source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
mov = self.active.movement
if self.orb < 1 and mov == const.SEPARATIVE:
mov = const.EXACT
return mov
|
movement
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mov = self.active.movement\n if self.orb < 1 and mov == const.SEPARATIVE:\n mov = const.EXACT\n return mov\n",
"role": "user"
},
{
"content": "movement",
"role": "assistant"
}
] |
def x(self, ID):
if self.active.id == ID:
return {'role': 'active', 'inOrb': self.active.inOrb, 'movement':
self.active.movement}
elif self.passive.id == ID:
return {'role': 'passive', 'inOrb': self.passive.inOrb, 'movement':
self.passive.movement}
return None
|
getRole
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ID):\n if self.active.id == ID:\n return {'role': 'active', 'inOrb': self.active.inOrb, 'movement':\n self.active.movement}\n elif self.passive.id == ID:\n return {'role': 'passive', 'inOrb': self.passive.inOrb, 'movement':\n self.passive.movement}\n return None\n",
"role": "user"
},
{
"content": "getRole",
"role": "assistant"
}
] |
def x(variant):
global FACES
if variant == CHALDEAN_FACES:
FACES = tables.CHALDEAN_FACES
else:
FACES = tables.TRIPLICITY_FACES
|
setFaces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant):\n global FACES\n if variant == CHALDEAN_FACES:\n FACES = tables.CHALDEAN_FACES\n else:\n FACES = tables.TRIPLICITY_FACES\n",
"role": "user"
},
{
"content": "setFaces",
"role": "assistant"
}
] |
def x(variant):
global TERMS
if variant == EGYPTIAN_TERMS:
TERMS = tables.EGYPTIAN_TERMS
elif variant == TETRABIBLOS_TERMS:
TERMS = tables.TETRABIBLOS_TERMS
elif variant == LILLY_TERMS:
TERMS = tables.LILLY_TERMS
|
setTerms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant):\n global TERMS\n if variant == EGYPTIAN_TERMS:\n TERMS = tables.EGYPTIAN_TERMS\n elif variant == TETRABIBLOS_TERMS:\n TERMS = tables.TETRABIBLOS_TERMS\n elif variant == LILLY_TERMS:\n TERMS = tables.LILLY_TERMS\n",
"role": "user"
},
{
"content": "setTerms",
"role": "assistant"
}
] |
def x(sign, lon):
terms = TERMS[sign]
for ID, a, b in terms:
if a <= lon < b:
return ID
return None
|
term
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sign, lon):\n terms = TERMS[sign]\n for ID, a, b in terms:\n if a <= lon < b:\n return ID\n return None\n",
"role": "user"
},
{
"content": "term",
"role": "assistant"
}
] |
def x(sign, lon):
faces = FACES[sign]
if lon < 10:
return faces[0]
elif lon < 20:
return faces[1]
else:
return faces[2]
|
face
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sign, lon):\n faces = FACES[sign]\n if lon < 10:\n return faces[0]\n elif lon < 20:\n return faces[1]\n else:\n return faces[2]\n",
"role": "user"
},
{
"content": "face",
"role": "assistant"
}
] |
def x(sign, lon):
return {'ruler': ruler(sign), 'exalt': exalt(sign), 'dayTrip': dayTrip(
sign), 'nightTrip': nightTrip(sign), 'partTrip': partTrip(sign),
'term': term(sign, lon), 'face': face(sign, lon), 'exile': exile(
sign), 'fall': fall(sign)}
|
getInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sign, lon):\n return {'ruler': ruler(sign), 'exalt': exalt(sign), 'dayTrip': dayTrip(\n sign), 'nightTrip': nightTrip(sign), 'partTrip': partTrip(sign),\n 'term': term(sign, lon), 'face': face(sign, lon), 'exile': exile(\n sign), 'fall': fall(sign)}\n",
"role": "user"
},
{
"content": "getInfo",
"role": "assistant"
}
] |
def x(ID, sign, lon):
info = getInfo(sign, lon)
for dign, objID in info.items():
if dign not in ['exile', 'fall'] and ID == objID:
return False
return True
|
isPeregrine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, sign, lon):\n info = getInfo(sign, lon)\n for dign, objID in info.items():\n if dign not in ['exile', 'fall'] and ID == objID:\n return False\n return True\n",
"role": "user"
},
{
"content": "isPeregrine",
"role": "assistant"
}
] |
def x(ID, sign, lon):
info = getInfo(sign, lon)
dignities = [dign for dign, objID in info.items() if objID == ID]
return sum([SCORES[dign] for dign in dignities])
|
score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, sign, lon):\n info = getInfo(sign, lon)\n dignities = [dign for dign, objID in info.items() if objID == ID]\n return sum([SCORES[dign] for dign in dignities])\n",
"role": "user"
},
{
"content": "score",
"role": "assistant"
}
] |
def x(sign, lon):
planets = const.LIST_SEVEN_PLANETS
res = [None, 0]
for ID in planets:
sc = score(ID, sign, lon)
if sc > res[1]:
res = [ID, sc]
return res[0]
|
almutem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sign, lon):\n planets = const.LIST_SEVEN_PLANETS\n res = [None, 0]\n for ID in planets:\n sc = score(ID, sign, lon)\n if sc > res[1]:\n res = [ID, sc]\n return res[0]\n",
"role": "user"
},
{
"content": "almutem",
"role": "assistant"
}
] |
def x(self):
info = self.getInfo()
dignities = [dign for dign, objID in info.items() if objID == self.obj.id]
return dignities
|
getDignities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n info = self.getInfo()\n dignities = [dign for dign, objID in info.items() if objID == self.obj.id]\n return dignities\n",
"role": "user"
},
{
"content": "getDignities",
"role": "assistant"
}
] |
def x(self):
return isPeregrine(self.obj.id, self.obj.sign, self.obj.signlon)
|
isPeregrine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return isPeregrine(self.obj.id, self.obj.sign, self.obj.signlon)\n",
"role": "user"
},
{
"content": "isPeregrine",
"role": "assistant"
}
] |
def x(chart, date):
pos = chart.pos
hsys = chart.hsys
IDs = [obj.id for obj in chart.objects]
return Chart(date, pos, IDs=IDs, hsys=hsys)
|
computeChart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chart, date):\n pos = chart.pos\n hsys = chart.hsys\n IDs = [obj.id for obj in chart.objects]\n return Chart(date, pos, IDs=IDs, hsys=hsys)\n",
"role": "user"
},
{
"content": "computeChart",
"role": "assistant"
}
] |
def x(chart, date):
sun = chart.getObject(const.SUN)
srDate = ephem.nextSolarReturn(date, sun.lon)
return _computeChart(chart, srDate)
|
nextSolarReturn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chart, date):\n sun = chart.getObject(const.SUN)\n srDate = ephem.nextSolarReturn(date, sun.lon)\n return _computeChart(chart, srDate)\n",
"role": "user"
},
{
"content": "nextSolarReturn",
"role": "assistant"
}
] |
def x(date, pos):
lastSunrise = ephem.lastSunrise(date, pos)
middleSunset = ephem.nextSunset(lastSunrise, pos)
nextSunrise = ephem.nextSunrise(date, pos)
table = []
length = (middleSunset.jd - lastSunrise.jd) / 12.0
for i in range(12):
start = lastSunrise.jd + i * length
end = start + length
ruler = nthRuler(i, lastSunrise.date.dayofweek())
table.append([start, end, ruler])
length = (nextSunrise.jd - middleSunset.jd) / 12.0
for i in range(12):
start = middleSunset.jd + i * length
end = start + length
ruler = nthRuler(i + 12, lastSunrise.date.dayofweek())
table.append([start, end, ruler])
return table
|
hourTable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date, pos):\n lastSunrise = ephem.lastSunrise(date, pos)\n middleSunset = ephem.nextSunset(lastSunrise, pos)\n nextSunrise = ephem.nextSunrise(date, pos)\n table = []\n length = (middleSunset.jd - lastSunrise.jd) / 12.0\n for i in range(12):\n start = lastSunrise.jd + i * length\n end = start + length\n ruler = nthRuler(i, lastSunrise.date.dayofweek())\n table.append([start, end, ruler])\n length = (nextSunrise.jd - middleSunset.jd) / 12.0\n for i in range(12):\n start = middleSunset.jd + i * length\n end = start + length\n ruler = nthRuler(i + 12, lastSunrise.date.dayofweek())\n table.append([start, end, ruler])\n return table\n",
"role": "user"
},
{
"content": "hourTable",
"role": "assistant"
}
] |
def x(date, pos):
table = hourTable(date, pos)
return HourTable(table, date)
|
getHourTable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date, pos):\n table = hourTable(date, pos)\n return HourTable(table, date)\n",
"role": "user"
},
{
"content": "getHourTable",
"role": "assistant"
}
] |
def x(self, date):
for i, (start, end, ruler) in enumerate(self.table):
if start <= date.jd <= end:
return i
return None
|
index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, date):\n for i, (start, end, ruler) in enumerate(self.table):\n if start <= date.jd <= end:\n return i\n return None\n",
"role": "user"
},
{
"content": "index",
"role": "assistant"
}
] |
def x(self, index):
entry = self.table[index]
info = {'mode': 'Day', 'ruler': self.dayRuler(), 'dayRuler': self.
dayRuler(), 'nightRuler': self.nightRuler(), 'hourRuler': entry[2],
'hourNumber': index + 1, 'tableIndex': index, 'start': Datetime.
fromJD(entry[0], self.date.utcoffset), 'end': Datetime.fromJD(entry
[1], self.date.utcoffset)}
if index >= 12:
info.update({'mode': 'Night', 'ruler': info['nightRuler'],
'hourNumber': index + 1 - 12})
return info
|
indexInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n entry = self.table[index]\n info = {'mode': 'Day', 'ruler': self.dayRuler(), 'dayRuler': self.\n dayRuler(), 'nightRuler': self.nightRuler(), 'hourRuler': entry[2],\n 'hourNumber': index + 1, 'tableIndex': index, 'start': Datetime.\n fromJD(entry[0], self.date.utcoffset), 'end': Datetime.fromJD(entry\n [1], self.date.utcoffset)}\n if index >= 12:\n info.update({'mode': 'Night', 'ruler': info['nightRuler'],\n 'hourNumber': index + 1 - 12})\n return info\n",
"role": "user"
},
{
"content": "indexInfo",
"role": "assistant"
}
] |
def x(chart, date, fixedObjects=False):
sun = chart.getObject(const.SUN)
prevSr = ephem.prevSolarReturn(date, sun.lon)
nextSr = ephem.nextSolarReturn(date, sun.lon)
rotation = 30 * (date.jd - prevSr.jd) / (nextSr.jd - prevSr.jd)
age = math.floor((date.jd - chart.date.jd) / 365.25)
rotation = 30 * age + rotation
pChart = chart.copy()
for obj in pChart.objects:
if not fixedObjects:
obj.relocate(obj.lon + rotation)
for house in pChart.houses:
house.relocate(house.lon + rotation)
for angle in pChart.angles:
angle.relocate(angle.lon + rotation)
return pChart
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chart, date, fixedObjects=False):\n sun = chart.getObject(const.SUN)\n prevSr = ephem.prevSolarReturn(date, sun.lon)\n nextSr = ephem.nextSolarReturn(date, sun.lon)\n rotation = 30 * (date.jd - prevSr.jd) / (nextSr.jd - prevSr.jd)\n age = math.floor((date.jd - chart.date.jd) / 365.25)\n rotation = 30 * age + rotation\n pChart = chart.copy()\n for obj in pChart.objects:\n if not fixedObjects:\n obj.relocate(obj.lon + rotation)\n for house in pChart.houses:\n house.relocate(house.lon + rotation)\n for angle in pChart.angles:\n angle.relocate(angle.lon + rotation)\n return pChart\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(listA, listB):
listA = [x.id for x in listA]
listB = [x.id for x in listB]
listA.extend(listB)
set_ = set(listA)
return list(set_)
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(listA, listB):\n listA = [x.id for x in listA]\n listB = [x.id for x in listB]\n listA.extend(listB)\n set_ = set(listA)\n return list(set_)\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(chart):
factors = []
house1 = chart.getHouse(const.HOUSE1)
planetsHouse1 = chart.objects.getObjectsInHouse(house1)
asc = chart.getAngle(const.ASC)
planetsConjAsc = chart.objects.getObjectsAspecting(asc, [0])
_set = _merge(planetsHouse1, planetsConjAsc)
factors.append(['Planets in House1 or Conj Asc', _set])
moon = chart.get(const.MOON)
mercury = chart.get(const.MERCURY)
planetsConjMoon = chart.objects.getObjectsAspecting(moon, [0])
planetsConjMercury = chart.objects.getObjectsAspecting(mercury, [0])
_set = _merge(planetsConjMoon, planetsConjMercury)
factors.append(['Planets Conj Moon or Mercury', _set])
ascRulerID = essential.ruler(asc.sign)
ascRuler = chart.getObject(ascRulerID)
disposerID = essential.ruler(ascRuler.sign)
disposer = chart.getObject(disposerID)
_set = []
if aspects.isAspecting(disposer, ascRuler, const.MAJOR_ASPECTS):
_set = [ascRuler.id]
factors.append(['Asc Ruler if aspected by its disposer', _set])
aspMoon = chart.objects.getObjectsAspecting(moon, [60, 90, 120, 180])
aspMercury = chart.objects.getObjectsAspecting(mercury, [60, 90, 120, 180])
_set = _merge(aspMoon, aspMercury)
factors.append(['Planets Asp Moon or Mercury', _set])
return factors
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chart):\n factors = []\n house1 = chart.getHouse(const.HOUSE1)\n planetsHouse1 = chart.objects.getObjectsInHouse(house1)\n asc = chart.getAngle(const.ASC)\n planetsConjAsc = chart.objects.getObjectsAspecting(asc, [0])\n _set = _merge(planetsHouse1, planetsConjAsc)\n factors.append(['Planets in House1 or Conj Asc', _set])\n moon = chart.get(const.MOON)\n mercury = chart.get(const.MERCURY)\n planetsConjMoon = chart.objects.getObjectsAspecting(moon, [0])\n planetsConjMercury = chart.objects.getObjectsAspecting(mercury, [0])\n _set = _merge(planetsConjMoon, planetsConjMercury)\n factors.append(['Planets Conj Moon or Mercury', _set])\n ascRulerID = essential.ruler(asc.sign)\n ascRuler = chart.getObject(ascRulerID)\n disposerID = essential.ruler(ascRuler.sign)\n disposer = chart.getObject(disposerID)\n _set = []\n if aspects.isAspecting(disposer, ascRuler, const.MAJOR_ASPECTS):\n _set = [ascRuler.id]\n factors.append(['Asc Ruler if aspected by its disposer', _set])\n aspMoon = chart.objects.getObjectsAspecting(moon, [60, 90, 120, 180])\n aspMercury = chart.objects.getObjectsAspecting(mercury, [60, 90, 120, 180])\n _set = _merge(aspMoon, aspMercury)\n factors.append(['Planets Asp Moon or Mercury', _set])\n return factors\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(TERMS):
res = []
for i, sign in enumerate(SIGN_LIST):
termList = TERMS[sign]
res.extend([ID, sign, start + 30 * i] for ID, start, end in termList)
return res
|
termLons
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(TERMS):\n res = []\n for i, sign in enumerate(SIGN_LIST):\n termList = TERMS[sign]\n res.extend([ID, sign, start + 30 * i] for ID, start, end in termList)\n return res\n",
"role": "user"
},
{
"content": "termLons",
"role": "assistant"
}
] |
def x(chart):
almutems = {}
hylegic = [chart.getObject(const.SUN), chart.getObject(const.MOON),
chart.getAngle(const.ASC), chart.getObject(const.PARS_FORTUNA),
chart.getObject(const.SYZYGY)]
for hyleg in hylegic:
row = newRow()
digInfo = essential.getInfo(hyleg.sign, hyleg.signlon)
for dignity in DIGNITY_LIST:
objID = digInfo[dignity]
if objID:
score = essential.SCORES[dignity]
row[objID]['string'] += '+%s' % score
row[objID]['score'] += score
almutems[hyleg.id] = row
row = newRow()
for objID in OBJECT_LIST:
obj = chart.getObject(objID)
house = chart.houses.getObjectHouse(obj)
score = HOUSE_SCORES[house.id]
row[objID]['string'] = '+%s' % score
row[objID]['score'] = score
almutems['Houses'] = row
row = newRow()
table = planetarytime.getHourTable(chart.date, chart.pos)
ruler = table.currRuler()
hourRuler = table.hourRuler()
row[ruler] = {'string': '+7', 'score': 7}
row[hourRuler] = {'string': '+6', 'score': 6}
almutems['Rulers'] = row
scores = newRow()
for _property, _list in almutems.items():
for objID, values in _list.items():
scores[objID]['string'] += values['string']
scores[objID]['score'] += values['score']
almutems['Score'] = scores
return almutems
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chart):\n almutems = {}\n hylegic = [chart.getObject(const.SUN), chart.getObject(const.MOON),\n chart.getAngle(const.ASC), chart.getObject(const.PARS_FORTUNA),\n chart.getObject(const.SYZYGY)]\n for hyleg in hylegic:\n row = newRow()\n digInfo = essential.getInfo(hyleg.sign, hyleg.signlon)\n for dignity in DIGNITY_LIST:\n objID = digInfo[dignity]\n if objID:\n score = essential.SCORES[dignity]\n row[objID]['string'] += '+%s' % score\n row[objID]['score'] += score\n almutems[hyleg.id] = row\n row = newRow()\n for objID in OBJECT_LIST:\n obj = chart.getObject(objID)\n house = chart.houses.getObjectHouse(obj)\n score = HOUSE_SCORES[house.id]\n row[objID]['string'] = '+%s' % score\n row[objID]['score'] = score\n almutems['Houses'] = row\n row = newRow()\n table = planetarytime.getHourTable(chart.date, chart.pos)\n ruler = table.currRuler()\n hourRuler = table.hourRuler()\n row[ruler] = {'string': '+7', 'score': 7}\n row[hourRuler] = {'string': '+6', 'score': 6}\n almutems['Rulers'] = row\n scores = newRow()\n for _property, _list in almutems.items():\n for objID, values in _list.items():\n scores[objID]['string'] += values['string']\n scores[objID]['score'] += values['score']\n almutems['Score'] = scores\n return almutems\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(self, resource_id=None, resource_action=None, resource_cls=None,
single_resource=False):
endpoint = self.endpoint
if not resource_cls:
resource_cls = self._cls
if resource_id:
endpoint = self._build_url(endpoint, resource_id)
if resource_action:
endpoint = self._build_url(endpoint, resource_action)
response = self.api.execute('GET', endpoint)
if not response.ok:
raise Error.parse(response.json())
if resource_id or single_resource:
return resource_cls.parse(response.json())
return [resource_cls.parse(resource) for resource in response.json()]
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resource_id=None, resource_action=None, resource_cls=None,\n single_resource=False):\n endpoint = self.endpoint\n if not resource_cls:\n resource_cls = self._cls\n if resource_id:\n endpoint = self._build_url(endpoint, resource_id)\n if resource_action:\n endpoint = self._build_url(endpoint, resource_action)\n response = self.api.execute('GET', endpoint)\n if not response.ok:\n raise Error.parse(response.json())\n if resource_id or single_resource:\n return resource_cls.parse(response.json())\n return [resource_cls.parse(resource) for resource in response.json()]\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, resource):
response = self.api.execute('POST', self.endpoint, json=resource.as_dict())
if not response.ok:
raise Error.parse(response.json())
return self._cls.parse(response.json())
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resource):\n response = self.api.execute('POST', self.endpoint, json=resource.as_dict())\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self, resource):
endpoint = self.endpoint
if resource.id:
endpoint = self._build_url(endpoint, resource.id)
response = self.api.execute('PUT', endpoint, json=resource.as_dict())
if not response.ok:
raise Error.parse(response.json())
return self._cls.parse(response.json())
|
put
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resource):\n endpoint = self.endpoint\n if resource.id:\n endpoint = self._build_url(endpoint, resource.id)\n response = self.api.execute('PUT', endpoint, json=resource.as_dict())\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n",
"role": "user"
},
{
"content": "put",
"role": "assistant"
}
] |
def x(self, resource_id):
endpoint = '{}/{}'.format(self.endpoint, resource_id)
response = self.api.execute('DELETE', endpoint)
if not response.ok:
raise Error.parse(response.json())
return self._cls.parse(response.json())
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, resource_id):\n endpoint = '{}/{}'.format(self.endpoint, resource_id)\n response = self.api.execute('DELETE', endpoint)\n if not response.ok:\n raise Error.parse(response.json())\n return self._cls.parse(response.json())\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self):
result = {}
for key in self._valid_properties:
val = getattr(self, key)
if isinstance(val, datetime):
val = val.isoformat()
elif val and not Model._is_builtin(val):
val = val.as_dict()
elif isinstance(val, list):
for i in range(len(val)):
if Model._is_builtin(val[i]):
continue
val[i] = val[i].as_dict()
elif isinstance(val, bool):
result[key] = val
if val:
result[key] = val
return result
|
as_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = {}\n for key in self._valid_properties:\n val = getattr(self, key)\n if isinstance(val, datetime):\n val = val.isoformat()\n elif val and not Model._is_builtin(val):\n val = val.as_dict()\n elif isinstance(val, list):\n for i in range(len(val)):\n if Model._is_builtin(val[i]):\n continue\n val[i] = val[i].as_dict()\n elif isinstance(val, bool):\n result[key] = val\n if val:\n result[key] = val\n return result\n",
"role": "user"
},
{
"content": "as_dict",
"role": "assistant"
}
] |
def x(self, method, path, **kwargs):
url = '{}{}'.format(self.host, path)
kwargs.update(self._client_kwargs)
response = requests.request(method, url, headers={'Authorization':
'Bearer {}'.format(self.api_key)}, **kwargs)
return response
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, path, **kwargs):\n url = '{}{}'.format(self.host, path)\n kwargs.update(self._client_kwargs)\n response = requests.request(method, url, headers={'Authorization':\n 'Bearer {}'.format(self.api_key)}, **kwargs)\n return response\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self, campaign_id):
return super(API, self).get(resource_id=campaign_id, resource_action=
'complete')
|
complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, campaign_id):\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'complete')\n",
"role": "user"
},
{
"content": "complete",
"role": "assistant"
}
] |
def x(self, campaign_id=None):
resource_cls = CampaignSummary
single_resource = False
if not campaign_id:
resource_cls = CampaignSummaries
single_resource = True
return super(API, self).get(resource_id=campaign_id, resource_action=
'summary', resource_cls=resource_cls, single_resource=single_resource)
|
summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, campaign_id=None):\n resource_cls = CampaignSummary\n single_resource = False\n if not campaign_id:\n resource_cls = CampaignSummaries\n single_resource = True\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'summary', resource_cls=resource_cls, single_resource=single_resource)\n",
"role": "user"
},
{
"content": "summary",
"role": "assistant"
}
] |
def x(self, campaign_id):
return super(API, self).get(resource_id=campaign_id, resource_action=
'results', resource_cls=CampaignResults)
|
results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, campaign_id):\n return super(API, self).get(resource_id=campaign_id, resource_action=\n 'results', resource_cls=CampaignResults)\n",
"role": "user"
},
{
"content": "results",
"role": "assistant"
}
] |
def x(self, file_path):
if not file_path:
self.read_data = self.memory_read
self.write_data = self.memory_write
elif not is_valid(file_path):
self.write_data(file_path, {})
self.path = file_path
|
set_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file_path):\n if not file_path:\n self.read_data = self.memory_read\n self.write_data = self.memory_write\n elif not is_valid(file_path):\n self.write_data(file_path, {})\n self.path = file_path\n",
"role": "user"
},
{
"content": "set_path",
"role": "assistant"
}
] |
def x(self, key):
obj = self._get_content()
obj.pop(key, None)
self.write_data(self.path, obj)
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n obj = self._get_content()\n obj.pop(key, None)\n self.write_data(self.path, obj)\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, **kwargs):
key = kwargs.pop('key', None)
value = kwargs.pop('value', None)
dictionary = kwargs.pop('dictionary', None)
if (key is not None and dictionary is not None or value is not None and
dictionary is not None):
raise ValueError
if key is not None and value is None:
return self._get_content(key)
if key is not None and value is not None:
self._set_content(key, value)
if dictionary is not None:
for key in dictionary.keys():
value = dictionary[key]
self._set_content(key, value)
return self._get_content()
|
data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n key = kwargs.pop('key', None)\n value = kwargs.pop('value', None)\n dictionary = kwargs.pop('dictionary', None)\n if (key is not None and dictionary is not None or value is not None and\n dictionary is not None):\n raise ValueError\n if key is not None and value is None:\n return self._get_content(key)\n if key is not None and value is not None:\n self._set_content(key, value)\n if dictionary is not None:\n for key in dictionary.keys():\n value = dictionary[key]\n self._set_content(key, value)\n return self._get_content()\n",
"role": "user"
},
{
"content": "data",
"role": "assistant"
}
] |
def x(self, filter_arguments):
results = self._get_content()
if isinstance(filter_arguments, dict):
for item, content in iteritems(self._get_content()):
for key, value in iteritems(filter_arguments):
keys = key.split('.')
value = filter_arguments[key]
if not self._contains_value({item: content}, keys, value):
del results[item]
if isinstance(filter_arguments, str):
if filter_arguments in results:
return [{filter_arguments: results[filter_arguments]}]
else:
return []
return results
|
filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filter_arguments):\n results = self._get_content()\n if isinstance(filter_arguments, dict):\n for item, content in iteritems(self._get_content()):\n for key, value in iteritems(filter_arguments):\n keys = key.split('.')\n value = filter_arguments[key]\n if not self._contains_value({item: content}, keys, value):\n del results[item]\n if isinstance(filter_arguments, str):\n if filter_arguments in results:\n return [{filter_arguments: results[filter_arguments]}]\n else:\n return []\n return results\n",
"role": "user"
},
{
"content": "filter",
"role": "assistant"
}
] |
def x(self):
import os
if self.path:
if os.path.exists(self.path):
os.remove(self.path)
else:
self._data = {}
|
drop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n import os\n if self.path:\n if os.path.exists(self.path):\n os.remove(self.path)\n else:\n self._data = {}\n",
"role": "user"
},
{
"content": "drop",
"role": "assistant"
}
] |
def x(file_path):
if not is_valid(file_path):
write_data(file_path, {})
db = open_file_for_reading(file_path)
content = db.read()
obj = decode(content)
db.close()
return obj
|
read_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n if not is_valid(file_path):\n write_data(file_path, {})\n db = open_file_for_reading(file_path)\n content = db.read()\n obj = decode(content)\n db.close()\n return obj\n",
"role": "user"
},
{
"content": "read_data",
"role": "assistant"
}
] |
def x(path, obj):
with open_file_for_writing(path) as db:
db.write(encode(obj))
return obj
|
write_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, obj):\n with open_file_for_writing(path) as db:\n db.write(encode(obj))\n return obj\n",
"role": "user"
},
{
"content": "write_data",
"role": "assistant"
}
] |
def x(file_path):
from os import path, stat
can_open = False
try:
with open(file_path) as fp:
can_open = True
except IOError:
return False
is_file = path.isfile(file_path)
return path.exists(file_path) and is_file and stat(file_path).st_size > 0
|
is_valid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n from os import path, stat\n can_open = False\n try:\n with open(file_path) as fp:\n can_open = True\n except IOError:\n return False\n is_file = path.isfile(file_path)\n return path.exists(file_path) and is_file and stat(file_path).st_size > 0\n",
"role": "user"
},
{
"content": "is_valid",
"role": "assistant"
}
] |
def x(node_coords, cells_nodes, edge_nodes, cells_edges):
num_nodes = len(node_coords)
num_new_nodes = len(edge_nodes)
node_coords.resize(num_nodes + num_new_nodes, 3, refcheck=False)
new_node_gid = num_nodes
num_edges = len(edge_nodes)
num_cells = len(cells_nodes)
assert num_cells == len(cells_edges)
num_new_edges = 2 * num_edges + 3 * num_cells
new_edges_nodes = numpy.empty(num_new_edges, dtype=numpy.dtype((int, 2)))
new_edge_gid = 0
num_new_cells = 4 * num_cells
new_cells_nodes = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))
new_cells_edges = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))
new_cell_gid = 0
is_edge_divided = numpy.zeros(num_edges, dtype=bool)
edge_midpoint_gids = numpy.empty(num_edges, dtype=int)
edge_newedges_gids = numpy.empty(num_edges, dtype=numpy.dtype((int, 2)))
for cell_id, cell in enumerate(zip(cells_edges, cells_nodes)):
cell_edges, cell_nodes = cell
local_edge_midpoint_gids = numpy.empty(3, dtype=int)
local_edge_newedges = numpy.empty(3, dtype=numpy.dtype((int, 2)))
local_neighbor_midpoints = [[], [], []]
local_neighbor_newedges = [[], [], []]
for k, edge_gid in enumerate(cell_edges):
edgenodes_gids = edge_nodes[edge_gid]
if is_edge_divided[edge_gid]:
local_edge_midpoint_gids[k] = edge_midpoint_gids[edge_gid]
local_edge_newedges[k] = edge_newedges_gids[edge_gid]
else:
node_coords[new_node_gid] = 0.5 * (node_coords[
edgenodes_gids[0]] + node_coords[edgenodes_gids[1]])
local_edge_midpoint_gids[k] = new_node_gid
new_node_gid += 1
edge_midpoint_gids[edge_gid] = local_edge_midpoint_gids[k]
new_edges_nodes[new_edge_gid] = numpy.array([edgenodes_gids
[0], local_edge_midpoint_gids[k]])
new_edge_gid += 1
new_edges_nodes[new_edge_gid] = numpy.array([
local_edge_midpoint_gids[k], edgenodes_gids[1]])
new_edge_gid += 1
local_edge_newedges[k] = [new_edge_gid - 2, new_edge_gid - 1]
edge_newedges_gids[edge_gid] = local_edge_newedges[k]
is_edge_divided[edge_gid] = True
edgenodes_lids = [numpy.nonzero(cell_nodes == edgenodes_gids[0]
)[0][0], numpy.nonzero(cell_nodes == edgenodes_gids[1])[0][0]]
local_neighbor_midpoints[edgenodes_lids[0]].append(
local_edge_midpoint_gids[k])
local_neighbor_midpoints[edgenodes_lids[1]].append(
local_edge_midpoint_gids[k])
local_neighbor_newedges[edgenodes_lids[0]].append(
local_edge_newedges[k][0])
local_neighbor_newedges[edgenodes_lids[1]].append(
local_edge_newedges[k][1])
new_edge_opposite_of_local_node = numpy.empty(3, dtype=int)
for k in range(3):
new_edges_nodes[new_edge_gid] = local_neighbor_midpoints[k]
new_edge_opposite_of_local_node[k] = new_edge_gid
new_edge_gid += 1
new_cells_nodes[new_cell_gid] = local_edge_midpoint_gids
new_cells_edges[new_cell_gid] = new_edge_opposite_of_local_node
new_cell_gid += 1
for k in range(3):
new_cells_nodes[new_cell_gid] = numpy.array([cells_nodes[
cell_id][k], local_neighbor_midpoints[k][0],
local_neighbor_midpoints[k][1]])
new_cells_edges[new_cell_gid] = numpy.array([
new_edge_opposite_of_local_node[k], local_neighbor_newedges
[k][0], local_neighbor_newedges[k][1]])
new_cell_gid += 1
return node_coords, new_cells_nodes, new_edges_nodes, new_cells_edges
|
refine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(node_coords, cells_nodes, edge_nodes, cells_edges):\n num_nodes = len(node_coords)\n num_new_nodes = len(edge_nodes)\n node_coords.resize(num_nodes + num_new_nodes, 3, refcheck=False)\n new_node_gid = num_nodes\n num_edges = len(edge_nodes)\n num_cells = len(cells_nodes)\n assert num_cells == len(cells_edges)\n num_new_edges = 2 * num_edges + 3 * num_cells\n new_edges_nodes = numpy.empty(num_new_edges, dtype=numpy.dtype((int, 2)))\n new_edge_gid = 0\n num_new_cells = 4 * num_cells\n new_cells_nodes = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))\n new_cells_edges = numpy.empty(num_new_cells, dtype=numpy.dtype((int, 3)))\n new_cell_gid = 0\n is_edge_divided = numpy.zeros(num_edges, dtype=bool)\n edge_midpoint_gids = numpy.empty(num_edges, dtype=int)\n edge_newedges_gids = numpy.empty(num_edges, dtype=numpy.dtype((int, 2)))\n for cell_id, cell in enumerate(zip(cells_edges, cells_nodes)):\n cell_edges, cell_nodes = cell\n local_edge_midpoint_gids = numpy.empty(3, dtype=int)\n local_edge_newedges = numpy.empty(3, dtype=numpy.dtype((int, 2)))\n local_neighbor_midpoints = [[], [], []]\n local_neighbor_newedges = [[], [], []]\n for k, edge_gid in enumerate(cell_edges):\n edgenodes_gids = edge_nodes[edge_gid]\n if is_edge_divided[edge_gid]:\n local_edge_midpoint_gids[k] = edge_midpoint_gids[edge_gid]\n local_edge_newedges[k] = edge_newedges_gids[edge_gid]\n else:\n node_coords[new_node_gid] = 0.5 * (node_coords[\n edgenodes_gids[0]] + node_coords[edgenodes_gids[1]])\n local_edge_midpoint_gids[k] = new_node_gid\n new_node_gid += 1\n edge_midpoint_gids[edge_gid] = local_edge_midpoint_gids[k]\n new_edges_nodes[new_edge_gid] = numpy.array([edgenodes_gids\n [0], local_edge_midpoint_gids[k]])\n new_edge_gid += 1\n new_edges_nodes[new_edge_gid] = numpy.array([\n local_edge_midpoint_gids[k], edgenodes_gids[1]])\n new_edge_gid += 1\n local_edge_newedges[k] = [new_edge_gid - 2, new_edge_gid - 1]\n edge_newedges_gids[edge_gid] = local_edge_newedges[k]\n is_edge_divided[edge_gid] = True\n edgenodes_lids = [numpy.nonzero(cell_nodes == edgenodes_gids[0]\n )[0][0], numpy.nonzero(cell_nodes == edgenodes_gids[1])[0][0]]\n local_neighbor_midpoints[edgenodes_lids[0]].append(\n local_edge_midpoint_gids[k])\n local_neighbor_midpoints[edgenodes_lids[1]].append(\n local_edge_midpoint_gids[k])\n local_neighbor_newedges[edgenodes_lids[0]].append(\n local_edge_newedges[k][0])\n local_neighbor_newedges[edgenodes_lids[1]].append(\n local_edge_newedges[k][1])\n new_edge_opposite_of_local_node = numpy.empty(3, dtype=int)\n for k in range(3):\n new_edges_nodes[new_edge_gid] = local_neighbor_midpoints[k]\n new_edge_opposite_of_local_node[k] = new_edge_gid\n new_edge_gid += 1\n new_cells_nodes[new_cell_gid] = local_edge_midpoint_gids\n new_cells_edges[new_cell_gid] = new_edge_opposite_of_local_node\n new_cell_gid += 1\n for k in range(3):\n new_cells_nodes[new_cell_gid] = numpy.array([cells_nodes[\n cell_id][k], local_neighbor_midpoints[k][0],\n local_neighbor_midpoints[k][1]])\n new_cells_edges[new_cell_gid] = numpy.array([\n new_edge_opposite_of_local_node[k], local_neighbor_newedges\n [k][0], local_neighbor_newedges[k][1]])\n new_cell_gid += 1\n return node_coords, new_cells_nodes, new_edges_nodes, new_cells_edges\n",
"role": "user"
},
{
"content": "refine",
"role": "assistant"
}
] |
def x(cells_nodes):
local_idx = numpy.array([[1, 2], [2, 0], [0, 1]]).T
nds = cells_nodes.T
idx_hierarchy = nds[local_idx]
s = idx_hierarchy.shape
a = numpy.sort(idx_hierarchy.reshape(s[0], s[1] * s[2]).T)
b = numpy.ascontiguousarray(a).view(numpy.dtype((numpy.void, a.dtype.
itemsize * a.shape[1])))
_, idx, inv, cts = numpy.unique(b, return_index=True, return_inverse=
True, return_counts=True)
assert all(cts < 3)
edge_nodes = a[idx]
cells_edges = inv.reshape(3, -1).T
return edge_nodes, cells_edges
|
create_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cells_nodes):\n local_idx = numpy.array([[1, 2], [2, 0], [0, 1]]).T\n nds = cells_nodes.T\n idx_hierarchy = nds[local_idx]\n s = idx_hierarchy.shape\n a = numpy.sort(idx_hierarchy.reshape(s[0], s[1] * s[2]).T)\n b = numpy.ascontiguousarray(a).view(numpy.dtype((numpy.void, a.dtype.\n itemsize * a.shape[1])))\n _, idx, inv, cts = numpy.unique(b, return_index=True, return_inverse=\n True, return_counts=True)\n assert all(cts < 3)\n edge_nodes = a[idx]\n cells_edges = inv.reshape(3, -1).T\n return edge_nodes, cells_edges\n",
"role": "user"
},
{
"content": "create_edges",
"role": "assistant"
}
] |
def x(points, cells, mesh_color='k', show_axes=False):
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
fig = plt.figure()
ax = fig.gca()
plt.axis('equal')
if not show_axes:
ax.set_axis_off()
xmin = numpy.amin(points[:, 0])
xmax = numpy.amax(points[:, 0])
ymin = numpy.amin(points[:, 1])
ymax = numpy.amax(points[:, 1])
width = xmax - xmin
xmin -= 0.1 * width
xmax += 0.1 * width
height = ymax - ymin
ymin -= 0.1 * height
ymax += 0.1 * height
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
edge_nodes, _ = create_edges(cells)
e = points[edge_nodes][:, :, :2]
line_segments = LineCollection(e, color=mesh_color)
ax.add_collection(line_segments)
return fig
|
plot2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, cells, mesh_color='k', show_axes=False):\n import matplotlib.pyplot as plt\n from matplotlib.collections import LineCollection\n fig = plt.figure()\n ax = fig.gca()\n plt.axis('equal')\n if not show_axes:\n ax.set_axis_off()\n xmin = numpy.amin(points[:, 0])\n xmax = numpy.amax(points[:, 0])\n ymin = numpy.amin(points[:, 1])\n ymax = numpy.amax(points[:, 1])\n width = xmax - xmin\n xmin -= 0.1 * width\n xmax += 0.1 * width\n height = ymax - ymin\n ymin -= 0.1 * height\n ymax += 0.1 * height\n ax.set_xlim(xmin, xmax)\n ax.set_ylim(ymin, ymax)\n edge_nodes, _ = create_edges(cells)\n e = points[edge_nodes][:, :, :2]\n line_segments = LineCollection(e, color=mesh_color)\n ax.add_collection(line_segments)\n return fig\n",
"role": "user"
},
{
"content": "plot2d",
"role": "assistant"
}
] |
def x(self, job, result):
self.job.put(job)
r = result.get()
return r
|
put
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, job, result):\n self.job.put(job)\n r = result.get()\n return r\n",
"role": "user"
},
{
"content": "put",
"role": "assistant"
}
] |
def x(self, jobs, result):
for j in jobs:
WorkerPool.put(self, j)
r = []
for i in xrange(len(jobs)):
r.append(result.get())
return r
|
contract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, jobs, result):\n for j in jobs:\n WorkerPool.put(self, j)\n r = []\n for i in xrange(len(jobs)):\n r.append(result.get())\n return r\n",
"role": "user"
},
{
"content": "contract",
"role": "assistant"
}
] |
def x(self):
t = self.worker_factory(self)
t.start()
self._size += 1
|
grow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n t = self.worker_factory(self)\n t.start()\n self._size += 1\n",
"role": "user"
},
{
"content": "grow",
"role": "assistant"
}
] |
def x(self):
if self._size <= 0:
raise IndexError('pool is already empty')
self._size -= 1
self.put(SuicideJob())
|
shrink
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._size <= 0:\n raise IndexError('pool is already empty')\n self._size -= 1\n self.put(SuicideJob())\n",
"role": "user"
},
{
"content": "shrink",
"role": "assistant"
}
] |
def x(self, fn, *seq):
"""block until done."""
results = Queue()
args = zip(*seq)
for seq in args:
j = SimpleJob(results, fn, seq)
self.put(j)
r = []
for i in range(len(list(args))):
r.append(results.get())
return r
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fn, *seq):\n \"\"\"block until done.\"\"\"\n results = Queue()\n args = zip(*seq)\n for seq in args:\n j = SimpleJob(results, fn, seq)\n self.put(j)\n r = []\n for i in range(len(list(args))):\n r.append(results.get())\n return r\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(num_twists=1, nl=60, nw=11, mode='classical'):
width = 1.0
scale = 10.0
r = 1.0
alpha0 = 0.0
flatness = 1.0
u_range = numpy.linspace(0.0, 2 * numpy.pi, num=nl, endpoint=False)
v_range = numpy.linspace(-0.5 * width, 0.5 * width, num=nw)
sin_u = numpy.sin(u_range)
cos_u = numpy.cos(u_range)
alpha = num_twists * 0.5 * u_range + alpha0
sin_alpha = numpy.sin(alpha)
cos_alpha = numpy.cos(alpha)
if mode == 'classical':
a = cos_alpha
b = sin_alpha
reverse_seam = num_twists % 2 == 1
elif mode == 'smooth':
a = numpy.copysign(cos_alpha ** 2, cos_alpha)
b = numpy.copysign(sin_alpha ** 2, sin_alpha)
reverse_seam = num_twists % 2 == 1
else:
assert mode == 'pseudo'
a = cos_alpha ** 2
b = sin_alpha ** 2
reverse_seam = False
nodes = scale * numpy.array([numpy.outer(a * cos_u, v_range) + r *
cos_u[:, numpy.newaxis], numpy.outer(a * sin_u, v_range) + r *
sin_u[:, numpy.newaxis], numpy.outer(b, v_range) * flatness]).reshape(
3, -1).T
elems = _create_elements(nl, nw, reverse_seam)
return nodes, elems
|
moebius
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(num_twists=1, nl=60, nw=11, mode='classical'):\n width = 1.0\n scale = 10.0\n r = 1.0\n alpha0 = 0.0\n flatness = 1.0\n u_range = numpy.linspace(0.0, 2 * numpy.pi, num=nl, endpoint=False)\n v_range = numpy.linspace(-0.5 * width, 0.5 * width, num=nw)\n sin_u = numpy.sin(u_range)\n cos_u = numpy.cos(u_range)\n alpha = num_twists * 0.5 * u_range + alpha0\n sin_alpha = numpy.sin(alpha)\n cos_alpha = numpy.cos(alpha)\n if mode == 'classical':\n a = cos_alpha\n b = sin_alpha\n reverse_seam = num_twists % 2 == 1\n elif mode == 'smooth':\n a = numpy.copysign(cos_alpha ** 2, cos_alpha)\n b = numpy.copysign(sin_alpha ** 2, sin_alpha)\n reverse_seam = num_twists % 2 == 1\n else:\n assert mode == 'pseudo'\n a = cos_alpha ** 2\n b = sin_alpha ** 2\n reverse_seam = False\n nodes = scale * numpy.array([numpy.outer(a * cos_u, v_range) + r *\n cos_u[:, numpy.newaxis], numpy.outer(a * sin_u, v_range) + r *\n sin_u[:, numpy.newaxis], numpy.outer(b, v_range) * flatness]).reshape(\n 3, -1).T\n elems = _create_elements(nl, nw, reverse_seam)\n return nodes, elems\n",
"role": "user"
},
{
"content": "moebius",
"role": "assistant"
}
] |
def x(self):
while 1:
job = self.jobs.get()
try:
job.run()
self.jobs.task_done()
except TerminationNotice:
self.jobs.task_done()
break
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n while 1:\n job = self.jobs.get()\n try:\n job.run()\n self.jobs.task_done()\n except TerminationNotice:\n self.jobs.task_done()\n break\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(contents, domain=DEFAULT_DOMAIN, force_gist=False):
url = make_url(contents, domain, force_gist)
webbrowser.open(url)
return url
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents, domain=DEFAULT_DOMAIN, force_gist=False):\n url = make_url(contents, domain, force_gist)\n webbrowser.open(url)\n return url\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(contents='', width='100%', height=512, *args, **kwargs):
from IPython.display import HTML
url = make_url(contents, *args, **kwargs)
html = '<iframe src={url} width={width} height={height}></iframe>'.format(
url=url, width=width, height=height)
return HTML(html)
|
embed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents='', width='100%', height=512, *args, **kwargs):\n from IPython.display import HTML\n url = make_url(contents, *args, **kwargs)\n html = '<iframe src={url} width={width} height={height}></iframe>'.format(\n url=url, width=width, height=height)\n return HTML(html)\n",
"role": "user"
},
{
"content": "embed",
"role": "assistant"
}
] |
def x(contents, domain=DEFAULT_DOMAIN, force_gist=False, size_for_gist=
MAX_URL_LEN):
contents = make_geojson(contents)
if len(contents) <= size_for_gist and not force_gist:
url = data_url(contents, domain)
else:
gist = _make_gist(contents)
url = gist_url(gist.id, domain)
return url
|
make_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents, domain=DEFAULT_DOMAIN, force_gist=False, size_for_gist=\n MAX_URL_LEN):\n contents = make_geojson(contents)\n if len(contents) <= size_for_gist and not force_gist:\n url = data_url(contents, domain)\n else:\n gist = _make_gist(contents)\n url = gist_url(gist.id, domain)\n return url\n",
"role": "user"
},
{
"content": "make_url",
"role": "assistant"
}
] |
def x(contents):
if isinstance(contents, six.string_types):
return contents
if hasattr(contents, '__geo_interface__'):
features = [_geo_to_feature(contents)]
else:
try:
feature_iter = iter(contents)
except TypeError:
raise ValueError('Unknown type for input')
features = []
for i, f in enumerate(feature_iter):
if not hasattr(f, '__geo_interface__'):
raise ValueError('Unknown type at index {0}'.format(i))
features.append(_geo_to_feature(f))
data = {'type': 'FeatureCollection', 'features': features}
return json.dumps(data)
|
make_geojson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents):\n if isinstance(contents, six.string_types):\n return contents\n if hasattr(contents, '__geo_interface__'):\n features = [_geo_to_feature(contents)]\n else:\n try:\n feature_iter = iter(contents)\n except TypeError:\n raise ValueError('Unknown type for input')\n features = []\n for i, f in enumerate(feature_iter):\n if not hasattr(f, '__geo_interface__'):\n raise ValueError('Unknown type at index {0}'.format(i))\n features.append(_geo_to_feature(f))\n data = {'type': 'FeatureCollection', 'features': features}\n return json.dumps(data)\n",
"role": "user"
},
{
"content": "make_geojson",
"role": "assistant"
}
] |
def x(contents, domain=DEFAULT_DOMAIN):
url = domain + '#data=data:application/json,' + urllib.parse.quote(contents
)
return url
|
data_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents, domain=DEFAULT_DOMAIN):\n url = domain + '#data=data:application/json,' + urllib.parse.quote(contents\n )\n return url\n",
"role": "user"
},
{
"content": "data_url",
"role": "assistant"
}
] |
def x(contents, description='', filename='data.geojson'):
ghapi = github3.GitHub()
files = {filename: {'content': contents}}
gist = ghapi.create_gist(description, files)
return gist
|
make_gist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(contents, description='', filename='data.geojson'):\n ghapi = github3.GitHub()\n files = {filename: {'content': contents}}\n gist = ghapi.create_gist(description, files)\n return gist\n",
"role": "user"
},
{
"content": "make_gist",
"role": "assistant"
}
] |
def x(a, alpha, beta, t):
n = len(alpha)
assert len(beta) == n
assert len(a) == n + 1
try:
b = numpy.empty((n + 1,) + t.shape)
except AttributeError:
b = numpy.empty(n + 1)
b[0] = 1.0
b[n] = a[n]
b[n - 1] = a[n - 1] + (t - alpha[n - 1]) * b[n]
for k in range(n - 2, 0, -1):
b[k] = a[k] + (t - alpha[k]) * b[k + 1] - beta[k + 1] * b[k + 2]
phi0 = 1.0
phi1 = t - alpha[0]
return phi0 * a[0] + phi1 * b[1] - beta[1] * phi0 * b[2]
|
clenshaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, alpha, beta, t):\n n = len(alpha)\n assert len(beta) == n\n assert len(a) == n + 1\n try:\n b = numpy.empty((n + 1,) + t.shape)\n except AttributeError:\n b = numpy.empty(n + 1)\n b[0] = 1.0\n b[n] = a[n]\n b[n - 1] = a[n - 1] + (t - alpha[n - 1]) * b[n]\n for k in range(n - 2, 0, -1):\n b[k] = a[k] + (t - alpha[k]) * b[k + 1] - beta[k + 1] * b[k + 2]\n phi0 = 1.0\n phi1 = t - alpha[0]\n return phi0 * a[0] + phi1 * b[1] - beta[1] * phi0 * b[2]\n",
"role": "user"
},
{
"content": "clenshaw",
"role": "assistant"
}
] |
def x(X, n, alpha=0, symbolic=False):
args = recurrence_coefficients(n, alpha=alpha, symbolic=symbolic)
return line_tree(X, *args)
|
tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n, alpha=0, symbolic=False):\n args = recurrence_coefficients(n, alpha=alpha, symbolic=symbolic)\n return line_tree(X, *args)\n",
"role": "user"
},
{
"content": "tree",
"role": "assistant"
}
] |
def x(n, alpha, standardization='normal', symbolic=False):
S = sympy.S if symbolic else lambda x: x
sqrt = sympy.sqrt if symbolic else numpy.sqrt
gamma = sympy.gamma if symbolic else scipy.special.gamma
if standardization == 'monic':
p0 = 1
a = n * [1]
b = [(2 * k + 1 + alpha) for k in range(n)]
c = [(k * (k + alpha)) for k in range(n)]
c[0] = gamma(alpha + 1)
elif standardization == 'classical':
p0 = 1
a = [(-S(1) / (k + 1)) for k in range(n)]
b = [(-S(2 * k + 1 + alpha) / (k + 1)) for k in range(n)]
c = [(S(k + alpha) / (k + 1)) for k in range(n)]
c[0] = numpy.nan
else:
assert standardization == 'normal', "Unknown Laguerre standardization '{}'.".format(
standardization)
p0 = 1 / sqrt(gamma(alpha + 1))
a = [(-1 / sqrt((k + 1) * (k + 1 + alpha))) for k in range(n)]
b = [(-(2 * k + 1 + alpha) / sqrt((k + 1) * (k + 1 + alpha))) for k in
range(n)]
c = [sqrt(k * S(k + alpha) / ((k + 1) * (k + 1 + alpha))) for k in
range(n)]
c[0] = numpy.nan
return p0, numpy.array(a), numpy.array(b), numpy.array(c)
|
recurrence_coefficients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, alpha, standardization='normal', symbolic=False):\n S = sympy.S if symbolic else lambda x: x\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n gamma = sympy.gamma if symbolic else scipy.special.gamma\n if standardization == 'monic':\n p0 = 1\n a = n * [1]\n b = [(2 * k + 1 + alpha) for k in range(n)]\n c = [(k * (k + alpha)) for k in range(n)]\n c[0] = gamma(alpha + 1)\n elif standardization == 'classical':\n p0 = 1\n a = [(-S(1) / (k + 1)) for k in range(n)]\n b = [(-S(2 * k + 1 + alpha) / (k + 1)) for k in range(n)]\n c = [(S(k + alpha) / (k + 1)) for k in range(n)]\n c[0] = numpy.nan\n else:\n assert standardization == 'normal', \"Unknown Laguerre standardization '{}'.\".format(\n standardization)\n p0 = 1 / sqrt(gamma(alpha + 1))\n a = [(-1 / sqrt((k + 1) * (k + 1 + alpha))) for k in range(n)]\n b = [(-(2 * k + 1 + alpha) / sqrt((k + 1) * (k + 1 + alpha))) for k in\n range(n)]\n c = [sqrt(k * S(k + alpha) / ((k + 1) * (k + 1 + alpha))) for k in\n range(n)]\n c[0] = numpy.nan\n return p0, numpy.array(a), numpy.array(b), numpy.array(c)\n",
"role": "user"
},
{
"content": "recurrence_coefficients",
"role": "assistant"
}
] |
def x(n, alpha, beta, standardization, symbolic=False):
gamma = sympy.gamma if symbolic else lambda x: scipy.special.gamma(float(x)
)
def x(x, y):
return sympy.Rational(x, y) if all([isinstance(val, int) for val in
[x, y]]) else x / y
frac = rational if symbolic else lambda x, y: x / y
sqrt = sympy.sqrt if symbolic else numpy.sqrt
int_1 = 2 ** (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1
) / gamma(alpha + beta + 2)
if standardization == 'monic':
p0 = 1
a = numpy.ones(n, dtype=int)
if isinstance(alpha, numpy.int64):
alpha = int(alpha)
if isinstance(beta, numpy.int64):
beta = int(beta)
b = [(frac(beta - alpha, alpha + beta + 2) if N == 0 else frac(beta **
2 - alpha ** 2, (2 * N + alpha + beta) * (2 * N + alpha + beta +
2))) for N in range(n)]
c = [(int_1 if N == 0 else frac(4 * (1 + alpha) * (1 + beta), (2 +
alpha + beta) ** 2 * (3 + alpha + beta)) if N == 1 else frac(4 *
(N + alpha) * (N + beta) * N * (N + alpha + beta), (2 * N +
alpha + beta) ** 2 * (2 * N + alpha + beta + 1) * (2 * N +
alpha + beta - 1))) for N in range(n)]
elif standardization == 'p(1)=(n+alpha over n)' or alpha == 0 and standardization == 'p(1)=1':
p0 = 1
if isinstance(alpha, numpy.int64):
alpha = int(alpha)
if isinstance(beta, numpy.int64):
beta = int(beta)
a = [(frac(alpha + beta + 2, 2) if N == 0 else frac((2 * N + alpha +
beta + 1) * (2 * N + alpha + beta + 2), 2 * (N + 1) * (N +
alpha + beta + 1))) for N in range(n)]
b = [(frac(beta - alpha, 2) if N == 0 else frac((beta ** 2 - alpha **
2) * (2 * N + alpha + beta + 1), 2 * (N + 1) * (N + alpha +
beta + 1) * (2 * N + alpha + beta))) for N in range(n)]
c = [(int_1 if N == 0 else frac((N + alpha) * (N + beta) * (2 * N +
alpha + beta + 2), (N + 1) * (N + alpha + beta + 1) * (2 * N +
alpha + beta))) for N in range(n)]
else:
assert standardization == 'normal', "Unknown standardization '{}'.".format(
standardization)
p0 = sqrt(1 / int_1)
a = [(frac(alpha + beta + 2, 2) * sqrt(frac(alpha + beta + 3, (
alpha + 1) * (beta + 1))) if N == 0 else frac(2 * N + alpha +
beta + 2, 2) * sqrt(frac((2 * N + alpha + beta + 1) * (2 * N +
alpha + beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) *
(N + alpha + beta + 1)))) for N in range(n)]
b = [((frac(beta - alpha, 2) if N == 0 else frac(beta ** 2 - alpha **
2, 2 * (2 * N + alpha + beta))) * sqrt(frac((2 * N + alpha +
beta + 3) * (2 * N + alpha + beta + 1), (N + 1) * (N + alpha +
1) * (N + beta + 1) * (N + alpha + beta + 1)))) for N in range(n)]
c = [(int_1 if N == 0 else frac(4 + alpha + beta, 2 + alpha + beta) *
sqrt(frac((1 + alpha) * (1 + beta) * (5 + alpha + beta), 2 * (2 +
alpha) * (2 + beta) * (2 + alpha + beta))) if N == 1 else frac(
2 * N + alpha + beta + 2, 2 * N + alpha + beta) * sqrt(frac(N *
(N + alpha) * (N + beta) * (N + alpha + beta) * (2 * N + alpha +
beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N +
alpha + beta + 1) * (2 * N + alpha + beta - 1)))) for N in range(n)
]
return p0, numpy.array(a), numpy.array(b), numpy.array(c)
|
jacobi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, alpha, beta, standardization, symbolic=False):\n gamma = sympy.gamma if symbolic else lambda x: scipy.special.gamma(float(x)\n )\n\n def x(x, y):\n return sympy.Rational(x, y) if all([isinstance(val, int) for val in\n [x, y]]) else x / y\n frac = rational if symbolic else lambda x, y: x / y\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n int_1 = 2 ** (alpha + beta + 1) * gamma(alpha + 1) * gamma(beta + 1\n ) / gamma(alpha + beta + 2)\n if standardization == 'monic':\n p0 = 1\n a = numpy.ones(n, dtype=int)\n if isinstance(alpha, numpy.int64):\n alpha = int(alpha)\n if isinstance(beta, numpy.int64):\n beta = int(beta)\n b = [(frac(beta - alpha, alpha + beta + 2) if N == 0 else frac(beta **\n 2 - alpha ** 2, (2 * N + alpha + beta) * (2 * N + alpha + beta +\n 2))) for N in range(n)]\n c = [(int_1 if N == 0 else frac(4 * (1 + alpha) * (1 + beta), (2 +\n alpha + beta) ** 2 * (3 + alpha + beta)) if N == 1 else frac(4 *\n (N + alpha) * (N + beta) * N * (N + alpha + beta), (2 * N +\n alpha + beta) ** 2 * (2 * N + alpha + beta + 1) * (2 * N +\n alpha + beta - 1))) for N in range(n)]\n elif standardization == 'p(1)=(n+alpha over n)' or alpha == 0 and standardization == 'p(1)=1':\n p0 = 1\n if isinstance(alpha, numpy.int64):\n alpha = int(alpha)\n if isinstance(beta, numpy.int64):\n beta = int(beta)\n a = [(frac(alpha + beta + 2, 2) if N == 0 else frac((2 * N + alpha +\n beta + 1) * (2 * N + alpha + beta + 2), 2 * (N + 1) * (N +\n alpha + beta + 1))) for N in range(n)]\n b = [(frac(beta - alpha, 2) if N == 0 else frac((beta ** 2 - alpha **\n 2) * (2 * N + alpha + beta + 1), 2 * (N + 1) * (N + alpha +\n beta + 1) * (2 * N + alpha + beta))) for N in range(n)]\n c = [(int_1 if N == 0 else frac((N + alpha) * (N + beta) * (2 * N +\n alpha + beta + 2), (N + 1) * (N + alpha + beta + 1) * (2 * N +\n alpha + beta))) for N in range(n)]\n else:\n assert standardization == 'normal', \"Unknown standardization '{}'.\".format(\n standardization)\n p0 = sqrt(1 / int_1)\n a = [(frac(alpha + beta + 2, 2) * sqrt(frac(alpha + beta + 3, (\n alpha + 1) * (beta + 1))) if N == 0 else frac(2 * N + alpha +\n beta + 2, 2) * sqrt(frac((2 * N + alpha + beta + 1) * (2 * N +\n alpha + beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) *\n (N + alpha + beta + 1)))) for N in range(n)]\n b = [((frac(beta - alpha, 2) if N == 0 else frac(beta ** 2 - alpha **\n 2, 2 * (2 * N + alpha + beta))) * sqrt(frac((2 * N + alpha +\n beta + 3) * (2 * N + alpha + beta + 1), (N + 1) * (N + alpha + \n 1) * (N + beta + 1) * (N + alpha + beta + 1)))) for N in range(n)]\n c = [(int_1 if N == 0 else frac(4 + alpha + beta, 2 + alpha + beta) *\n sqrt(frac((1 + alpha) * (1 + beta) * (5 + alpha + beta), 2 * (2 +\n alpha) * (2 + beta) * (2 + alpha + beta))) if N == 1 else frac(\n 2 * N + alpha + beta + 2, 2 * N + alpha + beta) * sqrt(frac(N *\n (N + alpha) * (N + beta) * (N + alpha + beta) * (2 * N + alpha +\n beta + 3), (N + 1) * (N + alpha + 1) * (N + beta + 1) * (N +\n alpha + beta + 1) * (2 * N + alpha + beta - 1)))) for N in range(n)\n ]\n return p0, numpy.array(a), numpy.array(b), numpy.array(c)\n",
"role": "user"
},
{
"content": "jacobi",
"role": "assistant"
}
] |
def x(f, lcar=0.1):
import matplotlib
import matplotlib.pyplot as plt
import pygmsh
geom = pygmsh.built_in.Geometry()
geom.add_circle([0.0, 0.0, 0.0], 1.0, lcar, num_sections=4, compound=True)
points, cells, _, _, _ = pygmsh.generate_mesh(geom, verbose=True)
x = points[:, 0]
y = points[:, 1]
triang = matplotlib.tri.Triangulation(x, y, cells['triangle'])
plt.tripcolor(triang, f(points.T), shading='flat')
plt.colorbar()
plt.set_cmap('coolwarm')
clim = plt.gci().get_clim()
mx = max(abs(clim[0]), abs(clim[1]))
plt.clim(-mx, mx)
circle = plt.Circle((0, 0), 1.0, edgecolor='k', fill=False)
plt.gca().add_artist(circle)
plt.gca().set_aspect('equal')
plt.axis('off')
return
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, lcar=0.1):\n import matplotlib\n import matplotlib.pyplot as plt\n import pygmsh\n geom = pygmsh.built_in.Geometry()\n geom.add_circle([0.0, 0.0, 0.0], 1.0, lcar, num_sections=4, compound=True)\n points, cells, _, _, _ = pygmsh.generate_mesh(geom, verbose=True)\n x = points[:, 0]\n y = points[:, 1]\n triang = matplotlib.tri.Triangulation(x, y, cells['triangle'])\n plt.tripcolor(triang, f(points.T), shading='flat')\n plt.colorbar()\n plt.set_cmap('coolwarm')\n clim = plt.gci().get_clim()\n mx = max(abs(clim[0]), abs(clim[1]))\n plt.clim(-mx, mx)\n circle = plt.Circle((0, 0), 1.0, edgecolor='k', fill=False)\n plt.gca().add_artist(circle)\n plt.gca().set_aspect('equal')\n plt.axis('off')\n return\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(X, n, symbolic=False):
p0, a, b, c = legendre(n + 1, 'normal', symbolic=symbolic)
dim = X.shape[0]
p0n = p0 ** dim
out = []
level = numpy.array([numpy.ones(X.shape[1:], dtype=int) * p0n])
out.append(level)
for L in range(n):
level = []
for i in range(dim - 1):
m1 = int(scipy.special.binom(L + dim - i - 1, dim - i - 1))
if L > 0:
m2 = int(scipy.special.binom(L + dim - i - 2, dim - i - 1))
r = 0
for k in range(L + 1):
m = int(scipy.special.binom(k + dim - i - 2, dim - i - 2))
val = out[L][-m1:][r:r + m] * (a[L - k] * X[i] - b[L - k])
if L - k > 0:
val -= out[L - 1][-m2:][r:r + m] * c[L - k]
r += m
level.append(val)
val = out[L][-1] * (a[L] * X[-1] - b[L])
if L > 0:
val -= out[L - 1][-1] * c[L]
level.append([val])
out.append(numpy.concatenate(level))
return out
|
tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n, symbolic=False):\n p0, a, b, c = legendre(n + 1, 'normal', symbolic=symbolic)\n dim = X.shape[0]\n p0n = p0 ** dim\n out = []\n level = numpy.array([numpy.ones(X.shape[1:], dtype=int) * p0n])\n out.append(level)\n for L in range(n):\n level = []\n for i in range(dim - 1):\n m1 = int(scipy.special.binom(L + dim - i - 1, dim - i - 1))\n if L > 0:\n m2 = int(scipy.special.binom(L + dim - i - 2, dim - i - 1))\n r = 0\n for k in range(L + 1):\n m = int(scipy.special.binom(k + dim - i - 2, dim - i - 2))\n val = out[L][-m1:][r:r + m] * (a[L - k] * X[i] - b[L - k])\n if L - k > 0:\n val -= out[L - 1][-m2:][r:r + m] * c[L - k]\n r += m\n level.append(val)\n val = out[L][-1] * (a[L] * X[-1] - b[L])\n if L > 0:\n val -= out[L - 1][-1] * c[L]\n level.append([val])\n out.append(numpy.concatenate(level))\n return out\n",
"role": "user"
},
{
"content": "tree",
"role": "assistant"
}
] |
def x(t, p0, a, b, c):
vals1 = numpy.zeros_like(t, dtype=int)
vals2 = numpy.ones_like(t) * p0
for a_k, b_k, c_k in zip(a, b, c):
vals0, vals1 = vals1, vals2
vals2 = vals1 * (t * a_k - b_k) - vals0 * c_k
return vals2
|
line_evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t, p0, a, b, c):\n vals1 = numpy.zeros_like(t, dtype=int)\n vals2 = numpy.ones_like(t) * p0\n for a_k, b_k, c_k in zip(a, b, c):\n vals0, vals1 = vals1, vals2\n vals2 = vals1 * (t * a_k - b_k) - vals0 * c_k\n return vals2\n",
"role": "user"
},
{
"content": "line_evaluate",
"role": "assistant"
}
] |
def x(corners, f, n=100):
import matplotlib.tri
import matplotlib.pyplot as plt
def x(boxes, balls):
def x(boxes, balls, parent=tuple()):
if boxes > 1:
for i in range(balls + 1):
for x in rec(boxes - 1, i, parent + (balls - i,)):
yield x
else:
yield parent + (balls,)
return list(rec(boxes, balls))
bary = numpy.array(partition(3, n)).T / n
X = numpy.sum([numpy.outer(bary[k], corners[:, k]) for k in range(3)],
axis=0).T
x = numpy.array(X[0])
y = numpy.array(X[1])
z = numpy.array(f(bary), dtype=float)
triang = matplotlib.tri.Triangulation(x, y)
plt.tripcolor(triang, z, shading='flat')
plt.colorbar()
plt.set_cmap('coolwarm')
clim = plt.gci().get_clim()
mx = max(abs(clim[0]), abs(clim[1]))
plt.clim(-mx, mx)
X = numpy.column_stack([corners, corners[:, 0]])
plt.plot(X[0], X[1], '-k')
plt.gca().set_aspect('equal')
plt.axis('off')
return
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(corners, f, n=100):\n import matplotlib.tri\n import matplotlib.pyplot as plt\n\n def x(boxes, balls):\n\n def x(boxes, balls, parent=tuple()):\n if boxes > 1:\n for i in range(balls + 1):\n for x in rec(boxes - 1, i, parent + (balls - i,)):\n yield x\n else:\n yield parent + (balls,)\n return list(rec(boxes, balls))\n bary = numpy.array(partition(3, n)).T / n\n X = numpy.sum([numpy.outer(bary[k], corners[:, k]) for k in range(3)],\n axis=0).T\n x = numpy.array(X[0])\n y = numpy.array(X[1])\n z = numpy.array(f(bary), dtype=float)\n triang = matplotlib.tri.Triangulation(x, y)\n plt.tripcolor(triang, z, shading='flat')\n plt.colorbar()\n plt.set_cmap('coolwarm')\n clim = plt.gci().get_clim()\n mx = max(abs(clim[0]), abs(clim[1]))\n plt.clim(-mx, mx)\n X = numpy.column_stack([corners, corners[:, 0]])\n plt.plot(X[0], X[1], '-k')\n plt.gca().set_aspect('equal')\n plt.axis('off')\n return\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(key, lookup_dict):
for k, v in lookup_dict.items():
if k.lower() == key.lower():
return v
return None
|
iget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, lookup_dict):\n for k, v in lookup_dict.items():\n if k.lower() == key.lower():\n return v\n return None\n",
"role": "user"
},
{
"content": "iget",
"role": "assistant"
}
] |
def x(name):
direct_match = _iget(name, _LANGUAGE_NAME_LOOKUP)
if direct_match:
return direct_match
else:
simple_name = name.split(',')[0]
simple_name = simple_name.split('(')[0].strip()
return _LANGUAGE_NAME_LOOKUP.get(simple_name, None)
|
getlang_by_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n direct_match = _iget(name, _LANGUAGE_NAME_LOOKUP)\n if direct_match:\n return direct_match\n else:\n simple_name = name.split(',')[0]\n simple_name = simple_name.split('(')[0].strip()\n return _LANGUAGE_NAME_LOOKUP.get(simple_name, None)\n",
"role": "user"
},
{
"content": "getlang_by_name",
"role": "assistant"
}
] |
def x(native_name):
direct_match = _iget(native_name, _LANGUAGE_NATIVE_NAME_LOOKUP)
if direct_match:
return direct_match
else:
simple_native_name = native_name.split(',')[0]
simple_native_name = simple_native_name.split('(')[0].strip()
return _LANGUAGE_NATIVE_NAME_LOOKUP.get(simple_native_name, None)
|
getlang_by_native_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(native_name):\n direct_match = _iget(native_name, _LANGUAGE_NATIVE_NAME_LOOKUP)\n if direct_match:\n return direct_match\n else:\n simple_native_name = native_name.split(',')[0]\n simple_native_name = simple_native_name.split('(')[0].strip()\n return _LANGUAGE_NATIVE_NAME_LOOKUP.get(simple_native_name, None)\n",
"role": "user"
},
{
"content": "getlang_by_native_name",
"role": "assistant"
}
] |
def x(code):
if code == 'iw':
return getlang('he')
elif 'zh-Hans' in code:
return getlang('zh-CN')
elif 'zh-Hant' in code or re.match('zh(.*)?-HK', code):
return getlang('zh-TW')
first_part = code.split('-')[0]
try:
pyc_lang = pycountry.languages.get(alpha_2=first_part)
if pyc_lang:
if hasattr(pyc_lang, 'inverted_name'):
lang_name = pyc_lang.inverted_name
else:
lang_name = pyc_lang.name
return getlang_by_name(lang_name)
else:
return None
except KeyError:
return None
|
getlang_by_alpha2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n if code == 'iw':\n return getlang('he')\n elif 'zh-Hans' in code:\n return getlang('zh-CN')\n elif 'zh-Hant' in code or re.match('zh(.*)?-HK', code):\n return getlang('zh-TW')\n first_part = code.split('-')[0]\n try:\n pyc_lang = pycountry.languages.get(alpha_2=first_part)\n if pyc_lang:\n if hasattr(pyc_lang, 'inverted_name'):\n lang_name = pyc_lang.inverted_name\n else:\n lang_name = pyc_lang.name\n return getlang_by_name(lang_name)\n else:\n return None\n except KeyError:\n return None\n",
"role": "user"
},
{
"content": "getlang_by_alpha2",
"role": "assistant"
}
] |
def x(filename, f):
import meshio
import meshzoo
points, cells = meshzoo.iso_sphere(5)
polar = numpy.arccos(points[:, 2])
azimuthal = numpy.arctan2(points[:, 1], points[:, 0])
vals = f(polar, azimuthal)
meshio.write(filename, points, {'triangle': cells}, point_data={'f': vals})
return
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, f):\n import meshio\n import meshzoo\n points, cells = meshzoo.iso_sphere(5)\n polar = numpy.arccos(points[:, 2])\n azimuthal = numpy.arctan2(points[:, 1], points[:, 0])\n vals = f(polar, azimuthal)\n meshio.write(filename, points, {'triangle': cells}, point_data={'f': vals})\n return\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(polar, azimuthal, n, standardization, symbolic=False):
cos = numpy.vectorize(sympy.cos) if symbolic else numpy.cos
config = {'acoustic': ('complex spherical', False), 'quantum mechanic':
('complex spherical', True), 'geodetic': ('complex spherical 1',
False), 'schmidt': ('schmidt', False)}
standard, cs_phase = config[standardization]
return tree_alp(cos(polar), n, phi=azimuthal, standardization=standard,
with_condon_shortley_phase=cs_phase, symbolic=symbolic)
|
tree_sph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polar, azimuthal, n, standardization, symbolic=False):\n cos = numpy.vectorize(sympy.cos) if symbolic else numpy.cos\n config = {'acoustic': ('complex spherical', False), 'quantum mechanic':\n ('complex spherical', True), 'geodetic': ('complex spherical 1', \n False), 'schmidt': ('schmidt', False)}\n standard, cs_phase = config[standardization]\n return tree_alp(cos(polar), n, phi=azimuthal, standardization=standard,\n with_condon_shortley_phase=cs_phase, symbolic=symbolic)\n",
"role": "user"
},
{
"content": "tree_sph",
"role": "assistant"
}
] |
def x(x, n, standardization, phi=None, with_condon_shortley_phase=True,
symbolic=False):
d = {'natural': (_Natural, [x, symbolic]), 'spherical': (_Spherical, [x,
symbolic]), 'complex spherical': (_ComplexSpherical, [x, phi,
symbolic, False]), 'complex spherical 1': (_ComplexSpherical, [x,
phi, symbolic, True]), 'normal': (_Normal, [x, symbolic]),
'schmidt': (_Schmidt, [x, phi, symbolic])}
fun, args = d[standardization]
c = fun(*args)
if with_condon_shortley_phase:
def x(L):
return -1 * c.z1_factor(L)
else:
z1_factor_CSP = c.z1_factor
e = numpy.ones_like(x, dtype=int)
out = [[e * c.p0]]
for L in range(1, n + 1):
out.append(numpy.concatenate([[out[L - 1][0] * c.z0_factor(L)], out
[L - 1] * numpy.multiply.outer(c.C0(L), x), [out[L - 1][-1] *
z1_factor_CSP(L)]]))
if L > 1:
out[-1][2:-2] -= numpy.multiply.outer(c.C1(L), e) * out[L - 2]
return out
|
tree_alp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, n, standardization, phi=None, with_condon_shortley_phase=True,\n symbolic=False):\n d = {'natural': (_Natural, [x, symbolic]), 'spherical': (_Spherical, [x,\n symbolic]), 'complex spherical': (_ComplexSpherical, [x, phi,\n symbolic, False]), 'complex spherical 1': (_ComplexSpherical, [x,\n phi, symbolic, True]), 'normal': (_Normal, [x, symbolic]),\n 'schmidt': (_Schmidt, [x, phi, symbolic])}\n fun, args = d[standardization]\n c = fun(*args)\n if with_condon_shortley_phase:\n\n def x(L):\n return -1 * c.z1_factor(L)\n else:\n z1_factor_CSP = c.z1_factor\n e = numpy.ones_like(x, dtype=int)\n out = [[e * c.p0]]\n for L in range(1, n + 1):\n out.append(numpy.concatenate([[out[L - 1][0] * c.z0_factor(L)], out\n [L - 1] * numpy.multiply.outer(c.C0(L), x), [out[L - 1][-1] *\n z1_factor_CSP(L)]]))\n if L > 1:\n out[-1][2:-2] -= numpy.multiply.outer(c.C1(L), e) * out[L - 2]\n return out\n",
"role": "user"
},
{
"content": "tree_alp",
"role": "assistant"
}
] |
def x(X, n, symbolic=False):
frac = sympy.Rational if symbolic else lambda x, y: x / y
sqrt = sympy.sqrt if symbolic else numpy.sqrt
pi = sympy.pi if symbolic else numpy.pi
mu = frac(1, 2)
p0 = 1 / sqrt(pi)
def x(n):
return numpy.array([(2 * sqrt(frac((n + mu + frac(1, 2)) * (n + mu -
frac(1, 2)), (n - k) * (n + k + 2 * mu)))) for k in range(n)])
def x(n):
return 2 * sqrt(frac((n + mu - 1) * (n + mu + frac(1, 2)), (n + 2 *
mu - 1) * n))
def x(n):
return numpy.array([sqrt(frac((n - 1 - k) * (n + mu + frac(1, 2)) *
(n + k + 2 * mu - 1), (n - k) * (n + mu - frac(3, 2)) * (n + k +
2 * mu))) for k in range(n - 1)])
def x(n):
return sqrt(frac((n - 1) * (n + 2 * mu - 2) * (n + mu - frac(1, 2)) *
(n + mu + frac(1, 2)), n * (n + 2 * mu - 1) * (n + mu - 1) * (n +
mu - 2)))
out = [numpy.array([0 * X[0] + p0])]
one_min_x2 = 1 - X[0] ** 2
for L in range(1, n + 1):
out.append(numpy.concatenate([out[L - 1] * numpy.multiply.outer(
alpha(L), X[0]), [out[L - 1][L - 1] * beta(L) * X[1]]]))
if L > 1:
out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T
out[-1][-1] -= out[L - 2][L - 2] * delta(L) * one_min_x2
return out
|
tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n, symbolic=False):\n frac = sympy.Rational if symbolic else lambda x, y: x / y\n sqrt = sympy.sqrt if symbolic else numpy.sqrt\n pi = sympy.pi if symbolic else numpy.pi\n mu = frac(1, 2)\n p0 = 1 / sqrt(pi)\n\n def x(n):\n return numpy.array([(2 * sqrt(frac((n + mu + frac(1, 2)) * (n + mu -\n frac(1, 2)), (n - k) * (n + k + 2 * mu)))) for k in range(n)])\n\n def x(n):\n return 2 * sqrt(frac((n + mu - 1) * (n + mu + frac(1, 2)), (n + 2 *\n mu - 1) * n))\n\n def x(n):\n return numpy.array([sqrt(frac((n - 1 - k) * (n + mu + frac(1, 2)) *\n (n + k + 2 * mu - 1), (n - k) * (n + mu - frac(3, 2)) * (n + k +\n 2 * mu))) for k in range(n - 1)])\n\n def x(n):\n return sqrt(frac((n - 1) * (n + 2 * mu - 2) * (n + mu - frac(1, 2)) *\n (n + mu + frac(1, 2)), n * (n + 2 * mu - 1) * (n + mu - 1) * (n +\n mu - 2)))\n out = [numpy.array([0 * X[0] + p0])]\n one_min_x2 = 1 - X[0] ** 2\n for L in range(1, n + 1):\n out.append(numpy.concatenate([out[L - 1] * numpy.multiply.outer(\n alpha(L), X[0]), [out[L - 1][L - 1] * beta(L) * X[1]]]))\n if L > 1:\n out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T\n out[-1][-1] -= out[L - 2][L - 2] * delta(L) * one_min_x2\n return out\n",
"role": "user"
},
{
"content": "tree",
"role": "assistant"
}
] |
def x(bary, n, standardization, symbolic=False):
S = numpy.vectorize(sympy.S) if symbolic else lambda x: x
sqrt = numpy.vectorize(sympy.sqrt) if symbolic else numpy.sqrt
if standardization == '1':
p0 = 1
def x(n):
r = numpy.arange(n)
return S(n * (2 * n + 1)) / ((n - r) * (n + r + 1))
def x(n):
r = numpy.arange(n)
return S(n * (2 * r + 1) ** 2) / ((n - r) * (n + r + 1) * (2 *
n - 1))
def x(n):
r = numpy.arange(n - 1)
return S((n - r - 1) * (n + r) * (2 * n + 1)) / ((n - r) * (n +
r + 1) * (2 * n - 1))
def x(n):
return S(2 * n - 1) / n
def x(n):
return S(n - 1) / n
else:
assert standardization == 'normal'
p0 = sqrt(2)
def x(n):
r = numpy.arange(n)
return sqrt((n + 1) * n) * (S(2 * n + 1) / ((n - r) * (n + r + 1)))
def x(n):
r = numpy.arange(n)
return sqrt((n + 1) * n) * S((2 * r + 1) ** 2) / ((n - r) * (n +
r + 1) * (2 * n - 1))
def x(n):
r = numpy.arange(n - 1)
return sqrt(S(n + 1) / (n - 1)) * (S((n - r - 1) * (n + r) * (2 *
n + 1)) / ((n - r) * (n + r + 1) * (2 * n - 1)))
def x(n):
return sqrt(S((2 * n + 1) * (n + 1) * (2 * n - 1)) / n ** 3)
def x(n):
return sqrt(S((2 * n + 1) * (n + 1) * (n - 1)) / ((2 * n - 3) *
n ** 2))
u, v, w = bary
out = [numpy.array([numpy.zeros_like(u) + p0])]
for L in range(1, n + 1):
out.append(numpy.concatenate([out[L - 1] * (numpy.multiply.outer(
alpha(L), 1 - 2 * w).T - beta(L)).T, [delta(L) * out[L - 1][L -
1] * (u - v)]]))
if L > 1:
out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T
out[-1][-1] -= epsilon(L) * out[L - 2][L - 2] * (u + v) ** 2
return out
|
tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bary, n, standardization, symbolic=False):\n S = numpy.vectorize(sympy.S) if symbolic else lambda x: x\n sqrt = numpy.vectorize(sympy.sqrt) if symbolic else numpy.sqrt\n if standardization == '1':\n p0 = 1\n\n def x(n):\n r = numpy.arange(n)\n return S(n * (2 * n + 1)) / ((n - r) * (n + r + 1))\n\n def x(n):\n r = numpy.arange(n)\n return S(n * (2 * r + 1) ** 2) / ((n - r) * (n + r + 1) * (2 *\n n - 1))\n\n def x(n):\n r = numpy.arange(n - 1)\n return S((n - r - 1) * (n + r) * (2 * n + 1)) / ((n - r) * (n +\n r + 1) * (2 * n - 1))\n\n def x(n):\n return S(2 * n - 1) / n\n\n def x(n):\n return S(n - 1) / n\n else:\n assert standardization == 'normal'\n p0 = sqrt(2)\n\n def x(n):\n r = numpy.arange(n)\n return sqrt((n + 1) * n) * (S(2 * n + 1) / ((n - r) * (n + r + 1)))\n\n def x(n):\n r = numpy.arange(n)\n return sqrt((n + 1) * n) * S((2 * r + 1) ** 2) / ((n - r) * (n +\n r + 1) * (2 * n - 1))\n\n def x(n):\n r = numpy.arange(n - 1)\n return sqrt(S(n + 1) / (n - 1)) * (S((n - r - 1) * (n + r) * (2 *\n n + 1)) / ((n - r) * (n + r + 1) * (2 * n - 1)))\n\n def x(n):\n return sqrt(S((2 * n + 1) * (n + 1) * (2 * n - 1)) / n ** 3)\n\n def x(n):\n return sqrt(S((2 * n + 1) * (n + 1) * (n - 1)) / ((2 * n - 3) *\n n ** 2))\n u, v, w = bary\n out = [numpy.array([numpy.zeros_like(u) + p0])]\n for L in range(1, n + 1):\n out.append(numpy.concatenate([out[L - 1] * (numpy.multiply.outer(\n alpha(L), 1 - 2 * w).T - beta(L)).T, [delta(L) * out[L - 1][L -\n 1] * (u - v)]]))\n if L > 1:\n out[-1][:L - 1] -= (out[L - 2].T * gamma(L)).T\n out[-1][-1] -= epsilon(L) * out[L - 2][L - 2] * (u + v) ** 2\n return out\n",
"role": "user"
},
{
"content": "tree",
"role": "assistant"
}
] |
def x(filename):
filename = os.path.abspath(filename)
this_file_exist = os.path.exists(filename)
a_directory = os.path.isdir(filename)
result = this_file_exist and not a_directory
if result == False:
raise ValueError(
'The filename given was either non existent or was a directory')
else:
return result
|
check_if_this_file_exist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n filename = os.path.abspath(filename)\n this_file_exist = os.path.exists(filename)\n a_directory = os.path.isdir(filename)\n result = this_file_exist and not a_directory\n if result == False:\n raise ValueError(\n 'The filename given was either non existent or was a directory')\n else:\n return result\n",
"role": "user"
},
{
"content": "check_if_this_file_exist",
"role": "assistant"
}
] |
def x(cmd):
try:
s = subprocess.Popen(cmd, stdout=subprocess.PIPE)
s = s.stdout.read()
return s.strip()
except subprocess.CalledProcessError:
return 0
|
command_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmd):\n try:\n s = subprocess.Popen(cmd, stdout=subprocess.PIPE)\n s = s.stdout.read()\n return s.strip()\n except subprocess.CalledProcessError:\n return 0\n",
"role": "user"
},
{
"content": "command_line",
"role": "assistant"
}
] |
def x(filename):
check_if_this_file_exist(filename)
filename = os.path.abspath(filename)
result = get_json(filename)
result = result[0]
return result
|
information
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n result = get_json(filename)\n result = result[0]\n return result\n",
"role": "user"
},
{
"content": "information",
"role": "assistant"
}
] |
def x(filename):
check_if_this_file_exist(filename)
filename = os.path.abspath(filename)
s = command_line(['exiftool', '-G', '-j', '-sort', filename])
if s:
s = s.decode('utf-8').rstrip('\r\n')
return json.loads(s)
else:
return s
|
get_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n s = command_line(['exiftool', '-G', '-j', '-sort', filename])\n if s:\n s = s.decode('utf-8').rstrip('\\r\\n')\n return json.loads(s)\n else:\n return s\n",
"role": "user"
},
{
"content": "get_json",
"role": "assistant"
}
] |
def x(filename):
check_if_this_file_exist(filename)
filename = os.path.abspath(filename)
s = command_line(['exiftool', '-G', '-csv', '-sort', filename])
if s:
s = s.decode('utf-8')
return s
else:
return 0
|
get_csv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n check_if_this_file_exist(filename)\n filename = os.path.abspath(filename)\n s = command_line(['exiftool', '-G', '-csv', '-sort', filename])\n if s:\n s = s.decode('utf-8')\n return s\n else:\n return 0\n",
"role": "user"
},
{
"content": "get_csv",
"role": "assistant"
}
] |
def x(message='-'):
print('-'.center(60, '-'))
print(message.center(60, '-'))
print('-'.center(60, '-'))
print()
|
print_a_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(message='-'):\n print('-'.center(60, '-'))\n print(message.center(60, '-'))\n print('-'.center(60, '-'))\n print()\n",
"role": "user"
},
{
"content": "print_a_header",
"role": "assistant"
}
] |
def x():
result = 1
command = ['exiftool', '-ver']
with open(os.devnull, 'w') as fnull:
result = subprocess.call(command, stdout=fnull, stderr=fnull)
if result != 0:
print_a_header('Exiftool needs to be installed on your system')
print_a_header('Visit http://www.sno.phy.queensu.ca/~phil/exiftool/')
return False
else:
return True
|
check_if_exiftool_is_already_installed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n result = 1\n command = ['exiftool', '-ver']\n with open(os.devnull, 'w') as fnull:\n result = subprocess.call(command, stdout=fnull, stderr=fnull)\n if result != 0:\n print_a_header('Exiftool needs to be installed on your system')\n print_a_header('Visit http://www.sno.phy.queensu.ca/~phil/exiftool/')\n return False\n else:\n return True\n",
"role": "user"
},
{
"content": "check_if_exiftool_is_already_installed",
"role": "assistant"
}
] |
def x(self, context=None, clean=False):
if not self.template:
self.load_template(self.template_name)
if hasattr(self.template, 'template'):
context = (context or self.context).copy()
else:
context = Context(context or self.context)
context.update(self.extra_context)
result = self.template.render(context)
subject = self._get_block(result, 'subject')
if subject:
self.subject = self._get_block(result, 'subject')
body = self._get_block(result, 'body')
is_html_body = False
html = self._get_block(result, 'html')
if html:
if not body:
body = html
is_html_body = True
else:
self.attach_alternative(html, 'text/html')
if body:
self.body = body
if is_html_body:
self.content_subtype = 'html'
self._is_rendered = True
if clean:
self.clean()
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context=None, clean=False):\n if not self.template:\n self.load_template(self.template_name)\n if hasattr(self.template, 'template'):\n context = (context or self.context).copy()\n else:\n context = Context(context or self.context)\n context.update(self.extra_context)\n result = self.template.render(context)\n subject = self._get_block(result, 'subject')\n if subject:\n self.subject = self._get_block(result, 'subject')\n body = self._get_block(result, 'body')\n is_html_body = False\n html = self._get_block(result, 'html')\n if html:\n if not body:\n body = html\n is_html_body = True\n else:\n self.attach_alternative(html, 'text/html')\n if body:\n self.body = body\n if is_html_body:\n self.content_subtype = 'html'\n self._is_rendered = True\n if clean:\n self.clean()\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
clean = kwargs.pop('clean', False)
if not self._is_rendered:
self.render()
if clean:
self.clean()
return super(EmailMessage, self).send(*args, **kwargs)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n clean = kwargs.pop('clean', False)\n if not self._is_rendered:\n self.render()\n if clean:\n self.clean()\n return super(EmailMessage, self).send(*args, **kwargs)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(template_name, context, from_email, recipient_list, fail_silently=
False, auth_user=None, auth_password=None, connection=None, **kwargs):
connection = connection or mail.get_connection(username=auth_user,
password=auth_password, fail_silently=fail_silently)
clean = kwargs.pop('clean', True)
return EmailMessage(template_name, context, from_email, recipient_list,
connection=connection, **kwargs).send(clean=clean)
|
send_mail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(template_name, context, from_email, recipient_list, fail_silently=\n False, auth_user=None, auth_password=None, connection=None, **kwargs):\n connection = connection or mail.get_connection(username=auth_user,\n password=auth_password, fail_silently=fail_silently)\n clean = kwargs.pop('clean', True)\n return EmailMessage(template_name, context, from_email, recipient_list,\n connection=connection, **kwargs).send(clean=clean)\n",
"role": "user"
},
{
"content": "send_mail",
"role": "assistant"
}
] |
def x(X, labels, metric='euclidean', sample_size=None, random_state=None,
**kwds):
if sample_size is not None:
X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])
random_state = check_random_state(random_state)
indices = random_state.permutation(X.shape[0])[:sample_size]
if metric == 'precomputed':
X, labels = X[indices].T[indices].T, labels[indices]
else:
X, labels = X[indices], labels[indices]
return np.mean(silhouette_samples(X, labels, metric=metric, **kwds))
|
silhouette_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, labels, metric='euclidean', sample_size=None, random_state=None,\n **kwds):\n if sample_size is not None:\n X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])\n random_state = check_random_state(random_state)\n indices = random_state.permutation(X.shape[0])[:sample_size]\n if metric == 'precomputed':\n X, labels = X[indices].T[indices].T, labels[indices]\n else:\n X, labels = X[indices], labels[indices]\n return np.mean(silhouette_samples(X, labels, metric=metric, **kwds))\n",
"role": "user"
},
{
"content": "silhouette_score",
"role": "assistant"
}
] |
def x(X, labels, metric='euclidean', **kwds):
X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])
le = LabelEncoder()
labels = le.fit_transform(labels)
check_number_of_labels(len(le.classes_), X.shape[0])
distances = pairwise_distances(X, metric=metric, **kwds)
unique_labels = le.classes_
n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))
intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype)
inter_clust_dists = np.inf + intra_clust_dists
for curr_label in range(len(unique_labels)):
mask = labels == curr_label
current_distances = distances[mask]
n_samples_curr_lab = n_samples_per_label[curr_label] - 1
if n_samples_curr_lab != 0:
intra_clust_dists[mask] = np.sum(current_distances[:, mask], axis=1
) / n_samples_curr_lab
for other_label in range(len(unique_labels)):
if other_label != curr_label:
other_mask = labels == other_label
other_distances = np.mean(current_distances[:, other_mask],
axis=1)
inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask
], other_distances)
sil_samples = inter_clust_dists - intra_clust_dists
sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)
sil_samples[n_samples_per_label.take(labels) == 1] = 0
return sil_samples
|
silhouette_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, labels, metric='euclidean', **kwds):\n X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr'])\n le = LabelEncoder()\n labels = le.fit_transform(labels)\n check_number_of_labels(len(le.classes_), X.shape[0])\n distances = pairwise_distances(X, metric=metric, **kwds)\n unique_labels = le.classes_\n n_samples_per_label = np.bincount(labels, minlength=len(unique_labels))\n intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype)\n inter_clust_dists = np.inf + intra_clust_dists\n for curr_label in range(len(unique_labels)):\n mask = labels == curr_label\n current_distances = distances[mask]\n n_samples_curr_lab = n_samples_per_label[curr_label] - 1\n if n_samples_curr_lab != 0:\n intra_clust_dists[mask] = np.sum(current_distances[:, mask], axis=1\n ) / n_samples_curr_lab\n for other_label in range(len(unique_labels)):\n if other_label != curr_label:\n other_mask = labels == other_label\n other_distances = np.mean(current_distances[:, other_mask],\n axis=1)\n inter_clust_dists[mask] = np.minimum(inter_clust_dists[mask\n ], other_distances)\n sil_samples = inter_clust_dists - intra_clust_dists\n sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists)\n sil_samples[n_samples_per_label.take(labels) == 1] = 0\n return sil_samples\n",
"role": "user"
},
{
"content": "silhouette_samples",
"role": "assistant"
}
] |
def x(X, labels):
X, labels = check_X_y(X, labels)
le = LabelEncoder()
labels = le.fit_transform(labels)
n_samples, _ = X.shape
n_labels = len(le.classes_)
check_number_of_labels(n_labels, n_samples)
extra_disp, intra_disp = 0.0, 0.0
mean = np.mean(X, axis=0)
for k in range(n_labels):
cluster_k = X[labels == k]
mean_k = np.mean(cluster_k, axis=0)
extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2)
intra_disp += np.sum((cluster_k - mean_k) ** 2)
return 1.0 if intra_disp == 0.0 else extra_disp * (n_samples - n_labels
) / (intra_disp * (n_labels - 1.0))
|
calinski_harabaz_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, labels):\n X, labels = check_X_y(X, labels)\n le = LabelEncoder()\n labels = le.fit_transform(labels)\n n_samples, _ = X.shape\n n_labels = len(le.classes_)\n check_number_of_labels(n_labels, n_samples)\n extra_disp, intra_disp = 0.0, 0.0\n mean = np.mean(X, axis=0)\n for k in range(n_labels):\n cluster_k = X[labels == k]\n mean_k = np.mean(cluster_k, axis=0)\n extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2)\n intra_disp += np.sum((cluster_k - mean_k) ** 2)\n return 1.0 if intra_disp == 0.0 else extra_disp * (n_samples - n_labels\n ) / (intra_disp * (n_labels - 1.0))\n",
"role": "user"
},
{
"content": "calinski_harabaz_score",
"role": "assistant"
}
] |
def x(scale, copy=True):
if np.isscalar(scale):
if scale == 0.0:
scale = 1.0
return scale
elif isinstance(scale, np.ndarray):
if copy:
scale = scale.copy()
scale[scale == 0.0] = 1.0
return scale
|
handle_zeros_in_scale
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scale, copy=True):\n if np.isscalar(scale):\n if scale == 0.0:\n scale = 1.0\n return scale\n elif isinstance(scale, np.ndarray):\n if copy:\n scale = scale.copy()\n scale[scale == 0.0] = 1.0\n return scale\n",
"role": "user"
},
{
"content": "handle_zeros_in_scale",
"role": "assistant"
}
] |
def x(distances, desired_perplexity, verbose):
distances = distances.astype(np.float32, copy=False)
conditional_P = _utils._binary_search_perplexity(distances, None,
desired_perplexity, verbose)
P = conditional_P + conditional_P.T
sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)
P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)
return P
|
joint_probabilities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(distances, desired_perplexity, verbose):\n distances = distances.astype(np.float32, copy=False)\n conditional_P = _utils._binary_search_perplexity(distances, None,\n desired_perplexity, verbose)\n P = conditional_P + conditional_P.T\n sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)\n P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)\n return P\n",
"role": "user"
},
{
"content": "joint_probabilities",
"role": "assistant"
}
] |
def x(distances, neighbors, desired_perplexity, verbose):
t0 = time()
n_samples, k = neighbors.shape
distances = distances.astype(np.float32, copy=False)
neighbors = neighbors.astype(np.int64, copy=False)
conditional_P = _utils._binary_search_perplexity(distances, neighbors,
desired_perplexity, verbose)
assert np.all(np.isfinite(conditional_P)
), 'All probabilities should be finite'
P = csr_matrix((conditional_P.ravel(), neighbors.ravel(), range(0,
n_samples * k + 1, k)), shape=(n_samples, n_samples))
P = P + P.T
sum_P = np.maximum(P.sum(), MACHINE_EPSILON)
P /= sum_P
assert np.all(np.abs(P.data) <= 1.0)
if verbose >= 2:
duration = time() - t0
print('[t-SNE] Computed conditional probabilities in {:.3f}s'.
format(duration))
return P
|
joint_probabilities_nn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(distances, neighbors, desired_perplexity, verbose):\n t0 = time()\n n_samples, k = neighbors.shape\n distances = distances.astype(np.float32, copy=False)\n neighbors = neighbors.astype(np.int64, copy=False)\n conditional_P = _utils._binary_search_perplexity(distances, neighbors,\n desired_perplexity, verbose)\n assert np.all(np.isfinite(conditional_P)\n ), 'All probabilities should be finite'\n P = csr_matrix((conditional_P.ravel(), neighbors.ravel(), range(0, \n n_samples * k + 1, k)), shape=(n_samples, n_samples))\n P = P + P.T\n sum_P = np.maximum(P.sum(), MACHINE_EPSILON)\n P /= sum_P\n assert np.all(np.abs(P.data) <= 1.0)\n if verbose >= 2:\n duration = time() - t0\n print('[t-SNE] Computed conditional probabilities in {:.3f}s'.\n format(duration))\n return P\n",
"role": "user"
},
{
"content": "joint_probabilities_nn",
"role": "assistant"
}
] |
def x(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0
):
X_embedded = params.reshape(n_samples, n_components)
dist = pdist(X_embedded, 'sqeuclidean')
dist += 1.0
dist /= degrees_of_freedom
dist **= (degrees_of_freedom + 1.0) / -2.0
Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)
kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))
grad = np.ndarray((n_samples, n_components), dtype=params.dtype)
PQd = squareform((P - Q) * dist)
for i in range(skip_num_points, n_samples):
grad[i] = np.dot(np.ravel(PQd[i], order='K'), X_embedded[i] -
X_embedded)
grad = grad.ravel()
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
grad *= c
return kl_divergence, grad
|
kl_divergence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0\n ):\n X_embedded = params.reshape(n_samples, n_components)\n dist = pdist(X_embedded, 'sqeuclidean')\n dist += 1.0\n dist /= degrees_of_freedom\n dist **= (degrees_of_freedom + 1.0) / -2.0\n Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)\n kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))\n grad = np.ndarray((n_samples, n_components), dtype=params.dtype)\n PQd = squareform((P - Q) * dist)\n for i in range(skip_num_points, n_samples):\n grad[i] = np.dot(np.ravel(PQd[i], order='K'), X_embedded[i] -\n X_embedded)\n grad = grad.ravel()\n c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom\n grad *= c\n return kl_divergence, grad\n",
"role": "user"
},
{
"content": "kl_divergence",
"role": "assistant"
}
] |
def x(params, P, degrees_of_freedom, n_samples, n_components, angle=0.5,
skip_num_points=0, verbose=False):
params = params.astype(np.float32, copy=False)
X_embedded = params.reshape(n_samples, n_components)
val_P = P.data.astype(np.float32, copy=False)
neighbors = P.indices.astype(np.int64, copy=False)
indptr = P.indptr.astype(np.int64, copy=False)
grad = np.zeros(X_embedded.shape, dtype=np.float32)
error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr,
grad, angle, n_components, verbose, dof=degrees_of_freedom)
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
grad = grad.ravel()
grad *= c
return error, grad
|
kl_divergence_bh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, P, degrees_of_freedom, n_samples, n_components, angle=0.5,\n skip_num_points=0, verbose=False):\n params = params.astype(np.float32, copy=False)\n X_embedded = params.reshape(n_samples, n_components)\n val_P = P.data.astype(np.float32, copy=False)\n neighbors = P.indices.astype(np.int64, copy=False)\n indptr = P.indptr.astype(np.int64, copy=False)\n grad = np.zeros(X_embedded.shape, dtype=np.float32)\n error = _barnes_hut_tsne.gradient(val_P, X_embedded, neighbors, indptr,\n grad, angle, n_components, verbose, dof=degrees_of_freedom)\n c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom\n grad = grad.ravel()\n grad *= c\n return error, grad\n",
"role": "user"
},
{
"content": "kl_divergence_bh",
"role": "assistant"
}
] |
def x(objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress=
300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=
1e-07, verbose=0, args=None, kwargs=None):
if args is None:
args = []
if kwargs is None:
kwargs = {}
p = p0.copy().ravel()
update = np.zeros_like(p)
gains = np.ones_like(p)
error = np.finfo(np.float).max
best_error = np.finfo(np.float).max
best_iter = i = it
tic = time()
for i in range(it, n_iter):
error, grad = objective(p, *args, **kwargs)
grad_norm = linalg.norm(grad)
inc = update * grad < 0.0
dec = np.invert(inc)
gains[inc] += 0.2
gains[dec] *= 0.8
np.clip(gains, min_gain, np.inf, out=gains)
grad *= gains
update = momentum * update - learning_rate * grad
p += update
if (i + 1) % n_iter_check == 0:
toc = time()
duration = toc - tic
tic = toc
if verbose >= 2:
print(
'[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f (%s iterations in %0.3fs)'
% (i + 1, error, grad_norm, n_iter_check, duration))
if error < best_error:
best_error = error
best_iter = i
elif i - best_iter > n_iter_without_progress:
if verbose >= 2:
print(
'[t-SNE] Iteration %d: did not make any progress during the last %d episodes. Finished.'
% (i + 1, n_iter_without_progress))
break
if grad_norm <= min_grad_norm:
if verbose >= 2:
print(
'[t-SNE] Iteration %d: gradient norm %f. Finished.' %
(i + 1, grad_norm))
break
return p, error, i
|
gradient_descent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(objective, p0, it, n_iter, n_iter_check=1, n_iter_without_progress=\n 300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=\n 1e-07, verbose=0, args=None, kwargs=None):\n if args is None:\n args = []\n if kwargs is None:\n kwargs = {}\n p = p0.copy().ravel()\n update = np.zeros_like(p)\n gains = np.ones_like(p)\n error = np.finfo(np.float).max\n best_error = np.finfo(np.float).max\n best_iter = i = it\n tic = time()\n for i in range(it, n_iter):\n error, grad = objective(p, *args, **kwargs)\n grad_norm = linalg.norm(grad)\n inc = update * grad < 0.0\n dec = np.invert(inc)\n gains[inc] += 0.2\n gains[dec] *= 0.8\n np.clip(gains, min_gain, np.inf, out=gains)\n grad *= gains\n update = momentum * update - learning_rate * grad\n p += update\n if (i + 1) % n_iter_check == 0:\n toc = time()\n duration = toc - tic\n tic = toc\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f (%s iterations in %0.3fs)'\n % (i + 1, error, grad_norm, n_iter_check, duration))\n if error < best_error:\n best_error = error\n best_iter = i\n elif i - best_iter > n_iter_without_progress:\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: did not make any progress during the last %d episodes. Finished.'\n % (i + 1, n_iter_without_progress))\n break\n if grad_norm <= min_grad_norm:\n if verbose >= 2:\n print(\n '[t-SNE] Iteration %d: gradient norm %f. Finished.' %\n (i + 1, grad_norm))\n break\n return p, error, i\n",
"role": "user"
},
{
"content": "gradient_descent",
"role": "assistant"
}
] |
def x(X, X_embedded, n_neighbors=5, precomputed=False):
if precomputed:
dist_X = X
else:
dist_X = pairwise_distances(X, squared=True)
dist_X_embedded = pairwise_distances(X_embedded, squared=True)
ind_X = np.argsort(dist_X, axis=1)
ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1]
n_samples = X.shape[0]
t = 0.0
ranks = np.zeros(n_neighbors)
for i in range(n_samples):
for j in range(n_neighbors):
ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0]
ranks -= n_neighbors
t += np.sum(ranks[ranks > 0])
t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 *
n_neighbors - 1.0)))
return t
|
trustworthiness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, X_embedded, n_neighbors=5, precomputed=False):\n if precomputed:\n dist_X = X\n else:\n dist_X = pairwise_distances(X, squared=True)\n dist_X_embedded = pairwise_distances(X_embedded, squared=True)\n ind_X = np.argsort(dist_X, axis=1)\n ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1]\n n_samples = X.shape[0]\n t = 0.0\n ranks = np.zeros(n_neighbors)\n for i in range(n_samples):\n for j in range(n_neighbors):\n ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0]\n ranks -= n_neighbors\n t += np.sum(ranks[ranks > 0])\n t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 *\n n_neighbors - 1.0)))\n return t\n",
"role": "user"
},
{
"content": "trustworthiness",
"role": "assistant"
}
] |
def x(self, X, skip_num_points=0):
if self.method not in ['barnes_hut', 'exact']:
raise ValueError("'method' must be 'barnes_hut' or 'exact'")
if self.angle < 0.0 or self.angle > 1.0:
raise ValueError("'angle' must be between 0.0 - 1.0")
if self.metric == 'precomputed':
if isinstance(self.init, string_types) and self.init == 'pca':
raise ValueError(
'The parameter init="pca" cannot be used with metric="precomputed".'
)
if X.shape[0] != X.shape[1]:
raise ValueError('X should be a square distance matrix')
if np.any(X < 0):
raise ValueError(
'All distances should be positive, the precomputed distances given as X is not correct'
)
if self.method == 'barnes_hut' and sp.issparse(X):
raise TypeError(
'A sparse matrix was passed, but dense data is required for method="barnes_hut". Use X.toarray() to convert to a dense numpy array if the array is small enough for it to fit in memory. Otherwise consider dimensionality reduction techniques (e.g. TruncatedSVD)'
)
else:
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np.
float32, np.float64])
if self.method == 'barnes_hut' and self.n_components > 3:
raise ValueError(
"'n_components' should be inferior to 4 for the barnes_hut algorithm as it relies on quad-tree or oct-tree."
)
random_state = check_random_state(self.random_state)
if self.early_exaggeration < 1.0:
raise ValueError('early_exaggeration must be at least 1, but is {}'
.format(self.early_exaggeration))
if self.n_iter < 250:
raise ValueError('n_iter should be at least 250')
n_samples = X.shape[0]
neighbors_nn = None
if self.method == 'exact':
if self.metric == 'precomputed':
distances = X
else:
if self.verbose:
print('[t-SNE] Computing pairwise distances...')
if self.metric == 'euclidean':
distances = pairwise_distances(X, metric=self.metric,
squared=True)
else:
distances = pairwise_distances(X, metric=self.metric)
if np.any(distances < 0):
raise ValueError(
'All distances should be positive, the metric given is not correct'
)
P = _joint_probabilities(distances, self.perplexity, self.verbose)
assert np.all(np.isfinite(P)), 'All probabilities should be finite'
assert np.all(P >= 0), 'All probabilities should be non-negative'
assert np.all(P <= 1
), 'All probabilities should be less or then equal to one'
else:
k = min(n_samples - 1, int(3.0 * self.perplexity + 1))
if self.verbose:
print('[t-SNE] Computing {} nearest neighbors...'.format(k))
neighbors_method = 'ball_tree'
if self.metric == 'precomputed':
neighbors_method = 'brute'
knn = AnnoyIndex(X.shape[1], metric='euclidean')
t0 = time()
for i in range(n_samples):
knn.add_item(i, X[i, :])
knn.build(50)
duration = time() - t0
if self.verbose:
print('[t-SNE] Indexed {} samples in {:.3f}s...'.format(
n_samples, duration))
t0 = time()
neighbors_nn = np.zeros((n_samples, k), dtype=int)
distances_nn = np.zeros((n_samples, k))
for i in range(n_samples):
neighbors_nn[i, :], distances_nn[i, :] = knn.get_nns_by_vector(X
[i, :], k, include_distances=True)
duration = time() - t0
if self.verbose:
print('[t-SNE] Computed neighbors for {} samples in {:.3f}s...'
.format(n_samples, duration))
del knn
if self.metric == 'euclidean':
distances_nn **= 2
P = _joint_probabilities_nn(distances_nn, neighbors_nn, self.
perplexity, self.verbose)
if isinstance(self.init, np.ndarray):
X_embedded = self.init
elif self.init == 'pca':
pca = PCA(n_components=self.n_components, svd_solver='randomized',
random_state=random_state)
X_embedded = pca.fit_transform(X).astype(np.float32, copy=False)
elif self.init == 'random':
X_embedded = 0.0001 * random_state.randn(n_samples, self.n_components
).astype(np.float32)
else:
raise ValueError("'init' must be 'pca', 'random', or a numpy array")
degrees_of_freedom = max(self.n_components - 1.0, 1)
return self._tsne(P, degrees_of_freedom, n_samples, random_state,
X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=
skip_num_points)
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, skip_num_points=0):\n if self.method not in ['barnes_hut', 'exact']:\n raise ValueError(\"'method' must be 'barnes_hut' or 'exact'\")\n if self.angle < 0.0 or self.angle > 1.0:\n raise ValueError(\"'angle' must be between 0.0 - 1.0\")\n if self.metric == 'precomputed':\n if isinstance(self.init, string_types) and self.init == 'pca':\n raise ValueError(\n 'The parameter init=\"pca\" cannot be used with metric=\"precomputed\".'\n )\n if X.shape[0] != X.shape[1]:\n raise ValueError('X should be a square distance matrix')\n if np.any(X < 0):\n raise ValueError(\n 'All distances should be positive, the precomputed distances given as X is not correct'\n )\n if self.method == 'barnes_hut' and sp.issparse(X):\n raise TypeError(\n 'A sparse matrix was passed, but dense data is required for method=\"barnes_hut\". Use X.toarray() to convert to a dense numpy array if the array is small enough for it to fit in memory. Otherwise consider dimensionality reduction techniques (e.g. TruncatedSVD)'\n )\n else:\n X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=[np.\n float32, np.float64])\n if self.method == 'barnes_hut' and self.n_components > 3:\n raise ValueError(\n \"'n_components' should be inferior to 4 for the barnes_hut algorithm as it relies on quad-tree or oct-tree.\"\n )\n random_state = check_random_state(self.random_state)\n if self.early_exaggeration < 1.0:\n raise ValueError('early_exaggeration must be at least 1, but is {}'\n .format(self.early_exaggeration))\n if self.n_iter < 250:\n raise ValueError('n_iter should be at least 250')\n n_samples = X.shape[0]\n neighbors_nn = None\n if self.method == 'exact':\n if self.metric == 'precomputed':\n distances = X\n else:\n if self.verbose:\n print('[t-SNE] Computing pairwise distances...')\n if self.metric == 'euclidean':\n distances = pairwise_distances(X, metric=self.metric,\n squared=True)\n else:\n distances = pairwise_distances(X, metric=self.metric)\n if np.any(distances < 0):\n raise ValueError(\n 'All distances should be positive, the metric given is not correct'\n )\n P = _joint_probabilities(distances, self.perplexity, self.verbose)\n assert np.all(np.isfinite(P)), 'All probabilities should be finite'\n assert np.all(P >= 0), 'All probabilities should be non-negative'\n assert np.all(P <= 1\n ), 'All probabilities should be less or then equal to one'\n else:\n k = min(n_samples - 1, int(3.0 * self.perplexity + 1))\n if self.verbose:\n print('[t-SNE] Computing {} nearest neighbors...'.format(k))\n neighbors_method = 'ball_tree'\n if self.metric == 'precomputed':\n neighbors_method = 'brute'\n knn = AnnoyIndex(X.shape[1], metric='euclidean')\n t0 = time()\n for i in range(n_samples):\n knn.add_item(i, X[i, :])\n knn.build(50)\n duration = time() - t0\n if self.verbose:\n print('[t-SNE] Indexed {} samples in {:.3f}s...'.format(\n n_samples, duration))\n t0 = time()\n neighbors_nn = np.zeros((n_samples, k), dtype=int)\n distances_nn = np.zeros((n_samples, k))\n for i in range(n_samples):\n neighbors_nn[i, :], distances_nn[i, :] = knn.get_nns_by_vector(X\n [i, :], k, include_distances=True)\n duration = time() - t0\n if self.verbose:\n print('[t-SNE] Computed neighbors for {} samples in {:.3f}s...'\n .format(n_samples, duration))\n del knn\n if self.metric == 'euclidean':\n distances_nn **= 2\n P = _joint_probabilities_nn(distances_nn, neighbors_nn, self.\n perplexity, self.verbose)\n if isinstance(self.init, np.ndarray):\n X_embedded = self.init\n elif self.init == 'pca':\n pca = PCA(n_components=self.n_components, svd_solver='randomized',\n random_state=random_state)\n X_embedded = pca.fit_transform(X).astype(np.float32, copy=False)\n elif self.init == 'random':\n X_embedded = 0.0001 * random_state.randn(n_samples, self.n_components\n ).astype(np.float32)\n else:\n raise ValueError(\"'init' must be 'pca', 'random', or a numpy array\")\n degrees_of_freedom = max(self.n_components - 1.0, 1)\n return self._tsne(P, degrees_of_freedom, n_samples, random_state,\n X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=\n skip_num_points)\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, P, degrees_of_freedom, n_samples, random_state, X_embedded,
neighbors=None, skip_num_points=0):
params = X_embedded.ravel()
opt_args = {'it': 0, 'n_iter_check': self._N_ITER_CHECK,
'min_grad_norm': self.min_grad_norm, 'learning_rate': self.
learning_rate, 'verbose': self.verbose, 'kwargs': dict(
skip_num_points=skip_num_points), 'args': [P, degrees_of_freedom,
n_samples, self.n_components], 'n_iter_without_progress': self.
_EXPLORATION_N_ITER, 'n_iter': self._EXPLORATION_N_ITER, 'momentum':
0.5}
if self.method == 'barnes_hut':
obj_func = _kl_divergence_bh
opt_args['kwargs']['angle'] = self.angle
opt_args['kwargs']['verbose'] = self.verbose
else:
obj_func = _kl_divergence
P *= self.early_exaggeration
params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)
if self.verbose:
print(
'[t-SNE] KL divergence after %d iterations with early exaggeration: %f'
% (it + 1, kl_divergence))
P /= self.early_exaggeration
remaining = self.n_iter - self._EXPLORATION_N_ITER
if it < self._EXPLORATION_N_ITER or remaining > 0:
opt_args['n_iter'] = self.n_iter
opt_args['it'] = it + 1
opt_args['momentum'] = 0.8
opt_args['n_iter_without_progress'] = self.n_iter_without_progress
params, kl_divergence, it = _gradient_descent(obj_func, params, **
opt_args)
self.n_iter_ = it
if self.verbose:
print('[t-SNE] Error after %d iterations: %f' % (it + 1, kl_divergence)
)
X_embedded = params.reshape(n_samples, self.n_components)
self.kl_divergence_ = kl_divergence
return X_embedded
|
tsne
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, P, degrees_of_freedom, n_samples, random_state, X_embedded,\n neighbors=None, skip_num_points=0):\n params = X_embedded.ravel()\n opt_args = {'it': 0, 'n_iter_check': self._N_ITER_CHECK,\n 'min_grad_norm': self.min_grad_norm, 'learning_rate': self.\n learning_rate, 'verbose': self.verbose, 'kwargs': dict(\n skip_num_points=skip_num_points), 'args': [P, degrees_of_freedom,\n n_samples, self.n_components], 'n_iter_without_progress': self.\n _EXPLORATION_N_ITER, 'n_iter': self._EXPLORATION_N_ITER, 'momentum':\n 0.5}\n if self.method == 'barnes_hut':\n obj_func = _kl_divergence_bh\n opt_args['kwargs']['angle'] = self.angle\n opt_args['kwargs']['verbose'] = self.verbose\n else:\n obj_func = _kl_divergence\n P *= self.early_exaggeration\n params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)\n if self.verbose:\n print(\n '[t-SNE] KL divergence after %d iterations with early exaggeration: %f'\n % (it + 1, kl_divergence))\n P /= self.early_exaggeration\n remaining = self.n_iter - self._EXPLORATION_N_ITER\n if it < self._EXPLORATION_N_ITER or remaining > 0:\n opt_args['n_iter'] = self.n_iter\n opt_args['it'] = it + 1\n opt_args['momentum'] = 0.8\n opt_args['n_iter_without_progress'] = self.n_iter_without_progress\n params, kl_divergence, it = _gradient_descent(obj_func, params, **\n opt_args)\n self.n_iter_ = it\n if self.verbose:\n print('[t-SNE] Error after %d iterations: %f' % (it + 1, kl_divergence)\n )\n X_embedded = params.reshape(n_samples, self.n_components)\n self.kl_divergence_ = kl_divergence\n return X_embedded\n",
"role": "user"
},
{
"content": "tsne",
"role": "assistant"
}
] |
def x(self, X, y=None):
embedding = self._fit(X)
self.embedding_ = embedding
return self.embedding_
|
fit_transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y=None):\n embedding = self._fit(X)\n self.embedding_ = embedding\n return self.embedding_\n",
"role": "user"
},
{
"content": "fit_transform",
"role": "assistant"
}
] |
def x(datasets_full, genes_list, return_dimred=False, batch_size=BATCH_SIZE,
verbose=VERBOSE, ds_names=None, dimred=DIMRED, approx=APPROX, sigma=
SIGMA, alpha=ALPHA, knn=KNN, return_dense=False, hvg=None, union=False,
geosketch=False, geosketch_max=20000):
datasets_full = check_datasets(datasets_full)
datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=
ds_names, union=union)
datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=
dimred)
datasets_dimred = assemble(datasets_dimred, expr_datasets=datasets,
verbose=verbose, knn=knn, sigma=sigma, approx=approx, alpha=alpha,
ds_names=ds_names, batch_size=batch_size, geosketch=geosketch,
geosketch_max=geosketch_max)
if return_dense:
datasets = [ds.toarray() for ds in datasets]
if return_dimred:
return datasets_dimred, datasets, genes
return datasets, genes
|
correct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datasets_full, genes_list, return_dimred=False, batch_size=BATCH_SIZE,\n verbose=VERBOSE, ds_names=None, dimred=DIMRED, approx=APPROX, sigma=\n SIGMA, alpha=ALPHA, knn=KNN, return_dense=False, hvg=None, union=False,\n geosketch=False, geosketch_max=20000):\n datasets_full = check_datasets(datasets_full)\n datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=\n ds_names, union=union)\n datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=\n dimred)\n datasets_dimred = assemble(datasets_dimred, expr_datasets=datasets,\n verbose=verbose, knn=knn, sigma=sigma, approx=approx, alpha=alpha,\n ds_names=ds_names, batch_size=batch_size, geosketch=geosketch,\n geosketch_max=geosketch_max)\n if return_dense:\n datasets = [ds.toarray() for ds in datasets]\n if return_dimred:\n return datasets_dimred, datasets, genes\n return datasets, genes\n",
"role": "user"
},
{
"content": "correct",
"role": "assistant"
}
] |
def x(datasets_full, genes_list, batch_size=BATCH_SIZE, verbose=VERBOSE,
ds_names=None, dimred=DIMRED, approx=APPROX, sigma=SIGMA, alpha=ALPHA,
knn=KNN, geosketch=False, geosketch_max=20000, n_iter=1, union=False,
hvg=None):
datasets_full = check_datasets(datasets_full)
datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=
ds_names, union=union)
datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=
dimred)
for _ in range(n_iter):
datasets_dimred = assemble(datasets_dimred, verbose=verbose, knn=
knn, sigma=sigma, approx=approx, alpha=alpha, ds_names=ds_names,
batch_size=batch_size, geosketch=geosketch, geosketch_max=
geosketch_max)
return datasets_dimred, genes
|
integrate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datasets_full, genes_list, batch_size=BATCH_SIZE, verbose=VERBOSE,\n ds_names=None, dimred=DIMRED, approx=APPROX, sigma=SIGMA, alpha=ALPHA,\n knn=KNN, geosketch=False, geosketch_max=20000, n_iter=1, union=False,\n hvg=None):\n datasets_full = check_datasets(datasets_full)\n datasets, genes = merge_datasets(datasets_full, genes_list, ds_names=\n ds_names, union=union)\n datasets_dimred, genes = process_data(datasets, genes, hvg=hvg, dimred=\n dimred)\n for _ in range(n_iter):\n datasets_dimred = assemble(datasets_dimred, verbose=verbose, knn=\n knn, sigma=sigma, approx=approx, alpha=alpha, ds_names=ds_names,\n batch_size=batch_size, geosketch=geosketch, geosketch_max=\n geosketch_max)\n return datasets_dimred, genes\n",
"role": "user"
},
{
"content": "integrate",
"role": "assistant"
}
] |
def x(adatas, **kwargs):
if 'return_dimred' in kwargs and kwargs['return_dimred']:
datasets_dimred, datasets, genes = correct([adata.X for adata in
adatas], [adata.var_names.values for adata in adatas], **kwargs)
else:
datasets, genes = correct([adata.X for adata in adatas], [adata.
var_names.values for adata in adatas], **kwargs)
new_adatas = []
for i, adata in enumerate(adatas):
adata.X = datasets[i]
new_adatas.append(adata)
if 'return_dimred' in kwargs and kwargs['return_dimred']:
return datasets_dimred, new_adatas
else:
return new_adatas
|
correct_scanpy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(adatas, **kwargs):\n if 'return_dimred' in kwargs and kwargs['return_dimred']:\n datasets_dimred, datasets, genes = correct([adata.X for adata in\n adatas], [adata.var_names.values for adata in adatas], **kwargs)\n else:\n datasets, genes = correct([adata.X for adata in adatas], [adata.\n var_names.values for adata in adatas], **kwargs)\n new_adatas = []\n for i, adata in enumerate(adatas):\n adata.X = datasets[i]\n new_adatas.append(adata)\n if 'return_dimred' in kwargs and kwargs['return_dimred']:\n return datasets_dimred, new_adatas\n else:\n return new_adatas\n",
"role": "user"
},
{
"content": "correct_scanpy",
"role": "assistant"
}
] |
def x(adatas, **kwargs):
datasets_dimred, genes = integrate([adata.X for adata in adatas], [
adata.var_names.values for adata in adatas], **kwargs)
return datasets_dimred
|
integrate_scanpy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(adatas, **kwargs):\n datasets_dimred, genes = integrate([adata.X for adata in adatas], [\n adata.var_names.values for adata in adatas], **kwargs)\n return datasets_dimred\n",
"role": "user"
},
{
"content": "integrate_scanpy",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.