source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): for line in self._f: if line == 'ITEM: ATOMS\n': break for i in range(self.num_atoms): next(self._f)
skip_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for line in self._f:\n if line == 'ITEM: ATOMS\\n':\n break\n for i in range(self.num_atoms):\n next(self._f)\n", "role": "user" }, { "content": "skip_frame", "role": "assistant" } ]
def x(self, atom_info): self.atoms_by_number[atom_info.number] = atom_info self.atoms_by_symbol[atom_info.symbol.lower()] = atom_info
add_atom_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atom_info):\n self.atoms_by_number[atom_info.number] = atom_info\n self.atoms_by_symbol[atom_info.symbol.lower()] = atom_info\n", "role": "user" }, { "content": "add_atom_info", "role": "assistant" } ]
def x(self, other): Cluster.update(self, other) self.rules.extend(other.rules)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n Cluster.update(self, other)\n self.rules.extend(other.rules)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, *objects): master = None slaves = set([]) solitaire = set([]) for new in objects: if isinstance(new, self.cls): if master is None: master = new else: slaves.add(new) for item in new.items: existing = self.lookup.get(item) if existing is not None: slaves.add(existing) else: cluster = self.lookup.get(new) if cluster is None: solitaire.add(new) elif master is None: master = cluster elif master != cluster: slaves.add(cluster) if master is None: master = self.cls([]) for slave in slaves: master.update(slave) for item in solitaire: master.add_item(item) for item in master.items: self.lookup[item] = master
add_related
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *objects):\n master = None\n slaves = set([])\n solitaire = set([])\n for new in objects:\n if isinstance(new, self.cls):\n if master is None:\n master = new\n else:\n slaves.add(new)\n for item in new.items:\n existing = self.lookup.get(item)\n if existing is not None:\n slaves.add(existing)\n else:\n cluster = self.lookup.get(new)\n if cluster is None:\n solitaire.add(new)\n elif master is None:\n master = cluster\n elif master != cluster:\n slaves.add(cluster)\n if master is None:\n master = self.cls([])\n for slave in slaves:\n master.update(slave)\n for item in solitaire:\n master.add_item(item)\n for item in master.items:\n self.lookup[item] = master\n", "role": "user" }, { "content": "add_related", "role": "assistant" } ]
def x(self): def x(msg): line = next(self._f) try: return [float(line[:12]), float(line[12:24]), float(line[24:])] except ValueError: raise FileFormatError(msg) frame = {} words = next(self._f).split() if len(words) != 6: raise FileFormatError( "The first line of each time frame must contain 6 words. (%i'th frame)" % self._counter) if words[0] != 'timestep': raise FileFormatError( "The first word of the first line of each time frame must be 'timestep'. (%i'th frame)" % self._counter) try: step = int(words[1]) frame['step'] = step if int(words[2]) != self.num_atoms: raise FileFormatError( "The number of atoms has changed. (%i'th frame, %i'th step)" % (self._counter, step)) if int(words[3]) != self.keytrj: raise FileFormatError( "keytrj has changed. (%i'th frame, %i'th step)" % (self. _counter, step)) if int(words[4]) != self.imcon: raise FileFormatError( "imcon has changed. (%i'th frame, %i'th step)" % (self. _counter, step)) frame['timestep'] = float(words[5]) * self.time_unit frame['time'] = frame['timestep'] * step except ValueError: raise FileFormatError( "Could not convert all numbers on the first line of the current time frame. (%i'th frame)" % self._counter) cell = np.zeros((3, 3), float) frame['cell'] = cell cell_msg = ( "The cell lines must consist of three floating point values. (%i'th frame, %i'th step)" % (self._counter, step)) for i in range(3): cell[:, i] = read_three(cell_msg) cell *= self.pos_unit symbols = [] frame['symbols'] = symbols masses = np.zeros(self.num_atoms, float) frame['masses'] = masses charges = np.zeros(self.num_atoms, float) frame['charges'] = charges pos = np.zeros((self.num_atoms, 3), float) frame['pos'] = pos if self.keytrj > 0: vel = np.zeros((self.num_atoms, 3), float) frame['vel'] = vel if self.keytrj > 1: frc = np.zeros((self.num_atoms, 3), float) frame['frc'] = frc for i in range(self.num_atoms): words = next(self._f).split() if len(words) != 4: raise FileFormatError( "The atom header line must contain 4 words. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i + 1)) symbols.append(words[0]) try: masses[i] = float(words[2]) * self.mass_unit charges[i] = float(words[3]) except ValueError: raise FileFormatError( 'The numbers in the atom header line could not be interpreted.' ) pos_msg = ( "The position lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i + 1)) pos[i] = read_three(pos_msg) if self.keytrj > 0: vel_msg = ( "The velocity lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i + 1)) vel[i] = read_three(vel_msg) if self.keytrj > 1: frc_msg = ( "The force lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i + 1)) frc[i] = read_three(frc_msg) pos *= self.pos_unit if self.keytrj > 0: vel *= self.vel_unit if self.keytrj > 1: frc *= self.frc_unit return frame
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(msg):\n line = next(self._f)\n try:\n return [float(line[:12]), float(line[12:24]), float(line[24:])]\n except ValueError:\n raise FileFormatError(msg)\n frame = {}\n words = next(self._f).split()\n if len(words) != 6:\n raise FileFormatError(\n \"The first line of each time frame must contain 6 words. (%i'th frame)\"\n % self._counter)\n if words[0] != 'timestep':\n raise FileFormatError(\n \"The first word of the first line of each time frame must be 'timestep'. (%i'th frame)\"\n % self._counter)\n try:\n step = int(words[1])\n frame['step'] = step\n if int(words[2]) != self.num_atoms:\n raise FileFormatError(\n \"The number of atoms has changed. (%i'th frame, %i'th step)\" %\n (self._counter, step))\n if int(words[3]) != self.keytrj:\n raise FileFormatError(\n \"keytrj has changed. (%i'th frame, %i'th step)\" % (self.\n _counter, step))\n if int(words[4]) != self.imcon:\n raise FileFormatError(\n \"imcon has changed. (%i'th frame, %i'th step)\" % (self.\n _counter, step))\n frame['timestep'] = float(words[5]) * self.time_unit\n frame['time'] = frame['timestep'] * step\n except ValueError:\n raise FileFormatError(\n \"Could not convert all numbers on the first line of the current time frame. (%i'th frame)\"\n % self._counter)\n cell = np.zeros((3, 3), float)\n frame['cell'] = cell\n cell_msg = (\n \"The cell lines must consist of three floating point values. (%i'th frame, %i'th step)\"\n % (self._counter, step))\n for i in range(3):\n cell[:, i] = read_three(cell_msg)\n cell *= self.pos_unit\n symbols = []\n frame['symbols'] = symbols\n masses = np.zeros(self.num_atoms, float)\n frame['masses'] = masses\n charges = np.zeros(self.num_atoms, float)\n frame['charges'] = charges\n pos = np.zeros((self.num_atoms, 3), float)\n frame['pos'] = pos\n if self.keytrj > 0:\n vel = np.zeros((self.num_atoms, 3), float)\n frame['vel'] = vel\n if self.keytrj > 1:\n frc = np.zeros((self.num_atoms, 3), float)\n frame['frc'] = frc\n for i in range(self.num_atoms):\n words = next(self._f).split()\n if len(words) != 4:\n raise FileFormatError(\n \"The atom header line must contain 4 words. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n symbols.append(words[0])\n try:\n masses[i] = float(words[2]) * self.mass_unit\n charges[i] = float(words[3])\n except ValueError:\n raise FileFormatError(\n 'The numbers in the atom header line could not be interpreted.'\n )\n pos_msg = (\n \"The position lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n pos[i] = read_three(pos_msg)\n if self.keytrj > 0:\n vel_msg = (\n \"The velocity lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n vel[i] = read_three(vel_msg)\n if self.keytrj > 1:\n frc_msg = (\n \"The force lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n frc[i] = read_three(frc_msg)\n pos *= self.pos_unit\n if self.keytrj > 0:\n vel *= self.vel_unit\n if self.keytrj > 1:\n frc *= self.frc_unit\n return frame\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(self): marked = False while True: line = next(self._f)[:-1] if marked and len(line) > 0 and not line.startswith(' --------'): try: step = int(line[:10]) return step, line except ValueError: pass marked = len(line) == 131 and line == self._marker
goto_next_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n marked = False\n while True:\n line = next(self._f)[:-1]\n if marked and len(line) > 0 and not line.startswith(' --------'):\n try:\n step = int(line[:10])\n return step, line\n except ValueError:\n pass\n marked = len(line) == 131 and line == self._marker\n", "role": "user" }, { "content": "goto_next_frame", "role": "assistant" } ]
def x(self): if self.skip_equi_period: while True: step, line = self.goto_next_frame() self._counter += 1 if step >= self.equi_period: break self.skip_equi_period = False else: step, line = self.goto_next_frame() try: row = [step] for i in range(9): row.append(float(line[10 + i * 12:10 + (i + 1) * 12])) line = next(self._f)[:-1] row.append(float(line[:10])) for i in range(9): row.append(float(line[10 + i * 12:10 + (i + 1) * 12])) line = next(self._f)[:-1] row.append(float(line[:10])) for i in range(9): row.append(float(line[10 + i * 12:10 + (i + 1) * 12])) except ValueError: raise FileFormatError( 'Some numbers in the output file could not be read. (expecting floating point numbers)' ) for i in range(30): row[i] *= self._conv[i] return row
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.skip_equi_period:\n while True:\n step, line = self.goto_next_frame()\n self._counter += 1\n if step >= self.equi_period:\n break\n self.skip_equi_period = False\n else:\n step, line = self.goto_next_frame()\n try:\n row = [step]\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n line = next(self._f)[:-1]\n row.append(float(line[:10]))\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n line = next(self._f)[:-1]\n row.append(float(line[:10]))\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n except ValueError:\n raise FileFormatError(\n 'Some numbers in the output file could not be read. (expecting floating point numbers)'\n )\n for i in range(30):\n row[i] *= self._conv[i]\n return row\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(self): size = self.read_size() title = self._f.readline()[:-1] if self.symbols is None: symbols = [] coordinates = np.zeros((size, 3), float) for counter in range(size): line = self._f.readline() if len(line) == 0: raise StopIteration words = line.split() if len(words) < 4: raise StopIteration if self.symbols is None: symbols.append(words[0]) try: coordinates[counter, 0] = float(words[1]) coordinates[counter, 1] = float(words[2]) coordinates[counter, 2] = float(words[3]) except ValueError: raise StopIteration coordinates *= self.file_unit if self.symbols is None: self.symbols = symbols return title, coordinates
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n size = self.read_size()\n title = self._f.readline()[:-1]\n if self.symbols is None:\n symbols = []\n coordinates = np.zeros((size, 3), float)\n for counter in range(size):\n line = self._f.readline()\n if len(line) == 0:\n raise StopIteration\n words = line.split()\n if len(words) < 4:\n raise StopIteration\n if self.symbols is None:\n symbols.append(words[0])\n try:\n coordinates[counter, 0] = float(words[1])\n coordinates[counter, 1] = float(words[2])\n coordinates[counter, 2] = float(words[3])\n except ValueError:\n raise StopIteration\n coordinates *= self.file_unit\n if self.symbols is None:\n self.symbols = symbols\n return title, coordinates\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(self): size = self.read_size() for i in range(size + 1): line = self._f.readline() if len(line) == 0: raise StopIteration
skip_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n size = self.read_size()\n for i in range(size + 1):\n line = self._f.readline()\n if len(line) == 0:\n raise StopIteration\n", "role": "user" }, { "content": "skip_frame", "role": "assistant" } ]
def x(self): title, coordinates = self._first molecule = Molecule(self.numbers, coordinates, title, symbols=self.symbols) return molecule
get_first_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n title, coordinates = self._first\n molecule = Molecule(self.numbers, coordinates, title, symbols=self.symbols)\n return molecule\n", "role": "user" }, { "content": "get_first_molecule", "role": "assistant" } ]
def x(self, title, coordinates): print('% 8i' % len(self.symbols), file=self._f) print(str(title), file=self._f) for symbol, coordinate in zip(self.symbols, coordinates): print('% 2s % 12.9f % 12.9f % 12.9f' % ((symbol,) + tuple( coordinate / self.file_unit)), file=self._f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title, coordinates):\n print('% 8i' % len(self.symbols), file=self._f)\n print(str(title), file=self._f)\n for symbol, coordinate in zip(self.symbols, coordinates):\n print('% 2s % 12.9f % 12.9f % 12.9f' % ((symbol,) + tuple(\n coordinate / self.file_unit)), file=self._f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, index=0): return Molecule(self.numbers, self.geometries[index], self.titles[index ], symbols=self.symbols)
get_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index=0):\n return Molecule(self.numbers, self.geometries[index], self.titles[index\n ], symbols=self.symbols)\n", "role": "user" }, { "content": "get_molecule", "role": "assistant" } ]
def x(self, f, file_unit=angstrom): xyz_writer = XYZWriter(f, self.symbols, file_unit=file_unit) for title, coordinates in zip(self.titles, self.geometries): xyz_writer.dump(title, coordinates)
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, file_unit=angstrom):\n xyz_writer = XYZWriter(f, self.symbols, file_unit=file_unit)\n for title, coordinates in zip(self.titles, self.geometries):\n xyz_writer.dump(title, coordinates)\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(sub, counter): if sub.start is not None and counter < sub.start: return False if sub.stop is not None and counter >= sub.stop: raise StopIteration if sub.step is not None: if sub.start is None: if counter % sub.step != 0: return False elif (counter - sub.start) % sub.step != 0: return False return True
slice_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sub, counter):\n if sub.start is not None and counter < sub.start:\n return False\n if sub.stop is not None and counter >= sub.stop:\n raise StopIteration\n if sub.step is not None:\n if sub.start is None:\n if counter % sub.step != 0:\n return False\n elif (counter - sub.start) % sub.step != 0:\n return False\n return True\n", "role": "user" }, { "content": "slice_match", "role": "assistant" } ]
def x(fun, x0, epsilon, threshold): N = len(x0) f0, ana_grad = fun(x0, do_gradient=True) for i in range(N): xh = x0.copy() xh[i] += 0.5 * epsilon xl = x0.copy() xl[i] -= 0.5 * epsilon num_grad_comp = (fun(xh) - fun(xl)) / epsilon if abs(num_grad_comp - ana_grad[i]) > threshold: raise AssertionError( 'Error in the analytical gradient, component %i, got %s, should be about %s' % (i, ana_grad[i], num_grad_comp))
check_anagrad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fun, x0, epsilon, threshold):\n N = len(x0)\n f0, ana_grad = fun(x0, do_gradient=True)\n for i in range(N):\n xh = x0.copy()\n xh[i] += 0.5 * epsilon\n xl = x0.copy()\n xl[i] -= 0.5 * epsilon\n num_grad_comp = (fun(xh) - fun(xl)) / epsilon\n if abs(num_grad_comp - ana_grad[i]) > threshold:\n raise AssertionError(\n 'Error in the analytical gradient, component %i, got %s, should be about %s'\n % (i, ana_grad[i], num_grad_comp))\n", "role": "user" }, { "content": "check_anagrad", "role": "assistant" } ]
def x(fun, x, dxs, period=None): dn1s = [] dn2s = [] dnds = [] for dx in dxs: f0, grad0 = fun(x, do_gradient=True) f1, grad1 = fun(x + dx, do_gradient=True) grad = 0.5 * (grad0 + grad1) d1 = f1 - f0 if period is not None: d1 -= np.floor(d1 / period + 0.5) * period if hasattr(d1, '__iter__'): norm = np.linalg.norm else: norm = abs d2 = np.dot(grad, dx) dn1s.append(norm(d1)) dn2s.append(norm(d2)) dnds.append(norm(d1 - d2)) dn1s = np.array(dn1s) dn2s = np.array(dn2s) dnds = np.array(dnds) threshold = np.median(dn1s) mask = dn1s > threshold if not (dnds[mask] < threshold).all(): raise AssertionError( """The first order approximation on the difference is too wrong. The threshold is %.1e. Differences: %s First order approximation to differences: %s Absolute errors: %s""" % (threshold, ' '.join('%.1e' % v for v in dn1s[mask]), ' '. join('%.1e' % v for v in dn2s[mask]), ' '.join('%.1e' % v for v in dnds[mask])))
check_delta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fun, x, dxs, period=None):\n dn1s = []\n dn2s = []\n dnds = []\n for dx in dxs:\n f0, grad0 = fun(x, do_gradient=True)\n f1, grad1 = fun(x + dx, do_gradient=True)\n grad = 0.5 * (grad0 + grad1)\n d1 = f1 - f0\n if period is not None:\n d1 -= np.floor(d1 / period + 0.5) * period\n if hasattr(d1, '__iter__'):\n norm = np.linalg.norm\n else:\n norm = abs\n d2 = np.dot(grad, dx)\n dn1s.append(norm(d1))\n dn2s.append(norm(d2))\n dnds.append(norm(d1 - d2))\n dn1s = np.array(dn1s)\n dn2s = np.array(dn2s)\n dnds = np.array(dnds)\n threshold = np.median(dn1s)\n mask = dn1s > threshold\n if not (dnds[mask] < threshold).all():\n raise AssertionError(\n \"\"\"The first order approximation on the difference is too wrong. The threshold is %.1e.\n\nDifferences:\n%s\n\nFirst order approximation to differences:\n%s\n\nAbsolute errors:\n%s\"\"\"\n % (threshold, ' '.join('%.1e' % v for v in dn1s[mask]), ' '.\n join('%.1e' % v for v in dn2s[mask]), ' '.join('%.1e' % v for v in\n dnds[mask])))\n", "role": "user" }, { "content": "check_delta", "role": "assistant" } ]
def x(fun, x0, epsilon, anagrad=True): N = len(x0) def x(x): if anagrad: return fun(x, do_gradient=True)[1] else: gradient = np.zeros(N, float) for i in range(N): xh = x.copy() xh[i] += 0.5 * epsilon xl = x.copy() xl[i] -= 0.5 * epsilon gradient[i] = (fun(xh) - fun(xl)) / epsilon return gradient hessian = np.zeros((N, N), float) for i in range(N): xh = x0.copy() xh[i] += 0.5 * epsilon xl = x0.copy() xl[i] -= 0.5 * epsilon hessian[i] = (compute_gradient(xh) - compute_gradient(xl)) / epsilon return 0.5 * (hessian + hessian.transpose())
compute_fd_hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fun, x0, epsilon, anagrad=True):\n N = len(x0)\n\n def x(x):\n if anagrad:\n return fun(x, do_gradient=True)[1]\n else:\n gradient = np.zeros(N, float)\n for i in range(N):\n xh = x.copy()\n xh[i] += 0.5 * epsilon\n xl = x.copy()\n xl[i] -= 0.5 * epsilon\n gradient[i] = (fun(xh) - fun(xl)) / epsilon\n return gradient\n hessian = np.zeros((N, N), float)\n for i in range(N):\n xh = x0.copy()\n xh[i] += 0.5 * epsilon\n xl = x0.copy()\n xl[i] -= 0.5 * epsilon\n hessian[i] = (compute_gradient(xh) - compute_gradient(xl)) / epsilon\n return 0.5 * (hessian + hessian.transpose())\n", "role": "user" }, { "content": "compute_fd_hessian", "role": "assistant" } ]
def x(self, gradient, step): do_sd = self.gradient_old is None self.gradient_old = self.gradient self.gradient = gradient if do_sd: self._update_sd() else: self._update_cg()
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gradient, step):\n do_sd = self.gradient_old is None\n self.gradient_old = self.gradient\n self.gradient = gradient\n if do_sd:\n self._update_sd()\n else:\n self._update_cg()\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): beta = self._beta() if beta < 0: self.direction = -self.gradient self.status = 'SD' else: self.direction = self.direction * beta - self.gradient self.status = 'CG'
update_cg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n beta = self._beta()\n if beta < 0:\n self.direction = -self.gradient\n self.status = 'SD'\n else:\n self.direction = self.direction * beta - self.gradient\n self.status = 'CG'\n", "role": "user" }, { "content": "update_cg", "role": "assistant" } ]
def x(self, gradient, step): self.old_gradient = self.gradient self.gradient = gradient N = len(self.gradient) if self.inv_hessian is None: self.direction = -self.gradient self.status = 'SD' self.inv_hessian = np.identity(N, float) else: self.direction = -np.dot(self.inv_hessian, self.gradient) self.status = 'QN' y = self.gradient - self.old_gradient s = step sy = abs(np.dot(s, y)) + 1e-05 A = np.outer(-y / sy, s) A.ravel()[::N + 1] += 1 self.inv_hessian = np.dot(np.dot(A.transpose(), self.inv_hessian), A ) + np.outer(s / sy, s)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gradient, step):\n self.old_gradient = self.gradient\n self.gradient = gradient\n N = len(self.gradient)\n if self.inv_hessian is None:\n self.direction = -self.gradient\n self.status = 'SD'\n self.inv_hessian = np.identity(N, float)\n else:\n self.direction = -np.dot(self.inv_hessian, self.gradient)\n self.status = 'QN'\n y = self.gradient - self.old_gradient\n s = step\n sy = abs(np.dot(s, y)) + 1e-05\n A = np.outer(-y / sy, s)\n A.ravel()[::N + 1] += 1\n self.inv_hessian = np.dot(np.dot(A.transpose(), self.inv_hessian), A\n ) + np.outer(s / sy, s)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, step): if self.qmax is None: return step else: return np.clip(step, -self.qmax, self.qmax)
limit_step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, step):\n if self.qmax is None:\n return step\n else:\n return np.clip(step, -self.qmax, self.qmax)\n", "role": "user" }, { "content": "limit_step", "role": "assistant" } ]
def x(self, qinit, f0, fun): self.num_bracket = 0 qa = qinit fa = fun(qa) counter = 0 if fa >= f0: while True: self.num_bracket += 1 qb, fb = qa, fa qa /= 1 + phi fa = fun(qa) if qa < self.qtol: return if fa < f0: return (0, f0), (qa, fa), (qb, fb) counter += 1 if self.max_iter is not None and counter > self.max_iter: return else: self.num_bracket += 1 qb, fb = qa, fa qa *= 1 + phi fa = fun(qa) if fa >= fb: return (0, f0), (qb, fb), (qa, fa) while True: self.num_bracket += 1 qc, fc = qb, fb qb, fb = qa, fa qa = qb * (1 + phi) - qc fa = fun(qa) if fa >= fb: return (qc, fc), (qb, fb), (qa, fa) counter += 1 if self.max_iter is not None and counter > self.max_iter: return
bracket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, qinit, f0, fun):\n self.num_bracket = 0\n qa = qinit\n fa = fun(qa)\n counter = 0\n if fa >= f0:\n while True:\n self.num_bracket += 1\n qb, fb = qa, fa\n qa /= 1 + phi\n fa = fun(qa)\n if qa < self.qtol:\n return\n if fa < f0:\n return (0, f0), (qa, fa), (qb, fb)\n counter += 1\n if self.max_iter is not None and counter > self.max_iter:\n return\n else:\n self.num_bracket += 1\n qb, fb = qa, fa\n qa *= 1 + phi\n fa = fun(qa)\n if fa >= fb:\n return (0, f0), (qb, fb), (qa, fa)\n while True:\n self.num_bracket += 1\n qc, fc = qb, fb\n qb, fb = qa, fa\n qa = qb * (1 + phi) - qc\n fa = fun(qa)\n if fa >= fb:\n return (qc, fc), (qb, fb), (qa, fa)\n counter += 1\n if self.max_iter is not None and counter > self.max_iter:\n return\n", "role": "user" }, { "content": "bracket", "role": "assistant" } ]
def x(self, triplet, fun): self.num_golden = 0 (qa, fa), (qb, fb), (qc, fc) = triplet while True: self.num_golden += 1 qd = qa + (qb - qa) * phi / (1 + phi) fd = fun(qd) if fd < fb: (qa, fa), (qb, fb) = (qb, fb), (qd, fd) else: (qa, fa), (qc, fc) = (qd, fd), (qa, fa) if abs(qa - qb) < self.qtol: return qc, fc
golden
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, triplet, fun):\n self.num_golden = 0\n (qa, fa), (qb, fb), (qc, fc) = triplet\n while True:\n self.num_golden += 1\n qd = qa + (qb - qa) * phi / (1 + phi)\n fd = fun(qd)\n if fd < fb:\n (qa, fa), (qb, fb) = (qb, fb), (qd, fd)\n else:\n (qa, fa), (qc, fc) = (qd, fd), (qa, fa)\n if abs(qa - qb) < self.qtol:\n return qc, fc\n", "role": "user" }, { "content": "golden", "role": "assistant" } ]
def x(self, counter, f, x_orig, gradient_orig): if counter - self.last_update > self.each: grad_rms = np.sqrt((gradient_orig ** 2).mean()) if grad_rms < self.grad_rms: self.last_update = counter return True return False
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, counter, f, x_orig, gradient_orig):\n if counter - self.last_update > self.each:\n grad_rms = np.sqrt((gradient_orig ** 2).mean())\n if grad_rms < self.grad_rms:\n self.last_update = counter\n return True\n return False\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, counter, f, x_orig, gradient_orig): do_update = Preconditioner.update(self, counter, f, x_orig, gradient_orig) if do_update: N = len(x_orig) if self.scales is None: self.scales = np.ones(N, float) for i in range(N): epsilon = self.epsilon / self.scales[i] xh = x_orig.copy() xh[i] += 0.5 * epsilon fh = self.fun(xh) xl = x_orig.copy() xl[i] -= 0.5 * epsilon fl = self.fun(xl) curv = (fh + fl - 2 * f) / epsilon ** 2 self.scales[i] = np.sqrt(abs(curv)) if self.scales.max() <= 0: self.scales = np.ones(N, float) else: self.scales /= self.scales.max() self.scales[self.scales < self.scale_limit] = self.scale_limit return do_update
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, counter, f, x_orig, gradient_orig):\n do_update = Preconditioner.update(self, counter, f, x_orig, gradient_orig)\n if do_update:\n N = len(x_orig)\n if self.scales is None:\n self.scales = np.ones(N, float)\n for i in range(N):\n epsilon = self.epsilon / self.scales[i]\n xh = x_orig.copy()\n xh[i] += 0.5 * epsilon\n fh = self.fun(xh)\n xl = x_orig.copy()\n xl[i] -= 0.5 * epsilon\n fl = self.fun(xl)\n curv = (fh + fl - 2 * f) / epsilon ** 2\n self.scales[i] = np.sqrt(abs(curv))\n if self.scales.max() <= 0:\n self.scales = np.ones(N, float)\n else:\n self.scales /= self.scales.max()\n self.scales[self.scales < self.scale_limit] = self.scale_limit\n return do_update\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, counter, f, x_orig, gradient_orig): if Preconditioner.update(self, counter, f, x_orig, gradient_orig): hessian = compute_fd_hessian(self.fun, x_orig, self.epsilon) evals, evecs = np.linalg.eigh(hessian) self.scales = np.sqrt(abs(evals)) + self.epsilon self.rotation = evecs return True return False
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, counter, f, x_orig, gradient_orig):\n if Preconditioner.update(self, counter, f, x_orig, gradient_orig):\n hessian = compute_fd_hessian(self.fun, x_orig, self.epsilon)\n evals, evecs = np.linalg.eigh(hessian)\n self.scales = np.sqrt(abs(evals)) + self.epsilon\n self.rotation = evecs\n return True\n return False\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, x_orig): if self.scales is None: return x_orig else: return np.dot(self.rotation.transpose(), x_orig) * self.scales
do
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_orig):\n if self.scales is None:\n return x_orig\n else:\n return np.dot(self.rotation.transpose(), x_orig) * self.scales\n", "role": "user" }, { "content": "do", "role": "assistant" } ]
def x(self, x_prec): if self.scales is None: return x_prec else: return np.dot(self.rotation, x_prec / self.scales)
undo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_prec):\n if self.scales is None:\n return x_prec\n else:\n return np.dot(self.rotation, x_prec / self.scales)\n", "role": "user" }, { "content": "undo", "role": "assistant" } ]
def x(self): result = ' ' if self.step_rms is not None: result += ' Step RMS' if self.step_max is not None: result += ' Step MAX' if self.grad_rms is not None: result += ' Grad RMS' if self.grad_max is not None: result += ' Grad MAX' if self.rel_grad_rms is not None: result += ' Grad/F RMS' if self.rel_grad_max is not None: result += ' Grad/F MAX' return result
get_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = ' '\n if self.step_rms is not None:\n result += ' Step RMS'\n if self.step_max is not None:\n result += ' Step MAX'\n if self.grad_rms is not None:\n result += ' Grad RMS'\n if self.grad_max is not None:\n result += ' Grad MAX'\n if self.rel_grad_rms is not None:\n result += ' Grad/F RMS'\n if self.rel_grad_max is not None:\n result += ' Grad/F MAX'\n return result\n", "role": "user" }, { "content": "get_header", "role": "assistant" } ]
def x(self, x0, axis): self.x0 = x0 self.axis = axis
configure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x0, axis):\n self.x0 = x0\n self.axis = axis\n", "role": "user" }, { "content": "configure", "role": "assistant" } ]
def x(self, x, verbose=False): normals = [] values = [] signs = [] error = 0.0 if verbose: print() print(' '.join('% 10.3e' % val for val in x), end=' ') active_str = '' for i, (sign, equation) in enumerate(self.equations): value, normal = equation(x) if (i < len(self.lock) and self.lock[i] or sign == -1 and value > - self.threshold or sign == 0 or sign == 1 and value < self.threshold ): values.append(value) normals.append(normal) signs.append(sign) error += value ** 2 if verbose: active_str += 'X' if i < len(self.lock): self.lock[i] = True elif verbose: active_str += '-' error = np.sqrt(error) normals = np.array(normals, float) values = np.array(values, float) signs = np.array(signs, int) if verbose: print('[%s]' % active_str, end=' ') if error < self.threshold: print('OK') else: print('%.5e' % error) return normals, values, error, signs
compute_equations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, verbose=False):\n normals = []\n values = []\n signs = []\n error = 0.0\n if verbose:\n print()\n print(' '.join('% 10.3e' % val for val in x), end=' ')\n active_str = ''\n for i, (sign, equation) in enumerate(self.equations):\n value, normal = equation(x)\n if (i < len(self.lock) and self.lock[i] or sign == -1 and value > -\n self.threshold or sign == 0 or sign == 1 and value < self.threshold\n ):\n values.append(value)\n normals.append(normal)\n signs.append(sign)\n error += value ** 2\n if verbose:\n active_str += 'X'\n if i < len(self.lock):\n self.lock[i] = True\n elif verbose:\n active_str += '-'\n error = np.sqrt(error)\n normals = np.array(normals, float)\n values = np.array(values, float)\n signs = np.array(signs, int)\n if verbose:\n print('[%s]' % active_str, end=' ')\n if error < self.threshold:\n print('OK')\n else:\n print('%.5e' % error)\n return normals, values, error, signs\n", "role": "user" }, { "content": "compute_equations", "role": "assistant" } ]
def x(self, x, normals, values, error): counter = 0 while error > self.threshold and counter < self.max_iter: dxs = [] for i in range(len(normals)): dx = -normals[i] * values[i] / np.dot(normals[i], normals[i]) dxs.append(dx) dxs = np.array(dxs) dx = dxs[abs(values).argmax()] x = x + dx self.lock[:] = False normals, values, error = self._compute_equations(x)[:-1] counter += 1 return x, normals, values, error
rough_shake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, normals, values, error):\n counter = 0\n while error > self.threshold and counter < self.max_iter:\n dxs = []\n for i in range(len(normals)):\n dx = -normals[i] * values[i] / np.dot(normals[i], normals[i])\n dxs.append(dx)\n dxs = np.array(dxs)\n dx = dxs[abs(values).argmax()]\n x = x + dx\n self.lock[:] = False\n normals, values, error = self._compute_equations(x)[:-1]\n counter += 1\n return x, normals, values, error\n", "role": "user" }, { "content": "rough_shake", "role": "assistant" } ]
def x(self, x, normals, values, error): mask = (normals != 0).any(axis=0) > 0 normals = normals[:, mask] U, S, Vt = np.linalg.svd(normals, full_matrices=False) rcond = None counter = 0 while True: if rcond is None: rcond = 0.0 elif rcond == 0.0: rcond = self.rcond1 else: rcond *= 10 Sinv = S ** 2 + rcond if Sinv.max() == 0.0: continue Sinv = S / Sinv dx = -np.dot(Vt.transpose(), np.dot(U.transpose(), values) * Sinv) new_x = x.copy() new_x[mask] += dx new_normals, new_values, new_error = self._compute_equations(new_x)[:-1 ] if new_error < 0.9 * error: return new_x, new_normals, new_values, new_error elif abs(dx).sum() < self.threshold: break elif counter > self.max_iter: raise ConstraintError( 'Exceeded maximum number of shake iterations.') counter += 1
fast_shake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, normals, values, error):\n mask = (normals != 0).any(axis=0) > 0\n normals = normals[:, mask]\n U, S, Vt = np.linalg.svd(normals, full_matrices=False)\n rcond = None\n counter = 0\n while True:\n if rcond is None:\n rcond = 0.0\n elif rcond == 0.0:\n rcond = self.rcond1\n else:\n rcond *= 10\n Sinv = S ** 2 + rcond\n if Sinv.max() == 0.0:\n continue\n Sinv = S / Sinv\n dx = -np.dot(Vt.transpose(), np.dot(U.transpose(), values) * Sinv)\n new_x = x.copy()\n new_x[mask] += dx\n new_normals, new_values, new_error = self._compute_equations(new_x)[:-1\n ]\n if new_error < 0.9 * error:\n return new_x, new_normals, new_values, new_error\n elif abs(dx).sum() < self.threshold:\n break\n elif counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n counter += 1\n", "role": "user" }, { "content": "fast_shake", "role": "assistant" } ]
def x(self, x): self.lock[:] = False normals, values, error = self._compute_equations(x)[:-1] counter = 0 while True: if error <= self.threshold: break result = self._fast_shake(x, normals, values, error) counter += 1 if result is not None: x, normals, values, error = result else: x, normals, values, error = self._rough_shake(x, normals, values, error) counter += 1 if counter > self.max_iter: raise ConstraintError( 'Exceeded maximum number of shake iterations.') return x, counter, len(values)
free_shake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n self.lock[:] = False\n normals, values, error = self._compute_equations(x)[:-1]\n counter = 0\n while True:\n if error <= self.threshold:\n break\n result = self._fast_shake(x, normals, values, error)\n counter += 1\n if result is not None:\n x, normals, values, error = result\n else:\n x, normals, values, error = self._rough_shake(x, normals,\n values, error)\n counter += 1\n if counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n return x, counter, len(values)\n", "role": "user" }, { "content": "free_shake", "role": "assistant" } ]
def x(self, x, fun, fmax): self.lock[:] = False def x(xx): f, g = fun(xx, do_gradient=True) return (f - fmax) / abs(fmax), g / abs(fmax) self.equations.append((-1, extra_equation)) x, shake_counter, constraint_couter = self.free_shake(x) del self.equations[-1] return x, shake_counter, constraint_couter
safe_shake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, fun, fmax):\n self.lock[:] = False\n\n def x(xx):\n f, g = fun(xx, do_gradient=True)\n return (f - fmax) / abs(fmax), g / abs(fmax)\n self.equations.append((-1, extra_equation))\n x, shake_counter, constraint_couter = self.free_shake(x)\n del self.equations[-1]\n return x, shake_counter, constraint_couter\n", "role": "user" }, { "content": "safe_shake", "role": "assistant" } ]
def x(self, x, vector): scale = np.linalg.norm(vector) if scale == 0.0: return vector self.lock[:] = False normals, signs = self._compute_equations(x)[::3] if len(normals) == 0: return vector vector = vector / scale mask = signs == 0 result = vector.copy() changed = True counter = 0 while changed: changed = False y = np.dot(normals, result) for i, sign in enumerate(signs): if sign != 0: if sign * y[i] < -self.threshold: mask[i] = True changed = True elif mask[i] and np.dot(normals[i], result - vector) < 0: mask[i] = False changed = True if mask.any(): normals_select = normals[mask] y = np.dot(normals_select, vector) U, S, Vt = np.linalg.svd(normals_select, full_matrices=False) if S.min() == 0.0: Sinv = S / (S ** 2 + self.rcond1) else: Sinv = 1.0 / S result = vector - np.dot(Vt.transpose(), np.dot(U.transpose(), y) * Sinv) else: result = vector.copy() if counter > self.max_iter: raise ConstraintError( 'Exceeded maximum number of shake iterations.') counter += 1 return result * scale
project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, vector):\n scale = np.linalg.norm(vector)\n if scale == 0.0:\n return vector\n self.lock[:] = False\n normals, signs = self._compute_equations(x)[::3]\n if len(normals) == 0:\n return vector\n vector = vector / scale\n mask = signs == 0\n result = vector.copy()\n changed = True\n counter = 0\n while changed:\n changed = False\n y = np.dot(normals, result)\n for i, sign in enumerate(signs):\n if sign != 0:\n if sign * y[i] < -self.threshold:\n mask[i] = True\n changed = True\n elif mask[i] and np.dot(normals[i], result - vector) < 0:\n mask[i] = False\n changed = True\n if mask.any():\n normals_select = normals[mask]\n y = np.dot(normals_select, vector)\n U, S, Vt = np.linalg.svd(normals_select, full_matrices=False)\n if S.min() == 0.0:\n Sinv = S / (S ** 2 + self.rcond1)\n else:\n Sinv = 1.0 / S\n result = vector - np.dot(Vt.transpose(), np.dot(U.transpose(),\n y) * Sinv)\n else:\n result = vector.copy()\n if counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n counter += 1\n return result * scale\n", "role": "user" }, { "content": "project", "role": "assistant" } ]
def x(self): if self.prec is None: return self.x else: return self.prec.undo(self.x)
get_final
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.prec is None:\n return self.x\n else:\n return self.prec.undo(self.x)\n", "role": "user" }, { "content": "get_final", "role": "assistant" } ]
def x(self): success = self.initialize() while success is None: success = self.propagate() return success
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n success = self.initialize()\n while success is None:\n success = self.propagate()\n return success\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): header = ' Iter Dir ' if self.constraints is not None: header += ' SC CC' header += ' Function' if self.convergence_condition is not None: header += self.convergence_condition.get_header() header += ' Time' self._screen('-' * len(header), newline=True) self._screen(header, newline=True) self._screen('-' * len(header), newline=True)
print_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n header = ' Iter Dir '\n if self.constraints is not None:\n header += ' SC CC'\n header += ' Function'\n if self.convergence_condition is not None:\n header += self.convergence_condition.get_header()\n header += ' Time'\n self._screen('-' * len(header), newline=True)\n self._screen(header, newline=True)\n self._screen('-' * len(header), newline=True)\n", "role": "user" }, { "content": "print_header", "role": "assistant" } ]
def x(self, s, newline=False): if self.verbose: if newline: print(s) else: print(s, end=' ')
screen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s, newline=False):\n if self.verbose:\n if newline:\n print(s)\n else:\n print(s, end=' ')\n", "role": "user" }, { "content": "screen", "role": "assistant" } ]
def x(self): direction = self.search_direction.direction if self.constraints is not None: try: direction = self.constraints.project(self.x, direction) except ConstraintError: self._screen('CONSTRAINT PROJECT FAILED', newline=True) return False direction_norm = np.linalg.norm(direction) if direction_norm == 0: return False self.line.configure(self.x, direction / direction_norm) success, wolfe, qopt, fopt = self.line_search(self.line, self. initial_step_size, self.epsilon) if success: self.step = qopt * self.line.axis self.initial_step_size = np.linalg.norm(self.step) self.x = self.x + self.step self.f = fopt if wolfe: self._screen('W') else: self._screen(' ') self.search_direction.reset() return True else: if self.debug_line: import matplotlib.pyplot as pt import datetime pt.clf() qs = np.arange(0.0, 100.1) * (5 * self.initial_step_size / 100.0) fs = np.array([self.line(q) for q in qs]) pt.plot(qs, fs) pt.xlim(qs[0], qs[-1]) fdelta = fs.max() - fs.min() if fdelta == 0.0: fdelta = fs.mean() fmargin = fdelta * 0.1 pt.ylim(fs.min() - fmargin, fs.max() + fmargin) pt.title('fdelta = %.2e fmean = %.2e' % (fdelta, fs.mean())) pt.xlabel('Line coordinate, q') pt.ylabel('Function value, f') pt.savefig('line_failed_%s.png' % datetime.datetime.now(). isoformat()) self._reset_state() return False
line_opt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n direction = self.search_direction.direction\n if self.constraints is not None:\n try:\n direction = self.constraints.project(self.x, direction)\n except ConstraintError:\n self._screen('CONSTRAINT PROJECT FAILED', newline=True)\n return False\n direction_norm = np.linalg.norm(direction)\n if direction_norm == 0:\n return False\n self.line.configure(self.x, direction / direction_norm)\n success, wolfe, qopt, fopt = self.line_search(self.line, self.\n initial_step_size, self.epsilon)\n if success:\n self.step = qopt * self.line.axis\n self.initial_step_size = np.linalg.norm(self.step)\n self.x = self.x + self.step\n self.f = fopt\n if wolfe:\n self._screen('W')\n else:\n self._screen(' ')\n self.search_direction.reset()\n return True\n else:\n if self.debug_line:\n import matplotlib.pyplot as pt\n import datetime\n pt.clf()\n qs = np.arange(0.0, 100.1) * (5 * self.initial_step_size / 100.0)\n fs = np.array([self.line(q) for q in qs])\n pt.plot(qs, fs)\n pt.xlim(qs[0], qs[-1])\n fdelta = fs.max() - fs.min()\n if fdelta == 0.0:\n fdelta = fs.mean()\n fmargin = fdelta * 0.1\n pt.ylim(fs.min() - fmargin, fs.max() + fmargin)\n pt.title('fdelta = %.2e fmean = %.2e' % (fdelta, fs.mean()))\n pt.xlabel('Line coordinate, q')\n pt.ylabel('Function value, f')\n pt.savefig('line_failed_%s.png' % datetime.datetime.now().\n isoformat())\n self._reset_state()\n return False\n", "role": "user" }, { "content": "line_opt", "role": "assistant" } ]
def x(self): return dict((edge, index) for index, edge in enumerate(self.edges))
edge_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return dict((edge, index) for index, edge in enumerate(self.edges))\n", "role": "user" }, { "content": "edge_index", "role": "assistant" } ]
def x(self): neighbors = dict((vertex, []) for vertex in range(self.num_vertices)) for a, b in self.edges: neighbors[a].append(b) neighbors[b].append(a) neighbors = dict((key, frozenset(val)) for key, val in neighbors.items()) return neighbors
neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n neighbors = dict((vertex, []) for vertex in range(self.num_vertices))\n for a, b in self.edges:\n neighbors[a].append(b)\n neighbors[b].append(a)\n neighbors = dict((key, frozenset(val)) for key, val in neighbors.items())\n return neighbors\n", "role": "user" }, { "content": "neighbors", "role": "assistant" } ]
def x(self): from molmod.ext import graphs_floyd_warshall distances = np.zeros((self.num_vertices,) * 2, dtype=int) for i, j in self.edges: distances[i, j] = 1 distances[j, i] = 1 graphs_floyd_warshall(distances) return distances
distances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from molmod.ext import graphs_floyd_warshall\n distances = np.zeros((self.num_vertices,) * 2, dtype=int)\n for i, j in self.edges:\n distances[i, j] = 1\n distances[j, i] = 1\n graphs_floyd_warshall(distances)\n return distances\n", "role": "user" }, { "content": "distances", "role": "assistant" } ]
def x(self): max_distances = self.distances.max(0) max_distances_min = max_distances[max_distances > 0].min() return (max_distances == max_distances_min).nonzero()[0]
central_vertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n max_distances = self.distances.max(0)\n max_distances_min = max_distances[max_distances > 0].min()\n return (max_distances == max_distances_min).nonzero()[0]\n", "role": "user" }, { "content": "central_vertices", "role": "assistant" } ]
def x(self): candidates = set(range(self.num_vertices)) result = [] while len(candidates) > 0: pivot = candidates.pop() group = [vertex for vertex, distance in self.iter_breadth_first(pivot)] candidates.difference_update(group) group.sort() result.append(group) return result
independent_vertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n candidates = set(range(self.num_vertices))\n result = []\n while len(candidates) > 0:\n pivot = candidates.pop()\n group = [vertex for vertex, distance in self.iter_breadth_first(pivot)]\n candidates.difference_update(group)\n group.sort()\n result.append(group)\n return result\n", "role": "user" }, { "content": "independent_vertices", "role": "assistant" } ]
def x(self): if self.num_vertices == 0: return np.zeros(20, np.ubyte) else: return sum(self.vertex_fingerprints)
fingerprint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.num_vertices == 0:\n return np.zeros(20, np.ubyte)\n else:\n return sum(self.vertex_fingerprints)\n", "role": "user" }, { "content": "fingerprint", "role": "assistant" } ]
def x(self): return self.get_vertex_fingerprints([self.get_vertex_string(i) for i in range(self.num_vertices)], [self.get_edge_string(i) for i in range( self.num_edges)])
vertex_fingerprints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.get_vertex_fingerprints([self.get_vertex_string(i) for i in\n range(self.num_vertices)], [self.get_edge_string(i) for i in range(\n self.num_edges)])\n", "role": "user" }, { "content": "vertex_fingerprints", "role": "assistant" } ]
def x(self): level1 = {} for i, row in enumerate(self.vertex_fingerprints): key = row.tobytes() l = level1.get(key) if l is None: l = set([i]) level1[key] = l else: l.add(i) level2 = {} for key, vertices in level1.items(): for vertex in vertices: level2[vertex] = vertices return level2
equivalent_vertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n level1 = {}\n for i, row in enumerate(self.vertex_fingerprints):\n key = row.tobytes()\n l = level1.get(key)\n if l is None:\n l = set([i])\n level1[key] = l\n else:\n l.add(i)\n level2 = {}\n for key, vertices in level1.items():\n for vertex in vertices:\n level2[vertex] = vertices\n return level2\n", "role": "user" }, { "content": "equivalent_vertices", "role": "assistant" } ]
def x(self): symmetry_cycles = set([]) symmetries = set([]) for match in GraphSearch(EqualPattern(self))(self): match.cycles = match.get_closed_cycles() if match.cycles in symmetry_cycles: raise RuntimeError('Duplicates in EqualMatch') symmetry_cycles.add(match.cycles) symmetries.add(match) return symmetries
symmetries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n symmetry_cycles = set([])\n symmetries = set([])\n for match in GraphSearch(EqualPattern(self))(self):\n match.cycles = match.get_closed_cycles()\n if match.cycles in symmetry_cycles:\n raise RuntimeError('Duplicates in EqualMatch')\n symmetry_cycles.add(match.cycles)\n symmetries.add(match)\n return symmetries\n", "role": "user" }, { "content": "symmetries", "role": "assistant" } ]
def x(self): result = set([]) for symmetry in self.symmetries: result.add(symmetry.cycles) return result
symmetry_cycles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = set([])\n for symmetry in self.symmetries:\n result.add(symmetry.cycles)\n return result\n", "role": "user" }, { "content": "symmetry_cycles", "role": "assistant" } ]
def x(self): starting_vertex = max((-len(self.equivalent_vertices[vertex]), self. get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes (), vertex) for vertex in self.central_vertices)[-1] l = [[-distance, -len(self.equivalent_vertices[vertex]), self. get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes (), vertex] for vertex, distance in self.iter_breadth_first( starting_vertex) if len(self.neighbors[vertex]) > 0] l.sort(reverse=True) for i in range(1, len(l)): if l[i][:-1] == l[i - 1][:-1]: raise NotImplementedError return [record[-1] for record in l]
canonical_order
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n starting_vertex = max((-len(self.equivalent_vertices[vertex]), self.\n get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes\n (), vertex) for vertex in self.central_vertices)[-1]\n l = [[-distance, -len(self.equivalent_vertices[vertex]), self.\n get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes\n (), vertex] for vertex, distance in self.iter_breadth_first(\n starting_vertex) if len(self.neighbors[vertex]) > 0]\n l.sort(reverse=True)\n for i in range(1, len(l)):\n if l[i][:-1] == l[i - 1][:-1]:\n raise NotImplementedError\n return [record[-1] for record in l]\n", "role": "user" }, { "content": "canonical_order", "role": "assistant" } ]
def x(self, start=None, do_paths=False, do_duplicates=False): if start is None: start = self.central_vertex else: try: start = int(start) except ValueError: raise TypeError('First argument (start) must be an integer.') if start < 0 or start >= self.num_vertices: raise ValueError('start must be in the range [0, %i[' % self. num_vertices) from collections import deque work = np.zeros(self.num_vertices, int) work[:] = -1 work[start] = 0 if do_paths: result = start, 0, (start,) else: result = start, 0 yield result todo = deque([result]) while len(todo) > 0: if do_paths: parent, parent_length, parent_path = todo.popleft() else: parent, parent_length = todo.popleft() current_length = parent_length + 1 for current in self.neighbors[parent]: visited = work[current] if visited == -1 or do_duplicates and visited == current_length: work[current] = current_length if do_paths: current_path = parent_path + (current,) result = current, current_length, current_path else: result = current, current_length yield result todo.append(result)
iter_breadth_first
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=None, do_paths=False, do_duplicates=False):\n if start is None:\n start = self.central_vertex\n else:\n try:\n start = int(start)\n except ValueError:\n raise TypeError('First argument (start) must be an integer.')\n if start < 0 or start >= self.num_vertices:\n raise ValueError('start must be in the range [0, %i[' % self.\n num_vertices)\n from collections import deque\n work = np.zeros(self.num_vertices, int)\n work[:] = -1\n work[start] = 0\n if do_paths:\n result = start, 0, (start,)\n else:\n result = start, 0\n yield result\n todo = deque([result])\n while len(todo) > 0:\n if do_paths:\n parent, parent_length, parent_path = todo.popleft()\n else:\n parent, parent_length = todo.popleft()\n current_length = parent_length + 1\n for current in self.neighbors[parent]:\n visited = work[current]\n if visited == -1 or do_duplicates and visited == current_length:\n work[current] = current_length\n if do_paths:\n current_path = parent_path + (current,)\n result = current, current_length, current_path\n else:\n result = current, current_length\n yield result\n todo.append(result)\n", "role": "user" }, { "content": "iter_breadth_first", "role": "assistant" } ]
def x(self, start=None): if start is None: start = self.central_vertex else: try: start = int(start) except ValueError: raise TypeError('First argument (start) must be an integer.') if start < 0 or start >= self.num_vertices: raise ValueError('start must be in the range [0, %i[' % self. num_vertices) from collections import deque work = np.zeros(self.num_vertices, int) work[:] = -1 work[start] = 0 todo = deque([start]) while len(todo) > 0: parent = todo.popleft() distance = work[parent] for current in self.neighbors[parent]: if work[current] == -1: yield (parent, current), distance, False work[current] = distance + 1 todo.append(current) elif work[current] == distance and current > parent: yield (parent, current), distance, True elif work[current] == distance + 1: yield (parent, current), distance, False
iter_breadth_first_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=None):\n if start is None:\n start = self.central_vertex\n else:\n try:\n start = int(start)\n except ValueError:\n raise TypeError('First argument (start) must be an integer.')\n if start < 0 or start >= self.num_vertices:\n raise ValueError('start must be in the range [0, %i[' % self.\n num_vertices)\n from collections import deque\n work = np.zeros(self.num_vertices, int)\n work[:] = -1\n work[start] = 0\n todo = deque([start])\n while len(todo) > 0:\n parent = todo.popleft()\n distance = work[parent]\n for current in self.neighbors[parent]:\n if work[current] == -1:\n yield (parent, current), distance, False\n work[current] = distance + 1\n todo.append(current)\n elif work[current] == distance and current > parent:\n yield (parent, current), distance, True\n elif work[current] == distance + 1:\n yield (parent, current), distance, False\n", "role": "user" }, { "content": "iter_breadth_first_edges", "role": "assistant" } ]
def x(self, subvertices, normalize=False): if normalize: revorder = dict((j, i) for i, j in enumerate(subvertices)) new_edges = [] old_edge_indexes = [] for counter, (i, j) in enumerate(self.edges): new_i = revorder.get(i) if new_i is None: continue new_j = revorder.get(j) if new_j is None: continue new_edges.append((new_i, new_j)) old_edge_indexes.append(counter) order = list(range(len(new_edges))) order.sort(key=lambda i: tuple(sorted(new_edges[i]))) new_edges = [new_edges[i] for i in order] old_edge_indexes = [old_edge_indexes[i] for i in order] result = Graph(new_edges, num_vertices=len(subvertices)) result._old_vertex_indexes = np.array(subvertices, dtype=int) result._old_edge_indexes = np.array(old_edge_indexes, dtype=int) else: subvertices = set(subvertices) old_edge_indexes = np.array([i for i, edge in enumerate(self.edges) if edge.issubset(subvertices)], dtype=int) new_edges = tuple(self.edges[i] for i in old_edge_indexes) result = Graph(new_edges, self.num_vertices) result._old_edge_indexes = old_edge_indexes return result
get_subgraph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subvertices, normalize=False):\n if normalize:\n revorder = dict((j, i) for i, j in enumerate(subvertices))\n new_edges = []\n old_edge_indexes = []\n for counter, (i, j) in enumerate(self.edges):\n new_i = revorder.get(i)\n if new_i is None:\n continue\n new_j = revorder.get(j)\n if new_j is None:\n continue\n new_edges.append((new_i, new_j))\n old_edge_indexes.append(counter)\n order = list(range(len(new_edges)))\n order.sort(key=lambda i: tuple(sorted(new_edges[i])))\n new_edges = [new_edges[i] for i in order]\n old_edge_indexes = [old_edge_indexes[i] for i in order]\n result = Graph(new_edges, num_vertices=len(subvertices))\n result._old_vertex_indexes = np.array(subvertices, dtype=int)\n result._old_edge_indexes = np.array(old_edge_indexes, dtype=int)\n else:\n subvertices = set(subvertices)\n old_edge_indexes = np.array([i for i, edge in enumerate(self.edges) if\n edge.issubset(subvertices)], dtype=int)\n new_edges = tuple(self.edges[i] for i in old_edge_indexes)\n result = Graph(new_edges, self.num_vertices)\n result._old_edge_indexes = old_edge_indexes\n return result\n", "role": "user" }, { "content": "get_subgraph", "role": "assistant" } ]
def x(self, vertex_strings, edge_strings, num_iter=None): import hashlib def x(x): if len(x) == 0: return np.zeros(0, np.ubyte) elif sys.version_info[0] == 2: return np.frombuffer(x, np.ubyte) else: return np.frombuffer(x.encode(), np.ubyte) hashrow = lambda x: np.frombuffer(hashlib.sha1(x.data).digest(), np.ubyte) result = np.zeros((self.num_vertices, 20), np.ubyte) for i in range(self.num_vertices): result[i] = hashrow(str2array(vertex_strings[i])) for i in range(self.num_edges): a, b = self.edges[i] tmp = hashrow(str2array(edge_strings[i])) result[a] += tmp result[b] += tmp work = result.copy() if num_iter is None: num_iter = self.max_distance for i in range(num_iter): for a, b in self.edges: work[a] += result[b] work[b] += result[a] for a in range(self.num_vertices): result[a] = hashrow(work[a]) return result
get_vertex_fingerprints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertex_strings, edge_strings, num_iter=None):\n import hashlib\n\n def x(x):\n if len(x) == 0:\n return np.zeros(0, np.ubyte)\n elif sys.version_info[0] == 2:\n return np.frombuffer(x, np.ubyte)\n else:\n return np.frombuffer(x.encode(), np.ubyte)\n hashrow = lambda x: np.frombuffer(hashlib.sha1(x.data).digest(), np.ubyte)\n result = np.zeros((self.num_vertices, 20), np.ubyte)\n for i in range(self.num_vertices):\n result[i] = hashrow(str2array(vertex_strings[i]))\n for i in range(self.num_edges):\n a, b = self.edges[i]\n tmp = hashrow(str2array(edge_strings[i]))\n result[a] += tmp\n result[b] += tmp\n work = result.copy()\n if num_iter is None:\n num_iter = self.max_distance\n for i in range(num_iter):\n for a, b in self.edges:\n work[a] += result[b]\n work[b] += result[a]\n for a in range(self.num_vertices):\n result[a] = hashrow(work[a])\n return result\n", "role": "user" }, { "content": "get_vertex_fingerprints", "role": "assistant" } ]
def x(self, vertex1, vertex2): def x(origin, other): frontier = set(self.neighbors[origin]) frontier.discard(other) result = set([origin]) while len(frontier) > 0: pivot = frontier.pop() if pivot == other: raise GraphError( 'The graph can not be separated in two halfs by disconnecting vertex1 and vertex2.' ) pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= result frontier |= pivot_neighbors result.add(pivot) return result vertex1_part = grow(vertex1, vertex2) vertex2_part = grow(vertex2, vertex1) return vertex1_part, vertex2_part
get_halfs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertex1, vertex2):\n\n def x(origin, other):\n frontier = set(self.neighbors[origin])\n frontier.discard(other)\n result = set([origin])\n while len(frontier) > 0:\n pivot = frontier.pop()\n if pivot == other:\n raise GraphError(\n 'The graph can not be separated in two halfs by disconnecting vertex1 and vertex2.'\n )\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= result\n frontier |= pivot_neighbors\n result.add(pivot)\n return result\n vertex1_part = grow(vertex1, vertex2)\n vertex2_part = grow(vertex2, vertex1)\n return vertex1_part, vertex2_part\n", "role": "user" }, { "content": "get_halfs", "role": "assistant" } ]
def x(self, vertex_in, vertices_border): vertices_new = set(self.neighbors[vertex_in]) vertices_part = set([vertex_in]) while len(vertices_new) > 0: pivot = vertices_new.pop() if pivot in vertices_border: continue vertices_part.add(pivot) pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertices_part vertices_new |= pivot_neighbors return vertices_part
get_part
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertex_in, vertices_border):\n vertices_new = set(self.neighbors[vertex_in])\n vertices_part = set([vertex_in])\n while len(vertices_new) > 0:\n pivot = vertices_new.pop()\n if pivot in vertices_border:\n continue\n vertices_part.add(pivot)\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertices_part\n vertices_new |= pivot_neighbors\n return vertices_part\n", "role": "user" }, { "content": "get_part", "role": "assistant" } ]
def x(self, vertex_a1, vertex_b1, vertex_a2, vertex_b2): if vertex_a1 not in self.neighbors[vertex_b1]: raise GraphError('vertex_a1 must be a neighbor of vertex_b1.') if vertex_a2 not in self.neighbors[vertex_b2]: raise GraphError('vertex_a2 must be a neighbor of vertex_b2.') vertex_a_new = set(self.neighbors[vertex_a1]) vertex_a_new.discard(vertex_b1) if vertex_a1 == vertex_b2: vertex_a2, vertex_b2 = vertex_b2, vertex_a2 if vertex_a1 == vertex_a2: vertex_a_new.discard(vertex_b2) vertex_a_part = set([vertex_a1]) touched = False while len(vertex_a_new) > 0: pivot = vertex_a_new.pop() if pivot == vertex_b1: raise GraphError( 'The graph can not be separated in two halfs. vertex_b1 reached by vertex_a1.' ) vertex_a_part.add(pivot) pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertex_a_part if pivot == vertex_a2 or pivot == vertex_b2: if pivot == vertex_b2: if touched: raise GraphError( 'The graph can not be separated in two halfs. vertex_b2 reached by vertex_a1.' ) else: vertex_a2, vertex_b2 = vertex_b2, vertex_a2 pivot_neighbors.discard(vertex_b2) touched = True vertex_a_new |= pivot_neighbors if vertex_a2 not in vertex_a_part: raise GraphError( 'The graph can not be separated in two halfs. vertex_a1 can not reach vertex_a2 trough vertex_a_part' ) if vertex_b1 == vertex_b2: closed = True else: vertex_b_new = set(self.neighbors[vertex_b1]) vertex_b_new.discard(vertex_a1) vertex_b_part = set([vertex_b1]) closed = False while len(vertex_b_new) > 0: pivot = vertex_b_new.pop() if pivot == vertex_b2: closed = True break pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertex_b_part vertex_b_new |= pivot_neighbors vertex_b_part.add(pivot) if not closed: raise GraphError( 'The graph can not be separated in two halfs. vertex_b1 can not reach vertex_b2 trough vertex_b_part' ) vertex_b_part = set(range(self.num_vertices)) - vertex_a_part return vertex_a_part, vertex_b_part, (vertex_a1, vertex_b1, vertex_a2, vertex_b2)
get_halfs_double
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertex_a1, vertex_b1, vertex_a2, vertex_b2):\n if vertex_a1 not in self.neighbors[vertex_b1]:\n raise GraphError('vertex_a1 must be a neighbor of vertex_b1.')\n if vertex_a2 not in self.neighbors[vertex_b2]:\n raise GraphError('vertex_a2 must be a neighbor of vertex_b2.')\n vertex_a_new = set(self.neighbors[vertex_a1])\n vertex_a_new.discard(vertex_b1)\n if vertex_a1 == vertex_b2:\n vertex_a2, vertex_b2 = vertex_b2, vertex_a2\n if vertex_a1 == vertex_a2:\n vertex_a_new.discard(vertex_b2)\n vertex_a_part = set([vertex_a1])\n touched = False\n while len(vertex_a_new) > 0:\n pivot = vertex_a_new.pop()\n if pivot == vertex_b1:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b1 reached by vertex_a1.'\n )\n vertex_a_part.add(pivot)\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertex_a_part\n if pivot == vertex_a2 or pivot == vertex_b2:\n if pivot == vertex_b2:\n if touched:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b2 reached by vertex_a1.'\n )\n else:\n vertex_a2, vertex_b2 = vertex_b2, vertex_a2\n pivot_neighbors.discard(vertex_b2)\n touched = True\n vertex_a_new |= pivot_neighbors\n if vertex_a2 not in vertex_a_part:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_a1 can not reach vertex_a2 trough vertex_a_part'\n )\n if vertex_b1 == vertex_b2:\n closed = True\n else:\n vertex_b_new = set(self.neighbors[vertex_b1])\n vertex_b_new.discard(vertex_a1)\n vertex_b_part = set([vertex_b1])\n closed = False\n while len(vertex_b_new) > 0:\n pivot = vertex_b_new.pop()\n if pivot == vertex_b2:\n closed = True\n break\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertex_b_part\n vertex_b_new |= pivot_neighbors\n vertex_b_part.add(pivot)\n if not closed:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b1 can not reach vertex_b2 trough vertex_b_part'\n )\n vertex_b_part = set(range(self.num_vertices)) - vertex_a_part\n return vertex_a_part, vertex_b_part, (vertex_a1, vertex_b1, vertex_a2,\n vertex_b2)\n", "role": "user" }, { "content": "get_halfs_double", "role": "assistant" } ]
def x(self, other): graphs0 = [self.get_subgraph(group, normalize=True) for group in self. independent_vertices] graphs1 = [other.get_subgraph(group) for group in other. independent_vertices] if len(graphs0) != len(graphs1): return matches = [] for graph0 in graphs0: pattern = EqualPattern(graph0) found_match = False for i, graph1 in enumerate(graphs1): local_matches = list(GraphSearch(pattern)(graph1, one_match=True)) if len(local_matches) == 1: match = local_matches[0] old_to_new = OneToOne((j, i) for i, j in enumerate(graph0. _old_vertex_indexes)) matches.append(match * old_to_new) del graphs1[i] found_match = True break if not found_match: return result = OneToOne() for match in matches: result.add_relations(match.forward.items()) return result
full_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n graphs0 = [self.get_subgraph(group, normalize=True) for group in self.\n independent_vertices]\n graphs1 = [other.get_subgraph(group) for group in other.\n independent_vertices]\n if len(graphs0) != len(graphs1):\n return\n matches = []\n for graph0 in graphs0:\n pattern = EqualPattern(graph0)\n found_match = False\n for i, graph1 in enumerate(graphs1):\n local_matches = list(GraphSearch(pattern)(graph1, one_match=True))\n if len(local_matches) == 1:\n match = local_matches[0]\n old_to_new = OneToOne((j, i) for i, j in enumerate(graph0.\n _old_vertex_indexes))\n matches.append(match * old_to_new)\n del graphs1[i]\n found_match = True\n break\n if not found_match:\n return\n result = OneToOne()\n for match in matches:\n result.add_relations(match.forward.items())\n return result\n", "role": "user" }, { "content": "full_match", "role": "assistant" } ]
def x(self, source, destination): if self.in_sources(source): if self.forward[source] != destination: raise ValueError( 'Source is already in use. Destination does not match.') else: raise ValueError('Source-Destination relation already exists.') elif self.in_destinations(destination): raise ValueError( 'Destination is already in use. Source does not match.') else: self.forward[source] = destination self.reverse[destination] = source
add_relation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, destination):\n if self.in_sources(source):\n if self.forward[source] != destination:\n raise ValueError(\n 'Source is already in use. Destination does not match.')\n else:\n raise ValueError('Source-Destination relation already exists.')\n elif self.in_destinations(destination):\n raise ValueError(\n 'Destination is already in use. Source does not match.')\n else:\n self.forward[source] = destination\n self.reverse[destination] = source\n", "role": "user" }, { "content": "add_relation", "role": "assistant" } ]
def x(self, relations): for source, destination in relations: self.add_relation(source, destination)
add_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, relations):\n for source, destination in relations:\n self.add_relation(source, destination)\n", "role": "user" }, { "content": "add_relations", "role": "assistant" } ]
def x(self): result = self.__class__() result.forward = copy.copy(self.reverse) result.reverse = copy.copy(self.forward) return result
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = self.__class__()\n result.forward = copy.copy(self.reverse)\n result.reverse = copy.copy(self.forward)\n return result\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(cls, vertex0, vertex1): result = cls([(vertex0, vertex1)]) result.previous_ends1 = set([vertex1]) return result
from_first_relation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vertex0, vertex1):\n result = cls([(vertex0, vertex1)])\n result.previous_ends1 = set([vertex1])\n return result\n", "role": "user" }, { "content": "from_first_relation", "role": "assistant" } ]
def x(self, subject_graph): result = [] for vertex in self.previous_ends1: for neighbor in subject_graph.neighbors[vertex]: if neighbor not in self.reverse: result.append((vertex, neighbor)) return result
get_new_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject_graph):\n result = []\n for vertex in self.previous_ends1:\n for neighbor in subject_graph.neighbors[vertex]:\n if neighbor not in self.reverse:\n result.append((vertex, neighbor))\n return result\n", "role": "user" }, { "content": "get_new_edges", "role": "assistant" } ]
def x(self, new_relations): result = self.__class__(self.forward.items()) result.add_relations(new_relations.items()) result.previous_ends1 = set(new_relations.values()) return result
copy_with_new_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_relations):\n result = self.__class__(self.forward.items())\n result.add_relations(new_relations.items())\n result.previous_ends1 = set(new_relations.values())\n return result\n", "role": "user" }, { "content": "copy_with_new_relations", "role": "assistant" } ]
def x(self, pattern_graph): self.pattern_graph = pattern_graph self.level_edges = {} self.level_constraints = {} self.duplicate_checks = set([]) if pattern_graph is None: return if len(pattern_graph.independent_vertices) != 1: raise ValueError('A pattern_graph must not be a disconnected graph.') ibfe = self.pattern_graph.iter_breadth_first_edges(self.start_vertex) for edge, distance, constraint in ibfe: if constraint: l = self.level_constraints.setdefault(distance - 1, []) else: l = self.level_edges.setdefault(distance, []) l.append(edge) if self.criteria_sets is not None: for cycles in pattern_graph.symmetry_cycles: if len(cycles) > 0: self.duplicate_checks.add((cycles[0][0], cycles[0][1]))
set_pattern_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pattern_graph):\n self.pattern_graph = pattern_graph\n self.level_edges = {}\n self.level_constraints = {}\n self.duplicate_checks = set([])\n if pattern_graph is None:\n return\n if len(pattern_graph.independent_vertices) != 1:\n raise ValueError('A pattern_graph must not be a disconnected graph.')\n ibfe = self.pattern_graph.iter_breadth_first_edges(self.start_vertex)\n for edge, distance, constraint in ibfe:\n if constraint:\n l = self.level_constraints.setdefault(distance - 1, [])\n else:\n l = self.level_edges.setdefault(distance, [])\n l.append(edge)\n if self.criteria_sets is not None:\n for cycles in pattern_graph.symmetry_cycles:\n if len(cycles) > 0:\n self.duplicate_checks.add((cycles[0][0], cycles[0][1]))\n", "role": "user" }, { "content": "set_pattern_graph", "role": "assistant" } ]
def x(self, subject_graph): vertex0 = self.start_vertex for vertex1 in range(subject_graph.num_vertices): if self.compare(vertex0, vertex1, subject_graph): yield vertex0, vertex1
iter_initial_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject_graph):\n vertex0 = self.start_vertex\n for vertex1 in range(subject_graph.num_vertices):\n if self.compare(vertex0, vertex1, subject_graph):\n yield vertex0, vertex1\n", "role": "user" }, { "content": "iter_initial_relations", "role": "assistant" } ]
def x(self, level): return self.level_edges.get(level, []), self.level_constraints.get(level, [])
get_new_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, level):\n return self.level_edges.get(level, []), self.level_constraints.get(level,\n [])\n", "role": "user" }, { "content": "get_new_edges", "role": "assistant" } ]
def x(self, match, new_relations, subject_graph, one_match): if not (self.criteria_sets is None or one_match): for check in self.duplicate_checks: vertex_a = new_relations.get(check[0]) vertex_b = new_relations.get(check[1]) if vertex_a is None and vertex_b is None: continue if vertex_a is None: vertex_a = match.forward.get(check[0]) if vertex_a is None: continue elif vertex_b is None: vertex_b = match.forward.get(check[1]) if vertex_b is None: continue if vertex_a > vertex_b: return False return True return True
check_next_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match, new_relations, subject_graph, one_match):\n if not (self.criteria_sets is None or one_match):\n for check in self.duplicate_checks:\n vertex_a = new_relations.get(check[0])\n vertex_b = new_relations.get(check[1])\n if vertex_a is None and vertex_b is None:\n continue\n if vertex_a is None:\n vertex_a = match.forward.get(check[0])\n if vertex_a is None:\n continue\n elif vertex_b is None:\n vertex_b = match.forward.get(check[1])\n if vertex_b is None:\n continue\n if vertex_a > vertex_b:\n return False\n return True\n return True\n", "role": "user" }, { "content": "check_next_match", "role": "assistant" } ]
def x(self, canonical_match, subject_graph, one_match): if self.criteria_sets is None or one_match: yield canonical_match else: for criteria_set in self.criteria_sets: satisfied_match_tags = set([]) for symmetry in self.pattern_graph.symmetries: final_match = canonical_match * symmetry if criteria_set.test_match(final_match, self.pattern_graph, subject_graph): match_tags = tuple(self.vertex_tags.get(symmetry. reverse[vertex0]) for vertex0 in range(self. pattern_graph.num_vertices)) if match_tags not in satisfied_match_tags: final_match.__dict__.update(criteria_set.info) yield final_match satisfied_match_tags.add(match_tags)
iter_final_matches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, canonical_match, subject_graph, one_match):\n if self.criteria_sets is None or one_match:\n yield canonical_match\n else:\n for criteria_set in self.criteria_sets:\n satisfied_match_tags = set([])\n for symmetry in self.pattern_graph.symmetries:\n final_match = canonical_match * symmetry\n if criteria_set.test_match(final_match, self.pattern_graph,\n subject_graph):\n match_tags = tuple(self.vertex_tags.get(symmetry.\n reverse[vertex0]) for vertex0 in range(self.\n pattern_graph.num_vertices))\n if match_tags not in satisfied_match_tags:\n final_match.__dict__.update(criteria_set.info)\n yield final_match\n satisfied_match_tags.add(match_tags)\n", "role": "user" }, { "content": "iter_final_matches", "role": "assistant" } ]
def x(self): closed_cycles = [] todo = set(self.forward.keys()) if todo != set(self.forward.values()): raise GraphError( 'The subject and pattern graph must have the same numbering.') current_vertex = None while len(todo) > 0: if current_vertex == None: current_vertex = todo.pop() current_cycle = [] else: todo.discard(current_vertex) current_cycle.append(current_vertex) next_vertex = self.get_destination(current_vertex) if next_vertex == current_cycle[0]: if len(current_cycle) > 1: pivot = np.argmin(current_cycle) current_cycle = current_cycle[pivot:] + current_cycle[:pivot] closed_cycles.append(current_cycle) current_vertex = None else: current_vertex = next_vertex closed_cycles.sort() closed_cycles = tuple(tuple(cycle) for cycle in closed_cycles) return closed_cycles
get_closed_cycles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n closed_cycles = []\n todo = set(self.forward.keys())\n if todo != set(self.forward.values()):\n raise GraphError(\n 'The subject and pattern graph must have the same numbering.')\n current_vertex = None\n while len(todo) > 0:\n if current_vertex == None:\n current_vertex = todo.pop()\n current_cycle = []\n else:\n todo.discard(current_vertex)\n current_cycle.append(current_vertex)\n next_vertex = self.get_destination(current_vertex)\n if next_vertex == current_cycle[0]:\n if len(current_cycle) > 1:\n pivot = np.argmin(current_cycle)\n current_cycle = current_cycle[pivot:] + current_cycle[:pivot]\n closed_cycles.append(current_cycle)\n current_vertex = None\n else:\n current_vertex = next_vertex\n closed_cycles.sort()\n closed_cycles = tuple(tuple(cycle) for cycle in closed_cycles)\n return closed_cycles\n", "role": "user" }, { "content": "get_closed_cycles", "role": "assistant" } ]
def x(self, subject_graph): if self.pattern_graph.num_edges != subject_graph.num_edges: return for pair in CustomPattern.iter_initial_relations(self, subject_graph): yield pair
iter_initial_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject_graph):\n if self.pattern_graph.num_edges != subject_graph.num_edges:\n return\n for pair in CustomPattern.iter_initial_relations(self, subject_graph):\n yield pair\n", "role": "user" }, { "content": "iter_initial_relations", "role": "assistant" } ]
def x(self, vertex0, vertex1, subject_graph): return (self.pattern_graph.vertex_fingerprints[vertex0] == subject_graph.vertex_fingerprints[vertex1]).all()
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertex0, vertex1, subject_graph):\n return (self.pattern_graph.vertex_fingerprints[vertex0] ==\n subject_graph.vertex_fingerprints[vertex1]).all()\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(self, subject_graph): vertex0 = 0 for vertex1 in range(subject_graph.num_vertices): yield vertex0, vertex1
iter_initial_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject_graph):\n vertex0 = 0\n for vertex1 in range(subject_graph.num_vertices):\n yield vertex0, vertex1\n", "role": "user" }, { "content": "iter_initial_relations", "role": "assistant" } ]
def x(self, level): if level == 0: edges0 = [(0, 1), (0, 2)] elif level >= (self.max_size - 1) // 2: edges0 = [] else: l2 = level * 2 edges0 = [(l2 - 1, l2 + 1), (l2, l2 + 2)] return edges0, []
get_new_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, level):\n if level == 0:\n edges0 = [(0, 1), (0, 2)]\n elif level >= (self.max_size - 1) // 2:\n edges0 = []\n else:\n l2 = level * 2\n edges0 = [(l2 - 1, l2 + 1), (l2, l2 + 2)]\n return edges0, []\n", "role": "user" }, { "content": "get_new_edges", "role": "assistant" } ]
def x(self, match, new_relations, subject_graph, one_match): if len(match) == 3: if match.forward[1] < match.forward[2]: return False for vertex1 in new_relations.values(): if vertex1 < match.forward[0]: return False for vertex1 in new_relations.values(): paths = list(subject_graph.iter_shortest_paths(vertex1, match. forward[0])) if len(paths) != 1: return False if len(paths[0]) != (len(match) + 1) // 2: return False return True
check_next_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match, new_relations, subject_graph, one_match):\n if len(match) == 3:\n if match.forward[1] < match.forward[2]:\n return False\n for vertex1 in new_relations.values():\n if vertex1 < match.forward[0]:\n return False\n for vertex1 in new_relations.values():\n paths = list(subject_graph.iter_shortest_paths(vertex1, match.\n forward[0]))\n if len(paths) != 1:\n return False\n if len(paths[0]) != (len(match) + 1) // 2:\n return False\n return True\n", "role": "user" }, { "content": "check_next_match", "role": "assistant" } ]
def x(self, match, subject_graph): size = len(match) if match.forward[size - 1] in subject_graph.neighbors[match.forward[ size - 2]]: order = list(range(0, size, 2)) + list(range(1, size - 1, 2))[::-1] ok = True for i in range(len(order) // 2): count = len(list(subject_graph.iter_shortest_paths(match. forward[order[i]], match.forward[order[(i + size // 2) % size]]))) if count > 1: ok = False break count = len(list(subject_graph.iter_shortest_paths(match. forward[order[i]], match.forward[order[(i + size // 2 + 1) % size]]))) if count > 1: ok = False break if ok: match.ring_vertices = tuple(match.forward[i] for i in order) return True paths = list(subject_graph.iter_shortest_paths(match.forward[size - 1], match.forward[size - 2])) if size > 3 and len(paths) == 1 and len(paths[0] ) == 3 or size == 3 and len(paths) == 2 and len(paths[0]) == 3: path = paths[0] if size == 3 and path[1] == match.forward[0]: path = paths[1] match.add_relation(size, path[1]) size += 1 order = list(range(0, size, 2)) + list(range(size - 1, 0, -2)) ok = True for i in range(len(order) // 2): count = len(list(subject_graph.iter_shortest_paths(match. forward[order[i]], match.forward[order[(i + size // 2) % size]]))) if count != 2: ok = False break if ok: if match.forward[size - 1] < match.forward[0]: ok = False if not ok: vertex1 = match.forward[size - 1] del match.forward[size - 1] del match.reverse[vertex1] size -= 1 else: match.ring_vertices = tuple(match.forward[i] for i in order) return ok return False
complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match, subject_graph):\n size = len(match)\n if match.forward[size - 1] in subject_graph.neighbors[match.forward[\n size - 2]]:\n order = list(range(0, size, 2)) + list(range(1, size - 1, 2))[::-1]\n ok = True\n for i in range(len(order) // 2):\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2) %\n size]])))\n if count > 1:\n ok = False\n break\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2 + 1) %\n size]])))\n if count > 1:\n ok = False\n break\n if ok:\n match.ring_vertices = tuple(match.forward[i] for i in order)\n return True\n paths = list(subject_graph.iter_shortest_paths(match.forward[size - 1],\n match.forward[size - 2]))\n if size > 3 and len(paths) == 1 and len(paths[0]\n ) == 3 or size == 3 and len(paths) == 2 and len(paths[0]) == 3:\n path = paths[0]\n if size == 3 and path[1] == match.forward[0]:\n path = paths[1]\n match.add_relation(size, path[1])\n size += 1\n order = list(range(0, size, 2)) + list(range(size - 1, 0, -2))\n ok = True\n for i in range(len(order) // 2):\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2) %\n size]])))\n if count != 2:\n ok = False\n break\n if ok:\n if match.forward[size - 1] < match.forward[0]:\n ok = False\n if not ok:\n vertex1 = match.forward[size - 1]\n del match.forward[size - 1]\n del match.reverse[vertex1]\n size -= 1\n else:\n match.ring_vertices = tuple(match.forward[i] for i in order)\n return ok\n return False\n", "role": "user" }, { "content": "complete", "role": "assistant" } ]
def x(self, text, indent=0): if self.debug: if indent > 0: print(' ' * self.debug, text) self.debug += indent if indent <= 0: print(' ' * self.debug, text)
print_debug
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, indent=0):\n if self.debug:\n if indent > 0:\n print(' ' * self.debug, text)\n self.debug += indent\n if indent <= 0:\n print(' ' * self.debug, text)\n", "role": "user" }, { "content": "print_debug", "role": "assistant" } ]
def x(self, init_match, edges0, edges1): sources = {} for start_vertex0, end_vertex0 in edges0: l = sources.setdefault(start_vertex0, []) l.append(end_vertex0) dests = {} for start_vertex1, end_vertex1 in edges1: start_vertex0 = init_match.reverse[start_vertex1] l = dests.setdefault(start_vertex0, []) l.append(end_vertex1) for start_vertex0, end_vertices0 in sources.items(): end_vertices1 = dests.get(start_vertex0, []) yield end_vertices0, end_vertices1
iter_candidate_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, init_match, edges0, edges1):\n sources = {}\n for start_vertex0, end_vertex0 in edges0:\n l = sources.setdefault(start_vertex0, [])\n l.append(end_vertex0)\n dests = {}\n for start_vertex1, end_vertex1 in edges1:\n start_vertex0 = init_match.reverse[start_vertex1]\n l = dests.setdefault(start_vertex0, [])\n l.append(end_vertex1)\n for start_vertex0, end_vertices0 in sources.items():\n end_vertices1 = dests.get(start_vertex0, [])\n yield end_vertices0, end_vertices1\n", "role": "user" }, { "content": "iter_candidate_groups", "role": "assistant" } ]
def x(self, init_match, subject_graph, edges0, constraints0, edges1): num_new_relations = len(set(j for i, j in edges0)) def x(relations, num): if len(relations) == 0: return for i, pivot in enumerate(relations): if num == 1: yield pivot, else: compatible_relations = list(item for item in relations[:i] if pivot[0] != item[0] and pivot[1] != item[1]) for tail in combine_small(compatible_relations, num - 1): yield (pivot,) + tail candidate_relations = [] icg = self._iter_candidate_groups(init_match, edges0, edges1) for end_vertices0, end_vertices1 in icg: if len(end_vertices0) > len(end_vertices1): return elif not self.pattern.sub and len(end_vertices0) != len(end_vertices1): return l = [] for end_vertex0 in end_vertices0: for end_vertex1 in end_vertices1: if self.pattern.compare(end_vertex0, end_vertex1, subject_graph ): l.append((end_vertex0, end_vertex1)) if len(l) > 0: l = list(combine_small(l, len(end_vertices0))) candidate_relations.append(l) if len(candidate_relations) == 0: return self.print_debug('candidate_relations: %s' % candidate_relations) def x(pos=0): crs = candidate_relations[pos] if pos == len(candidate_relations) - 1: for relations in crs: yield relations else: for tail in combine_big(pos + 1): for relations in crs: yield relations + tail for new_relations in combine_big(): new_relations = set(new_relations) self.print_debug('new_relations: %s' % (new_relations,)) if len(new_relations) != num_new_relations: continue forward = dict(new_relations) if len(forward) != num_new_relations: continue reverse = dict((j, i) for i, j in new_relations) if len(reverse) != num_new_relations: continue for a0, b0 in constraints0: if forward[a0] not in subject_graph.neighbors[forward[b0]]: forward = None break if forward is None: continue yield forward
iter_new_relations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, init_match, subject_graph, edges0, constraints0, edges1):\n num_new_relations = len(set(j for i, j in edges0))\n\n def x(relations, num):\n if len(relations) == 0:\n return\n for i, pivot in enumerate(relations):\n if num == 1:\n yield pivot,\n else:\n compatible_relations = list(item for item in relations[:i] if\n pivot[0] != item[0] and pivot[1] != item[1])\n for tail in combine_small(compatible_relations, num - 1):\n yield (pivot,) + tail\n candidate_relations = []\n icg = self._iter_candidate_groups(init_match, edges0, edges1)\n for end_vertices0, end_vertices1 in icg:\n if len(end_vertices0) > len(end_vertices1):\n return\n elif not self.pattern.sub and len(end_vertices0) != len(end_vertices1):\n return\n l = []\n for end_vertex0 in end_vertices0:\n for end_vertex1 in end_vertices1:\n if self.pattern.compare(end_vertex0, end_vertex1, subject_graph\n ):\n l.append((end_vertex0, end_vertex1))\n if len(l) > 0:\n l = list(combine_small(l, len(end_vertices0)))\n candidate_relations.append(l)\n if len(candidate_relations) == 0:\n return\n self.print_debug('candidate_relations: %s' % candidate_relations)\n\n def x(pos=0):\n crs = candidate_relations[pos]\n if pos == len(candidate_relations) - 1:\n for relations in crs:\n yield relations\n else:\n for tail in combine_big(pos + 1):\n for relations in crs:\n yield relations + tail\n for new_relations in combine_big():\n new_relations = set(new_relations)\n self.print_debug('new_relations: %s' % (new_relations,))\n if len(new_relations) != num_new_relations:\n continue\n forward = dict(new_relations)\n if len(forward) != num_new_relations:\n continue\n reverse = dict((j, i) for i, j in new_relations)\n if len(reverse) != num_new_relations:\n continue\n for a0, b0 in constraints0:\n if forward[a0] not in subject_graph.neighbors[forward[b0]]:\n forward = None\n break\n if forward is None:\n continue\n yield forward\n", "role": "user" }, { "content": "iter_new_relations", "role": "assistant" } ]
def x(self, input_match, subject_graph, one_match, level=0): self.print_debug('ENTERING _ITER_MATCHES', 1) self.print_debug('input_match: %s' % input_match) edges0, constraints0 = self.pattern.get_new_edges(level) edges1 = input_match.get_new_edges(subject_graph) self.print_debug('edges0: %s' % edges0) self.print_debug('constraints0: %s' % constraints0) self.print_debug('edges1: %s' % edges1) inr = self._iter_new_relations(input_match, subject_graph, edges0, constraints0, edges1) for new_relations in inr: next_match = input_match.copy_with_new_relations(new_relations) if not self.pattern.check_next_match(next_match, new_relations, subject_graph, one_match): continue if self.pattern.complete(next_match, subject_graph): yield next_match else: for match in self._iter_matches(next_match, subject_graph, one_match, level + 1): yield match self.print_debug('LEAVING_ITER_MATCHES', -1)
iter_matches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_match, subject_graph, one_match, level=0):\n self.print_debug('ENTERING _ITER_MATCHES', 1)\n self.print_debug('input_match: %s' % input_match)\n edges0, constraints0 = self.pattern.get_new_edges(level)\n edges1 = input_match.get_new_edges(subject_graph)\n self.print_debug('edges0: %s' % edges0)\n self.print_debug('constraints0: %s' % constraints0)\n self.print_debug('edges1: %s' % edges1)\n inr = self._iter_new_relations(input_match, subject_graph, edges0,\n constraints0, edges1)\n for new_relations in inr:\n next_match = input_match.copy_with_new_relations(new_relations)\n if not self.pattern.check_next_match(next_match, new_relations,\n subject_graph, one_match):\n continue\n if self.pattern.complete(next_match, subject_graph):\n yield next_match\n else:\n for match in self._iter_matches(next_match, subject_graph,\n one_match, level + 1):\n yield match\n self.print_debug('LEAVING_ITER_MATCHES', -1)\n", "role": "user" }, { "content": "iter_matches", "role": "assistant" } ]
def x(filename, molecule, atomnames=None, resnames=None, chain_ids=None, occupancies=None, betas=None): with open(filename, 'w') as f: res_id = 1 old_resname = None for i in range(molecule.size): symbol = periodic[molecule.numbers[i]].symbol if atomnames is None: atomname = symbol else: atomname = atomnames[i] if resnames is None: resname = 'OXO' else: resname = resnames[i] if resname != old_resname: res_id += 1 if chain_ids is None: chain_id = 'A' else: chain_id = chain_ids[i] if occupancies is None: occupancy = 1.0 else: occupancy = occupancies[i] if betas is None: beta = 1.0 else: beta = betas[i] print( 'ATOM %4i %3s %3s %1s%4i %8.3f%8.3f%8.3f%6.2f%6.2f %2s ' % (i + 1, atomname.ljust(3), resname.ljust(3), chain_id, res_id, molecule.coordinates[i, 0] / angstrom, molecule. coordinates[i, 1] / angstrom, molecule.coordinates[i, 2] / angstrom, occupancy, beta, symbol.ljust(2)), file=f) old_resname = resname
dump_pdb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, molecule, atomnames=None, resnames=None, chain_ids=None,\n occupancies=None, betas=None):\n with open(filename, 'w') as f:\n res_id = 1\n old_resname = None\n for i in range(molecule.size):\n symbol = periodic[molecule.numbers[i]].symbol\n if atomnames is None:\n atomname = symbol\n else:\n atomname = atomnames[i]\n if resnames is None:\n resname = 'OXO'\n else:\n resname = resnames[i]\n if resname != old_resname:\n res_id += 1\n if chain_ids is None:\n chain_id = 'A'\n else:\n chain_id = chain_ids[i]\n if occupancies is None:\n occupancy = 1.0\n else:\n occupancy = occupancies[i]\n if betas is None:\n beta = 1.0\n else:\n beta = betas[i]\n print(\n 'ATOM %4i %3s %3s %1s%4i %8.3f%8.3f%8.3f%6.2f%6.2f %2s '\n % (i + 1, atomname.ljust(3), resname.ljust(3), chain_id,\n res_id, molecule.coordinates[i, 0] / angstrom, molecule.\n coordinates[i, 1] / angstrom, molecule.coordinates[i, 2] /\n angstrom, occupancy, beta, symbol.ljust(2)), file=f)\n old_resname = resname\n", "role": "user" }, { "content": "dump_pdb", "role": "assistant" } ]
def x(filename): with open(filename) as f: numbers = [] coordinates = [] occupancies = [] betas = [] for line in f: if line.startswith('ATOM'): symbol = line[76:78].strip() numbers.append(periodic[symbol].number) coordinates.append([float(line[30:38]) * angstrom, float( line[38:46]) * angstrom, float(line[46:54]) * angstrom]) occupancies.append(float(line[54:60])) betas.append(float(line[60:66])) if len(numbers) > 0: molecule = Molecule(numbers, coordinates) molecule.occupancies = np.array(occupancies) molecule.betas = np.array(betas) return molecule else: raise FileFormatError('No molecule found in pdb file %s' % filename)
load_pdb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename) as f:\n numbers = []\n coordinates = []\n occupancies = []\n betas = []\n for line in f:\n if line.startswith('ATOM'):\n symbol = line[76:78].strip()\n numbers.append(periodic[symbol].number)\n coordinates.append([float(line[30:38]) * angstrom, float(\n line[38:46]) * angstrom, float(line[46:54]) * angstrom])\n occupancies.append(float(line[54:60]))\n betas.append(float(line[60:66]))\n if len(numbers) > 0:\n molecule = Molecule(numbers, coordinates)\n molecule.occupancies = np.array(occupancies)\n molecule.betas = np.array(betas)\n return molecule\n else:\n raise FileFormatError('No molecule found in pdb file %s' % filename)\n", "role": "user" }, { "content": "load_pdb", "role": "assistant" } ]
def x(zmat): numbers = zmat['number'] N = len(numbers) coordinates = np.zeros((N, 3), float) coordinates[1, 2] = zmat['distance'][1] if zmat['rel1'][2] == 1: sign = -1 else: sign = 1 coordinates[2, 2] = zmat['distance'][2] * sign * np.cos(zmat['angle'][2]) coordinates[2, 1] = zmat['distance'][2] * sign * np.sin(zmat['angle'][2]) coordinates[2] += coordinates[2 - zmat['rel1'][2]] ref0 = 3 for number, distance, rel1, angle, rel2, dihed, rel3 in zmat[3:]: ref1 = ref0 - rel1 ref2 = ref0 - rel2 ref3 = ref0 - rel3 if ref1 < 0: ref1 = 0 if ref2 < 0: ref2 = 0 if ref3 < 0: ref3 = 0 origin = coordinates[ref1] new_z = coordinates[ref2] - origin norm_z = np.linalg.norm(new_z) if norm_z < 1e-15: new_z = np.array([0, 0, 1], float) else: new_z /= np.linalg.norm(new_z) new_x = coordinates[ref3] - origin new_x -= np.dot(new_x, new_z) * new_z norm_x = np.linalg.norm(new_x) if norm_x < 1e-15: new_x = random_orthonormal(new_z) else: new_x /= np.linalg.norm(new_x) new_y = -np.cross(new_z, new_x) x = distance * np.cos(dihed) * np.sin(angle) y = distance * np.sin(dihed) * np.sin(angle) z = distance * np.cos(angle) coordinates[ref0] = origin + x * new_x + y * new_y + z * new_z ref0 += 1 return numbers, coordinates
zmat_to_cart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(zmat):\n numbers = zmat['number']\n N = len(numbers)\n coordinates = np.zeros((N, 3), float)\n coordinates[1, 2] = zmat['distance'][1]\n if zmat['rel1'][2] == 1:\n sign = -1\n else:\n sign = 1\n coordinates[2, 2] = zmat['distance'][2] * sign * np.cos(zmat['angle'][2])\n coordinates[2, 1] = zmat['distance'][2] * sign * np.sin(zmat['angle'][2])\n coordinates[2] += coordinates[2 - zmat['rel1'][2]]\n ref0 = 3\n for number, distance, rel1, angle, rel2, dihed, rel3 in zmat[3:]:\n ref1 = ref0 - rel1\n ref2 = ref0 - rel2\n ref3 = ref0 - rel3\n if ref1 < 0:\n ref1 = 0\n if ref2 < 0:\n ref2 = 0\n if ref3 < 0:\n ref3 = 0\n origin = coordinates[ref1]\n new_z = coordinates[ref2] - origin\n norm_z = np.linalg.norm(new_z)\n if norm_z < 1e-15:\n new_z = np.array([0, 0, 1], float)\n else:\n new_z /= np.linalg.norm(new_z)\n new_x = coordinates[ref3] - origin\n new_x -= np.dot(new_x, new_z) * new_z\n norm_x = np.linalg.norm(new_x)\n if norm_x < 1e-15:\n new_x = random_orthonormal(new_z)\n else:\n new_x /= np.linalg.norm(new_x)\n new_y = -np.cross(new_z, new_x)\n x = distance * np.cos(dihed) * np.sin(angle)\n y = distance * np.sin(dihed) * np.sin(angle)\n z = distance * np.cos(angle)\n coordinates[ref0] = origin + x * new_x + y * new_y + z * new_z\n ref0 += 1\n return numbers, coordinates\n", "role": "user" }, { "content": "zmat_to_cart", "role": "assistant" } ]
def x(self, existing_refs): ref0 = existing_refs[0] for ref in existing_refs: result = None for n in sorted(self.graph.neighbors[ref]): if self.new_index[n] > self.new_index[ref0]: continue if n in existing_refs: continue if result is None or self.graph.numbers[n] <= self.graph.numbers[ result]: result = n if result is not None: return result raise RuntimeError('Could not find new reference.')
get_new_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, existing_refs):\n ref0 = existing_refs[0]\n for ref in existing_refs:\n result = None\n for n in sorted(self.graph.neighbors[ref]):\n if self.new_index[n] > self.new_index[ref0]:\n continue\n if n in existing_refs:\n continue\n if result is None or self.graph.numbers[n] <= self.graph.numbers[\n result]:\n result = n\n if result is not None:\n return result\n raise RuntimeError('Could not find new reference.')\n", "role": "user" }, { "content": "get_new_ref", "role": "assistant" } ]
def x(self, coordinates): N = len(self.graph.numbers) if coordinates.shape != (N, 3): raise ValueError('The shape of the coordinates must be (%i, 3)' % N) result = np.zeros(N, dtype=self.dtype) for i in range(N): ref0 = self.old_index[i] rel1 = -1 rel2 = -1 rel3 = -1 distance = 0 angle = 0 dihed = 0 if i > 0: ref1 = self._get_new_ref([ref0]) distance = np.linalg.norm(coordinates[ref0] - coordinates[ref1]) rel1 = i - self.new_index[ref1] if i > 1: ref2 = self._get_new_ref([ref0, ref1]) angle, = ic.bend_angle(coordinates[[ref0, ref1, ref2]]) rel2 = i - self.new_index[ref2] if i > 2: ref3 = self._get_new_ref([ref0, ref1, ref2]) dihed, = ic.dihed_angle(coordinates[[ref0, ref1, ref2, ref3]]) rel3 = i - self.new_index[ref3] result[i] = self.graph.numbers[i ], distance, rel1, angle, rel2, dihed, rel3 return result
cart_to_zmat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n N = len(self.graph.numbers)\n if coordinates.shape != (N, 3):\n raise ValueError('The shape of the coordinates must be (%i, 3)' % N)\n result = np.zeros(N, dtype=self.dtype)\n for i in range(N):\n ref0 = self.old_index[i]\n rel1 = -1\n rel2 = -1\n rel3 = -1\n distance = 0\n angle = 0\n dihed = 0\n if i > 0:\n ref1 = self._get_new_ref([ref0])\n distance = np.linalg.norm(coordinates[ref0] - coordinates[ref1])\n rel1 = i - self.new_index[ref1]\n if i > 1:\n ref2 = self._get_new_ref([ref0, ref1])\n angle, = ic.bend_angle(coordinates[[ref0, ref1, ref2]])\n rel2 = i - self.new_index[ref2]\n if i > 2:\n ref3 = self._get_new_ref([ref0, ref1, ref2])\n dihed, = ic.dihed_angle(coordinates[[ref0, ref1, ref2, ref3]])\n rel3 = i - self.new_index[ref3]\n result[i] = self.graph.numbers[i\n ], distance, rel1, angle, rel2, dihed, rel3\n return result\n", "role": "user" }, { "content": "cart_to_zmat", "role": "assistant" } ]
def x(self, ipa_string): canonical = [(c.canonical_representation,) for c in ipa_string] split = split_using_dictionary(canonical, self, self.max_key_length, single_char_parsing=False) for sub in split: if not sub in self.ipa_canonical_representation_to_mapped_str: return False return True
can_map_ipa_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ipa_string):\n canonical = [(c.canonical_representation,) for c in ipa_string]\n split = split_using_dictionary(canonical, self, self.max_key_length,\n single_char_parsing=False)\n for sub in split:\n if not sub in self.ipa_canonical_representation_to_mapped_str:\n return False\n return True\n", "role": "user" }, { "content": "can_map_ipa_string", "role": "assistant" } ]
def x(self, ipa_string, ignore=False, return_as_list=False, return_can_map= False): acc = [] can_map = True canonical = [(c.canonical_representation,) for c in ipa_string] split = split_using_dictionary(canonical, self, self.max_key_length, single_char_parsing=False) for sub in split: try: acc.append(self.ipa_canonical_representation_to_mapped_str[sub]) except KeyError: if ignore: can_map = False else: raise ValueError( 'The IPA string contains an IPA character that is not mapped: %s' % sub) mapped = acc if return_as_list else u''.join(acc) if return_can_map: return can_map, mapped return mapped
map_ipa_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ipa_string, ignore=False, return_as_list=False, return_can_map=\n False):\n acc = []\n can_map = True\n canonical = [(c.canonical_representation,) for c in ipa_string]\n split = split_using_dictionary(canonical, self, self.max_key_length,\n single_char_parsing=False)\n for sub in split:\n try:\n acc.append(self.ipa_canonical_representation_to_mapped_str[sub])\n except KeyError:\n if ignore:\n can_map = False\n else:\n raise ValueError(\n 'The IPA string contains an IPA character that is not mapped: %s'\n % sub)\n mapped = acc if return_as_list else u''.join(acc)\n if return_can_map:\n return can_map, mapped\n return mapped\n", "role": "user" }, { "content": "map_ipa_string", "role": "assistant" } ]
def x(self, unicode_string, ignore=False, single_char_parsing=False, return_as_list=False, return_can_map=False): if unicode_string is None: return None ipa_string = IPAString(unicode_string=unicode_string, ignore=ignore, single_char_parsing=single_char_parsing) return self.map_ipa_string(ipa_string=ipa_string, ignore=ignore, return_as_list=return_as_list, return_can_map=return_can_map)
map_unicode_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, unicode_string, ignore=False, single_char_parsing=False,\n return_as_list=False, return_can_map=False):\n if unicode_string is None:\n return None\n ipa_string = IPAString(unicode_string=unicode_string, ignore=ignore,\n single_char_parsing=single_char_parsing)\n return self.map_ipa_string(ipa_string=ipa_string, ignore=ignore,\n return_as_list=return_as_list, return_can_map=return_can_map)\n", "role": "user" }, { "content": "map_unicode_string", "role": "assistant" } ]
def x(invalid_chars, vargs): if len(invalid_chars) > 0: if vargs['print_invalid']: print(u''.join(invalid_chars)) if vargs['unicode']: for u_char in sorted(set(invalid_chars)): print(u"'%s'\t%s\t%s" % (u_char, hex(ord(u_char)), unicodedata.name(u_char, 'UNKNOWN')))
print_invalid_chars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(invalid_chars, vargs):\n if len(invalid_chars) > 0:\n if vargs['print_invalid']:\n print(u''.join(invalid_chars))\n if vargs['unicode']:\n for u_char in sorted(set(invalid_chars)):\n print(u\"'%s'\\t%s\\t%s\" % (u_char, hex(ord(u_char)),\n unicodedata.name(u_char, 'UNKNOWN')))\n", "role": "user" }, { "content": "print_invalid_chars", "role": "assistant" } ]
def x(string, vargs): try: ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore' ], single_char_parsing=vargs['single_char_parsing']) print(vargs['separator'].join([(u'%s' % c) for c in ipa_string])) except ValueError as exc: print_error(str(exc))
command_canonize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n try:\n ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'\n ], single_char_parsing=vargs['single_char_parsing'])\n print(vargs['separator'].join([(u'%s' % c) for c in ipa_string]))\n except ValueError as exc:\n print_error(str(exc))\n", "role": "user" }, { "content": "command_canonize", "role": "assistant" } ]
def x(string, vargs): try: ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore' ], single_char_parsing=vargs['single_char_parsing']) for c in ipa_string: print(u"'%s'\t%s (%s)" % (c.unicode_repr, c.name, unicode_to_hex(c.unicode_repr))) except ValueError as exc: print_error(str(exc))
command_chars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n try:\n ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'\n ], single_char_parsing=vargs['single_char_parsing'])\n for c in ipa_string:\n print(u\"'%s'\\t%s (%s)\" % (c.unicode_repr, c.name,\n unicode_to_hex(c.unicode_repr)))\n except ValueError as exc:\n print_error(str(exc))\n", "role": "user" }, { "content": "command_chars", "role": "assistant" } ]
def x(string, vargs): is_valid = is_valid_ipa(string) print(is_valid) if not is_valid: valid_chars, invalid_chars = remove_invalid_ipa_characters( unicode_string=string, return_invalid=True) print_invalid_chars(invalid_chars, vargs)
command_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n is_valid = is_valid_ipa(string)\n print(is_valid)\n if not is_valid:\n valid_chars, invalid_chars = remove_invalid_ipa_characters(\n unicode_string=string, return_invalid=True)\n print_invalid_chars(invalid_chars, vargs)\n", "role": "user" }, { "content": "command_check", "role": "assistant" } ]
def x(string, vargs): valid_chars, invalid_chars = remove_invalid_ipa_characters(unicode_string =string, return_invalid=True, single_char_parsing=vargs[ 'single_char_parsing']) print(u''.join(valid_chars)) print_invalid_chars(invalid_chars, vargs)
command_clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n valid_chars, invalid_chars = remove_invalid_ipa_characters(unicode_string\n =string, return_invalid=True, single_char_parsing=vargs[\n 'single_char_parsing'])\n print(u''.join(valid_chars))\n print_invalid_chars(invalid_chars, vargs)\n", "role": "user" }, { "content": "command_clean", "role": "assistant" } ]
def x(string, vargs): try: l = ARPABETMapper().map_unicode_string(unicode_string=string, ignore=vargs['ignore'], single_char_parsing=vargs[ 'single_char_parsing'], return_as_list=True) print(vargs['separator'].join(l)) except ValueError as exc: print_error(str(exc))
command_u2a
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n try:\n l = ARPABETMapper().map_unicode_string(unicode_string=string,\n ignore=vargs['ignore'], single_char_parsing=vargs[\n 'single_char_parsing'], return_as_list=True)\n print(vargs['separator'].join(l))\n except ValueError as exc:\n print_error(str(exc))\n", "role": "user" }, { "content": "command_u2a", "role": "assistant" } ]
def x(string, vargs): try: l = KirshenbaumMapper().map_unicode_string(unicode_string=string, ignore=vargs['ignore'], single_char_parsing=vargs[ 'single_char_parsing'], return_as_list=True) print(vargs['separator'].join(l)) except ValueError as exc: print_error(str(exc))
command_u2k
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, vargs):\n try:\n l = KirshenbaumMapper().map_unicode_string(unicode_string=string,\n ignore=vargs['ignore'], single_char_parsing=vargs[\n 'single_char_parsing'], return_as_list=True)\n print(vargs['separator'].join(l))\n except ValueError as exc:\n print_error(str(exc))\n", "role": "user" }, { "content": "command_u2k", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description=DESCRIPTION) for arg in ARGUMENTS: if 'action' in arg: if arg['short'] is not None: parser.add_argument(arg['short'], arg['long'], action=arg[ 'action'], help=arg['help']) else: parser.add_argument(arg['long'], action=arg['action'], help =arg['help']) elif arg['short'] is not None: parser.add_argument(arg['short'], arg['long'], nargs=arg[ 'nargs'], type=arg['type'], default=arg['default'], help= arg['help']) else: parser.add_argument(arg['long'], nargs=arg['nargs'], type=arg[ 'type'], default=arg['default'], help=arg['help']) vargs = vars(parser.parse_args()) command = vargs['command'] string = to_unicode_string(vargs['string']) if command not in COMMAND_MAP: parser.print_help() sys.exit(2) COMMAND_MAP[command](string, vargs) sys.exit(0)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=DESCRIPTION)\n for arg in ARGUMENTS:\n if 'action' in arg:\n if arg['short'] is not None:\n parser.add_argument(arg['short'], arg['long'], action=arg[\n 'action'], help=arg['help'])\n else:\n parser.add_argument(arg['long'], action=arg['action'], help\n =arg['help'])\n elif arg['short'] is not None:\n parser.add_argument(arg['short'], arg['long'], nargs=arg[\n 'nargs'], type=arg['type'], default=arg['default'], help=\n arg['help'])\n else:\n parser.add_argument(arg['long'], nargs=arg['nargs'], type=arg[\n 'type'], default=arg['default'], help=arg['help'])\n vargs = vars(parser.parse_args())\n command = vargs['command']\n string = to_unicode_string(vargs['string'])\n if command not in COMMAND_MAP:\n parser.print_help()\n sys.exit(2)\n COMMAND_MAP[command](string, vargs)\n sys.exit(0)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, value): if value is None: self.__ipa_chars = [] elif is_list_of_ipachars(value): self.__ipa_chars = value else: raise TypeError('ipa_chars only accepts a list of IPAChar objects')
ipa_chars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value is None:\n self.__ipa_chars = []\n elif is_list_of_ipachars(value):\n self.__ipa_chars = value\n else:\n raise TypeError('ipa_chars only accepts a list of IPAChar objects')\n", "role": "user" }, { "content": "ipa_chars", "role": "assistant" } ]
def x(self, other, ignore=False): def x(other): my_ipa_chars = self.canonical_representation.ipa_chars if len(my_ipa_chars) != len(other): return False for i in range(len(my_ipa_chars)): if not my_ipa_chars[i].is_equivalent(other[i]): return False return True if is_unicode_string(other): try: return is_equivalent_to_list_of_ipachars(IPAString( unicode_string=other, ignore=ignore).ipa_chars) except: return False if is_list_of_ipachars(other): try: return is_equivalent_to_list_of_ipachars(other) except: return False if isinstance(other, IPAString): return is_equivalent_to_list_of_ipachars(other. canonical_representation.ipa_chars) return False
is_equivalent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, ignore=False):\n\n def x(other):\n my_ipa_chars = self.canonical_representation.ipa_chars\n if len(my_ipa_chars) != len(other):\n return False\n for i in range(len(my_ipa_chars)):\n if not my_ipa_chars[i].is_equivalent(other[i]):\n return False\n return True\n if is_unicode_string(other):\n try:\n return is_equivalent_to_list_of_ipachars(IPAString(\n unicode_string=other, ignore=ignore).ipa_chars)\n except:\n return False\n if is_list_of_ipachars(other):\n try:\n return is_equivalent_to_list_of_ipachars(other)\n except:\n return False\n if isinstance(other, IPAString):\n return is_equivalent_to_list_of_ipachars(other.\n canonical_representation.ipa_chars)\n return False\n", "role": "user" }, { "content": "is_equivalent", "role": "assistant" } ]