy.empty(num_edges, dtype=numpy.dtype((int, 2))) for cell_id, cell in enumerate(zip(cells_edges, cells_nodes)): cell_edges, cell_nodes = cell local_edge_midpoint_gids = numpy.empty(3, dtype=int) local_edge_newedges = numpy.empty(3, dtype=numpy.dtype((int, 2))) local_neighbor_midpoints = [[], [], []] local_neighbor_newedges = [[], [], []] for k, edge_gid in enumerate(cell_edges): edgenodes_gids = edge_nodes[edge_gid] if is_edge_divided[edge_gid]: local_edge_midpoint_gids[k] = edge_midpoint_gids[edge_gid] local_edge_newedges[k] = edge_newedges_gids[edge_gid] else: node_coords[new_node_gid] = 0.5 * (node_coords[ edgenodes_gids[0]] + node_coords[edgenodes_gids[1]]) local_edge_midpoint_gids[k] = new_node_gid new_node_gid += 1 edge_midpoint_gids[edge_gid] = local_edge_midpoint_gids[k] new_edges_nodes[new_edge_gid] = numpy.array([edgenodes_gids [0], local_edge_midpoint_gids[k]]) new_edge_gid += 1 new_edges_nodes[new_edge_gid] = numpy.array([ local_edge_midpoint_gids[k], edgenodes_gids[1]]) new_edge_gid += 1 local_edge_newedges[k] = [new_edge_gid - 2, new_edge_gid - 1] edge_newedges_gids[edge_gid] = local_edge_newedges[k] is_edge_divided[edge_gid] = True edgenodes_lids = [numpy.nonzero(cell_nodes == edgenodes_gids[0] )[0][0], numpy.nonzero(cell_nodes == edgenodes_gids[1])[0][0]] local_neighbor_midpoints[edgenodes_lids[0]].append( local_edge_midpoint_gids[k]) local_neighbor_midpoints[edgenodes_lids[1]].append( local_edge_midpoint_gids[k]) local_neighbor_newedges[edgenodes_lids[0]].append( local_edge_newedges[k][0]) local_neighbor_newedges[edgenodes_lids[1]].append( local_edge_newedges[k][1]) new_edge_opposite_of_local_node = numpy.empty(3, dtype=int) for k in range(3): new_edges_nodes[new_edge_gid] = local_neighbor_midpoints[k] new_edge_opposite_of_local_node[k] = new_edge_gid new_edge_gid += 1 new_cells_nodes[new_cell_gid] = local_edge_midpoint_gids new_cells_edges[new_cell_gid] = new_edge_opposite_of_local_node new_cell_gid += 1 for k in range(3): new_cells_nodes[new_cell_gid] = numpy.array([cells_nodes[ cell_id][k], local_neighbor_midpoints[k][0], local_neighbor_midpoints[k][1]]) new_cells_edges[new_cell_gid] = numpy.array([ new_edge_opposite_of_local_node[k], local_neighbor_newedges [k][0], local_neighbor_newedges[k][1]]) new_cell_gid += 1 return node_coords, new_cells_nodes, new_edges_nodes, new_cells_edges
refine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(node_coords, cells_nodes, edge_nodes, cells_edges):\n num_nodes = len(node_coords)\n num_new_nodes = len(edge_nodes)\n node_coords.resize(num_nodes + num_new_nodes, 3, refcheck=False)\n new_node_gid = num_nodes\n num_edges = len(edge_nodes)\n num_cells = len(cells_nodes)\n assert num_cells == len(cells_edges)\n num_new_edges = 2 * num_edges + 3 * num_cells\n new_edges_nodes = numpy.empty(num_new_edges, dtype=numpy.dtype((int, 2)))\n new_edge_gid = 0\n num_new_cells = 4 * num_cells\n new_cells_nodes = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))\n new_cells_edges = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))\n new_cell_gid = 0\n is_edge_divided = numpy.zeros(num_edges, dtype=bool)\n edge_midpoint_gids = numpy.empty(num_edges, dtype=int)\n edge_newedges_gids = numpy.empty(num_edges, dtype=numpy.dtype((int, 2)))\n for cell_id, cell in enumerate(zip(cells_edges, cells_nodes)):\n cell_edges, cell_nodes = cell\n local_edge_midpoint_gids = numpy.empty(3, dtype=int)\n local_edge_newedges = numpy.empty(3, dtype=numpy.dtype((int, 2)))\n local_neighbor_midpoints = [[], [], []]\n local_neighbor_newedges = [[], [], []]\n for k, edge_gid in enumerate(cell_edges):\n edgenodes_gids = edge_nodes[edge_gid]\n if is_edge_divided[edge_gid]:\n local_edge_midpoint_gids[k] = edge_midpoint_gids[edge_gid]\n local_edge_newedges[k] = edge_newedges_gids[edge_gid]\n else:\n node_coords[new_node_gid] = 0.5 * (node_coords[\n edgenodes_gids[0]] + node_coords[edgenodes_gids[1]])\n local_edge_midpoint_gids[k] = new_node_gid\n new_node_gid += 1\n edge_midpoint_gids[edge_gid] = local_edge_midpoint_gids[k]\n new_edges_nodes[new_edge_gid] = numpy.array([edgenodes_gids\n [0], local_edge_midpoint_gids[k]])\n new_edge_gid += 1\n new_edges_nodes[new_edge_gid] = numpy.array([\n local_edge_midpoint_gids[k], edgenodes_gids[1]])\n new_edge_gid += 1\n local_edge_newedges[k] = [new_edge_gid - 2, new_edge_gid - 1]\n edge_newedges_gids[edge_gid] = local_edge_newedges[k]\n is_edge_divided[edge_gid] = True\n edgenodes_lids = [numpy.nonzero(cell_nodes == edgenodes_gids[0]\n )[0][0], numpy.nonzero(cell_nodes == edgenodes_gids[1])[0][0]]\n local_neighbor_midpoints[edgenodes_lids[0]].append(\n local_edge_midpoint_gids[k])\n local_neighbor_midpoints[edgenodes_lids[1]].append(\n local_edge_midpoint_gids[k])\n local_neighbor_newedges[edgenodes_lids[0]].append(\n local_edge_newedges[k][0])\n local_neighbor_newedges[edgenodes_lids[1]].append(\n local_edge_newedges[k][1])\n new_edge_opposite_of_local_node = numpy.empty(3, dtype=int)\n for k in range(3):\n new_edges_nodes[new_edge_gid] = local_neighbor_midpoints[k]\n new_edge_opposite_of_local_node[k] = new_edge_gid\n new_edge_gid += 1\n new_cells_nodes[new_cell_gid] = local_edge_midpoint_gids\n new_cells_edges[new_cell_gid] = new_edge_opposite_of_local_node\n new_cell_gid += 1\n for k in range(3):\n new_cells_nodes[new_cell_gid] = numpy.array([cells_nodes[\n cell_id][k], local_neighbor_midpoints[k][0],\n local_neighbor_midpoints[k][1]])\n new_cells_edges[new_cell_gid] = numpy.array([\n new_edge_opposite_of_local_node[k], local_neighbor_newedges\n [k][0], local_neighbor_newedges[k][1]])\n new_cell_gid += 1\n return node_coords, new_cells_nodes, new_edges_nodes, new_cells_edges\n", "role": "user" }, { "content": "refine", "role": "assistant" } ]
def x(cells_nodes): local_idx = numpy.array([[1, 2], [2, 0], [0, 1]]).T nds = cells_nodes.T idx_hierarchy = nds[local_idx] s = idx_hierarchy.shape a = numpy.sort(idx_hierarchy.reshape(s[0], s[1] * s[2]).T) b = numpy.ascontiguousarray(a).view(numpy.dtype((numpy.void, a.dtype. itemsize * a.shape[1]))) _, idx, inv, cts = numpy.unique(b, return_index=True, return_inverse= True, return_counts=True) assert all(cts < 3) edge_nodes = a[idx] cells_edges = inv.reshape(3, -1).T return edge_nodes, cells_edges
create_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cells_nodes):\n local_idx = numpy.array([[1, 2], [2, 0], [0, 1]]).T\n nds = cells_nodes.T\n idx_hierarchy = nds[local_idx]\n s = idx_hierarchy.shape\n a = numpy.sort(idx_hierarchy.reshape(s[0], s[1] * s[2]).T)\n b = numpy.ascontiguousarray(a).view(numpy.dtype((numpy.void, a.dtype.\n itemsize * a.shape[1])))\n _, idx, inv, cts = numpy.unique(b, return_index=True, return_inverse=\n True, return_counts=True)\n assert all(cts < 3)\n edge_nodes = a[idx]\n cells_edges = inv.reshape(3, -1).T\n return edge_nodes, cells_edges\n", "role": "user" }, { "content": "create_edges", "role": "assistant" } ]
def x(points, cells, mesh_color='k', show_axes=False): import matplotlib.pyplot as plt from matplotlib.collections import LineCollection fig = plt.figure() ax = fig.gca() plt.axis('equal') if not show_axes: ax.set_axis_off() xmin = numpy.amin(points[:, 0]) xmax = numpy.amax(points[:, 0]) ymin = numpy.amin(points[:, 1]) ymax = numpy.amax(points[:, 1]) width = xmax - xmin xmin -= 0.1 * width xmax += 0.1 * width height = ymax - ymin ymin -= 0.1 * height ymax += 0.1 * height ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) edge_nodes, _ = create_edges(cells) e = points[edge_nodes][:, :, :2] line_segments = LineCollection(e, color=mesh_color) ax.add_collection(line_segments) return fig
plot2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, cells, mesh_color='k', show_axes=False):\n import matplotlib.pyplot as plt\n from matplotlib.collections import LineCollection\n fig = plt.figure()\n ax = fig.gca()\n plt.axis('equal')\n if not show_axes:\n ax.set_axis_off()\n xmin = numpy.amin(points[:, 0])\n xmax = numpy.amax(points[:, 0])\n ymin = numpy.amin(points[:, 1])\n ymax = numpy.amax(points[:, 1])\n width = xmax - xmin\n xmin -= 0.1 * width\n xmax += 0.1 * width\n height = ymax - ymin\n ymin -= 0.1 * height\n ymax += 0.1 * height\n ax.set_xlim(xmin, xmax)\n ax.set_ylim(ymin, ymax)\n edge_nodes, _ = create_edges(cells)\n e = points[edge_nodes][:, :, :2]\n line_segments = LineCollection(e, color=mesh_color)\n ax.add_collection(line_segments)\n return fig\n", "role": "user" }, { "content": "plot2d", "role": "assistant" } ]
def x(self, job, result): self.job.put(job) r = result.get() return r
put
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, job, result):\n self.job.put(job)\n r = result.get()\n return r\n", "role": "user" }, { "content": "put", "role": "assistant" } ]
def x(self, jobs, result): for j in jobs: WorkerPool.put(self, j) r = [] for i in xrange(len(jobs)): r.append(result.get()) return r
contract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, jobs, result):\n for j in jobs:\n WorkerPool.put(self, j)\n r = []\n for i in xrange(len(jobs)):\n r.append(result.get())\n return r\n", "role": "user" }, { "content": "contract", "role": "assistant" } ]
def x(self): t = self.worker_factory(self) t.start() self._size += 1
grow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n t = self.worker_factory(self)\n t.start()\n self._size += 1\n", "role": "user" }, { "content": "grow", "role": "assistant" } ]
def x(self): if self._size <= 0: raise IndexError('pool is already empty') self._size -= 1 self.put(SuicideJob())
shrink
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._size <= 0:\n raise IndexError('pool is already empty')\n self._size -= 1\n self.put(SuicideJob())\n", "role": "user" }, { "content": "shrink", "role": "assistant" } ]
def x(self, fn, *seq): """block until done.""" results = Queue() args = zip(*seq) for seq in args: j = SimpleJob(results, fn, seq) self.put(j) r = [] for i in range(len(list(args))): r.append(results.get()) return r
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fn, *seq):\n \"\"\"block until done.\"\"\"\n results = Queue()\n args = zip(*seq)\n for seq in args:\n j = SimpleJob(results, fn, seq)\n self.put(j)\n r = []\n for i in range(len(list(args))):\n r.append(results.get())\n return r\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(num_twists=1, nl=60, nw=11, mode='classical'): width = 1.0 scale = 10.0 r = 1.0 alpha0 = 0.0 flatness = 1.0 u_range = numpy.linspace(0.0, 2 * numpy.pi, num=nl, endpoint=False) v_range = numpy.linspace(-0.5 * width, 0.5 * width, num=nw) sin_u = numpy.sin(u_range) cos_u = numpy.cos(u_range) alpha = num_twists * 0.5 * u_range + alpha0 sin_alpha = numpy.sin(alpha) cos_alpha = numpy.cos(alpha) if mode == 'classical': a = cos_alpha b = sin_alpha reverse_seam = num_twists % 2 == 1 elif mode == 'smooth': a = numpy.copysign(cos_alpha ** 2, cos_alpha) b = numpy.copysign(sin_alpha ** 2, sin_alpha) reverse_seam = num_twists % 2 == 1 else: assert mode == 'pseudo' a = cos_alpha ** 2 b = sin_alpha ** 2 reverse_seam = False nodes = scale * numpy.array([numpy.outer(a * cos_u, v_range) + r * cos_u[:, numpy.newaxis], numpy.outer(a * sin_u, v_range) + r * sin_u[:, numpy.newaxis], numpy.outer(b, v_range) * flatness]).reshape( 3, -1).T elems = _create_elements(nl, nw, reverse_seam) return nodes, elems
moebius
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(num_twists=1, nl=60, nw=11, mode='classical'):\n width = 1.0\n scale = 10.0\n r = 1.0\n alpha0 = 0.0\n flatness = 1.0\n u_range = numpy.linspace(0.0, 2 * numpy.pi, num=nl, endpoint=False)\n v_range = numpy.linspace(-0.5 * width, 0.5 * width, num=nw)\n sin_u = numpy.sin(u_range)\n cos_u = numpy.cos(u_range)\n alpha = num_twists * 0.5 * u_range + alpha0\n sin_alpha = numpy.sin(alpha)\n cos_alpha = numpy.cos(alpha)\n if mode == 'classical':\n a = cos_alpha\n b = sin_alpha\n reverse_seam = num_twists % 2 == 1\n elif mode == 'smooth':\n a = numpy.copysign(cos_alpha ** 2, cos_alpha)\n b = numpy.copysign(sin_alpha ** 2, sin_alpha)\n reverse_seam = num_twists % 2 == 1\n else:\n assert mode == 'pseudo'\n a = cos_alpha ** 2\n b = sin_alpha ** 2\n reverse_seam = False\n nodes = scale * numpy.array([numpy.outer(a * cos_u, v_range) + r *\n cos_u[:, numpy.newaxis], numpy.outer(a * sin_u, v_range) + r *\n sin_u[:, numpy.newaxis], numpy.outer(b, v_range) * flatness]).reshape(\n 3, -1).T\n elems = _create_elements(nl, nw, reverse_seam)\n return nodes, elems\n", "role": "user" }, { "content": "moebius", "role": "assistant" } ]
def x(self): while 1: job = self.jobs.get() try: job.run() self.jobs.task_done() except TerminationNotice: self.jobs.task_done() break
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n while 1:\n job = self.jobs.get()\n try:\n job.run()\n self.jobs.task_done()\n except TerminationNotice:\n self.jobs.task_done()\n break\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(contents, domain=DEFAULT_DOMAIN, force_gist=False): url = make_url(contents, domain, force_gist) webbrowser.open(url) return url
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents, domain=DEFAULT_DOMAIN, force_gist=False):\n url = make_url(contents, domain, force_gist)\n webbrowser.open(url)\n return url\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(contents='', width='100%', height=512, *args, **kwargs): from IPython.display import HTML url = make_url(contents, *args, **kwargs) html = '<iframe src={url} width={width} height={height}></iframe>'.format( url=url, width=width, height=height) return HTML(html)
embed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents='', width='100%', height=512, *args, **kwargs):\n from IPython.display import HTML\n url = make_url(contents, *args, **kwargs)\n html = '<iframe src={url} width={width} height={height}></iframe>'.format(\n url=url, width=width, height=height)\n return HTML(html)\n", "role": "user" }, { "content": "embed", "role": "assistant" } ]
def x(contents, domain=DEFAULT_DOMAIN, force_gist=False, size_for_gist= MAX_URL_LEN): contents = make_geojson(contents) if len(contents) <= size_for_gist and not force_gist: url = data_url(contents, domain) else: gist = _make_gist(contents) url = gist_url(gist.id, domain) return url
make_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents, domain=DEFAULT_DOMAIN, force_gist=False, size_for_gist=\n MAX_URL_LEN):\n contents = make_geojson(contents)\n if len(contents) <= size_for_gist and not force_gist:\n url = data_url(contents, domain)\n else:\n gist = _make_gist(contents)\n url = gist_url(gist.id, domain)\n return url\n", "role": "user" }, { "content": "make_url", "role": "assistant" } ]
def x(contents): if isinstance(contents, six.string_types): return contents if hasattr(contents, '__geo_interface__'): features = [_geo_to_feature(contents)] else: try: feature_iter = iter(contents) except TypeError: raise ValueError('Unknown type for input') features = [] for i, f in enumerate(feature_iter): if not hasattr(f, '__geo_interface__'): raise ValueError('Unknown type at index {0}'.format(i)) features.append(_geo_to_feature(f)) data = {'type': 'FeatureCollection', 'features': features} return json.dumps(data)
make_geojson
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents):\n if isinstance(contents, six.string_types):\n return contents\n if hasattr(contents, '__geo_interface__'):\n features = [_geo_to_feature(contents)]\n else:\n try:\n feature_iter = iter(contents)\n except TypeError:\n raise ValueError('Unknown type for input')\n features = []\n for i, f in enumerate(feature_iter):\n if not hasattr(f, '__geo_interface__'):\n raise ValueError('Unknown type at index {0}'.format(i))\n features.append(_geo_to_feature(f))\n data = {'type': 'FeatureCollection', 'features': features}\n return json.dumps(data)\n", "role": "user" }, { "content": "make_geojson", "role": "assistant" } ]
def x(contents, domain=DEFAULT_DOMAIN): url = domain + '#data=data:application/json,' + urllib.parse.quote(contents ) return url
data_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents, domain=DEFAULT_DOMAIN):\n url = domain + '#data=data:application/json,' + urllib.parse.quote(contents\n )\n return url\n", "role": "user" }, { "content": "data_url", "role": "assistant" } ]
def x(contents, description='', filename='data.geojson'): ghapi = github3.GitHub() files = {filename: {'content': contents}} gist = ghapi.create_gist(description, files) return gist
make_gist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(contents, description='', filename='data.geojson'):\n ghapi = github3.GitHub()\n files = {filename: {'content': contents}}\n gist = ghapi.create_gist(description, files)\n return gist\n", "role": "user" }, { "content": "make_gist", "role": "assistant" } ]
def x(a, alpha, beta, t): n = len(alpha) assert len(beta) == n assert len(a) == n + 1 try: b = numpy.empty((n + 1,) + t.shape) except AttributeError: b = numpy.empty(n + 1) b[0] = 1.0 b[n] = a[n] b[n - 1] = a[n - 1] + (t - alpha[n - 1]) * b[n] for k in range(n - 2, 0, -1): b[k] = a[k] + (t - alpha[k]) * b[k + 1] - beta[k + 1] * b[k + 2] phi0 = 1.0 phi1 = t - alpha[0] return phi0 * a[0] + phi1 * b[1] - beta[1] * phi0 * b[2]
clenshaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, alpha, beta, t):\n n = len(alpha)\n assert len(beta) == n\n assert len(a) == n + 1\n try:\n b = numpy.empty((n + 1,) + t.shape)\n except AttributeError:\n b = numpy.empty(n + 1)\n b[0] = 1.0\n b[n] = a[n]\n b[n - 1] = a[n - 1] + (t - alpha[n - 1]) * b[n]\n for k in range(n - 2, 0, -1):\n b[k] = a[k] + (t - alpha[k]) * b[k + 1] - beta[k + 1] * b[k + 2]\n phi0 = 1.0\n phi1 = t - alpha[0]\n return phi0 * a[0] + phi1 * b[1] - beta[1] * phi0 * b[2]\n", "role": "user" }, { "content": "clenshaw", "role": "assistant" } ]
def x(X, n, alpha=0, symbolic=False): args = recurrence_coefficients(n, alpha=alpha, symbolic=symbolic) return line_tree(X, *args)
tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n, alpha=0, symbolic=False):\n args = recurrence_coefficients(n, alpha=alpha, symbolic=symbolic)\n return line_tree(X, *args)\n", "role": "user" }, { "content": "tree", "role": "assistant" } ]
def x(n, alpha, standardization='normal', symbolic=False): S = sympy.S if symbolic else lambda x: x sqrt = sympy.sqrt if symbolic else numpy.sqrt gamma = sympy.gamma if symbolic else scipy.special.gamma if standardization == 'monic': p0 = 1 a = n * [1] b = [(2 * k + 1 + alpha) for k in range(n)] c = [(k * (k + alpha)) for k in range(n)] c[0] = gamma(alpha + 1) elif standardization == 'classical': p0 = 1 a = [(-S(1) / (k + 1)) for k in range(n)] b = [(-S(2 * k + 1 + alpha) / (k + 1)) for k in range(n)] c = [(S(k + alpha) / (k + 1)) for k in range(n)] c[0] = numpy.nan else: assert standardization == 'normal', "Unknown Laguerre standardization '{}'.".format( standardization) p0 = 1 / sqrt(gamma(alpha + 1)) a = [(-1 / sqrt((k + 1) * (k + 1 + alpha))) for k in range(n)] b = [(-(2 * k + 1 + alpha) / sqrt((k + 1) * (k + 1 + alpha))) for k in range(n)] c = [sqrt(k * S(k + alpha) / ((k + 1) * (k + 1 + alpha))) for k in range(n)] c[0] = numpy.nan return p0, numpy.array(a), numpy.array(b), numpy.array(c)
recurrence_coefficients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, alpha, standardization='normal', symbolic=False):\n S = sympy.S if symbolic else lambda x: x\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n gamma = sympy.gamma if symbolic else scipy.special.gamma\n if standardization == 'monic':\n p0 = 1\n a = n * [1]\n b = [(2 * k + 1 + alpha) for k in range(n)]\n c = [(k * (k + alpha)) for k in range(n)]\n c[0] = gamma(alpha + 1)\n elif standardization == 'classical':\n p0 = 1\n a = [(-S(1) / (k + 1)) for k in range(n)]\n b = [(-S(2 * k + 1 + alpha) / (k + 1)) for k in range(n)]\n c = [(S(k + alpha) / (k + 1)) for k in range(n)]\n c[0] = numpy.nan\n else:\n assert standardization == 'normal', \"Unknown Laguerre standardization '{}'.\".format(\n standardization)\n p0 = 1 / sqrt(gamma(alpha + 1))\n a = [(-1 / sqrt((k + 1) * (k + 1 + alpha))) for k in range(n)]\n b = [(-(2 * k + 1 + alpha) / sqrt((k + 1) * (k + 1 + alpha))) for k in\n range(n)]\n c = [sqrt(k * S(k + alpha) / ((k + 1) * (k + 1 + alpha))) for k in\n range(n)]\n c[0] = numpy.nan\n return p0, numpy.array(a), numpy.array(b), numpy.array(c)\n", "role": "user" }, { "content": "recurrence_coefficients", "role": "assistant" } ]
def x(n, alpha, beta, standardization, symbolic=False): gamma = sympy.gamma if symbolic else lambda x: scipy.special.gamma(float(x) ) def x(x, y): return sympy.Rational(x, y) if all([isinstance(val, int) for val in [x, y]]) else x / y frac = rational if symbolic else lambda x, y: x / y sqrt = sympy.sqrt if symbolic else numpy.sqrt int_1 = 2 ** (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1 ) / gamma(alpha + beta + 2) if standardization == 'monic': p0 = 1 a = numpy.ones(n, dtype=int) if isinstance(alpha, numpy.int64): alpha = int(alpha) if isinstance(beta, numpy.int64): beta = int(beta) b = [(frac(beta - alpha, alpha + beta + 2) if N == 0 else frac(beta ** 2 - alpha ** 2, (2 * N + alpha + beta) * (2 * N + alpha + beta + 2))) for N in range(n)] c = [(int_1 if N == 0 else frac(4 * (1 + alpha) * (1 + beta), (2 + alpha + beta) ** 2 * (3 + alpha + beta)) if N == 1 else frac(4 * (N + alpha) * (N + beta) * N * (N + alpha + beta), (2 * N + alpha + beta) ** 2 * (2 * N + alpha + beta + 1) * (2 * N + alpha + beta - 1))) for N in range(n)] elif standardization == 'p(1)=(n+alpha over n)' or alpha == 0 and standardization == 'p(1)=1': p0 = 1 if isinstance(alpha, numpy.int64): alpha = int(alpha) if isinstance(beta, numpy.int64): beta = int(beta) a = [(frac(alpha + beta + 2, 2) if N == 0 else frac((2 * N + alpha + beta + 1) * (2 * N + alpha + beta + 2), 2 * (N + 1) * (N + alpha + beta + 1))) for N in range(n)] b = [(frac(beta - alpha, 2) if N == 0 else frac((beta ** 2 - alpha ** 2) * (2 * N + alpha + beta + 1), 2 * (N + 1) * (N + alpha + beta + 1) * (2 * N + alpha + beta))) for N in range(n)] c = [(int_1 if N == 0 else frac((N + alpha) * (N + beta) * (2 * N + alpha + beta + 2), (N + 1) * (N + alpha + beta + 1) * (2 * N + alpha + beta))) for N in range(n)] else: assert standardization == 'normal', "Unknown standardization '{}'.".format( standardization) p0 = sqrt(1 / int_1) a = [(frac(alpha + beta + 2, 2) * sqrt(frac(alpha + beta + 3, ( alpha + 1) * (beta + 1))) if N == 0 else frac(2 * N + alpha + beta + 2, 2) * sqrt(frac((2 * N + alpha + beta + 1) * (2 * N + alpha + beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N + alpha + beta + 1)))) for N in range(n)] b = [((frac(beta - alpha, 2) if N == 0 else frac(beta ** 2 - alpha ** 2, 2 * (2 * N + alpha + beta))) * sqrt(frac((2 * N + alpha + beta + 3) * (2 * N + alpha + beta + 1), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N + alpha + beta + 1)))) for N in range(n)] c = [(int_1 if N == 0 else frac(4 + alpha + beta, 2 + alpha + beta) * sqrt(frac((1 + alpha) * (1 + beta) * (5 + alpha + beta), 2 * (2 + alpha) * (2 + beta) * (2 + alpha + beta))) if N == 1 else frac( 2 * N + alpha + beta + 2, 2 * N + alpha + beta) * sqrt(frac(N * (N + alpha) * (N + beta) * (N + alpha + beta) * (2 * N + alpha + beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N + alpha + beta + 1) * (2 * N + alpha + beta - 1)))) for N in range(n) ] return p0, numpy.array(a), numpy.array(b), numpy.array(c)
jacobi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, alpha, beta, standardization, symbolic=False):\n gamma = sympy.gamma if symbolic else lambda x: scipy.special.gamma(float(x)\n )\n\n def x(x, y):\n return sympy.Rational(x, y) if all([isinstance(val, int) for val in\n [x, y]]) else x / y\n frac = rational if symbolic else lambda x, y: x / y\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n int_1 = 2 ** (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1\n ) / gamma(alpha + beta + 2)\n if standardization == 'monic':\n p0 = 1\n a = numpy.ones(n, dtype=int)\n if isinstance(alpha, numpy.int64):\n alpha = int(alpha)\n if isinstance(beta, numpy.int64):\n beta = int(beta)\n b = [(frac(beta - alpha, alpha + beta + 2) if N == 0 else frac(beta **\n 2 - alpha ** 2, (2 * N + alpha + beta) * (2 * N + alpha + beta +\n 2))) for N in range(n)]\n c = [(int_1 if N == 0 else frac(4 * (1 + alpha) * (1 + beta), (2 +\n alpha + beta) ** 2 * (3 + alpha + beta)) if N == 1 else frac(4 *\n (N + alpha) * (N + beta) * N * (N + alpha + beta), (2 * N +\n alpha + beta) ** 2 * (2 * N + alpha + beta + 1) * (2 * N +\n alpha + beta - 1))) for N in range(n)]\n elif standardization == 'p(1)=(n+alpha over n)' or alpha == 0 and standardization == 'p(1)=1':\n p0 = 1\n if isinstance(alpha, numpy.int64):\n alpha = int(alpha)\n if isinstance(beta, numpy.int64):\n beta = int(beta)\n a = [(frac(alpha + beta + 2, 2) if N == 0 else frac((2 * N + alpha +\n beta + 1) * (2 * N + alpha + beta + 2), 2 * (N + 1) * (N +\n alpha + beta + 1))) for N in range(n)]\n b = [(frac(beta - alpha, 2) if N == 0 else frac((beta ** 2 - alpha **\n 2) * (2 * N + alpha + beta + 1), 2 * (N + 1) * (N + alpha +\n beta + 1) * (2 * N + alpha + beta))) for N in range(n)]\n c = [(int_1 if N == 0 else frac((N + alpha) * (N + beta) * (2 * N +\n alpha + beta + 2), (N + 1) * (N + alpha + beta + 1) * (2 * N +\n alpha + beta))) for N in range(n)]\n else:\n assert standardization == 'normal', \"Unknown standardization '{}'.\".format(\n standardization)\n p0 = sqrt(1 / int_1)\n a = [(frac(alpha + beta + 2, 2) * sqrt(frac(alpha + beta + 3, (\n alpha + 1) * (beta + 1))) if N == 0 else frac(2 * N + alpha +\n beta + 2, 2) * sqrt(frac((2 * N + alpha + beta + 1) * (2 * N +\n alpha + beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) *\n (N + alpha + beta + 1)))) for N in range(n)]\n b = [((frac(beta - alpha, 2) if N == 0 else frac(beta ** 2 - alpha **\n 2, 2 * (2 * N + alpha + beta))) * sqrt(frac((2 * N + alpha +\n beta + 3) * (2 * N + alpha + beta + 1), (N + 1) * (N + alpha + \n 1) * (N + beta + 1) * (N + alpha + beta + 1)))) for N in range(n)]\n c = [(int_1 if N == 0 else frac(4 + alpha + beta, 2 + alpha + beta) *\n sqrt(frac((1 + alpha) * (1 + beta) * (5 + alpha + beta), 2 * (2 +\n alpha) * (2 + beta) * (2 + alpha + beta))) if N == 1 else frac(\n 2 * N + alpha + beta + 2, 2 * N + alpha + beta) * sqrt(frac(N *\n (N + alpha) * (N + beta) * (N + alpha + beta) * (2 * N + alpha +\n beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N +\n alpha + beta + 1) * (2 * N + alpha + beta - 1)))) for N in range(n)\n ]\n return p0, numpy.array(a), numpy.array(b), numpy.array(c)\n", "role": "user" }, { "content": "jacobi", "role": "assistant" } ]
def x(f, lcar=0.1): import matplotlib import matplotlib.pyplot as plt import pygmsh geom = pygmsh.built_in.Geometry() geom.add_circle([0.0, 0.0, 0.0], 1.0, lcar, num_sections=4, compound=True) points, cells, _, _, _ = pygmsh.generate_mesh(geom, verbose=True) x = points[:, 0] y = points[:, 1] triang = matplotlib.tri.Triangulation(x, y, cells['triangle']) plt.tripcolor(triang, f(points.T), shading='flat') plt.colorbar() plt.set_cmap('coolwarm') clim = plt.gci().get_clim() mx = max(abs(clim[0]), abs(clim[1])) plt.clim(-mx, mx) circle = plt.Circle((0, 0), 1.0, edgecolor='k', fill=False) plt.gca().add_artist(circle) plt.gca().set_aspect('equal') plt.axis('off') return
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, lcar=0.1):\n import matplotlib\n import matplotlib.pyplot as plt\n import pygmsh\n geom = pygmsh.built_in.Geometry()\n geom.add_circle([0.0, 0.0, 0.0], 1.0, lcar, num_sections=4, compound=True)\n points, cells, _, _, _ = pygmsh.generate_mesh(geom, verbose=True)\n x = points[:, 0]\n y = points[:, 1]\n triang = matplotlib.tri.Triangulation(x, y, cells['triangle'])\n plt.tripcolor(triang, f(points.T), shading='flat')\n plt.colorbar()\n plt.set_cmap('coolwarm')\n clim = plt.gci().get_clim()\n mx = max(abs(clim[0]), abs(clim[1]))\n plt.clim(-mx, mx)\n circle = plt.Circle((0, 0), 1.0, edgecolor='k', fill=False)\n plt.gca().add_artist(circle)\n plt.gca().set_aspect('equal')\n plt.axis('off')\n return\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(X, n, symbolic=False): p0, a, b, c = legendre(n + 1, 'normal', symbolic=symbolic) dim = X.shape[0] p0n = p0 ** dim out = [] level = numpy.array([numpy.ones(X.shape[1:], dtype=int) * p0n]) out.append(level) for L in range(n): level = [] for i in range(dim - 1): m1 = int(scipy.special.binom(L + dim - i - 1, dim - i - 1)) if L > 0: m2 = int(scipy.special.binom(L + dim - i - 2, dim - i - 1)) r = 0 for k in range(L + 1): m = int(scipy.special.binom(k + dim - i - 2, dim - i - 2)) val = out[L][-m1:][r:r + m] * (a[L - k] * X[i] - b[L - k]) if L - k > 0: val -= out[L - 1][-m2:][r:r + m] * c[L - k] r += m level.append(val) val = out[L][-1] * (a[L] * X[-1] - b[L]) if L > 0: val -= out[L - 1][-1] * c[L] level.append([val]) out.append(numpy.concatenate(level)) return out
tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n, symbolic=False):\n p0, a, b, c = legendre(n + 1, 'normal', symbolic=symbolic)\n dim = X.shape[0]\n p0n = p0 ** dim\n out = []\n level = numpy.array([numpy.ones(X.shape[1:], dtype=int) * p0n])\n out.append(level)\n for L in range(n):\n level = []\n for i in range(dim - 1):\n m1 = int(scipy.special.binom(L + dim - i - 1, dim - i - 1))\n if L > 0:\n m2 = int(scipy.special.binom(L + dim - i - 2, dim - i - 1))\n r = 0\n for k in range(L + 1):\n m = int(scipy.special.binom(k + dim - i - 2, dim - i - 2))\n val = out[L][-m1:][r:r + m] * (a[L - k] * X[i] - b[L - k])\n if L - k > 0:\n val -= out[L - 1][-m2:][r:r + m] * c[L - k]\n r += m\n level.append(val)\n val = out[L][-1] * (a[L] * X[-1] - b[L])\n if L > 0:\n val -= out[L - 1][-1] * c[L]\n level.append([val])\n out.append(numpy.concatenate(level))\n return out\n", "role": "user" }, { "content": "tree", "role": "assistant" } ]
def x(t, p0, a, b, c): vals1 = numpy.zeros_like(t, dtype=int) vals2 = numpy.ones_like(t) * p0 for a_k, b_k, c_k in zip(a, b, c): vals0, vals1 = vals1, vals2 vals2 = vals1 * (t * a_k - b_k) - vals0 * c_k return vals2
line_evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t, p0, a, b, c):\n vals1 = numpy.zeros_like(t, dtype=int)\n vals2 = numpy.ones_like(t) * p0\n for a_k, b_k, c_k in zip(a, b, c):\n vals0, vals1 = vals1, vals2\n vals2 = vals1 * (t * a_k - b_k) - vals0 * c_k\n return vals2\n", "role": "user" }, { "content": "line_evaluate", "role": "assistant" } ]
def x(corners, f, n=100): import matplotlib.tri import matplotlib.pyplot as plt def x(boxes, balls): def x(boxes, balls, parent=tuple()): if boxes > 1: for i in range(balls + 1): for x in rec(boxes - 1, i, parent + (balls - i,)): yield x else: yield parent + (balls,) return list(rec(boxes, balls)) bary = numpy.array(partition(3, n)).T / n X = numpy.sum([numpy.outer(bary[k], corners[:, k]) for k in range(3)], axis=0).T x = numpy.array(X[0]) y = numpy.array(X[1]) z = numpy.array(f(bary), dtype=float) triang = matplotlib.tri.Triangulation(x, y) plt.tripcolor(triang, z, shading='flat') plt.colorbar() plt.set_cmap('coolwarm') clim = plt.gci().get_clim() mx = max(abs(clim[0]), abs(clim[1])) plt.clim(-mx, mx) X = numpy.column_stack([corners, corners[:, 0]]) plt.plot(X[0], X[1], '-k') plt.gca().set_aspect('equal') plt.axis('off') return
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(corners, f, n=100):\n import matplotlib.tri\n import matplotlib.pyplot as plt\n\n def x(boxes, balls):\n\n def x(boxes, balls, parent=tuple()):\n if boxes > 1:\n for i in range(balls + 1):\n for x in rec(boxes - 1, i, parent + (balls - i,)):\n yield x\n else:\n yield parent + (balls,)\n return list(rec(boxes, balls))\n bary = numpy.array(partition(3, n)).T / n\n X = numpy.sum([numpy.outer(bary[k], corners[:, k]) for k in range(3)],\n axis=0).T\n x = numpy.array(X[0])\n y = numpy.array(X[1])\n z = numpy.array(f(bary), dtype=float)\n triang = matplotlib.tri.Triangulation(x, y)\n plt.tripcolor(triang, z, shading='flat')\n plt.colorbar()\n plt.set_cmap('coolwarm')\n clim = plt.gci().get_clim()\n mx = max(abs(clim[0]), abs(clim[1]))\n plt.clim(-mx, mx)\n X = numpy.column_stack([corners, corners[:, 0]])\n plt.plot(X[0], X[1], '-k')\n plt.gca().set_aspect('equal')\n plt.axis('off')\n return\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(key, lookup_dict): for k, v in lookup_dict.items(): if k.lower() == key.lower(): return v return None
iget
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, lookup_dict):\n for k, v in lookup_dict.items():\n if k.lower() == key.lower():\n return v\n return None\n", "role": "user" }, { "content": "iget", "role": "assistant" } ]
def x(name): direct_match = _iget(name, _LANGUAGE_NAME_LOOKUP) if direct_match: return direct_match else: simple_name = name.split(',')[0] simple_name = simple_name.split('(')[0].strip() return _LANGUAGE_NAME_LOOKUP.get(simple_name, None)
getlang_by_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n direct_match = _iget(name, _LANGUAGE_NAME_LOOKUP)\n if direct_match:\n return direct_match\n else:\n simple_name = name.split(',')[0]\n simple_name = simple_name.split('(')[0].strip()\n return _LANGUAGE_NAME_LOOKUP.get(simple_name, None)\n", "role": "user" }, { "content": "getlang_by_name", "role": "assistant" } ]
def x(native_name): direct_match = _iget(native_name, _LANGUAGE_NATIVE_NAME_LOOKUP) if direct_match: return direct_match else: simple_native_name = native_name.split(',')[0] simple_native_name = simple_native_name.split('(')[0].strip() return _LANGUAGE_NATIVE_NAME_LOOKUP.get(simple_native_name, None)
getlang_by_native_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(native_name):\n direct_match = _iget(native_name, _LANGUAGE_NATIVE_NAME_LOOKUP)\n if direct_match:\n return direct_match\n else:\n simple_native_name = native_name.split(',')[0]\n simple_native_name = simple_native_name.split('(')[0].strip()\n return _LANGUAGE_NATIVE_NAME_LOOKUP.get(simple_native_name, None)\n", "role": "user" }, { "content": "getlang_by_native_name", "role": "assistant" } ]
def x(code): if code == 'iw': return getlang('he') elif 'zh-Hans' in code: return getlang('zh-CN') elif 'zh-Hant' in code or re.match('zh(.*)?-HK', code): return getlang('zh-TW') first_part = code.split('-')[0] try: pyc_lang = pycountry.languages.get(alpha_2=first_part) if pyc_lang: if hasattr(pyc_lang, 'inverted_name'): lang_name = pyc_lang.inverted_name else: lang_name = pyc_lang.name return getlang_by_name(lang_name) else: return None except KeyError: return None
getlang_by_alpha2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(code):\n if code == 'iw':\n return getlang('he')\n elif 'zh-Hans' in code:\n return getlang('zh-CN')\n elif 'zh-Hant' in code or re.match('zh(.*)?-HK', code):\n return getlang('zh-TW')\n first_part = code.split('-')[0]\n try:\n pyc_lang = pycountry.languages.get(alpha_2=first_part)\n if pyc_lang:\n if hasattr(pyc_lang, 'inverted_name'):\n lang_name = pyc_lang.inverted_name\n else:\n lang_name = pyc_lang.name\n return getlang_by_name(lang_name)\n else:\n return None\n except KeyError:\n return None\n", "role": "user" }, { "content": "getlang_by_alpha2", "role": "assistant" } ]
def x(filename, f): import meshio import meshzoo points, cells = meshzoo.iso_sphere(5) polar = numpy.arccos(points[:, 2]) azimuthal = numpy.arctan2(points[:, 1], points[:, 0]) vals = f(polar, azimuthal) meshio.write(filename, points, {'triangle': cells}, point_data={'f': vals}) return
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, f):\n import meshio\n import meshzoo\n points, cells = meshzoo.iso_sphere(5)\n polar = numpy.arccos(points[:, 2])\n azimuthal = numpy.arctan2(points[:, 1], points[:, 0])\n vals = f(polar, azimuthal)\n meshio.write(filename, points, {'triangle': cells}, point_data={'f': vals})\n return\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(polar, azimuthal, n, standardization, symbolic=False): cos = numpy.vectorize(sympy.cos) if symbolic else numpy.cos config = {'acoustic': ('complex spherical', False), 'quantum mechanic': ('complex spherical', True), 'geodetic': ('complex spherical 1', False), 'schmidt': ('schmidt', False)} standard, cs_phase = config[standardization] return tree_alp(cos(polar), n, phi=azimuthal, standardization=standard, with_condon_shortley_phase=cs_phase, symbolic=symbolic)
tree_sph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polar, azimuthal, n, standardization, symbolic=False):\n cos = numpy.vectorize(sympy.cos) if symbolic else numpy.cos\n config = {'acoustic': ('complex spherical', False), 'quantum mechanic':\n ('complex spherical', True), 'geodetic': ('complex spherical 1', \n False), 'schmidt': ('schmidt', False)}\n standard, cs_phase = config[standardization]\n return tree_alp(cos(polar), n, phi=azimuthal, standardization=standard,\n with_condon_shortley_phase=cs_phase, symbolic=symbolic)\n", "role": "user" }, { "content": "tree_sph", "role": "assistant" } ]
def x(x, n, standardization, phi=None, with_condon_shortley_phase=True, symbolic=False): d = {'natural': (_Natural, [x, symbolic]), 'spherical': (_Spherical, [x, symbolic]), 'complex spherical': (_ComplexSpherical, [x, phi, symbolic, False]), 'complex spherical 1': (_ComplexSpherical, [x, phi, symbolic, True]), 'normal': (_Normal, [x, symbolic]), 'schmidt': (_Schmidt, [x, phi, symbolic])} fun, args = d[standardization] c = fun(*args) if with_condon_shortley_phase: def x(L): return -1 * c.z1_factor(L) else: z1_factor_CSP = c.z1_factor e = numpy.ones_like(x, dtype=int) out = [[e * c.p0]] for L in range(1, n + 1): out.append(numpy.concatenate([[out[L - 1][0] * c.z0_factor(L)], out [L - 1] * numpy.multiply.outer(c.C0(L), x), [out[L - 1][-1] * z1_factor_CSP(L)]])) if L > 1: out[-1][2:-2] -= numpy.multiply.outer(c.C1(L), e) * out[L - 2] return out
tree_alp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, n, standardization, phi=None, with_condon_shortley_phase=True,\n symbolic=False):\n d = {'natural': (_Natural, [x, symbolic]), 'spherical': (_Spherical, [x,\n symbolic]), 'complex spherical': (_ComplexSpherical, [x, phi,\n symbolic, False]), 'complex spherical 1': (_ComplexSpherical, [x,\n phi, symbolic, True]), 'normal': (_Normal, [x, symbolic]),\n 'schmidt': (_Schmidt, [x, phi, symbolic])}\n fun, args = d[standardization]\n c = fun(*args)\n if with_condon_shortley_phase:\n\n def x(L):\n return -1 * c.z1_factor(L)\n else:\n z1_factor_CSP = c.z1_factor\n e = numpy.ones_like(x, dtype=int)\n out = [[e * c.p0]]\n for L in range(1, n + 1):\n out.append(numpy.concatenate([[out[L - 1][0] * c.z0_factor(L)], out\n [L - 1] * numpy.multiply.outer(c.C0(L), x), [out[L - 1][-1] *\n z1_factor_CSP(L)]]))\n if L > 1:\n out[-1][2:-2] -= numpy.multiply.outer(c.C1(L), e) * out[L - 2]\n return out\n", "role": "user" }, { "content": "tree_alp", "role": "assistant" } ]
def x(X, n, symbolic=False): frac = sympy.Rational if symbolic else lambda x, y: x / y sqrt = sympy.sqrt if symbolic else numpy.sqrt pi = sympy.pi if symbolic else numpy.pi mu = frac(1, 2) p0 = 1 / sqrt(pi) def x(n): return numpy.array([(2 * sqrt(frac((n + mu + frac(1, 2)) * (n + mu - frac(1, 2)), (n - k) * (n + k + 2 * mu)))) for k in range(n)]) def x(n): return 2 * sqrt(frac((n + mu - 1) * (n + mu + frac(1, 2)), (n + 2 * mu - 1) * n)) def x(n): return numpy.array([sqrt(frac((n - 1 - k) * (n + mu + frac(1, 2)) * (n + k + 2 * mu - 1), (n - k) * (n + mu - frac(3, 2)) * (n + k + 2 * mu))) for k in range(n - 1)]) def x(n): return sqrt(frac((n - 1) * (n + 2 * mu - 2) * (n + mu - frac(1, 2)) * (n + mu + frac(1, 2)), n * (n + 2 * mu - 1) * (n + mu - 1) * (n + mu - 2))) out = [numpy.array([0 * X[0] + p0])] one_min_x2 = 1 - X[0] ** 2 for L in range(1, n + 1): out.append(numpy.concatenate([out[L - 1] * numpy.multiply.outer( alpha(L), X[0]), [out[L - 1][L - 1] * beta(L) * X[1]]])) if L > 1: out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T out[-1][-1] -= out[L - 2][L - 2] * delta(L) * one_min_x2 return out
tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n, symbolic=False):\n frac = sympy.Rational if symbolic else lambda x, y: x / y\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n pi = sympy.pi if symbolic else numpy.pi\n mu = frac(1, 2)\n p0 = 1 / sqrt(pi)\n\n def x(n):\n return numpy.array([(2 * sqrt(frac((n + mu + frac(1, 2)) * (n + mu -\n frac(1, 2)), (n - k) * (n + k + 2 * mu)))) for k in range(n)])\n\n def x(n):\n return 2 * sqrt(frac((n + mu - 1) * (n + mu + frac(1, 2)), (n + 2 *\n mu - 1) * n))\n\n def x(n):\n return numpy.array([sqrt(frac((n - 1 - k) * (n + mu + frac(1, 2)) *\n (n + k + 2 * mu - 1), (n - k) * (n + mu - frac(3, 2)) * (n + k +\n 2 * mu))) for k in range(n - 1)])\n\n def x(n):\n return sqrt(frac((n - 1) * (n + 2 * mu - 2) * (n + mu - frac(1, 2)) *\n (n + mu + frac(1, 2)), n * (n + 2 * mu - 1) * (n + mu - 1) * (n +\n mu - 2)))\n out = [numpy.array([0 * X[0] + p0])]\n one_min_x2 = 1 - X[0] ** 2\n for L in range(1, n + 1):\n out.append(numpy.concatenate([out[L - 1] * numpy.multiply.outer(\n alpha(L), X[0]), [out[L - 1][L - 1] * beta(L) * X[1]]]))\n if L > 1:\n out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T\n out[-1][-1] -= out[L - 2][L - 2] * delta(L) * one_min_x2\n return out\n", "role": "user" }, { "content": "tree", "role": "assistant" } ]
def x(bary, n, standardization, symbolic=False): S = numpy.vectorize(sympy.S) if symbolic else lambda x: x sqrt = numpy.vectorize(sympy.sqrt) if symbolic else numpy.sqrt if standardization == '1': p0 = 1 def x(n): r = numpy.arange(n) return S(n * (2 * n + 1)) / ((n - r) * (n + r + 1)) def x(n): r = numpy.arange(n) return S(n * (2 * r + 1) ** 2) / ((n - r) * (n + r + 1) * (2 * n - 1)) def x(n): r = numpy.arange(n - 1) return S((n - r - 1) * (n + r) * (2 * n + 1)) / ((n - r) * (n + r + 1) * (2 * n - 1)) def x(n): return S(2 * n - 1) / n def x(n): return S(n - 1) / n else: assert standardization == 'normal' p0 = sqrt(2) def x(n): r = numpy.arange(n) return sqrt((n + 1) * n) * (S(2 * n + 1) / ((n - r) * (n + r + 1))) def x(n): r = numpy.arange(n) return sqrt((n + 1) * n) * S((2 * r + 1) ** 2) / ((n - r) * (n + r + 1) * (2 * n - 1)) def x(n): r = numpy.arange(n - 1) return sqrt(S(n + 1) / (n - 1)) * (S((n - r - 1) * (n + r) * (2 * n + 1)) / ((n - r) * (n + r + 1) * (2 * n - 1))) def x(n): return sqrt(S((2 * n + 1) * (n + 1) * (2 * n - 1)) / n ** 3) def x(n): return sqrt(S((2 * n + 1) * (n + 1) * (n - 1)) / ((2 * n - 3) * n ** 2)) u, v, w = bary out = [numpy.array([numpy.zeros_like(u) + p0])] for L in range(1, n + 1): out.append(numpy.concatenate([out[L - 1] * (numpy.multiply.outer( alpha(L), 1 - 2 * w).T - beta(L)).T, [delta(L) * out[L - 1][L - 1] * (u - v)]])) if L > 1: out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T out[-1][-1] -= epsilon(L) * out[L - 2][L - 2] * (u + v) ** 2 return out
tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bary, n, standardization, symbolic=False):\n S = numpy.vectorize(sympy.S) if symbolic else lambda x: x\n sqrt = numpy.vectorize(sympy.sqrt) if symbolic else numpy.sqrt\n if standardization == '1':\n p0 = 1\n\n def x(n):\n r = numpy.arange(n)\n return S(n * (2 * n + 1)) / ((n - r) * (n + r + 1))\n\n def x(n):\n r = numpy.arange(n)\n return S(n * (2 * r + 1) ** 2) / ((n - r) * (n + r + 1) * (2 *\n n - 1))\n\n def x(n):\n r = numpy.arange(n - 1)\n return S((n - r - 1) * (n + r) * (2 * n + 1)) / ((n - r) * (n +\n r + 1) * (2 * n - 1))\n\n def x(n):\n return S(2 * n - 1) / n\n\n def x(n):\n return S(n - 1) / n\n else:\n assert standardization == 'normal'\n p0 = sqrt(2)\n\n def x(n):\n r = numpy.arange(n)\n return sqrt((n + 1) * n) * (S(2 * n + 1) / ((n - r) * (n + r + 1)))\n\n def x(n):\n r = numpy.arange(n)\n return sqrt((n + 1) * n) * S((2 * r + 1) ** 2) / ((n - r) * (n +\n r + 1) * (2 * n - 1))\n\n def x(n):\n r = numpy.arange(n - 1)\n return sqrt(S(n + 1) / (n - 1)) * (S((n - r - 1) * (n + r) * (2 *\n n + 1)) / ((n - r) * (n + r + 1) * (2 * n - 1)))\n\n def x(n):\n return sqrt(S((2 * n + 1) * (n + 1) * (2 * n - 1)) / n ** 3)\n\n def x(n):\n return sqrt(S((2 * n + 1) * (n + 1) * (n - 1)) / ((2 * n - 3) *\n n ** 2))\n u, v, w = bary\n out = [numpy.array([numpy.zeros_like(u) + p0])]\n for L in range(1, n + 1):\n out.append(numpy.concatenate([out[L - 1] * (numpy.multiply.outer(\n alpha(L), 1 - 2 * w).T - beta(L)).T, [delta(L) * out[L - 1][L -\n 1] * (u - v)]]))\n if L > 1:\n out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T\n out[-1][-1] -= epsilon(L) * out[L - 2][L - 2] * (u + v) ** 2\n return out\n", "role": "user" }, { "content": "tree", "role": "assistant" } ]
def x(filename): filename = os.path.abspath(filename) this_file_exist = os.path.exists(filename) a_directory = os.path.isdir(filename) result = this_file_exist and not a_directory if result == False: raise ValueError( 'The filename given was either non existent or was a directory') else: return result
check_if_this_file_exist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n filename = os.path.abspath(filename)\n this_file_exist = os.path.exists(filename)\n a_directory = os.path.isdir(filename)\n result = this_file_exist and not a_directory\n if result == False:\n raise ValueError(\n 'The filename given was either non existent or was a directory')\n else:\n return result\n", "role": "user" }, { "content": "check_if_this_file_exist", "role": "assistant" } ]
def x(cmd): try: s = subprocess.Popen(cmd, stdout=subprocess.PIPE) s = s.stdout.read() return s.strip() except subprocess.CalledProcessError: return 0
command_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cmd):\n try:\n s = subprocess.Popen(cmd, stdout=subprocess.PIPE)\n s = s.stdout.read()\n return s.strip()\n except subprocess.CalledProcessError:\n return 0\n", "role": "user" }, { "content": "command_line", "role": "assistant" } ]
def x(filename): check_if_this_file_exist(filename) filename = os.path.abspath(filename) result = get_json(filename) result = result[0] return result
information
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n result = get_json(filename)\n result = result[0]\n return result\n", "role": "user" }, { "content": "information", "role": "assistant" } ]
def x(filename): check_if_this_file_exist(filename) filename = os.path.abspath(filename) s = command_line(['exiftool', '-G', '-j', '-sort', filename]) if s: s = s.decode('utf-8').rstrip('\r\n') return json.loads(s) else: return s
get_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n s = command_line(['exiftool', '-G', '-j', '-sort', filename])\n if s:\n s = s.decode('utf-8').rstrip('\\r\\n')\n return json.loads(s)\n else:\n return s\n", "role": "user" }, { "content": "get_json", "role": "assistant" } ]
def x(filename): check_if_this_file_exist(filename) filename = os.path.abspath(filename) s = command_line(['exiftool', '-G', '-csv', '-sort', filename]) if s: s = s.decode('utf-8') return s else: return 0
get_csv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n s = command_line(['exiftool', '-G', '-csv', '-sort', filename])\n if s:\n s = s.decode('utf-8')\n return s\n else:\n return 0\n", "role": "user" }, { "content": "get_csv", "role": "assistant" } ]
def x(message='-'): print('-'.center(60, '-')) print(message.center(60, '-')) print('-'.center(60, '-')) print()
print_a_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(message='-'):\n print('-'.center(60, '-'))\n print(message.center(60, '-'))\n print('-'.center(60, '-'))\n print()\n", "role": "user" }, { "content": "print_a_header", "role": "assistant" } ]
def x(): result = 1 command = ['exiftool', '-ver'] with open(os.devnull, 'w') as fnull: result = subprocess.call(command, stdout=fnull, stderr=fnull) if result != 0: print_a_header('Exiftool needs to be installed on your system') print_a_header('Visit http://www.sno.phy.queensu.ca/~phil/exiftool/') return False else: return True
check_if_exiftool_is_already_installed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n result = 1\n command = ['exiftool', '-ver']\n with open(os.devnull, 'w') as fnull:\n result = subprocess.call(command, stdout=fnull, stderr=fnull)\n if result != 0:\n print_a_header('Exiftool needs to be installed on your system')\n print_a_header('Visit http://www.sno.phy.queensu.ca/~phil/exiftool/')\n return False\n else:\n return True\n", "role": "user" }, { "content": "check_if_exiftool_is_already_installed", "role": "assistant" } ]
def x(self, context=None, clean=False): if not self.template: self.load_template(self.template_name) if hasattr(self.template, 'template'): context = (context or self.context).copy() else: context = Context(context or self.context) context.update(self.extra_context) result = self.template.render(context) subject = self._get_block(result, 'subject') if subject: self.subject = self._get_block(result, 'subject') body = self._get_block(result, 'body') is_html_body = False html = self._get_block(result, 'html') if html: if not body: body = html is_html_body = True else: self.attach_alternative(html, 'text/html') if body: self.body = body if is_html_body: self.content_subtype = 'html' self._is_rendered = True if clean: self.clean()
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context=None, clean=False):\n if not self.template:\n self.load_template(self.template_name)\n if hasattr(self.template, 'template'):\n context = (context or self.context).copy()\n else:\n context = Context(context or self.context)\n context.update(self.extra_context)\n result = self.template.render(context)\n subject = self._get_block(result, 'subject')\n if subject:\n self.subject = self._get_block(result, 'subject')\n body = self._get_block(result, 'body')\n is_html_body = False\n html = self._get_block(result, 'html')\n if html:\n if not body:\n body = html\n is_html_body = True\n else:\n self.attach_alternative(html, 'text/html')\n if body:\n self.body = body\n if is_html_body:\n self.content_subtype = 'html'\n self._is_rendered = True\n if clean:\n self.clean()\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, *args, **kwargs): clean = kwargs.pop('clean', False) if not self._is_rendered: self.render() if clean: self.clean() return super(EmailMessage, self).send(*args, **kwargs)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n clean = kwargs.pop('clean', False)\n if not self._is_rendered:\n self.render()\n if clean:\n self.clean()\n return super(EmailMessage, self).send(*args, **kwargs)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(template_name, context, from_email, recipient_list, fail_silently= False, auth_user=None, auth_password=None, connection=None, **kwargs): connection = connection or mail.get_connection(username=auth_user, password=auth_password, fail_silently=fail_silently) clean = kwargs.pop('clean', True) return EmailMessage(template_name, context, from_email, recipient_list, connection=connection, **kwargs).send(clean=clean)
send_mail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(template_name, context, from_email, recipient_list, fail_silently=\n False, auth_user=None, auth_password=None, connection=None, **kwargs):\n connection = connection or mail.get_connection(username=auth_user,\n password=auth_password, fail_silently=fail_silently)\n clean = kwargs.pop('clean', True)\n return EmailMessage(template_name, context, from_email, recipient_list,\n connection=connection, **kwargs).send(clean=clean)\n", "role": "user" }, { "content": "send_mail", "role": "assistant" } ]
def x(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): if sample_size is not None: X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == 'precomputed': X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds))
silhouette_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, labels, metric='euclidean', sample_size=None, random_state=None,\n **kwds):\n if sample_size is not None:\n X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])\n random_state = check_random_state(random_state)\n indices = random_state.permutation(X.shape[0])[:sample_size]\n if metric == 'precomputed':\n X, labels = X[indices].T[indices].T, labels[indices]\n else:\n X, labels = X[indices], labels[indices]\n return np.mean(silhouette_samples(X, labels, metric=metric, **kwds))\n", "role": "user" }, { "content": "silhouette_score", "role": "assistant" } ]
def x(X, labels, metric='euclidean', **kwds): X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) le = LabelEncoder() labels = le.fit_transform(labels) check_number_of_labels(len(le.classes_), X.shape[0]) distances = pairwise_distances(X, metric=metric, **kwds) unique_labels = le.classes_ n_samples_per_label = np.bincount(labels, minlength=len(unique_labels)) intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype) inter_clust_dists = np.inf + intra_clust_dists for curr_label in range(len(unique_labels)): mask = labels == curr_label current_distances = distances[mask] n_samples_curr_lab = n_samples_per_label[curr_label] - 1 if n_samples_curr_lab != 0: intra_clust_dists[mask] = np.sum(current_distances[:, mask], axis=1 ) / n_samples_curr_lab for other_label in range(len(unique_labels)): if other_label != curr_label: other_mask = labels == other_label other_distances = np.mean(current_distances[:, other_mask], axis=1) inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask ], other_distances) sil_samples = inter_clust_dists - intra_clust_dists sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) sil_samples[n_samples_per_label.take(labels) == 1] = 0 return sil_samples
silhouette_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, labels, metric='euclidean', **kwds):\n X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])\n le = LabelEncoder()\n labels = le.fit_transform(labels)\n check_number_of_labels(len(le.classes_), X.shape[0])\n distances = pairwise_distances(X, metric=metric, **kwds)\n unique_labels = le.classes_\n n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))\n intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype)\n inter_clust_dists = np.inf + intra_clust_dists\n for curr_label in range(len(unique_labels)):\n mask = labels == curr_label\n current_distances = distances[mask]\n n_samples_curr_lab = n_samples_per_label[curr_label] - 1\n if n_samples_curr_lab != 0:\n intra_clust_dists[mask] = np.sum(current_distances[:, mask], axis=1\n ) / n_samples_curr_lab\n for other_label in range(len(unique_labels)):\n if other_label != curr_label:\n other_mask = labels == other_label\n other_distances = np.mean(current_distances[:, other_mask],\n axis=1)\n inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask\n ], other_distances)\n sil_samples = inter_clust_dists - intra_clust_dists\n sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)\n sil_samples[n_samples_per_label.take(labels) == 1] = 0\n return sil_samples\n", "role": "user" }, { "content": "silhouette_samples", "role": "assistant" } ]
def x(X, labels): X, labels = check_X_y(X, labels) le = LabelEncoder() labels = le.fit_transform(labels) n_samples, _ = X.shape n_labels = len(le.classes_) check_number_of_labels(n_labels, n_samples) extra_disp, intra_disp = 0.0, 0.0 mean = np.mean(X, axis=0) for k in range(n_labels): cluster_k = X[labels == k] mean_k = np.mean(cluster_k, axis=0) extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2) intra_disp += np.sum((cluster_k - mean_k) ** 2) return 1.0 if intra_disp == 0.0 else extra_disp * (n_samples - n_labels ) / (intra_disp * (n_labels - 1.0))
calinski_harabaz_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, labels):\n X, labels = check_X_y(X, labels)\n le = LabelEncoder()\n labels = le.fit_transform(labels)\n n_samples, _ = X.shape\n n_labels = len(le.classes_)\n check_number_of_labels(n_labels, n_samples)\n extra_disp, intra_disp = 0.0, 0.0\n mean = np.mean(X, axis=0)\n for k in range(n_labels):\n cluster_k = X[labels == k]\n mean_k = np.mean(cluster_k, axis=0)\n extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2)\n intra_disp += np.sum((cluster_k - mean_k) ** 2)\n return 1.0 if intra_disp == 0.0 else extra_disp * (n_samples - n_labels\n ) / (intra_disp * (n_labels - 1.0))\n", "role": "user" }, { "content": "calinski_harabaz_score", "role": "assistant" } ]
def x(scale, copy=True): if np.isscalar(scale): if scale == 0.0: scale = 1.0 return scale elif isinstance(scale, np.ndarray): if copy: scale = scale.copy() scale[scale == 0.0] = 1.0 return scale
handle_zeros_in_scale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scale, copy=True):\n if np.isscalar(scale):\n if scale == 0.0:\n scale = 1.0\n return scale\n elif isinstance(scale, np.ndarray):\n if copy:\n scale = scale.copy()\n scale[scale == 0.0] = 1.0\n return scale\n", "role": "user" }, { "content": "handle_zeros_in_scale", "role": "assistant" } ]
def x(distances, desired_perplexity, verbose): distances = distances.astype(np.float32, copy=False) conditional_P = _utils._binary_search_perplexity(distances, None, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P
joint_probabilities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(distances, desired_perplexity, verbose):\n distances = distances.astype(np.float32, copy=False)\n conditional_P = _utils._binary_search_perplexity(distances, None,\n desired_perplexity, verbose)\n P = conditional_P + conditional_P.T\n sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)\n P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)\n return P\n", "role": "user" }, { "content": "joint_probabilities", "role": "assistant" } ]
def x(distances, neighbors, desired_perplexity, verbose): t0 = time() n_samples, k = neighbors.shape distances = distances.astype(np.float32, copy=False) neighbors = neighbors.astype(np.int64, copy=False) conditional_P = _utils._binary_search_perplexity(distances, neighbors, desired_perplexity, verbose) assert np.all(np.isfinite(conditional_P) ), 'All probabilities should be finite' P = csr_matrix((conditional_P.ravel(), neighbors.ravel(), range(0, n_samples * k + 1, k)), shape=(n_samples, n_samples)) P = P + P.T sum_P = np.maximum(P.sum(), MACHINE_EPSILON) P /= sum_P assert np.all(np.abs(P.data) <= 1.0) if verbose >= 2: duration = time() - t0 print('[t-SNE] Computed conditional probabilities in {:.3f}s'. format(duration)) return P
joint_probabilities_nn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(distances, neighbors, desired_perplexity, verbose):\n t0 = time()\n n_samples, k = neighbors.shape\n distances = distances.astype(np.float32, copy=False)\n neighbors = neighbors.astype(np.int64, copy=False)\n conditional_P = _utils._binary_search_perplexity(distances, neighbors,\n desired_perplexity, verbose)\n assert np.all(np.isfinite(conditional_P)\n ), 'All probabilities should be finite'\n P = csr_matrix((conditional_P.ravel(), neighbors.ravel(), range(0, \n n_samples * k + 1, k)), shape=(n_samples, n_samples))\n P = P + P.T\n sum_P = np.maximum(P.sum(), MACHINE_EPSILON)\n P /= sum_P\n assert np.all(np.abs(P.data) <= 1.0)\n if verbose >= 2:\n duration = time() - t0\n print('[t-SNE] Computed conditional probabilities in {:.3f}s'.\n format(duration))\n return P\n", "role": "user" }, { "content": "joint_probabilities_nn", "role": "assistant" } ]
def x(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0 ): X_embedded = params.reshape(n_samples, n_components) dist = pdist(X_embedded, 'sqeuclidean') dist += 1.0 dist /= degrees_of_freedom dist **= (degrees_of_freedom + 1.0) / -2.0 Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON) kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q)) grad = np.ndarray((n_samples, n_components), dtype=params.dtype) PQd = squareform((P - Q) * dist) for i in range(skip_num_points, n_samples): grad[i] = np.dot(np.ravel(PQd[i], order='K'), X_embedded[i] - X_embedded) grad = grad.ravel() c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad *= c return kl_divergence, grad
kl_divergence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0\n ):\n X_embedded = params.reshape(n_samples, n_components)\n dist = pdist(X_embedded, 'sqeuclidean')\n dist += 1.0\n dist /= degrees_of_freedom\n dist **= (degrees_of_freedom + 1.0) / -2.0\n Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)\n kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))\n grad = np.ndarray((n_samples, n_components), dtype=params.dtype)\n PQd = squareform((P - Q) * dist)\n for i in range(skip_num_points, n_samples):\n grad[i] = np.dot(np.ravel(PQd[i], order='K'), X_embedded[i] -\n X_embedded)\n grad = grad.ravel()\n c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom\n grad *= c\n return kl_divergence, grad\n", "role": "user" }, { "content": "kl_divergence", "role": "assistant" } ]
def x(params, P, degrees_of_freedom, n_samples, n_components, angle=0.5, skip_num_points=0, verbose=False): params = params.astype(np.float32, copy=False) X_embedded = params.reshape(n_samples, n_components) val_P = P.data.astype(np.float32, copy=False) neighbors = P.indices.astype(np.int64, copy=False) indptr = P.indptr.astype(np.int64, copy=False) grad = np.zeros(X_embedded.shape, dtype=np.float32) error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr, grad, angle, n_components, verbose, dof=degrees_of_freedom) c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad = grad.ravel() grad *= c return error, grad
kl_divergence_bh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, P, degrees_of_freedom, n_samples, n_components, angle=0.5,\n skip_num_points=0, verbose=False):\n params = params.astype(np.float32, copy=False)\n X_embedded = params.reshape(n_samples, n_components)\n val_P = P.data.astype(np.float32, copy=False)\n neighbors = P.indices.astype(np.int64, copy=False)\n indptr = P.indptr.astype(np.int64, copy=False)\n grad = np.zeros(X_embedded.shape, dtype=np.float32)\n error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr,\n grad, angle, n_components, verbose, dof=degrees_of_freedom)\n c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom\n grad = grad.ravel()\n grad *= c\n return error, grad\n", "role": "user" }, { "content": "kl_divergence_bh", "role": "assistant" } ]
def x(objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress= 300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm= 1e-07, verbose=0, args=None, kwargs=None): if args is None: args = [] if kwargs is None: kwargs = {} p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = i = it tic = time() for i in range(it, n_iter): error, grad = objective(p, *args, **kwargs) grad_norm = linalg.norm(grad) inc = update * grad < 0.0 dec = np.invert(inc) gains[inc] += 0.2 gains[dec] *= 0.8 np.clip(gains, min_gain, np.inf, out=gains) grad *= gains update = momentum * update - learning_rate * grad p += update if (i + 1) % n_iter_check == 0: toc = time() duration = toc - tic tic = toc if verbose >= 2: print( '[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f (%s iterations in %0.3fs)' % (i + 1, error, grad_norm, n_iter_check, duration)) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print( '[t-SNE] Iteration %d: did not make any progress during the last %d episodes. Finished.' % (i + 1, n_iter_without_progress)) break if grad_norm <= min_grad_norm: if verbose >= 2: print( '[t-SNE] Iteration %d: gradient norm %f. Finished.' % (i + 1, grad_norm)) break return p, error, i
gradient_descent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress=\n 300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=\n 1e-07, verbose=0, args=None, kwargs=None):\n if args is None:\n args = []\n if kwargs is None:\n kwargs = {}\n p = p0.copy().ravel()\n update = np.zeros_like(p)\n gains = np.ones_like(p)\n error = np.finfo(np.float).max\n best_error = np.finfo(np.float).max\n best_iter = i = it\n tic = time()\n for i in range(it, n_iter):\n error, grad = objective(p, *args, **kwargs)\n grad_norm = linalg.norm(grad)\n inc = update * grad < 0.0\n dec = np.invert(inc)\n gains[inc] += 0.2\n gains[dec] *= 0.8\n np.clip(gains, min_gain, np.inf, out=gains)\n grad *= gains\n update = momentum * update - learning_rate * grad\n p += update\n if (i + 1) % n_iter_check == 0:\n toc = time()\n duration = toc - tic\n tic = toc\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f (%s iterations in %0.3fs)'\n % (i + 1, error, grad_norm, n_iter_check, duration))\n if error < best_error:\n best_error = error\n best_iter = i\n elif i - best_iter > n_iter_without_progress:\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: did not make any progress during the last %d episodes. Finished.'\n % (i + 1, n_iter_without_progress))\n break\n if grad_norm <= min_grad_norm:\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: gradient norm %f. Finished.' %\n (i + 1, grad_norm))\n break\n return p, error, i\n", "role": "user" }, { "content": "gradient_descent", "role": "assistant" } ]
def x(X, X_embedded, n_neighbors=5, precomputed=False): if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t
trustworthiness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, X_embedded, n_neighbors=5, precomputed=False):\n if precomputed:\n dist_X = X\n else:\n dist_X = pairwise_distances(X, squared=True)\n dist_X_embedded = pairwise_distances(X_embedded, squared=True)\n ind_X = np.argsort(dist_X, axis=1)\n ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1]\n n_samples = X.shape[0]\n t = 0.0\n ranks = np.zeros(n_neighbors)\n for i in range(n_samples):\n for j in range(n_neighbors):\n ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0]\n ranks -= n_neighbors\n t += np.sum(ranks[ranks > 0])\n t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 *\n n_neighbors - 1.0)))\n return t\n", "role": "user" }, { "content": "trustworthiness", "role": "assistant" } ]
def x(self, X, skip_num_points=0): if self.method not in ['barnes_hut', 'exact']: raise ValueError("'method' must be 'barnes_hut' or 'exact'") if self.angle < 0.0 or self.angle > 1.0: raise ValueError("'angle' must be between 0.0 - 1.0") if self.metric == 'precomputed': if isinstance(self.init, string_types) and self.init == 'pca': raise ValueError( 'The parameter init="pca" cannot be used with metric="precomputed".' ) if X.shape[0] != X.shape[1]: raise ValueError('X should be a square distance matrix') if np.any(X < 0): raise ValueError( 'All distances should be positive, the precomputed distances given as X is not correct' ) if self.method == 'barnes_hut' and sp.issparse(X): raise TypeError( 'A sparse matrix was passed, but dense data is required for method="barnes_hut". Use X.toarray() to convert to a dense numpy array if the array is small enough for it to fit in memory. Otherwise consider dimensionality reduction techniques (e.g. TruncatedSVD)' ) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np. float32, np.float64]) if self.method == 'barnes_hut' and self.n_components > 3: raise ValueError( "'n_components' should be inferior to 4 for the barnes_hut algorithm as it relies on quad-tree or oct-tree." ) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError('early_exaggeration must be at least 1, but is {}' .format(self.early_exaggeration)) if self.n_iter < 250: raise ValueError('n_iter should be at least 250') n_samples = X.shape[0] neighbors_nn = None if self.method == 'exact': if self.metric == 'precomputed': distances = X else: if self.verbose: print('[t-SNE] Computing pairwise distances...') if self.metric == 'euclidean': distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) if np.any(distances < 0): raise ValueError( 'All distances should be positive, the metric given is not correct' ) P = _joint_probabilities(distances, self.perplexity, self.verbose) assert np.all(np.isfinite(P)), 'All probabilities should be finite' assert np.all(P >= 0), 'All probabilities should be non-negative' assert np.all(P <= 1 ), 'All probabilities should be less or then equal to one' else: k = min(n_samples - 1, int(3.0 * self.perplexity + 1)) if self.verbose: print('[t-SNE] Computing {} nearest neighbors...'.format(k)) neighbors_method = 'ball_tree' if self.metric == 'precomputed': neighbors_method = 'brute' knn = AnnoyIndex(X.shape[1], metric='euclidean') t0 = time() for i in range(n_samples): knn.add_item(i, X[i, :]) knn.build(50) duration = time() - t0 if self.verbose: print('[t-SNE] Indexed {} samples in {:.3f}s...'.format( n_samples, duration)) t0 = time() neighbors_nn = np.zeros((n_samples, k), dtype=int) distances_nn = np.zeros((n_samples, k)) for i in range(n_samples): neighbors_nn[i, :], distances_nn[i, :] = knn.get_nns_by_vector(X [i, :], k, include_distances=True) duration = time() - t0 if self.verbose: print('[t-SNE] Computed neighbors for {} samples in {:.3f}s...' .format(n_samples, duration)) del knn if self.metric == 'euclidean': distances_nn **= 2 P = _joint_probabilities_nn(distances_nn, neighbors_nn, self. perplexity, self.verbose) if isinstance(self.init, np.ndarray): X_embedded = self.init elif self.init == 'pca': pca = PCA(n_components=self.n_components, svd_solver='randomized', random_state=random_state) X_embedded = pca.fit_transform(X).astype(np.float32, copy=False) elif self.init == 'random': X_embedded = 0.0001 * random_state.randn(n_samples, self.n_components ).astype(np.float32) else: raise ValueError("'init' must be 'pca', 'random', or a numpy array") degrees_of_freedom = max(self.n_components - 1.0, 1) return self._tsne(P, degrees_of_freedom, n_samples, random_state, X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points= skip_num_points)
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, skip_num_points=0):\n if self.method not in ['barnes_hut', 'exact']:\n raise ValueError(\"'method' must be 'barnes_hut' or 'exact'\")\n if self.angle < 0.0 or self.angle > 1.0:\n raise ValueError(\"'angle' must be between 0.0 - 1.0\")\n if self.metric == 'precomputed':\n if isinstance(self.init, string_types) and self.init == 'pca':\n raise ValueError(\n 'The parameter init=\"pca\" cannot be used with metric=\"precomputed\".'\n )\n if X.shape[0] != X.shape[1]:\n raise ValueError('X should be a square distance matrix')\n if np.any(X < 0):\n raise ValueError(\n 'All distances should be positive, the precomputed distances given as X is not correct'\n )\n if self.method == 'barnes_hut' and sp.issparse(X):\n raise TypeError(\n 'A sparse matrix was passed, but dense data is required for method=\"barnes_hut\". Use X.toarray() to convert to a dense numpy array if the array is small enough for it to fit in memory. Otherwise consider dimensionality reduction techniques (e.g. TruncatedSVD)'\n )\n else:\n X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np.\n float32, np.float64])\n if self.method == 'barnes_hut' and self.n_components > 3:\n raise ValueError(\n \"'n_components' should be inferior to 4 for the barnes_hut algorithm as it relies on quad-tree or oct-tree.\"\n )\n random_state = check_random_state(self.random_state)\n if self.early_exaggeration < 1.0:\n raise ValueError('early_exaggeration must be at least 1, but is {}'\n .format(self.early_exaggeration))\n if self.n_iter < 250:\n raise ValueError('n_iter should be at least 250')\n n_samples = X.shape[0]\n neighbors_nn = None\n if self.method == 'exact':\n if self.metric == 'precomputed':\n distances = X\n else:\n if self.verbose:\n print('[t-SNE] Computing pairwise distances...')\n if self.metric == 'euclidean':\n distances = pairwise_distances(X, metric=self.metric,\n squared=True)\n else:\n distances = pairwise_distances(X, metric=self.metric)\n if np.any(distances < 0):\n raise ValueError(\n 'All distances should be positive, the metric given is not correct'\n )\n P = _joint_probabilities(distances, self.perplexity, self.verbose)\n assert np.all(np.isfinite(P)), 'All probabilities should be finite'\n assert np.all(P >= 0), 'All probabilities should be non-negative'\n assert np.all(P <= 1\n ), 'All probabilities should be less or then equal to one'\n else:\n k = min(n_samples - 1, int(3.0 * self.perplexity + 1))\n if self.verbose:\n print('[t-SNE] Computing {} nearest neighbors...'.format(k))\n neighbors_method = 'ball_tree'\n if self.metric == 'precomputed':\n neighbors_method = 'brute'\n knn = AnnoyIndex(X.shape[1], metric='euclidean')\n t0 = time()\n for i in range(n_samples):\n knn.add_item(i, X[i, :])\n knn.build(50)\n duration = time() - t0\n if self.verbose:\n print('[t-SNE] Indexed {} samples in {:.3f}s...'.format(\n n_samples, duration))\n t0 = time()\n neighbors_nn = np.zeros((n_samples, k), dtype=int)\n distances_nn = np.zeros((n_samples, k))\n for i in range(n_samples):\n neighbors_nn[i, :], distances_nn[i, :] = knn.get_nns_by_vector(X\n [i, :], k, include_distances=True)\n duration = time() - t0\n if self.verbose:\n print('[t-SNE] Computed neighbors for {} samples in {:.3f}s...'\n .format(n_samples, duration))\n del knn\n if self.metric == 'euclidean':\n distances_nn **= 2\n P = _joint_probabilities_nn(distances_nn, neighbors_nn, self.\n perplexity, self.verbose)\n if isinstance(self.init, np.ndarray):\n X_embedded = self.init\n elif self.init == 'pca':\n pca = PCA(n_components=self.n_components, svd_solver='randomized',\n random_state=random_state)\n X_embedded = pca.fit_transform(X).astype(np.float32, copy=False)\n elif self.init == 'random':\n X_embedded = 0.0001 * random_state.randn(n_samples, self.n_components\n ).astype(np.float32)\n else:\n raise ValueError(\"'init' must be 'pca', 'random', or a numpy array\")\n degrees_of_freedom = max(self.n_components - 1.0, 1)\n return self._tsne(P, degrees_of_freedom, n_samples, random_state,\n X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=\n skip_num_points)\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, P, degrees_of_freedom, n_samples, random_state, X_embedded, neighbors=None, skip_num_points=0): params = X_embedded.ravel() opt_args = {'it': 0, 'n_iter_check': self._N_ITER_CHECK, 'min_grad_norm': self.min_grad_norm, 'learning_rate': self. learning_rate, 'verbose': self.verbose, 'kwargs': dict( skip_num_points=skip_num_points), 'args': [P, degrees_of_freedom, n_samples, self.n_components], 'n_iter_without_progress': self. _EXPLORATION_N_ITER, 'n_iter': self._EXPLORATION_N_ITER, 'momentum': 0.5} if self.method == 'barnes_hut': obj_func = _kl_divergence_bh opt_args['kwargs']['angle'] = self.angle opt_args['kwargs']['verbose'] = self.verbose else: obj_func = _kl_divergence P *= self.early_exaggeration params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print( '[t-SNE] KL divergence after %d iterations with early exaggeration: %f' % (it + 1, kl_divergence)) P /= self.early_exaggeration remaining = self.n_iter - self._EXPLORATION_N_ITER if it < self._EXPLORATION_N_ITER or remaining > 0: opt_args['n_iter'] = self.n_iter opt_args['it'] = it + 1 opt_args['momentum'] = 0.8 opt_args['n_iter_without_progress'] = self.n_iter_without_progress params, kl_divergence, it = _gradient_descent(obj_func, params, ** opt_args) self.n_iter_ = it if self.verbose: print('[t-SNE] Error after %d iterations: %f' % (it + 1, kl_divergence) ) X_embedded = params.reshape(n_samples, self.n_components) self.kl_divergence_ = kl_divergence return X_embedded
tsne
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, P, degrees_of_freedom, n_samples, random_state, X_embedded,\n neighbors=None, skip_num_points=0):\n params = X_embedded.ravel()\n opt_args = {'it': 0, 'n_iter_check': self._N_ITER_CHECK,\n 'min_grad_norm': self.min_grad_norm, 'learning_rate': self.\n learning_rate, 'verbose': self.verbose, 'kwargs': dict(\n skip_num_points=skip_num_points), 'args': [P, degrees_of_freedom,\n n_samples, self.n_components], 'n_iter_without_progress': self.\n _EXPLORATION_N_ITER, 'n_iter': self._EXPLORATION_N_ITER, 'momentum':\n 0.5}\n if self.method == 'barnes_hut':\n obj_func = _kl_divergence_bh\n opt_args['kwargs']['angle'] = self.angle\n opt_args['kwargs']['verbose'] = self.verbose\n else:\n obj_func = _kl_divergence\n P *= self.early_exaggeration\n params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)\n if self.verbose:\n print(\n '[t-SNE] KL divergence after %d iterations with early exaggeration: %f'\n % (it + 1, kl_divergence))\n P /= self.early_exaggeration\n remaining = self.n_iter - self._EXPLORATION_N_ITER\n if it < self._EXPLORATION_N_ITER or remaining > 0:\n opt_args['n_iter'] = self.n_iter\n opt_args['it'] = it + 1\n opt_args['momentum'] = 0.8\n opt_args['n_iter_without_progress'] = self.n_iter_without_progress\n params, kl_divergence, it = _gradient_descent(obj_func, params, **\n opt_args)\n self.n_iter_ = it\n if self.verbose:\n print('[t-SNE] Error after %d iterations: %f' % (it + 1, kl_divergence)\n )\n X_embedded = params.reshape(n_samples, self.n_components)\n self.kl_divergence_ = kl_divergence\n return X_embedded\n", "role": "user" }, { "content": "tsne", "role": "assistant" } ]
def x(self, X, y=None): embedding = self._fit(X) self.embedding_ = embedding return self.embedding_
fit_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, y=None):\n embedding = self._fit(X)\n self.embedding_ = embedding\n return self.embedding_\n", "role": "user" }, { "content": "fit_transform", "role": "assistant" } ]
def x(datasets_full, genes_list, return_dimred=False, batch_size=BATCH_SIZE, verbose=VERBOSE, ds_names=None, dimred=DIMRED, approx=APPROX, sigma= SIGMA, alpha=ALPHA, knn=KNN, return_dense=False, hvg=None, union=False, geosketch=False, geosketch_max=20000): datasets_full = check_datasets(datasets_full) datasets, genes = merge_datasets(datasets_full, genes_list, ds_names= ds_names, union=union) datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred= dimred) datasets_dimred = assemble(datasets_dimred, expr_datasets=datasets, verbose=verbose, knn=knn, sigma=sigma, approx=approx, alpha=alpha, ds_names=ds_names, batch_size=batch_size, geosketch=geosketch, geosketch_max=geosketch_max) if return_dense: datasets = [ds.toarray() for ds in datasets] if return_dimred: return datasets_dimred, datasets, genes return datasets, genes
correct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datasets_full, genes_list, return_dimred=False, batch_size=BATCH_SIZE,\n verbose=VERBOSE, ds_names=None, dimred=DIMRED, approx=APPROX, sigma=\n SIGMA, alpha=ALPHA, knn=KNN, return_dense=False, hvg=None, union=False,\n geosketch=False, geosketch_max=20000):\n datasets_full = check_datasets(datasets_full)\n datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=\n ds_names, union=union)\n datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=\n dimred)\n datasets_dimred = assemble(datasets_dimred, expr_datasets=datasets,\n verbose=verbose, knn=knn, sigma=sigma, approx=approx, alpha=alpha,\n ds_names=ds_names, batch_size=batch_size, geosketch=geosketch,\n geosketch_max=geosketch_max)\n if return_dense:\n datasets = [ds.toarray() for ds in datasets]\n if return_dimred:\n return datasets_dimred, datasets, genes\n return datasets, genes\n", "role": "user" }, { "content": "correct", "role": "assistant" } ]
def x(datasets_full, genes_list, batch_size=BATCH_SIZE, verbose=VERBOSE, ds_names=None, dimred=DIMRED, approx=APPROX, sigma=SIGMA, alpha=ALPHA, knn=KNN, geosketch=False, geosketch_max=20000, n_iter=1, union=False, hvg=None): datasets_full = check_datasets(datasets_full) datasets, genes = merge_datasets(datasets_full, genes_list, ds_names= ds_names, union=union) datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred= dimred) for _ in range(n_iter): datasets_dimred = assemble(datasets_dimred, verbose=verbose, knn= knn, sigma=sigma, approx=approx, alpha=alpha, ds_names=ds_names, batch_size=batch_size, geosketch=geosketch, geosketch_max= geosketch_max) return datasets_dimred, genes
integrate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datasets_full, genes_list, batch_size=BATCH_SIZE, verbose=VERBOSE,\n ds_names=None, dimred=DIMRED, approx=APPROX, sigma=SIGMA, alpha=ALPHA,\n knn=KNN, geosketch=False, geosketch_max=20000, n_iter=1, union=False,\n hvg=None):\n datasets_full = check_datasets(datasets_full)\n datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=\n ds_names, union=union)\n datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=\n dimred)\n for _ in range(n_iter):\n datasets_dimred = assemble(datasets_dimred, verbose=verbose, knn=\n knn, sigma=sigma, approx=approx, alpha=alpha, ds_names=ds_names,\n batch_size=batch_size, geosketch=geosketch, geosketch_max=\n geosketch_max)\n return datasets_dimred, genes\n", "role": "user" }, { "content": "integrate", "role": "assistant" } ]
def x(adatas, **kwargs): if 'return_dimred' in kwargs and kwargs['return_dimred']: datasets_dimred, datasets, genes = correct([adata.X for adata in adatas], [adata.var_names.values for adata in adatas], **kwargs) else: datasets, genes = correct([adata.X for adata in adatas], [adata. var_names.values for adata in adatas], **kwargs) new_adatas = [] for i, adata in enumerate(adatas): adata.X = datasets[i] new_adatas.append(adata) if 'return_dimred' in kwargs and kwargs['return_dimred']: return datasets_dimred, new_adatas else: return new_adatas
correct_scanpy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(adatas, **kwargs):\n if 'return_dimred' in kwargs and kwargs['return_dimred']:\n datasets_dimred, datasets, genes = correct([adata.X for adata in\n adatas], [adata.var_names.values for adata in adatas], **kwargs)\n else:\n datasets, genes = correct([adata.X for adata in adatas], [adata.\n var_names.values for adata in adatas], **kwargs)\n new_adatas = []\n for i, adata in enumerate(adatas):\n adata.X = datasets[i]\n new_adatas.append(adata)\n if 'return_dimred' in kwargs and kwargs['return_dimred']:\n return datasets_dimred, new_adatas\n else:\n return new_adatas\n", "role": "user" }, { "content": "correct_scanpy", "role": "assistant" } ]
def x(adatas, **kwargs): datasets_dimred, genes = integrate([adata.X for adata in adatas], [ adata.var_names.values for adata in adatas], **kwargs) return datasets_dimred
integrate_scanpy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(adatas, **kwargs):\n datasets_dimred, genes = integrate([adata.X for adata in adatas], [\n adata.var_names.values for adata in adatas], **kwargs)\n return datasets_dimred\n", "role": "user" }, { "content": "integrate_scanpy", "role": "assistant" } ]