source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
for line in self._f:
if line == 'ITEM: ATOMS\n':
break
for i in range(self.num_atoms):
next(self._f)
|
skip_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for line in self._f:\n if line == 'ITEM: ATOMS\\n':\n break\n for i in range(self.num_atoms):\n next(self._f)\n",
"role": "user"
},
{
"content": "skip_frame",
"role": "assistant"
}
] |
def x(self, atom_info):
self.atoms_by_number[atom_info.number] = atom_info
self.atoms_by_symbol[atom_info.symbol.lower()] = atom_info
|
add_atom_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atom_info):\n self.atoms_by_number[atom_info.number] = atom_info\n self.atoms_by_symbol[atom_info.symbol.lower()] = atom_info\n",
"role": "user"
},
{
"content": "add_atom_info",
"role": "assistant"
}
] |
def x(self, other):
Cluster.update(self, other)
self.rules.extend(other.rules)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n Cluster.update(self, other)\n self.rules.extend(other.rules)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, *objects):
master = None
slaves = set([])
solitaire = set([])
for new in objects:
if isinstance(new, self.cls):
if master is None:
master = new
else:
slaves.add(new)
for item in new.items:
existing = self.lookup.get(item)
if existing is not None:
slaves.add(existing)
else:
cluster = self.lookup.get(new)
if cluster is None:
solitaire.add(new)
elif master is None:
master = cluster
elif master != cluster:
slaves.add(cluster)
if master is None:
master = self.cls([])
for slave in slaves:
master.update(slave)
for item in solitaire:
master.add_item(item)
for item in master.items:
self.lookup[item] = master
|
add_related
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *objects):\n master = None\n slaves = set([])\n solitaire = set([])\n for new in objects:\n if isinstance(new, self.cls):\n if master is None:\n master = new\n else:\n slaves.add(new)\n for item in new.items:\n existing = self.lookup.get(item)\n if existing is not None:\n slaves.add(existing)\n else:\n cluster = self.lookup.get(new)\n if cluster is None:\n solitaire.add(new)\n elif master is None:\n master = cluster\n elif master != cluster:\n slaves.add(cluster)\n if master is None:\n master = self.cls([])\n for slave in slaves:\n master.update(slave)\n for item in solitaire:\n master.add_item(item)\n for item in master.items:\n self.lookup[item] = master\n",
"role": "user"
},
{
"content": "add_related",
"role": "assistant"
}
] |
def x(self):
def x(msg):
line = next(self._f)
try:
return [float(line[:12]), float(line[12:24]), float(line[24:])]
except ValueError:
raise FileFormatError(msg)
frame = {}
words = next(self._f).split()
if len(words) != 6:
raise FileFormatError(
"The first line of each time frame must contain 6 words. (%i'th frame)"
% self._counter)
if words[0] != 'timestep':
raise FileFormatError(
"The first word of the first line of each time frame must be 'timestep'. (%i'th frame)"
% self._counter)
try:
step = int(words[1])
frame['step'] = step
if int(words[2]) != self.num_atoms:
raise FileFormatError(
"The number of atoms has changed. (%i'th frame, %i'th step)" %
(self._counter, step))
if int(words[3]) != self.keytrj:
raise FileFormatError(
"keytrj has changed. (%i'th frame, %i'th step)" % (self.
_counter, step))
if int(words[4]) != self.imcon:
raise FileFormatError(
"imcon has changed. (%i'th frame, %i'th step)" % (self.
_counter, step))
frame['timestep'] = float(words[5]) * self.time_unit
frame['time'] = frame['timestep'] * step
except ValueError:
raise FileFormatError(
"Could not convert all numbers on the first line of the current time frame. (%i'th frame)"
% self._counter)
cell = np.zeros((3, 3), float)
frame['cell'] = cell
cell_msg = (
"The cell lines must consist of three floating point values. (%i'th frame, %i'th step)"
% (self._counter, step))
for i in range(3):
cell[:, i] = read_three(cell_msg)
cell *= self.pos_unit
symbols = []
frame['symbols'] = symbols
masses = np.zeros(self.num_atoms, float)
frame['masses'] = masses
charges = np.zeros(self.num_atoms, float)
frame['charges'] = charges
pos = np.zeros((self.num_atoms, 3), float)
frame['pos'] = pos
if self.keytrj > 0:
vel = np.zeros((self.num_atoms, 3), float)
frame['vel'] = vel
if self.keytrj > 1:
frc = np.zeros((self.num_atoms, 3), float)
frame['frc'] = frc
for i in range(self.num_atoms):
words = next(self._f).split()
if len(words) != 4:
raise FileFormatError(
"The atom header line must contain 4 words. (%i'th frame, %i'th step, %i'th atom)"
% (self._counter, step, i + 1))
symbols.append(words[0])
try:
masses[i] = float(words[2]) * self.mass_unit
charges[i] = float(words[3])
except ValueError:
raise FileFormatError(
'The numbers in the atom header line could not be interpreted.'
)
pos_msg = (
"The position lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)"
% (self._counter, step, i + 1))
pos[i] = read_three(pos_msg)
if self.keytrj > 0:
vel_msg = (
"The velocity lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)"
% (self._counter, step, i + 1))
vel[i] = read_three(vel_msg)
if self.keytrj > 1:
frc_msg = (
"The force lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)"
% (self._counter, step, i + 1))
frc[i] = read_three(frc_msg)
pos *= self.pos_unit
if self.keytrj > 0:
vel *= self.vel_unit
if self.keytrj > 1:
frc *= self.frc_unit
return frame
|
read_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(msg):\n line = next(self._f)\n try:\n return [float(line[:12]), float(line[12:24]), float(line[24:])]\n except ValueError:\n raise FileFormatError(msg)\n frame = {}\n words = next(self._f).split()\n if len(words) != 6:\n raise FileFormatError(\n \"The first line of each time frame must contain 6 words. (%i'th frame)\"\n % self._counter)\n if words[0] != 'timestep':\n raise FileFormatError(\n \"The first word of the first line of each time frame must be 'timestep'. (%i'th frame)\"\n % self._counter)\n try:\n step = int(words[1])\n frame['step'] = step\n if int(words[2]) != self.num_atoms:\n raise FileFormatError(\n \"The number of atoms has changed. (%i'th frame, %i'th step)\" %\n (self._counter, step))\n if int(words[3]) != self.keytrj:\n raise FileFormatError(\n \"keytrj has changed. (%i'th frame, %i'th step)\" % (self.\n _counter, step))\n if int(words[4]) != self.imcon:\n raise FileFormatError(\n \"imcon has changed. (%i'th frame, %i'th step)\" % (self.\n _counter, step))\n frame['timestep'] = float(words[5]) * self.time_unit\n frame['time'] = frame['timestep'] * step\n except ValueError:\n raise FileFormatError(\n \"Could not convert all numbers on the first line of the current time frame. (%i'th frame)\"\n % self._counter)\n cell = np.zeros((3, 3), float)\n frame['cell'] = cell\n cell_msg = (\n \"The cell lines must consist of three floating point values. (%i'th frame, %i'th step)\"\n % (self._counter, step))\n for i in range(3):\n cell[:, i] = read_three(cell_msg)\n cell *= self.pos_unit\n symbols = []\n frame['symbols'] = symbols\n masses = np.zeros(self.num_atoms, float)\n frame['masses'] = masses\n charges = np.zeros(self.num_atoms, float)\n frame['charges'] = charges\n pos = np.zeros((self.num_atoms, 3), float)\n frame['pos'] = pos\n if self.keytrj > 0:\n vel = np.zeros((self.num_atoms, 3), float)\n frame['vel'] = vel\n if self.keytrj > 1:\n frc = np.zeros((self.num_atoms, 3), float)\n frame['frc'] = frc\n for i in range(self.num_atoms):\n words = next(self._f).split()\n if len(words) != 4:\n raise FileFormatError(\n \"The atom header line must contain 4 words. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n symbols.append(words[0])\n try:\n masses[i] = float(words[2]) * self.mass_unit\n charges[i] = float(words[3])\n except ValueError:\n raise FileFormatError(\n 'The numbers in the atom header line could not be interpreted.'\n )\n pos_msg = (\n \"The position lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n pos[i] = read_three(pos_msg)\n if self.keytrj > 0:\n vel_msg = (\n \"The velocity lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n vel[i] = read_three(vel_msg)\n if self.keytrj > 1:\n frc_msg = (\n \"The force lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)\"\n % (self._counter, step, i + 1))\n frc[i] = read_three(frc_msg)\n pos *= self.pos_unit\n if self.keytrj > 0:\n vel *= self.vel_unit\n if self.keytrj > 1:\n frc *= self.frc_unit\n return frame\n",
"role": "user"
},
{
"content": "read_frame",
"role": "assistant"
}
] |
def x(self):
marked = False
while True:
line = next(self._f)[:-1]
if marked and len(line) > 0 and not line.startswith(' --------'):
try:
step = int(line[:10])
return step, line
except ValueError:
pass
marked = len(line) == 131 and line == self._marker
|
goto_next_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n marked = False\n while True:\n line = next(self._f)[:-1]\n if marked and len(line) > 0 and not line.startswith(' --------'):\n try:\n step = int(line[:10])\n return step, line\n except ValueError:\n pass\n marked = len(line) == 131 and line == self._marker\n",
"role": "user"
},
{
"content": "goto_next_frame",
"role": "assistant"
}
] |
def x(self):
if self.skip_equi_period:
while True:
step, line = self.goto_next_frame()
self._counter += 1
if step >= self.equi_period:
break
self.skip_equi_period = False
else:
step, line = self.goto_next_frame()
try:
row = [step]
for i in range(9):
row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))
line = next(self._f)[:-1]
row.append(float(line[:10]))
for i in range(9):
row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))
line = next(self._f)[:-1]
row.append(float(line[:10]))
for i in range(9):
row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))
except ValueError:
raise FileFormatError(
'Some numbers in the output file could not be read. (expecting floating point numbers)'
)
for i in range(30):
row[i] *= self._conv[i]
return row
|
read_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.skip_equi_period:\n while True:\n step, line = self.goto_next_frame()\n self._counter += 1\n if step >= self.equi_period:\n break\n self.skip_equi_period = False\n else:\n step, line = self.goto_next_frame()\n try:\n row = [step]\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n line = next(self._f)[:-1]\n row.append(float(line[:10]))\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n line = next(self._f)[:-1]\n row.append(float(line[:10]))\n for i in range(9):\n row.append(float(line[10 + i * 12:10 + (i + 1) * 12]))\n except ValueError:\n raise FileFormatError(\n 'Some numbers in the output file could not be read. (expecting floating point numbers)'\n )\n for i in range(30):\n row[i] *= self._conv[i]\n return row\n",
"role": "user"
},
{
"content": "read_frame",
"role": "assistant"
}
] |
def x(self):
size = self.read_size()
title = self._f.readline()[:-1]
if self.symbols is None:
symbols = []
coordinates = np.zeros((size, 3), float)
for counter in range(size):
line = self._f.readline()
if len(line) == 0:
raise StopIteration
words = line.split()
if len(words) < 4:
raise StopIteration
if self.symbols is None:
symbols.append(words[0])
try:
coordinates[counter, 0] = float(words[1])
coordinates[counter, 1] = float(words[2])
coordinates[counter, 2] = float(words[3])
except ValueError:
raise StopIteration
coordinates *= self.file_unit
if self.symbols is None:
self.symbols = symbols
return title, coordinates
|
read_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n size = self.read_size()\n title = self._f.readline()[:-1]\n if self.symbols is None:\n symbols = []\n coordinates = np.zeros((size, 3), float)\n for counter in range(size):\n line = self._f.readline()\n if len(line) == 0:\n raise StopIteration\n words = line.split()\n if len(words) < 4:\n raise StopIteration\n if self.symbols is None:\n symbols.append(words[0])\n try:\n coordinates[counter, 0] = float(words[1])\n coordinates[counter, 1] = float(words[2])\n coordinates[counter, 2] = float(words[3])\n except ValueError:\n raise StopIteration\n coordinates *= self.file_unit\n if self.symbols is None:\n self.symbols = symbols\n return title, coordinates\n",
"role": "user"
},
{
"content": "read_frame",
"role": "assistant"
}
] |
def x(self):
size = self.read_size()
for i in range(size + 1):
line = self._f.readline()
if len(line) == 0:
raise StopIteration
|
skip_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n size = self.read_size()\n for i in range(size + 1):\n line = self._f.readline()\n if len(line) == 0:\n raise StopIteration\n",
"role": "user"
},
{
"content": "skip_frame",
"role": "assistant"
}
] |
def x(self):
title, coordinates = self._first
molecule = Molecule(self.numbers, coordinates, title, symbols=self.symbols)
return molecule
|
get_first_molecule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n title, coordinates = self._first\n molecule = Molecule(self.numbers, coordinates, title, symbols=self.symbols)\n return molecule\n",
"role": "user"
},
{
"content": "get_first_molecule",
"role": "assistant"
}
] |
def x(self, title, coordinates):
print('% 8i' % len(self.symbols), file=self._f)
print(str(title), file=self._f)
for symbol, coordinate in zip(self.symbols, coordinates):
print('% 2s % 12.9f % 12.9f % 12.9f' % ((symbol,) + tuple(
coordinate / self.file_unit)), file=self._f)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title, coordinates):\n print('% 8i' % len(self.symbols), file=self._f)\n print(str(title), file=self._f)\n for symbol, coordinate in zip(self.symbols, coordinates):\n print('% 2s % 12.9f % 12.9f % 12.9f' % ((symbol,) + tuple(\n coordinate / self.file_unit)), file=self._f)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(self, index=0):
return Molecule(self.numbers, self.geometries[index], self.titles[index
], symbols=self.symbols)
|
get_molecule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index=0):\n return Molecule(self.numbers, self.geometries[index], self.titles[index\n ], symbols=self.symbols)\n",
"role": "user"
},
{
"content": "get_molecule",
"role": "assistant"
}
] |
def x(self, f, file_unit=angstrom):
xyz_writer = XYZWriter(f, self.symbols, file_unit=file_unit)
for title, coordinates in zip(self.titles, self.geometries):
xyz_writer.dump(title, coordinates)
|
write_to_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, file_unit=angstrom):\n xyz_writer = XYZWriter(f, self.symbols, file_unit=file_unit)\n for title, coordinates in zip(self.titles, self.geometries):\n xyz_writer.dump(title, coordinates)\n",
"role": "user"
},
{
"content": "write_to_file",
"role": "assistant"
}
] |
def x(sub, counter):
if sub.start is not None and counter < sub.start:
return False
if sub.stop is not None and counter >= sub.stop:
raise StopIteration
if sub.step is not None:
if sub.start is None:
if counter % sub.step != 0:
return False
elif (counter - sub.start) % sub.step != 0:
return False
return True
|
slice_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sub, counter):\n if sub.start is not None and counter < sub.start:\n return False\n if sub.stop is not None and counter >= sub.stop:\n raise StopIteration\n if sub.step is not None:\n if sub.start is None:\n if counter % sub.step != 0:\n return False\n elif (counter - sub.start) % sub.step != 0:\n return False\n return True\n",
"role": "user"
},
{
"content": "slice_match",
"role": "assistant"
}
] |
def x(fun, x0, epsilon, threshold):
N = len(x0)
f0, ana_grad = fun(x0, do_gradient=True)
for i in range(N):
xh = x0.copy()
xh[i] += 0.5 * epsilon
xl = x0.copy()
xl[i] -= 0.5 * epsilon
num_grad_comp = (fun(xh) - fun(xl)) / epsilon
if abs(num_grad_comp - ana_grad[i]) > threshold:
raise AssertionError(
'Error in the analytical gradient, component %i, got %s, should be about %s'
% (i, ana_grad[i], num_grad_comp))
|
check_anagrad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fun, x0, epsilon, threshold):\n N = len(x0)\n f0, ana_grad = fun(x0, do_gradient=True)\n for i in range(N):\n xh = x0.copy()\n xh[i] += 0.5 * epsilon\n xl = x0.copy()\n xl[i] -= 0.5 * epsilon\n num_grad_comp = (fun(xh) - fun(xl)) / epsilon\n if abs(num_grad_comp - ana_grad[i]) > threshold:\n raise AssertionError(\n 'Error in the analytical gradient, component %i, got %s, should be about %s'\n % (i, ana_grad[i], num_grad_comp))\n",
"role": "user"
},
{
"content": "check_anagrad",
"role": "assistant"
}
] |
def x(fun, x, dxs, period=None):
dn1s = []
dn2s = []
dnds = []
for dx in dxs:
f0, grad0 = fun(x, do_gradient=True)
f1, grad1 = fun(x + dx, do_gradient=True)
grad = 0.5 * (grad0 + grad1)
d1 = f1 - f0
if period is not None:
d1 -= np.floor(d1 / period + 0.5) * period
if hasattr(d1, '__iter__'):
norm = np.linalg.norm
else:
norm = abs
d2 = np.dot(grad, dx)
dn1s.append(norm(d1))
dn2s.append(norm(d2))
dnds.append(norm(d1 - d2))
dn1s = np.array(dn1s)
dn2s = np.array(dn2s)
dnds = np.array(dnds)
threshold = np.median(dn1s)
mask = dn1s > threshold
if not (dnds[mask] < threshold).all():
raise AssertionError(
"""The first order approximation on the difference is too wrong. The threshold is %.1e.
Differences:
%s
First order approximation to differences:
%s
Absolute errors:
%s"""
% (threshold, ' '.join('%.1e' % v for v in dn1s[mask]), ' '.
join('%.1e' % v for v in dn2s[mask]), ' '.join('%.1e' % v for v in
dnds[mask])))
|
check_delta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fun, x, dxs, period=None):\n dn1s = []\n dn2s = []\n dnds = []\n for dx in dxs:\n f0, grad0 = fun(x, do_gradient=True)\n f1, grad1 = fun(x + dx, do_gradient=True)\n grad = 0.5 * (grad0 + grad1)\n d1 = f1 - f0\n if period is not None:\n d1 -= np.floor(d1 / period + 0.5) * period\n if hasattr(d1, '__iter__'):\n norm = np.linalg.norm\n else:\n norm = abs\n d2 = np.dot(grad, dx)\n dn1s.append(norm(d1))\n dn2s.append(norm(d2))\n dnds.append(norm(d1 - d2))\n dn1s = np.array(dn1s)\n dn2s = np.array(dn2s)\n dnds = np.array(dnds)\n threshold = np.median(dn1s)\n mask = dn1s > threshold\n if not (dnds[mask] < threshold).all():\n raise AssertionError(\n \"\"\"The first order approximation on the difference is too wrong. The threshold is %.1e.\n\nDifferences:\n%s\n\nFirst order approximation to differences:\n%s\n\nAbsolute errors:\n%s\"\"\"\n % (threshold, ' '.join('%.1e' % v for v in dn1s[mask]), ' '.\n join('%.1e' % v for v in dn2s[mask]), ' '.join('%.1e' % v for v in\n dnds[mask])))\n",
"role": "user"
},
{
"content": "check_delta",
"role": "assistant"
}
] |
def x(fun, x0, epsilon, anagrad=True):
N = len(x0)
def x(x):
if anagrad:
return fun(x, do_gradient=True)[1]
else:
gradient = np.zeros(N, float)
for i in range(N):
xh = x.copy()
xh[i] += 0.5 * epsilon
xl = x.copy()
xl[i] -= 0.5 * epsilon
gradient[i] = (fun(xh) - fun(xl)) / epsilon
return gradient
hessian = np.zeros((N, N), float)
for i in range(N):
xh = x0.copy()
xh[i] += 0.5 * epsilon
xl = x0.copy()
xl[i] -= 0.5 * epsilon
hessian[i] = (compute_gradient(xh) - compute_gradient(xl)) / epsilon
return 0.5 * (hessian + hessian.transpose())
|
compute_fd_hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fun, x0, epsilon, anagrad=True):\n N = len(x0)\n\n def x(x):\n if anagrad:\n return fun(x, do_gradient=True)[1]\n else:\n gradient = np.zeros(N, float)\n for i in range(N):\n xh = x.copy()\n xh[i] += 0.5 * epsilon\n xl = x.copy()\n xl[i] -= 0.5 * epsilon\n gradient[i] = (fun(xh) - fun(xl)) / epsilon\n return gradient\n hessian = np.zeros((N, N), float)\n for i in range(N):\n xh = x0.copy()\n xh[i] += 0.5 * epsilon\n xl = x0.copy()\n xl[i] -= 0.5 * epsilon\n hessian[i] = (compute_gradient(xh) - compute_gradient(xl)) / epsilon\n return 0.5 * (hessian + hessian.transpose())\n",
"role": "user"
},
{
"content": "compute_fd_hessian",
"role": "assistant"
}
] |
def x(self, gradient, step):
do_sd = self.gradient_old is None
self.gradient_old = self.gradient
self.gradient = gradient
if do_sd:
self._update_sd()
else:
self._update_cg()
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gradient, step):\n do_sd = self.gradient_old is None\n self.gradient_old = self.gradient\n self.gradient = gradient\n if do_sd:\n self._update_sd()\n else:\n self._update_cg()\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
beta = self._beta()
if beta < 0:
self.direction = -self.gradient
self.status = 'SD'
else:
self.direction = self.direction * beta - self.gradient
self.status = 'CG'
|
update_cg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n beta = self._beta()\n if beta < 0:\n self.direction = -self.gradient\n self.status = 'SD'\n else:\n self.direction = self.direction * beta - self.gradient\n self.status = 'CG'\n",
"role": "user"
},
{
"content": "update_cg",
"role": "assistant"
}
] |
def x(self, gradient, step):
self.old_gradient = self.gradient
self.gradient = gradient
N = len(self.gradient)
if self.inv_hessian is None:
self.direction = -self.gradient
self.status = 'SD'
self.inv_hessian = np.identity(N, float)
else:
self.direction = -np.dot(self.inv_hessian, self.gradient)
self.status = 'QN'
y = self.gradient - self.old_gradient
s = step
sy = abs(np.dot(s, y)) + 1e-05
A = np.outer(-y / sy, s)
A.ravel()[::N + 1] += 1
self.inv_hessian = np.dot(np.dot(A.transpose(), self.inv_hessian), A
) + np.outer(s / sy, s)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gradient, step):\n self.old_gradient = self.gradient\n self.gradient = gradient\n N = len(self.gradient)\n if self.inv_hessian is None:\n self.direction = -self.gradient\n self.status = 'SD'\n self.inv_hessian = np.identity(N, float)\n else:\n self.direction = -np.dot(self.inv_hessian, self.gradient)\n self.status = 'QN'\n y = self.gradient - self.old_gradient\n s = step\n sy = abs(np.dot(s, y)) + 1e-05\n A = np.outer(-y / sy, s)\n A.ravel()[::N + 1] += 1\n self.inv_hessian = np.dot(np.dot(A.transpose(), self.inv_hessian), A\n ) + np.outer(s / sy, s)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, step):
if self.qmax is None:
return step
else:
return np.clip(step, -self.qmax, self.qmax)
|
limit_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, step):\n if self.qmax is None:\n return step\n else:\n return np.clip(step, -self.qmax, self.qmax)\n",
"role": "user"
},
{
"content": "limit_step",
"role": "assistant"
}
] |
def x(self, qinit, f0, fun):
self.num_bracket = 0
qa = qinit
fa = fun(qa)
counter = 0
if fa >= f0:
while True:
self.num_bracket += 1
qb, fb = qa, fa
qa /= 1 + phi
fa = fun(qa)
if qa < self.qtol:
return
if fa < f0:
return (0, f0), (qa, fa), (qb, fb)
counter += 1
if self.max_iter is not None and counter > self.max_iter:
return
else:
self.num_bracket += 1
qb, fb = qa, fa
qa *= 1 + phi
fa = fun(qa)
if fa >= fb:
return (0, f0), (qb, fb), (qa, fa)
while True:
self.num_bracket += 1
qc, fc = qb, fb
qb, fb = qa, fa
qa = qb * (1 + phi) - qc
fa = fun(qa)
if fa >= fb:
return (qc, fc), (qb, fb), (qa, fa)
counter += 1
if self.max_iter is not None and counter > self.max_iter:
return
|
bracket
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, qinit, f0, fun):\n self.num_bracket = 0\n qa = qinit\n fa = fun(qa)\n counter = 0\n if fa >= f0:\n while True:\n self.num_bracket += 1\n qb, fb = qa, fa\n qa /= 1 + phi\n fa = fun(qa)\n if qa < self.qtol:\n return\n if fa < f0:\n return (0, f0), (qa, fa), (qb, fb)\n counter += 1\n if self.max_iter is not None and counter > self.max_iter:\n return\n else:\n self.num_bracket += 1\n qb, fb = qa, fa\n qa *= 1 + phi\n fa = fun(qa)\n if fa >= fb:\n return (0, f0), (qb, fb), (qa, fa)\n while True:\n self.num_bracket += 1\n qc, fc = qb, fb\n qb, fb = qa, fa\n qa = qb * (1 + phi) - qc\n fa = fun(qa)\n if fa >= fb:\n return (qc, fc), (qb, fb), (qa, fa)\n counter += 1\n if self.max_iter is not None and counter > self.max_iter:\n return\n",
"role": "user"
},
{
"content": "bracket",
"role": "assistant"
}
] |
def x(self, triplet, fun):
self.num_golden = 0
(qa, fa), (qb, fb), (qc, fc) = triplet
while True:
self.num_golden += 1
qd = qa + (qb - qa) * phi / (1 + phi)
fd = fun(qd)
if fd < fb:
(qa, fa), (qb, fb) = (qb, fb), (qd, fd)
else:
(qa, fa), (qc, fc) = (qd, fd), (qa, fa)
if abs(qa - qb) < self.qtol:
return qc, fc
|
golden
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, triplet, fun):\n self.num_golden = 0\n (qa, fa), (qb, fb), (qc, fc) = triplet\n while True:\n self.num_golden += 1\n qd = qa + (qb - qa) * phi / (1 + phi)\n fd = fun(qd)\n if fd < fb:\n (qa, fa), (qb, fb) = (qb, fb), (qd, fd)\n else:\n (qa, fa), (qc, fc) = (qd, fd), (qa, fa)\n if abs(qa - qb) < self.qtol:\n return qc, fc\n",
"role": "user"
},
{
"content": "golden",
"role": "assistant"
}
] |
def x(self, counter, f, x_orig, gradient_orig):
if counter - self.last_update > self.each:
grad_rms = np.sqrt((gradient_orig ** 2).mean())
if grad_rms < self.grad_rms:
self.last_update = counter
return True
return False
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counter, f, x_orig, gradient_orig):\n if counter - self.last_update > self.each:\n grad_rms = np.sqrt((gradient_orig ** 2).mean())\n if grad_rms < self.grad_rms:\n self.last_update = counter\n return True\n return False\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, counter, f, x_orig, gradient_orig):
do_update = Preconditioner.update(self, counter, f, x_orig, gradient_orig)
if do_update:
N = len(x_orig)
if self.scales is None:
self.scales = np.ones(N, float)
for i in range(N):
epsilon = self.epsilon / self.scales[i]
xh = x_orig.copy()
xh[i] += 0.5 * epsilon
fh = self.fun(xh)
xl = x_orig.copy()
xl[i] -= 0.5 * epsilon
fl = self.fun(xl)
curv = (fh + fl - 2 * f) / epsilon ** 2
self.scales[i] = np.sqrt(abs(curv))
if self.scales.max() <= 0:
self.scales = np.ones(N, float)
else:
self.scales /= self.scales.max()
self.scales[self.scales < self.scale_limit] = self.scale_limit
return do_update
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counter, f, x_orig, gradient_orig):\n do_update = Preconditioner.update(self, counter, f, x_orig, gradient_orig)\n if do_update:\n N = len(x_orig)\n if self.scales is None:\n self.scales = np.ones(N, float)\n for i in range(N):\n epsilon = self.epsilon / self.scales[i]\n xh = x_orig.copy()\n xh[i] += 0.5 * epsilon\n fh = self.fun(xh)\n xl = x_orig.copy()\n xl[i] -= 0.5 * epsilon\n fl = self.fun(xl)\n curv = (fh + fl - 2 * f) / epsilon ** 2\n self.scales[i] = np.sqrt(abs(curv))\n if self.scales.max() <= 0:\n self.scales = np.ones(N, float)\n else:\n self.scales /= self.scales.max()\n self.scales[self.scales < self.scale_limit] = self.scale_limit\n return do_update\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, counter, f, x_orig, gradient_orig):
if Preconditioner.update(self, counter, f, x_orig, gradient_orig):
hessian = compute_fd_hessian(self.fun, x_orig, self.epsilon)
evals, evecs = np.linalg.eigh(hessian)
self.scales = np.sqrt(abs(evals)) + self.epsilon
self.rotation = evecs
return True
return False
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counter, f, x_orig, gradient_orig):\n if Preconditioner.update(self, counter, f, x_orig, gradient_orig):\n hessian = compute_fd_hessian(self.fun, x_orig, self.epsilon)\n evals, evecs = np.linalg.eigh(hessian)\n self.scales = np.sqrt(abs(evals)) + self.epsilon\n self.rotation = evecs\n return True\n return False\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, x_orig):
if self.scales is None:
return x_orig
else:
return np.dot(self.rotation.transpose(), x_orig) * self.scales
|
do
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_orig):\n if self.scales is None:\n return x_orig\n else:\n return np.dot(self.rotation.transpose(), x_orig) * self.scales\n",
"role": "user"
},
{
"content": "do",
"role": "assistant"
}
] |
def x(self, x_prec):
if self.scales is None:
return x_prec
else:
return np.dot(self.rotation, x_prec / self.scales)
|
undo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_prec):\n if self.scales is None:\n return x_prec\n else:\n return np.dot(self.rotation, x_prec / self.scales)\n",
"role": "user"
},
{
"content": "undo",
"role": "assistant"
}
] |
def x(self):
result = ' '
if self.step_rms is not None:
result += ' Step RMS'
if self.step_max is not None:
result += ' Step MAX'
if self.grad_rms is not None:
result += ' Grad RMS'
if self.grad_max is not None:
result += ' Grad MAX'
if self.rel_grad_rms is not None:
result += ' Grad/F RMS'
if self.rel_grad_max is not None:
result += ' Grad/F MAX'
return result
|
get_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = ' '\n if self.step_rms is not None:\n result += ' Step RMS'\n if self.step_max is not None:\n result += ' Step MAX'\n if self.grad_rms is not None:\n result += ' Grad RMS'\n if self.grad_max is not None:\n result += ' Grad MAX'\n if self.rel_grad_rms is not None:\n result += ' Grad/F RMS'\n if self.rel_grad_max is not None:\n result += ' Grad/F MAX'\n return result\n",
"role": "user"
},
{
"content": "get_header",
"role": "assistant"
}
] |
def x(self, x0, axis):
self.x0 = x0
self.axis = axis
|
configure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x0, axis):\n self.x0 = x0\n self.axis = axis\n",
"role": "user"
},
{
"content": "configure",
"role": "assistant"
}
] |
def x(self, x, verbose=False):
normals = []
values = []
signs = []
error = 0.0
if verbose:
print()
print(' '.join('% 10.3e' % val for val in x), end=' ')
active_str = ''
for i, (sign, equation) in enumerate(self.equations):
value, normal = equation(x)
if (i < len(self.lock) and self.lock[i] or sign == -1 and value > -
self.threshold or sign == 0 or sign == 1 and value < self.threshold
):
values.append(value)
normals.append(normal)
signs.append(sign)
error += value ** 2
if verbose:
active_str += 'X'
if i < len(self.lock):
self.lock[i] = True
elif verbose:
active_str += '-'
error = np.sqrt(error)
normals = np.array(normals, float)
values = np.array(values, float)
signs = np.array(signs, int)
if verbose:
print('[%s]' % active_str, end=' ')
if error < self.threshold:
print('OK')
else:
print('%.5e' % error)
return normals, values, error, signs
|
compute_equations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, verbose=False):\n normals = []\n values = []\n signs = []\n error = 0.0\n if verbose:\n print()\n print(' '.join('% 10.3e' % val for val in x), end=' ')\n active_str = ''\n for i, (sign, equation) in enumerate(self.equations):\n value, normal = equation(x)\n if (i < len(self.lock) and self.lock[i] or sign == -1 and value > -\n self.threshold or sign == 0 or sign == 1 and value < self.threshold\n ):\n values.append(value)\n normals.append(normal)\n signs.append(sign)\n error += value ** 2\n if verbose:\n active_str += 'X'\n if i < len(self.lock):\n self.lock[i] = True\n elif verbose:\n active_str += '-'\n error = np.sqrt(error)\n normals = np.array(normals, float)\n values = np.array(values, float)\n signs = np.array(signs, int)\n if verbose:\n print('[%s]' % active_str, end=' ')\n if error < self.threshold:\n print('OK')\n else:\n print('%.5e' % error)\n return normals, values, error, signs\n",
"role": "user"
},
{
"content": "compute_equations",
"role": "assistant"
}
] |
def x(self, x, normals, values, error):
counter = 0
while error > self.threshold and counter < self.max_iter:
dxs = []
for i in range(len(normals)):
dx = -normals[i] * values[i] / np.dot(normals[i], normals[i])
dxs.append(dx)
dxs = np.array(dxs)
dx = dxs[abs(values).argmax()]
x = x + dx
self.lock[:] = False
normals, values, error = self._compute_equations(x)[:-1]
counter += 1
return x, normals, values, error
|
rough_shake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, normals, values, error):\n counter = 0\n while error > self.threshold and counter < self.max_iter:\n dxs = []\n for i in range(len(normals)):\n dx = -normals[i] * values[i] / np.dot(normals[i], normals[i])\n dxs.append(dx)\n dxs = np.array(dxs)\n dx = dxs[abs(values).argmax()]\n x = x + dx\n self.lock[:] = False\n normals, values, error = self._compute_equations(x)[:-1]\n counter += 1\n return x, normals, values, error\n",
"role": "user"
},
{
"content": "rough_shake",
"role": "assistant"
}
] |
def x(self, x, normals, values, error):
mask = (normals != 0).any(axis=0) > 0
normals = normals[:, mask]
U, S, Vt = np.linalg.svd(normals, full_matrices=False)
rcond = None
counter = 0
while True:
if rcond is None:
rcond = 0.0
elif rcond == 0.0:
rcond = self.rcond1
else:
rcond *= 10
Sinv = S ** 2 + rcond
if Sinv.max() == 0.0:
continue
Sinv = S / Sinv
dx = -np.dot(Vt.transpose(), np.dot(U.transpose(), values) * Sinv)
new_x = x.copy()
new_x[mask] += dx
new_normals, new_values, new_error = self._compute_equations(new_x)[:-1
]
if new_error < 0.9 * error:
return new_x, new_normals, new_values, new_error
elif abs(dx).sum() < self.threshold:
break
elif counter > self.max_iter:
raise ConstraintError(
'Exceeded maximum number of shake iterations.')
counter += 1
|
fast_shake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, normals, values, error):\n mask = (normals != 0).any(axis=0) > 0\n normals = normals[:, mask]\n U, S, Vt = np.linalg.svd(normals, full_matrices=False)\n rcond = None\n counter = 0\n while True:\n if rcond is None:\n rcond = 0.0\n elif rcond == 0.0:\n rcond = self.rcond1\n else:\n rcond *= 10\n Sinv = S ** 2 + rcond\n if Sinv.max() == 0.0:\n continue\n Sinv = S / Sinv\n dx = -np.dot(Vt.transpose(), np.dot(U.transpose(), values) * Sinv)\n new_x = x.copy()\n new_x[mask] += dx\n new_normals, new_values, new_error = self._compute_equations(new_x)[:-1\n ]\n if new_error < 0.9 * error:\n return new_x, new_normals, new_values, new_error\n elif abs(dx).sum() < self.threshold:\n break\n elif counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n counter += 1\n",
"role": "user"
},
{
"content": "fast_shake",
"role": "assistant"
}
] |
def x(self, x):
self.lock[:] = False
normals, values, error = self._compute_equations(x)[:-1]
counter = 0
while True:
if error <= self.threshold:
break
result = self._fast_shake(x, normals, values, error)
counter += 1
if result is not None:
x, normals, values, error = result
else:
x, normals, values, error = self._rough_shake(x, normals,
values, error)
counter += 1
if counter > self.max_iter:
raise ConstraintError(
'Exceeded maximum number of shake iterations.')
return x, counter, len(values)
|
free_shake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n self.lock[:] = False\n normals, values, error = self._compute_equations(x)[:-1]\n counter = 0\n while True:\n if error <= self.threshold:\n break\n result = self._fast_shake(x, normals, values, error)\n counter += 1\n if result is not None:\n x, normals, values, error = result\n else:\n x, normals, values, error = self._rough_shake(x, normals,\n values, error)\n counter += 1\n if counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n return x, counter, len(values)\n",
"role": "user"
},
{
"content": "free_shake",
"role": "assistant"
}
] |
def x(self, x, fun, fmax):
self.lock[:] = False
def x(xx):
f, g = fun(xx, do_gradient=True)
return (f - fmax) / abs(fmax), g / abs(fmax)
self.equations.append((-1, extra_equation))
x, shake_counter, constraint_couter = self.free_shake(x)
del self.equations[-1]
return x, shake_counter, constraint_couter
|
safe_shake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, fun, fmax):\n self.lock[:] = False\n\n def x(xx):\n f, g = fun(xx, do_gradient=True)\n return (f - fmax) / abs(fmax), g / abs(fmax)\n self.equations.append((-1, extra_equation))\n x, shake_counter, constraint_couter = self.free_shake(x)\n del self.equations[-1]\n return x, shake_counter, constraint_couter\n",
"role": "user"
},
{
"content": "safe_shake",
"role": "assistant"
}
] |
def x(self, x, vector):
scale = np.linalg.norm(vector)
if scale == 0.0:
return vector
self.lock[:] = False
normals, signs = self._compute_equations(x)[::3]
if len(normals) == 0:
return vector
vector = vector / scale
mask = signs == 0
result = vector.copy()
changed = True
counter = 0
while changed:
changed = False
y = np.dot(normals, result)
for i, sign in enumerate(signs):
if sign != 0:
if sign * y[i] < -self.threshold:
mask[i] = True
changed = True
elif mask[i] and np.dot(normals[i], result - vector) < 0:
mask[i] = False
changed = True
if mask.any():
normals_select = normals[mask]
y = np.dot(normals_select, vector)
U, S, Vt = np.linalg.svd(normals_select, full_matrices=False)
if S.min() == 0.0:
Sinv = S / (S ** 2 + self.rcond1)
else:
Sinv = 1.0 / S
result = vector - np.dot(Vt.transpose(), np.dot(U.transpose(),
y) * Sinv)
else:
result = vector.copy()
if counter > self.max_iter:
raise ConstraintError(
'Exceeded maximum number of shake iterations.')
counter += 1
return result * scale
|
project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, vector):\n scale = np.linalg.norm(vector)\n if scale == 0.0:\n return vector\n self.lock[:] = False\n normals, signs = self._compute_equations(x)[::3]\n if len(normals) == 0:\n return vector\n vector = vector / scale\n mask = signs == 0\n result = vector.copy()\n changed = True\n counter = 0\n while changed:\n changed = False\n y = np.dot(normals, result)\n for i, sign in enumerate(signs):\n if sign != 0:\n if sign * y[i] < -self.threshold:\n mask[i] = True\n changed = True\n elif mask[i] and np.dot(normals[i], result - vector) < 0:\n mask[i] = False\n changed = True\n if mask.any():\n normals_select = normals[mask]\n y = np.dot(normals_select, vector)\n U, S, Vt = np.linalg.svd(normals_select, full_matrices=False)\n if S.min() == 0.0:\n Sinv = S / (S ** 2 + self.rcond1)\n else:\n Sinv = 1.0 / S\n result = vector - np.dot(Vt.transpose(), np.dot(U.transpose(),\n y) * Sinv)\n else:\n result = vector.copy()\n if counter > self.max_iter:\n raise ConstraintError(\n 'Exceeded maximum number of shake iterations.')\n counter += 1\n return result * scale\n",
"role": "user"
},
{
"content": "project",
"role": "assistant"
}
] |
def x(self):
if self.prec is None:
return self.x
else:
return self.prec.undo(self.x)
|
get_final
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.prec is None:\n return self.x\n else:\n return self.prec.undo(self.x)\n",
"role": "user"
},
{
"content": "get_final",
"role": "assistant"
}
] |
def x(self):
success = self.initialize()
while success is None:
success = self.propagate()
return success
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n success = self.initialize()\n while success is None:\n success = self.propagate()\n return success\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
header = ' Iter Dir '
if self.constraints is not None:
header += ' SC CC'
header += ' Function'
if self.convergence_condition is not None:
header += self.convergence_condition.get_header()
header += ' Time'
self._screen('-' * len(header), newline=True)
self._screen(header, newline=True)
self._screen('-' * len(header), newline=True)
|
print_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n header = ' Iter Dir '\n if self.constraints is not None:\n header += ' SC CC'\n header += ' Function'\n if self.convergence_condition is not None:\n header += self.convergence_condition.get_header()\n header += ' Time'\n self._screen('-' * len(header), newline=True)\n self._screen(header, newline=True)\n self._screen('-' * len(header), newline=True)\n",
"role": "user"
},
{
"content": "print_header",
"role": "assistant"
}
] |
def x(self, s, newline=False):
if self.verbose:
if newline:
print(s)
else:
print(s, end=' ')
|
screen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, s, newline=False):\n if self.verbose:\n if newline:\n print(s)\n else:\n print(s, end=' ')\n",
"role": "user"
},
{
"content": "screen",
"role": "assistant"
}
] |
def x(self):
direction = self.search_direction.direction
if self.constraints is not None:
try:
direction = self.constraints.project(self.x, direction)
except ConstraintError:
self._screen('CONSTRAINT PROJECT FAILED', newline=True)
return False
direction_norm = np.linalg.norm(direction)
if direction_norm == 0:
return False
self.line.configure(self.x, direction / direction_norm)
success, wolfe, qopt, fopt = self.line_search(self.line, self.
initial_step_size, self.epsilon)
if success:
self.step = qopt * self.line.axis
self.initial_step_size = np.linalg.norm(self.step)
self.x = self.x + self.step
self.f = fopt
if wolfe:
self._screen('W')
else:
self._screen(' ')
self.search_direction.reset()
return True
else:
if self.debug_line:
import matplotlib.pyplot as pt
import datetime
pt.clf()
qs = np.arange(0.0, 100.1) * (5 * self.initial_step_size / 100.0)
fs = np.array([self.line(q) for q in qs])
pt.plot(qs, fs)
pt.xlim(qs[0], qs[-1])
fdelta = fs.max() - fs.min()
if fdelta == 0.0:
fdelta = fs.mean()
fmargin = fdelta * 0.1
pt.ylim(fs.min() - fmargin, fs.max() + fmargin)
pt.title('fdelta = %.2e fmean = %.2e' % (fdelta, fs.mean()))
pt.xlabel('Line coordinate, q')
pt.ylabel('Function value, f')
pt.savefig('line_failed_%s.png' % datetime.datetime.now().
isoformat())
self._reset_state()
return False
|
line_opt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n direction = self.search_direction.direction\n if self.constraints is not None:\n try:\n direction = self.constraints.project(self.x, direction)\n except ConstraintError:\n self._screen('CONSTRAINT PROJECT FAILED', newline=True)\n return False\n direction_norm = np.linalg.norm(direction)\n if direction_norm == 0:\n return False\n self.line.configure(self.x, direction / direction_norm)\n success, wolfe, qopt, fopt = self.line_search(self.line, self.\n initial_step_size, self.epsilon)\n if success:\n self.step = qopt * self.line.axis\n self.initial_step_size = np.linalg.norm(self.step)\n self.x = self.x + self.step\n self.f = fopt\n if wolfe:\n self._screen('W')\n else:\n self._screen(' ')\n self.search_direction.reset()\n return True\n else:\n if self.debug_line:\n import matplotlib.pyplot as pt\n import datetime\n pt.clf()\n qs = np.arange(0.0, 100.1) * (5 * self.initial_step_size / 100.0)\n fs = np.array([self.line(q) for q in qs])\n pt.plot(qs, fs)\n pt.xlim(qs[0], qs[-1])\n fdelta = fs.max() - fs.min()\n if fdelta == 0.0:\n fdelta = fs.mean()\n fmargin = fdelta * 0.1\n pt.ylim(fs.min() - fmargin, fs.max() + fmargin)\n pt.title('fdelta = %.2e fmean = %.2e' % (fdelta, fs.mean()))\n pt.xlabel('Line coordinate, q')\n pt.ylabel('Function value, f')\n pt.savefig('line_failed_%s.png' % datetime.datetime.now().\n isoformat())\n self._reset_state()\n return False\n",
"role": "user"
},
{
"content": "line_opt",
"role": "assistant"
}
] |
def x(self):
return dict((edge, index) for index, edge in enumerate(self.edges))
|
edge_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return dict((edge, index) for index, edge in enumerate(self.edges))\n",
"role": "user"
},
{
"content": "edge_index",
"role": "assistant"
}
] |
def x(self):
neighbors = dict((vertex, []) for vertex in range(self.num_vertices))
for a, b in self.edges:
neighbors[a].append(b)
neighbors[b].append(a)
neighbors = dict((key, frozenset(val)) for key, val in neighbors.items())
return neighbors
|
neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n neighbors = dict((vertex, []) for vertex in range(self.num_vertices))\n for a, b in self.edges:\n neighbors[a].append(b)\n neighbors[b].append(a)\n neighbors = dict((key, frozenset(val)) for key, val in neighbors.items())\n return neighbors\n",
"role": "user"
},
{
"content": "neighbors",
"role": "assistant"
}
] |
def x(self):
from molmod.ext import graphs_floyd_warshall
distances = np.zeros((self.num_vertices,) * 2, dtype=int)
for i, j in self.edges:
distances[i, j] = 1
distances[j, i] = 1
graphs_floyd_warshall(distances)
return distances
|
distances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from molmod.ext import graphs_floyd_warshall\n distances = np.zeros((self.num_vertices,) * 2, dtype=int)\n for i, j in self.edges:\n distances[i, j] = 1\n distances[j, i] = 1\n graphs_floyd_warshall(distances)\n return distances\n",
"role": "user"
},
{
"content": "distances",
"role": "assistant"
}
] |
def x(self):
max_distances = self.distances.max(0)
max_distances_min = max_distances[max_distances > 0].min()
return (max_distances == max_distances_min).nonzero()[0]
|
central_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n max_distances = self.distances.max(0)\n max_distances_min = max_distances[max_distances > 0].min()\n return (max_distances == max_distances_min).nonzero()[0]\n",
"role": "user"
},
{
"content": "central_vertices",
"role": "assistant"
}
] |
def x(self):
candidates = set(range(self.num_vertices))
result = []
while len(candidates) > 0:
pivot = candidates.pop()
group = [vertex for vertex, distance in self.iter_breadth_first(pivot)]
candidates.difference_update(group)
group.sort()
result.append(group)
return result
|
independent_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n candidates = set(range(self.num_vertices))\n result = []\n while len(candidates) > 0:\n pivot = candidates.pop()\n group = [vertex for vertex, distance in self.iter_breadth_first(pivot)]\n candidates.difference_update(group)\n group.sort()\n result.append(group)\n return result\n",
"role": "user"
},
{
"content": "independent_vertices",
"role": "assistant"
}
] |
def x(self):
if self.num_vertices == 0:
return np.zeros(20, np.ubyte)
else:
return sum(self.vertex_fingerprints)
|
fingerprint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.num_vertices == 0:\n return np.zeros(20, np.ubyte)\n else:\n return sum(self.vertex_fingerprints)\n",
"role": "user"
},
{
"content": "fingerprint",
"role": "assistant"
}
] |
def x(self):
return self.get_vertex_fingerprints([self.get_vertex_string(i) for i in
range(self.num_vertices)], [self.get_edge_string(i) for i in range(
self.num_edges)])
|
vertex_fingerprints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.get_vertex_fingerprints([self.get_vertex_string(i) for i in\n range(self.num_vertices)], [self.get_edge_string(i) for i in range(\n self.num_edges)])\n",
"role": "user"
},
{
"content": "vertex_fingerprints",
"role": "assistant"
}
] |
def x(self):
level1 = {}
for i, row in enumerate(self.vertex_fingerprints):
key = row.tobytes()
l = level1.get(key)
if l is None:
l = set([i])
level1[key] = l
else:
l.add(i)
level2 = {}
for key, vertices in level1.items():
for vertex in vertices:
level2[vertex] = vertices
return level2
|
equivalent_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n level1 = {}\n for i, row in enumerate(self.vertex_fingerprints):\n key = row.tobytes()\n l = level1.get(key)\n if l is None:\n l = set([i])\n level1[key] = l\n else:\n l.add(i)\n level2 = {}\n for key, vertices in level1.items():\n for vertex in vertices:\n level2[vertex] = vertices\n return level2\n",
"role": "user"
},
{
"content": "equivalent_vertices",
"role": "assistant"
}
] |
def x(self):
symmetry_cycles = set([])
symmetries = set([])
for match in GraphSearch(EqualPattern(self))(self):
match.cycles = match.get_closed_cycles()
if match.cycles in symmetry_cycles:
raise RuntimeError('Duplicates in EqualMatch')
symmetry_cycles.add(match.cycles)
symmetries.add(match)
return symmetries
|
symmetries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n symmetry_cycles = set([])\n symmetries = set([])\n for match in GraphSearch(EqualPattern(self))(self):\n match.cycles = match.get_closed_cycles()\n if match.cycles in symmetry_cycles:\n raise RuntimeError('Duplicates in EqualMatch')\n symmetry_cycles.add(match.cycles)\n symmetries.add(match)\n return symmetries\n",
"role": "user"
},
{
"content": "symmetries",
"role": "assistant"
}
] |
def x(self):
result = set([])
for symmetry in self.symmetries:
result.add(symmetry.cycles)
return result
|
symmetry_cycles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = set([])\n for symmetry in self.symmetries:\n result.add(symmetry.cycles)\n return result\n",
"role": "user"
},
{
"content": "symmetry_cycles",
"role": "assistant"
}
] |
def x(self):
starting_vertex = max((-len(self.equivalent_vertices[vertex]), self.
get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes
(), vertex) for vertex in self.central_vertices)[-1]
l = [[-distance, -len(self.equivalent_vertices[vertex]), self.
get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes
(), vertex] for vertex, distance in self.iter_breadth_first(
starting_vertex) if len(self.neighbors[vertex]) > 0]
l.sort(reverse=True)
for i in range(1, len(l)):
if l[i][:-1] == l[i - 1][:-1]:
raise NotImplementedError
return [record[-1] for record in l]
|
canonical_order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n starting_vertex = max((-len(self.equivalent_vertices[vertex]), self.\n get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes\n (), vertex) for vertex in self.central_vertices)[-1]\n l = [[-distance, -len(self.equivalent_vertices[vertex]), self.\n get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes\n (), vertex] for vertex, distance in self.iter_breadth_first(\n starting_vertex) if len(self.neighbors[vertex]) > 0]\n l.sort(reverse=True)\n for i in range(1, len(l)):\n if l[i][:-1] == l[i - 1][:-1]:\n raise NotImplementedError\n return [record[-1] for record in l]\n",
"role": "user"
},
{
"content": "canonical_order",
"role": "assistant"
}
] |
def x(self, start=None, do_paths=False, do_duplicates=False):
if start is None:
start = self.central_vertex
else:
try:
start = int(start)
except ValueError:
raise TypeError('First argument (start) must be an integer.')
if start < 0 or start >= self.num_vertices:
raise ValueError('start must be in the range [0, %i[' % self.
num_vertices)
from collections import deque
work = np.zeros(self.num_vertices, int)
work[:] = -1
work[start] = 0
if do_paths:
result = start, 0, (start,)
else:
result = start, 0
yield result
todo = deque([result])
while len(todo) > 0:
if do_paths:
parent, parent_length, parent_path = todo.popleft()
else:
parent, parent_length = todo.popleft()
current_length = parent_length + 1
for current in self.neighbors[parent]:
visited = work[current]
if visited == -1 or do_duplicates and visited == current_length:
work[current] = current_length
if do_paths:
current_path = parent_path + (current,)
result = current, current_length, current_path
else:
result = current, current_length
yield result
todo.append(result)
|
iter_breadth_first
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=None, do_paths=False, do_duplicates=False):\n if start is None:\n start = self.central_vertex\n else:\n try:\n start = int(start)\n except ValueError:\n raise TypeError('First argument (start) must be an integer.')\n if start < 0 or start >= self.num_vertices:\n raise ValueError('start must be in the range [0, %i[' % self.\n num_vertices)\n from collections import deque\n work = np.zeros(self.num_vertices, int)\n work[:] = -1\n work[start] = 0\n if do_paths:\n result = start, 0, (start,)\n else:\n result = start, 0\n yield result\n todo = deque([result])\n while len(todo) > 0:\n if do_paths:\n parent, parent_length, parent_path = todo.popleft()\n else:\n parent, parent_length = todo.popleft()\n current_length = parent_length + 1\n for current in self.neighbors[parent]:\n visited = work[current]\n if visited == -1 or do_duplicates and visited == current_length:\n work[current] = current_length\n if do_paths:\n current_path = parent_path + (current,)\n result = current, current_length, current_path\n else:\n result = current, current_length\n yield result\n todo.append(result)\n",
"role": "user"
},
{
"content": "iter_breadth_first",
"role": "assistant"
}
] |
def x(self, start=None):
if start is None:
start = self.central_vertex
else:
try:
start = int(start)
except ValueError:
raise TypeError('First argument (start) must be an integer.')
if start < 0 or start >= self.num_vertices:
raise ValueError('start must be in the range [0, %i[' % self.
num_vertices)
from collections import deque
work = np.zeros(self.num_vertices, int)
work[:] = -1
work[start] = 0
todo = deque([start])
while len(todo) > 0:
parent = todo.popleft()
distance = work[parent]
for current in self.neighbors[parent]:
if work[current] == -1:
yield (parent, current), distance, False
work[current] = distance + 1
todo.append(current)
elif work[current] == distance and current > parent:
yield (parent, current), distance, True
elif work[current] == distance + 1:
yield (parent, current), distance, False
|
iter_breadth_first_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=None):\n if start is None:\n start = self.central_vertex\n else:\n try:\n start = int(start)\n except ValueError:\n raise TypeError('First argument (start) must be an integer.')\n if start < 0 or start >= self.num_vertices:\n raise ValueError('start must be in the range [0, %i[' % self.\n num_vertices)\n from collections import deque\n work = np.zeros(self.num_vertices, int)\n work[:] = -1\n work[start] = 0\n todo = deque([start])\n while len(todo) > 0:\n parent = todo.popleft()\n distance = work[parent]\n for current in self.neighbors[parent]:\n if work[current] == -1:\n yield (parent, current), distance, False\n work[current] = distance + 1\n todo.append(current)\n elif work[current] == distance and current > parent:\n yield (parent, current), distance, True\n elif work[current] == distance + 1:\n yield (parent, current), distance, False\n",
"role": "user"
},
{
"content": "iter_breadth_first_edges",
"role": "assistant"
}
] |
def x(self, subvertices, normalize=False):
if normalize:
revorder = dict((j, i) for i, j in enumerate(subvertices))
new_edges = []
old_edge_indexes = []
for counter, (i, j) in enumerate(self.edges):
new_i = revorder.get(i)
if new_i is None:
continue
new_j = revorder.get(j)
if new_j is None:
continue
new_edges.append((new_i, new_j))
old_edge_indexes.append(counter)
order = list(range(len(new_edges)))
order.sort(key=lambda i: tuple(sorted(new_edges[i])))
new_edges = [new_edges[i] for i in order]
old_edge_indexes = [old_edge_indexes[i] for i in order]
result = Graph(new_edges, num_vertices=len(subvertices))
result._old_vertex_indexes = np.array(subvertices, dtype=int)
result._old_edge_indexes = np.array(old_edge_indexes, dtype=int)
else:
subvertices = set(subvertices)
old_edge_indexes = np.array([i for i, edge in enumerate(self.edges) if
edge.issubset(subvertices)], dtype=int)
new_edges = tuple(self.edges[i] for i in old_edge_indexes)
result = Graph(new_edges, self.num_vertices)
result._old_edge_indexes = old_edge_indexes
return result
|
get_subgraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subvertices, normalize=False):\n if normalize:\n revorder = dict((j, i) for i, j in enumerate(subvertices))\n new_edges = []\n old_edge_indexes = []\n for counter, (i, j) in enumerate(self.edges):\n new_i = revorder.get(i)\n if new_i is None:\n continue\n new_j = revorder.get(j)\n if new_j is None:\n continue\n new_edges.append((new_i, new_j))\n old_edge_indexes.append(counter)\n order = list(range(len(new_edges)))\n order.sort(key=lambda i: tuple(sorted(new_edges[i])))\n new_edges = [new_edges[i] for i in order]\n old_edge_indexes = [old_edge_indexes[i] for i in order]\n result = Graph(new_edges, num_vertices=len(subvertices))\n result._old_vertex_indexes = np.array(subvertices, dtype=int)\n result._old_edge_indexes = np.array(old_edge_indexes, dtype=int)\n else:\n subvertices = set(subvertices)\n old_edge_indexes = np.array([i for i, edge in enumerate(self.edges) if\n edge.issubset(subvertices)], dtype=int)\n new_edges = tuple(self.edges[i] for i in old_edge_indexes)\n result = Graph(new_edges, self.num_vertices)\n result._old_edge_indexes = old_edge_indexes\n return result\n",
"role": "user"
},
{
"content": "get_subgraph",
"role": "assistant"
}
] |
def x(self, vertex_strings, edge_strings, num_iter=None):
import hashlib
def x(x):
if len(x) == 0:
return np.zeros(0, np.ubyte)
elif sys.version_info[0] == 2:
return np.frombuffer(x, np.ubyte)
else:
return np.frombuffer(x.encode(), np.ubyte)
hashrow = lambda x: np.frombuffer(hashlib.sha1(x.data).digest(), np.ubyte)
result = np.zeros((self.num_vertices, 20), np.ubyte)
for i in range(self.num_vertices):
result[i] = hashrow(str2array(vertex_strings[i]))
for i in range(self.num_edges):
a, b = self.edges[i]
tmp = hashrow(str2array(edge_strings[i]))
result[a] += tmp
result[b] += tmp
work = result.copy()
if num_iter is None:
num_iter = self.max_distance
for i in range(num_iter):
for a, b in self.edges:
work[a] += result[b]
work[b] += result[a]
for a in range(self.num_vertices):
result[a] = hashrow(work[a])
return result
|
get_vertex_fingerprints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertex_strings, edge_strings, num_iter=None):\n import hashlib\n\n def x(x):\n if len(x) == 0:\n return np.zeros(0, np.ubyte)\n elif sys.version_info[0] == 2:\n return np.frombuffer(x, np.ubyte)\n else:\n return np.frombuffer(x.encode(), np.ubyte)\n hashrow = lambda x: np.frombuffer(hashlib.sha1(x.data).digest(), np.ubyte)\n result = np.zeros((self.num_vertices, 20), np.ubyte)\n for i in range(self.num_vertices):\n result[i] = hashrow(str2array(vertex_strings[i]))\n for i in range(self.num_edges):\n a, b = self.edges[i]\n tmp = hashrow(str2array(edge_strings[i]))\n result[a] += tmp\n result[b] += tmp\n work = result.copy()\n if num_iter is None:\n num_iter = self.max_distance\n for i in range(num_iter):\n for a, b in self.edges:\n work[a] += result[b]\n work[b] += result[a]\n for a in range(self.num_vertices):\n result[a] = hashrow(work[a])\n return result\n",
"role": "user"
},
{
"content": "get_vertex_fingerprints",
"role": "assistant"
}
] |
def x(self, vertex1, vertex2):
def x(origin, other):
frontier = set(self.neighbors[origin])
frontier.discard(other)
result = set([origin])
while len(frontier) > 0:
pivot = frontier.pop()
if pivot == other:
raise GraphError(
'The graph can not be separated in two halfs by disconnecting vertex1 and vertex2.'
)
pivot_neighbors = set(self.neighbors[pivot])
pivot_neighbors -= result
frontier |= pivot_neighbors
result.add(pivot)
return result
vertex1_part = grow(vertex1, vertex2)
vertex2_part = grow(vertex2, vertex1)
return vertex1_part, vertex2_part
|
get_halfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertex1, vertex2):\n\n def x(origin, other):\n frontier = set(self.neighbors[origin])\n frontier.discard(other)\n result = set([origin])\n while len(frontier) > 0:\n pivot = frontier.pop()\n if pivot == other:\n raise GraphError(\n 'The graph can not be separated in two halfs by disconnecting vertex1 and vertex2.'\n )\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= result\n frontier |= pivot_neighbors\n result.add(pivot)\n return result\n vertex1_part = grow(vertex1, vertex2)\n vertex2_part = grow(vertex2, vertex1)\n return vertex1_part, vertex2_part\n",
"role": "user"
},
{
"content": "get_halfs",
"role": "assistant"
}
] |
def x(self, vertex_in, vertices_border):
vertices_new = set(self.neighbors[vertex_in])
vertices_part = set([vertex_in])
while len(vertices_new) > 0:
pivot = vertices_new.pop()
if pivot in vertices_border:
continue
vertices_part.add(pivot)
pivot_neighbors = set(self.neighbors[pivot])
pivot_neighbors -= vertices_part
vertices_new |= pivot_neighbors
return vertices_part
|
get_part
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertex_in, vertices_border):\n vertices_new = set(self.neighbors[vertex_in])\n vertices_part = set([vertex_in])\n while len(vertices_new) > 0:\n pivot = vertices_new.pop()\n if pivot in vertices_border:\n continue\n vertices_part.add(pivot)\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertices_part\n vertices_new |= pivot_neighbors\n return vertices_part\n",
"role": "user"
},
{
"content": "get_part",
"role": "assistant"
}
] |
def x(self, vertex_a1, vertex_b1, vertex_a2, vertex_b2):
if vertex_a1 not in self.neighbors[vertex_b1]:
raise GraphError('vertex_a1 must be a neighbor of vertex_b1.')
if vertex_a2 not in self.neighbors[vertex_b2]:
raise GraphError('vertex_a2 must be a neighbor of vertex_b2.')
vertex_a_new = set(self.neighbors[vertex_a1])
vertex_a_new.discard(vertex_b1)
if vertex_a1 == vertex_b2:
vertex_a2, vertex_b2 = vertex_b2, vertex_a2
if vertex_a1 == vertex_a2:
vertex_a_new.discard(vertex_b2)
vertex_a_part = set([vertex_a1])
touched = False
while len(vertex_a_new) > 0:
pivot = vertex_a_new.pop()
if pivot == vertex_b1:
raise GraphError(
'The graph can not be separated in two halfs. vertex_b1 reached by vertex_a1.'
)
vertex_a_part.add(pivot)
pivot_neighbors = set(self.neighbors[pivot])
pivot_neighbors -= vertex_a_part
if pivot == vertex_a2 or pivot == vertex_b2:
if pivot == vertex_b2:
if touched:
raise GraphError(
'The graph can not be separated in two halfs. vertex_b2 reached by vertex_a1.'
)
else:
vertex_a2, vertex_b2 = vertex_b2, vertex_a2
pivot_neighbors.discard(vertex_b2)
touched = True
vertex_a_new |= pivot_neighbors
if vertex_a2 not in vertex_a_part:
raise GraphError(
'The graph can not be separated in two halfs. vertex_a1 can not reach vertex_a2 trough vertex_a_part'
)
if vertex_b1 == vertex_b2:
closed = True
else:
vertex_b_new = set(self.neighbors[vertex_b1])
vertex_b_new.discard(vertex_a1)
vertex_b_part = set([vertex_b1])
closed = False
while len(vertex_b_new) > 0:
pivot = vertex_b_new.pop()
if pivot == vertex_b2:
closed = True
break
pivot_neighbors = set(self.neighbors[pivot])
pivot_neighbors -= vertex_b_part
vertex_b_new |= pivot_neighbors
vertex_b_part.add(pivot)
if not closed:
raise GraphError(
'The graph can not be separated in two halfs. vertex_b1 can not reach vertex_b2 trough vertex_b_part'
)
vertex_b_part = set(range(self.num_vertices)) - vertex_a_part
return vertex_a_part, vertex_b_part, (vertex_a1, vertex_b1, vertex_a2,
vertex_b2)
|
get_halfs_double
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertex_a1, vertex_b1, vertex_a2, vertex_b2):\n if vertex_a1 not in self.neighbors[vertex_b1]:\n raise GraphError('vertex_a1 must be a neighbor of vertex_b1.')\n if vertex_a2 not in self.neighbors[vertex_b2]:\n raise GraphError('vertex_a2 must be a neighbor of vertex_b2.')\n vertex_a_new = set(self.neighbors[vertex_a1])\n vertex_a_new.discard(vertex_b1)\n if vertex_a1 == vertex_b2:\n vertex_a2, vertex_b2 = vertex_b2, vertex_a2\n if vertex_a1 == vertex_a2:\n vertex_a_new.discard(vertex_b2)\n vertex_a_part = set([vertex_a1])\n touched = False\n while len(vertex_a_new) > 0:\n pivot = vertex_a_new.pop()\n if pivot == vertex_b1:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b1 reached by vertex_a1.'\n )\n vertex_a_part.add(pivot)\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertex_a_part\n if pivot == vertex_a2 or pivot == vertex_b2:\n if pivot == vertex_b2:\n if touched:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b2 reached by vertex_a1.'\n )\n else:\n vertex_a2, vertex_b2 = vertex_b2, vertex_a2\n pivot_neighbors.discard(vertex_b2)\n touched = True\n vertex_a_new |= pivot_neighbors\n if vertex_a2 not in vertex_a_part:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_a1 can not reach vertex_a2 trough vertex_a_part'\n )\n if vertex_b1 == vertex_b2:\n closed = True\n else:\n vertex_b_new = set(self.neighbors[vertex_b1])\n vertex_b_new.discard(vertex_a1)\n vertex_b_part = set([vertex_b1])\n closed = False\n while len(vertex_b_new) > 0:\n pivot = vertex_b_new.pop()\n if pivot == vertex_b2:\n closed = True\n break\n pivot_neighbors = set(self.neighbors[pivot])\n pivot_neighbors -= vertex_b_part\n vertex_b_new |= pivot_neighbors\n vertex_b_part.add(pivot)\n if not closed:\n raise GraphError(\n 'The graph can not be separated in two halfs. vertex_b1 can not reach vertex_b2 trough vertex_b_part'\n )\n vertex_b_part = set(range(self.num_vertices)) - vertex_a_part\n return vertex_a_part, vertex_b_part, (vertex_a1, vertex_b1, vertex_a2,\n vertex_b2)\n",
"role": "user"
},
{
"content": "get_halfs_double",
"role": "assistant"
}
] |
def x(self, other):
graphs0 = [self.get_subgraph(group, normalize=True) for group in self.
independent_vertices]
graphs1 = [other.get_subgraph(group) for group in other.
independent_vertices]
if len(graphs0) != len(graphs1):
return
matches = []
for graph0 in graphs0:
pattern = EqualPattern(graph0)
found_match = False
for i, graph1 in enumerate(graphs1):
local_matches = list(GraphSearch(pattern)(graph1, one_match=True))
if len(local_matches) == 1:
match = local_matches[0]
old_to_new = OneToOne((j, i) for i, j in enumerate(graph0.
_old_vertex_indexes))
matches.append(match * old_to_new)
del graphs1[i]
found_match = True
break
if not found_match:
return
result = OneToOne()
for match in matches:
result.add_relations(match.forward.items())
return result
|
full_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n graphs0 = [self.get_subgraph(group, normalize=True) for group in self.\n independent_vertices]\n graphs1 = [other.get_subgraph(group) for group in other.\n independent_vertices]\n if len(graphs0) != len(graphs1):\n return\n matches = []\n for graph0 in graphs0:\n pattern = EqualPattern(graph0)\n found_match = False\n for i, graph1 in enumerate(graphs1):\n local_matches = list(GraphSearch(pattern)(graph1, one_match=True))\n if len(local_matches) == 1:\n match = local_matches[0]\n old_to_new = OneToOne((j, i) for i, j in enumerate(graph0.\n _old_vertex_indexes))\n matches.append(match * old_to_new)\n del graphs1[i]\n found_match = True\n break\n if not found_match:\n return\n result = OneToOne()\n for match in matches:\n result.add_relations(match.forward.items())\n return result\n",
"role": "user"
},
{
"content": "full_match",
"role": "assistant"
}
] |
def x(self, source, destination):
if self.in_sources(source):
if self.forward[source] != destination:
raise ValueError(
'Source is already in use. Destination does not match.')
else:
raise ValueError('Source-Destination relation already exists.')
elif self.in_destinations(destination):
raise ValueError(
'Destination is already in use. Source does not match.')
else:
self.forward[source] = destination
self.reverse[destination] = source
|
add_relation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, destination):\n if self.in_sources(source):\n if self.forward[source] != destination:\n raise ValueError(\n 'Source is already in use. Destination does not match.')\n else:\n raise ValueError('Source-Destination relation already exists.')\n elif self.in_destinations(destination):\n raise ValueError(\n 'Destination is already in use. Source does not match.')\n else:\n self.forward[source] = destination\n self.reverse[destination] = source\n",
"role": "user"
},
{
"content": "add_relation",
"role": "assistant"
}
] |
def x(self, relations):
for source, destination in relations:
self.add_relation(source, destination)
|
add_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, relations):\n for source, destination in relations:\n self.add_relation(source, destination)\n",
"role": "user"
},
{
"content": "add_relations",
"role": "assistant"
}
] |
def x(self):
result = self.__class__()
result.forward = copy.copy(self.reverse)
result.reverse = copy.copy(self.forward)
return result
|
inverse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = self.__class__()\n result.forward = copy.copy(self.reverse)\n result.reverse = copy.copy(self.forward)\n return result\n",
"role": "user"
},
{
"content": "inverse",
"role": "assistant"
}
] |
def x(cls, vertex0, vertex1):
result = cls([(vertex0, vertex1)])
result.previous_ends1 = set([vertex1])
return result
|
from_first_relation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vertex0, vertex1):\n result = cls([(vertex0, vertex1)])\n result.previous_ends1 = set([vertex1])\n return result\n",
"role": "user"
},
{
"content": "from_first_relation",
"role": "assistant"
}
] |
def x(self, subject_graph):
result = []
for vertex in self.previous_ends1:
for neighbor in subject_graph.neighbors[vertex]:
if neighbor not in self.reverse:
result.append((vertex, neighbor))
return result
|
get_new_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject_graph):\n result = []\n for vertex in self.previous_ends1:\n for neighbor in subject_graph.neighbors[vertex]:\n if neighbor not in self.reverse:\n result.append((vertex, neighbor))\n return result\n",
"role": "user"
},
{
"content": "get_new_edges",
"role": "assistant"
}
] |
def x(self, new_relations):
result = self.__class__(self.forward.items())
result.add_relations(new_relations.items())
result.previous_ends1 = set(new_relations.values())
return result
|
copy_with_new_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_relations):\n result = self.__class__(self.forward.items())\n result.add_relations(new_relations.items())\n result.previous_ends1 = set(new_relations.values())\n return result\n",
"role": "user"
},
{
"content": "copy_with_new_relations",
"role": "assistant"
}
] |
def x(self, pattern_graph):
self.pattern_graph = pattern_graph
self.level_edges = {}
self.level_constraints = {}
self.duplicate_checks = set([])
if pattern_graph is None:
return
if len(pattern_graph.independent_vertices) != 1:
raise ValueError('A pattern_graph must not be a disconnected graph.')
ibfe = self.pattern_graph.iter_breadth_first_edges(self.start_vertex)
for edge, distance, constraint in ibfe:
if constraint:
l = self.level_constraints.setdefault(distance - 1, [])
else:
l = self.level_edges.setdefault(distance, [])
l.append(edge)
if self.criteria_sets is not None:
for cycles in pattern_graph.symmetry_cycles:
if len(cycles) > 0:
self.duplicate_checks.add((cycles[0][0], cycles[0][1]))
|
set_pattern_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pattern_graph):\n self.pattern_graph = pattern_graph\n self.level_edges = {}\n self.level_constraints = {}\n self.duplicate_checks = set([])\n if pattern_graph is None:\n return\n if len(pattern_graph.independent_vertices) != 1:\n raise ValueError('A pattern_graph must not be a disconnected graph.')\n ibfe = self.pattern_graph.iter_breadth_first_edges(self.start_vertex)\n for edge, distance, constraint in ibfe:\n if constraint:\n l = self.level_constraints.setdefault(distance - 1, [])\n else:\n l = self.level_edges.setdefault(distance, [])\n l.append(edge)\n if self.criteria_sets is not None:\n for cycles in pattern_graph.symmetry_cycles:\n if len(cycles) > 0:\n self.duplicate_checks.add((cycles[0][0], cycles[0][1]))\n",
"role": "user"
},
{
"content": "set_pattern_graph",
"role": "assistant"
}
] |
def x(self, subject_graph):
vertex0 = self.start_vertex
for vertex1 in range(subject_graph.num_vertices):
if self.compare(vertex0, vertex1, subject_graph):
yield vertex0, vertex1
|
iter_initial_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject_graph):\n vertex0 = self.start_vertex\n for vertex1 in range(subject_graph.num_vertices):\n if self.compare(vertex0, vertex1, subject_graph):\n yield vertex0, vertex1\n",
"role": "user"
},
{
"content": "iter_initial_relations",
"role": "assistant"
}
] |
def x(self, level):
return self.level_edges.get(level, []), self.level_constraints.get(level,
[])
|
get_new_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, level):\n return self.level_edges.get(level, []), self.level_constraints.get(level,\n [])\n",
"role": "user"
},
{
"content": "get_new_edges",
"role": "assistant"
}
] |
def x(self, match, new_relations, subject_graph, one_match):
if not (self.criteria_sets is None or one_match):
for check in self.duplicate_checks:
vertex_a = new_relations.get(check[0])
vertex_b = new_relations.get(check[1])
if vertex_a is None and vertex_b is None:
continue
if vertex_a is None:
vertex_a = match.forward.get(check[0])
if vertex_a is None:
continue
elif vertex_b is None:
vertex_b = match.forward.get(check[1])
if vertex_b is None:
continue
if vertex_a > vertex_b:
return False
return True
return True
|
check_next_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match, new_relations, subject_graph, one_match):\n if not (self.criteria_sets is None or one_match):\n for check in self.duplicate_checks:\n vertex_a = new_relations.get(check[0])\n vertex_b = new_relations.get(check[1])\n if vertex_a is None and vertex_b is None:\n continue\n if vertex_a is None:\n vertex_a = match.forward.get(check[0])\n if vertex_a is None:\n continue\n elif vertex_b is None:\n vertex_b = match.forward.get(check[1])\n if vertex_b is None:\n continue\n if vertex_a > vertex_b:\n return False\n return True\n return True\n",
"role": "user"
},
{
"content": "check_next_match",
"role": "assistant"
}
] |
def x(self, canonical_match, subject_graph, one_match):
if self.criteria_sets is None or one_match:
yield canonical_match
else:
for criteria_set in self.criteria_sets:
satisfied_match_tags = set([])
for symmetry in self.pattern_graph.symmetries:
final_match = canonical_match * symmetry
if criteria_set.test_match(final_match, self.pattern_graph,
subject_graph):
match_tags = tuple(self.vertex_tags.get(symmetry.
reverse[vertex0]) for vertex0 in range(self.
pattern_graph.num_vertices))
if match_tags not in satisfied_match_tags:
final_match.__dict__.update(criteria_set.info)
yield final_match
satisfied_match_tags.add(match_tags)
|
iter_final_matches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, canonical_match, subject_graph, one_match):\n if self.criteria_sets is None or one_match:\n yield canonical_match\n else:\n for criteria_set in self.criteria_sets:\n satisfied_match_tags = set([])\n for symmetry in self.pattern_graph.symmetries:\n final_match = canonical_match * symmetry\n if criteria_set.test_match(final_match, self.pattern_graph,\n subject_graph):\n match_tags = tuple(self.vertex_tags.get(symmetry.\n reverse[vertex0]) for vertex0 in range(self.\n pattern_graph.num_vertices))\n if match_tags not in satisfied_match_tags:\n final_match.__dict__.update(criteria_set.info)\n yield final_match\n satisfied_match_tags.add(match_tags)\n",
"role": "user"
},
{
"content": "iter_final_matches",
"role": "assistant"
}
] |
def x(self):
closed_cycles = []
todo = set(self.forward.keys())
if todo != set(self.forward.values()):
raise GraphError(
'The subject and pattern graph must have the same numbering.')
current_vertex = None
while len(todo) > 0:
if current_vertex == None:
current_vertex = todo.pop()
current_cycle = []
else:
todo.discard(current_vertex)
current_cycle.append(current_vertex)
next_vertex = self.get_destination(current_vertex)
if next_vertex == current_cycle[0]:
if len(current_cycle) > 1:
pivot = np.argmin(current_cycle)
current_cycle = current_cycle[pivot:] + current_cycle[:pivot]
closed_cycles.append(current_cycle)
current_vertex = None
else:
current_vertex = next_vertex
closed_cycles.sort()
closed_cycles = tuple(tuple(cycle) for cycle in closed_cycles)
return closed_cycles
|
get_closed_cycles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n closed_cycles = []\n todo = set(self.forward.keys())\n if todo != set(self.forward.values()):\n raise GraphError(\n 'The subject and pattern graph must have the same numbering.')\n current_vertex = None\n while len(todo) > 0:\n if current_vertex == None:\n current_vertex = todo.pop()\n current_cycle = []\n else:\n todo.discard(current_vertex)\n current_cycle.append(current_vertex)\n next_vertex = self.get_destination(current_vertex)\n if next_vertex == current_cycle[0]:\n if len(current_cycle) > 1:\n pivot = np.argmin(current_cycle)\n current_cycle = current_cycle[pivot:] + current_cycle[:pivot]\n closed_cycles.append(current_cycle)\n current_vertex = None\n else:\n current_vertex = next_vertex\n closed_cycles.sort()\n closed_cycles = tuple(tuple(cycle) for cycle in closed_cycles)\n return closed_cycles\n",
"role": "user"
},
{
"content": "get_closed_cycles",
"role": "assistant"
}
] |
def x(self, subject_graph):
if self.pattern_graph.num_edges != subject_graph.num_edges:
return
for pair in CustomPattern.iter_initial_relations(self, subject_graph):
yield pair
|
iter_initial_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject_graph):\n if self.pattern_graph.num_edges != subject_graph.num_edges:\n return\n for pair in CustomPattern.iter_initial_relations(self, subject_graph):\n yield pair\n",
"role": "user"
},
{
"content": "iter_initial_relations",
"role": "assistant"
}
] |
def x(self, vertex0, vertex1, subject_graph):
return (self.pattern_graph.vertex_fingerprints[vertex0] ==
subject_graph.vertex_fingerprints[vertex1]).all()
|
compare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertex0, vertex1, subject_graph):\n return (self.pattern_graph.vertex_fingerprints[vertex0] ==\n subject_graph.vertex_fingerprints[vertex1]).all()\n",
"role": "user"
},
{
"content": "compare",
"role": "assistant"
}
] |
def x(self, subject_graph):
vertex0 = 0
for vertex1 in range(subject_graph.num_vertices):
yield vertex0, vertex1
|
iter_initial_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject_graph):\n vertex0 = 0\n for vertex1 in range(subject_graph.num_vertices):\n yield vertex0, vertex1\n",
"role": "user"
},
{
"content": "iter_initial_relations",
"role": "assistant"
}
] |
def x(self, level):
if level == 0:
edges0 = [(0, 1), (0, 2)]
elif level >= (self.max_size - 1) // 2:
edges0 = []
else:
l2 = level * 2
edges0 = [(l2 - 1, l2 + 1), (l2, l2 + 2)]
return edges0, []
|
get_new_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, level):\n if level == 0:\n edges0 = [(0, 1), (0, 2)]\n elif level >= (self.max_size - 1) // 2:\n edges0 = []\n else:\n l2 = level * 2\n edges0 = [(l2 - 1, l2 + 1), (l2, l2 + 2)]\n return edges0, []\n",
"role": "user"
},
{
"content": "get_new_edges",
"role": "assistant"
}
] |
def x(self, match, new_relations, subject_graph, one_match):
if len(match) == 3:
if match.forward[1] < match.forward[2]:
return False
for vertex1 in new_relations.values():
if vertex1 < match.forward[0]:
return False
for vertex1 in new_relations.values():
paths = list(subject_graph.iter_shortest_paths(vertex1, match.
forward[0]))
if len(paths) != 1:
return False
if len(paths[0]) != (len(match) + 1) // 2:
return False
return True
|
check_next_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match, new_relations, subject_graph, one_match):\n if len(match) == 3:\n if match.forward[1] < match.forward[2]:\n return False\n for vertex1 in new_relations.values():\n if vertex1 < match.forward[0]:\n return False\n for vertex1 in new_relations.values():\n paths = list(subject_graph.iter_shortest_paths(vertex1, match.\n forward[0]))\n if len(paths) != 1:\n return False\n if len(paths[0]) != (len(match) + 1) // 2:\n return False\n return True\n",
"role": "user"
},
{
"content": "check_next_match",
"role": "assistant"
}
] |
def x(self, match, subject_graph):
size = len(match)
if match.forward[size - 1] in subject_graph.neighbors[match.forward[
size - 2]]:
order = list(range(0, size, 2)) + list(range(1, size - 1, 2))[::-1]
ok = True
for i in range(len(order) // 2):
count = len(list(subject_graph.iter_shortest_paths(match.
forward[order[i]], match.forward[order[(i + size // 2) %
size]])))
if count > 1:
ok = False
break
count = len(list(subject_graph.iter_shortest_paths(match.
forward[order[i]], match.forward[order[(i + size // 2 + 1) %
size]])))
if count > 1:
ok = False
break
if ok:
match.ring_vertices = tuple(match.forward[i] for i in order)
return True
paths = list(subject_graph.iter_shortest_paths(match.forward[size - 1],
match.forward[size - 2]))
if size > 3 and len(paths) == 1 and len(paths[0]
) == 3 or size == 3 and len(paths) == 2 and len(paths[0]) == 3:
path = paths[0]
if size == 3 and path[1] == match.forward[0]:
path = paths[1]
match.add_relation(size, path[1])
size += 1
order = list(range(0, size, 2)) + list(range(size - 1, 0, -2))
ok = True
for i in range(len(order) // 2):
count = len(list(subject_graph.iter_shortest_paths(match.
forward[order[i]], match.forward[order[(i + size // 2) %
size]])))
if count != 2:
ok = False
break
if ok:
if match.forward[size - 1] < match.forward[0]:
ok = False
if not ok:
vertex1 = match.forward[size - 1]
del match.forward[size - 1]
del match.reverse[vertex1]
size -= 1
else:
match.ring_vertices = tuple(match.forward[i] for i in order)
return ok
return False
|
complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match, subject_graph):\n size = len(match)\n if match.forward[size - 1] in subject_graph.neighbors[match.forward[\n size - 2]]:\n order = list(range(0, size, 2)) + list(range(1, size - 1, 2))[::-1]\n ok = True\n for i in range(len(order) // 2):\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2) %\n size]])))\n if count > 1:\n ok = False\n break\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2 + 1) %\n size]])))\n if count > 1:\n ok = False\n break\n if ok:\n match.ring_vertices = tuple(match.forward[i] for i in order)\n return True\n paths = list(subject_graph.iter_shortest_paths(match.forward[size - 1],\n match.forward[size - 2]))\n if size > 3 and len(paths) == 1 and len(paths[0]\n ) == 3 or size == 3 and len(paths) == 2 and len(paths[0]) == 3:\n path = paths[0]\n if size == 3 and path[1] == match.forward[0]:\n path = paths[1]\n match.add_relation(size, path[1])\n size += 1\n order = list(range(0, size, 2)) + list(range(size - 1, 0, -2))\n ok = True\n for i in range(len(order) // 2):\n count = len(list(subject_graph.iter_shortest_paths(match.\n forward[order[i]], match.forward[order[(i + size // 2) %\n size]])))\n if count != 2:\n ok = False\n break\n if ok:\n if match.forward[size - 1] < match.forward[0]:\n ok = False\n if not ok:\n vertex1 = match.forward[size - 1]\n del match.forward[size - 1]\n del match.reverse[vertex1]\n size -= 1\n else:\n match.ring_vertices = tuple(match.forward[i] for i in order)\n return ok\n return False\n",
"role": "user"
},
{
"content": "complete",
"role": "assistant"
}
] |
def x(self, text, indent=0):
if self.debug:
if indent > 0:
print(' ' * self.debug, text)
self.debug += indent
if indent <= 0:
print(' ' * self.debug, text)
|
print_debug
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, indent=0):\n if self.debug:\n if indent > 0:\n print(' ' * self.debug, text)\n self.debug += indent\n if indent <= 0:\n print(' ' * self.debug, text)\n",
"role": "user"
},
{
"content": "print_debug",
"role": "assistant"
}
] |
def x(self, init_match, edges0, edges1):
sources = {}
for start_vertex0, end_vertex0 in edges0:
l = sources.setdefault(start_vertex0, [])
l.append(end_vertex0)
dests = {}
for start_vertex1, end_vertex1 in edges1:
start_vertex0 = init_match.reverse[start_vertex1]
l = dests.setdefault(start_vertex0, [])
l.append(end_vertex1)
for start_vertex0, end_vertices0 in sources.items():
end_vertices1 = dests.get(start_vertex0, [])
yield end_vertices0, end_vertices1
|
iter_candidate_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, init_match, edges0, edges1):\n sources = {}\n for start_vertex0, end_vertex0 in edges0:\n l = sources.setdefault(start_vertex0, [])\n l.append(end_vertex0)\n dests = {}\n for start_vertex1, end_vertex1 in edges1:\n start_vertex0 = init_match.reverse[start_vertex1]\n l = dests.setdefault(start_vertex0, [])\n l.append(end_vertex1)\n for start_vertex0, end_vertices0 in sources.items():\n end_vertices1 = dests.get(start_vertex0, [])\n yield end_vertices0, end_vertices1\n",
"role": "user"
},
{
"content": "iter_candidate_groups",
"role": "assistant"
}
] |
def x(self, init_match, subject_graph, edges0, constraints0, edges1):
num_new_relations = len(set(j for i, j in edges0))
def x(relations, num):
if len(relations) == 0:
return
for i, pivot in enumerate(relations):
if num == 1:
yield pivot,
else:
compatible_relations = list(item for item in relations[:i] if
pivot[0] != item[0] and pivot[1] != item[1])
for tail in combine_small(compatible_relations, num - 1):
yield (pivot,) + tail
candidate_relations = []
icg = self._iter_candidate_groups(init_match, edges0, edges1)
for end_vertices0, end_vertices1 in icg:
if len(end_vertices0) > len(end_vertices1):
return
elif not self.pattern.sub and len(end_vertices0) != len(end_vertices1):
return
l = []
for end_vertex0 in end_vertices0:
for end_vertex1 in end_vertices1:
if self.pattern.compare(end_vertex0, end_vertex1, subject_graph
):
l.append((end_vertex0, end_vertex1))
if len(l) > 0:
l = list(combine_small(l, len(end_vertices0)))
candidate_relations.append(l)
if len(candidate_relations) == 0:
return
self.print_debug('candidate_relations: %s' % candidate_relations)
def x(pos=0):
crs = candidate_relations[pos]
if pos == len(candidate_relations) - 1:
for relations in crs:
yield relations
else:
for tail in combine_big(pos + 1):
for relations in crs:
yield relations + tail
for new_relations in combine_big():
new_relations = set(new_relations)
self.print_debug('new_relations: %s' % (new_relations,))
if len(new_relations) != num_new_relations:
continue
forward = dict(new_relations)
if len(forward) != num_new_relations:
continue
reverse = dict((j, i) for i, j in new_relations)
if len(reverse) != num_new_relations:
continue
for a0, b0 in constraints0:
if forward[a0] not in subject_graph.neighbors[forward[b0]]:
forward = None
break
if forward is None:
continue
yield forward
|
iter_new_relations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, init_match, subject_graph, edges0, constraints0, edges1):\n num_new_relations = len(set(j for i, j in edges0))\n\n def x(relations, num):\n if len(relations) == 0:\n return\n for i, pivot in enumerate(relations):\n if num == 1:\n yield pivot,\n else:\n compatible_relations = list(item for item in relations[:i] if\n pivot[0] != item[0] and pivot[1] != item[1])\n for tail in combine_small(compatible_relations, num - 1):\n yield (pivot,) + tail\n candidate_relations = []\n icg = self._iter_candidate_groups(init_match, edges0, edges1)\n for end_vertices0, end_vertices1 in icg:\n if len(end_vertices0) > len(end_vertices1):\n return\n elif not self.pattern.sub and len(end_vertices0) != len(end_vertices1):\n return\n l = []\n for end_vertex0 in end_vertices0:\n for end_vertex1 in end_vertices1:\n if self.pattern.compare(end_vertex0, end_vertex1, subject_graph\n ):\n l.append((end_vertex0, end_vertex1))\n if len(l) > 0:\n l = list(combine_small(l, len(end_vertices0)))\n candidate_relations.append(l)\n if len(candidate_relations) == 0:\n return\n self.print_debug('candidate_relations: %s' % candidate_relations)\n\n def x(pos=0):\n crs = candidate_relations[pos]\n if pos == len(candidate_relations) - 1:\n for relations in crs:\n yield relations\n else:\n for tail in combine_big(pos + 1):\n for relations in crs:\n yield relations + tail\n for new_relations in combine_big():\n new_relations = set(new_relations)\n self.print_debug('new_relations: %s' % (new_relations,))\n if len(new_relations) != num_new_relations:\n continue\n forward = dict(new_relations)\n if len(forward) != num_new_relations:\n continue\n reverse = dict((j, i) for i, j in new_relations)\n if len(reverse) != num_new_relations:\n continue\n for a0, b0 in constraints0:\n if forward[a0] not in subject_graph.neighbors[forward[b0]]:\n forward = None\n break\n if forward is None:\n continue\n yield forward\n",
"role": "user"
},
{
"content": "iter_new_relations",
"role": "assistant"
}
] |
def x(self, input_match, subject_graph, one_match, level=0):
self.print_debug('ENTERING _ITER_MATCHES', 1)
self.print_debug('input_match: %s' % input_match)
edges0, constraints0 = self.pattern.get_new_edges(level)
edges1 = input_match.get_new_edges(subject_graph)
self.print_debug('edges0: %s' % edges0)
self.print_debug('constraints0: %s' % constraints0)
self.print_debug('edges1: %s' % edges1)
inr = self._iter_new_relations(input_match, subject_graph, edges0,
constraints0, edges1)
for new_relations in inr:
next_match = input_match.copy_with_new_relations(new_relations)
if not self.pattern.check_next_match(next_match, new_relations,
subject_graph, one_match):
continue
if self.pattern.complete(next_match, subject_graph):
yield next_match
else:
for match in self._iter_matches(next_match, subject_graph,
one_match, level + 1):
yield match
self.print_debug('LEAVING_ITER_MATCHES', -1)
|
iter_matches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_match, subject_graph, one_match, level=0):\n self.print_debug('ENTERING _ITER_MATCHES', 1)\n self.print_debug('input_match: %s' % input_match)\n edges0, constraints0 = self.pattern.get_new_edges(level)\n edges1 = input_match.get_new_edges(subject_graph)\n self.print_debug('edges0: %s' % edges0)\n self.print_debug('constraints0: %s' % constraints0)\n self.print_debug('edges1: %s' % edges1)\n inr = self._iter_new_relations(input_match, subject_graph, edges0,\n constraints0, edges1)\n for new_relations in inr:\n next_match = input_match.copy_with_new_relations(new_relations)\n if not self.pattern.check_next_match(next_match, new_relations,\n subject_graph, one_match):\n continue\n if self.pattern.complete(next_match, subject_graph):\n yield next_match\n else:\n for match in self._iter_matches(next_match, subject_graph,\n one_match, level + 1):\n yield match\n self.print_debug('LEAVING_ITER_MATCHES', -1)\n",
"role": "user"
},
{
"content": "iter_matches",
"role": "assistant"
}
] |
def x(filename, molecule, atomnames=None, resnames=None, chain_ids=None,
occupancies=None, betas=None):
with open(filename, 'w') as f:
res_id = 1
old_resname = None
for i in range(molecule.size):
symbol = periodic[molecule.numbers[i]].symbol
if atomnames is None:
atomname = symbol
else:
atomname = atomnames[i]
if resnames is None:
resname = 'OXO'
else:
resname = resnames[i]
if resname != old_resname:
res_id += 1
if chain_ids is None:
chain_id = 'A'
else:
chain_id = chain_ids[i]
if occupancies is None:
occupancy = 1.0
else:
occupancy = occupancies[i]
if betas is None:
beta = 1.0
else:
beta = betas[i]
print(
'ATOM %4i %3s %3s %1s%4i %8.3f%8.3f%8.3f%6.2f%6.2f %2s '
% (i + 1, atomname.ljust(3), resname.ljust(3), chain_id,
res_id, molecule.coordinates[i, 0] / angstrom, molecule.
coordinates[i, 1] / angstrom, molecule.coordinates[i, 2] /
angstrom, occupancy, beta, symbol.ljust(2)), file=f)
old_resname = resname
|
dump_pdb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, molecule, atomnames=None, resnames=None, chain_ids=None,\n occupancies=None, betas=None):\n with open(filename, 'w') as f:\n res_id = 1\n old_resname = None\n for i in range(molecule.size):\n symbol = periodic[molecule.numbers[i]].symbol\n if atomnames is None:\n atomname = symbol\n else:\n atomname = atomnames[i]\n if resnames is None:\n resname = 'OXO'\n else:\n resname = resnames[i]\n if resname != old_resname:\n res_id += 1\n if chain_ids is None:\n chain_id = 'A'\n else:\n chain_id = chain_ids[i]\n if occupancies is None:\n occupancy = 1.0\n else:\n occupancy = occupancies[i]\n if betas is None:\n beta = 1.0\n else:\n beta = betas[i]\n print(\n 'ATOM %4i %3s %3s %1s%4i %8.3f%8.3f%8.3f%6.2f%6.2f %2s '\n % (i + 1, atomname.ljust(3), resname.ljust(3), chain_id,\n res_id, molecule.coordinates[i, 0] / angstrom, molecule.\n coordinates[i, 1] / angstrom, molecule.coordinates[i, 2] /\n angstrom, occupancy, beta, symbol.ljust(2)), file=f)\n old_resname = resname\n",
"role": "user"
},
{
"content": "dump_pdb",
"role": "assistant"
}
] |
def x(filename):
with open(filename) as f:
numbers = []
coordinates = []
occupancies = []
betas = []
for line in f:
if line.startswith('ATOM'):
symbol = line[76:78].strip()
numbers.append(periodic[symbol].number)
coordinates.append([float(line[30:38]) * angstrom, float(
line[38:46]) * angstrom, float(line[46:54]) * angstrom])
occupancies.append(float(line[54:60]))
betas.append(float(line[60:66]))
if len(numbers) > 0:
molecule = Molecule(numbers, coordinates)
molecule.occupancies = np.array(occupancies)
molecule.betas = np.array(betas)
return molecule
else:
raise FileFormatError('No molecule found in pdb file %s' % filename)
|
load_pdb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n with open(filename) as f:\n numbers = []\n coordinates = []\n occupancies = []\n betas = []\n for line in f:\n if line.startswith('ATOM'):\n symbol = line[76:78].strip()\n numbers.append(periodic[symbol].number)\n coordinates.append([float(line[30:38]) * angstrom, float(\n line[38:46]) * angstrom, float(line[46:54]) * angstrom])\n occupancies.append(float(line[54:60]))\n betas.append(float(line[60:66]))\n if len(numbers) > 0:\n molecule = Molecule(numbers, coordinates)\n molecule.occupancies = np.array(occupancies)\n molecule.betas = np.array(betas)\n return molecule\n else:\n raise FileFormatError('No molecule found in pdb file %s' % filename)\n",
"role": "user"
},
{
"content": "load_pdb",
"role": "assistant"
}
] |
def x(zmat):
numbers = zmat['number']
N = len(numbers)
coordinates = np.zeros((N, 3), float)
coordinates[1, 2] = zmat['distance'][1]
if zmat['rel1'][2] == 1:
sign = -1
else:
sign = 1
coordinates[2, 2] = zmat['distance'][2] * sign * np.cos(zmat['angle'][2])
coordinates[2, 1] = zmat['distance'][2] * sign * np.sin(zmat['angle'][2])
coordinates[2] += coordinates[2 - zmat['rel1'][2]]
ref0 = 3
for number, distance, rel1, angle, rel2, dihed, rel3 in zmat[3:]:
ref1 = ref0 - rel1
ref2 = ref0 - rel2
ref3 = ref0 - rel3
if ref1 < 0:
ref1 = 0
if ref2 < 0:
ref2 = 0
if ref3 < 0:
ref3 = 0
origin = coordinates[ref1]
new_z = coordinates[ref2] - origin
norm_z = np.linalg.norm(new_z)
if norm_z < 1e-15:
new_z = np.array([0, 0, 1], float)
else:
new_z /= np.linalg.norm(new_z)
new_x = coordinates[ref3] - origin
new_x -= np.dot(new_x, new_z) * new_z
norm_x = np.linalg.norm(new_x)
if norm_x < 1e-15:
new_x = random_orthonormal(new_z)
else:
new_x /= np.linalg.norm(new_x)
new_y = -np.cross(new_z, new_x)
x = distance * np.cos(dihed) * np.sin(angle)
y = distance * np.sin(dihed) * np.sin(angle)
z = distance * np.cos(angle)
coordinates[ref0] = origin + x * new_x + y * new_y + z * new_z
ref0 += 1
return numbers, coordinates
|
zmat_to_cart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(zmat):\n numbers = zmat['number']\n N = len(numbers)\n coordinates = np.zeros((N, 3), float)\n coordinates[1, 2] = zmat['distance'][1]\n if zmat['rel1'][2] == 1:\n sign = -1\n else:\n sign = 1\n coordinates[2, 2] = zmat['distance'][2] * sign * np.cos(zmat['angle'][2])\n coordinates[2, 1] = zmat['distance'][2] * sign * np.sin(zmat['angle'][2])\n coordinates[2] += coordinates[2 - zmat['rel1'][2]]\n ref0 = 3\n for number, distance, rel1, angle, rel2, dihed, rel3 in zmat[3:]:\n ref1 = ref0 - rel1\n ref2 = ref0 - rel2\n ref3 = ref0 - rel3\n if ref1 < 0:\n ref1 = 0\n if ref2 < 0:\n ref2 = 0\n if ref3 < 0:\n ref3 = 0\n origin = coordinates[ref1]\n new_z = coordinates[ref2] - origin\n norm_z = np.linalg.norm(new_z)\n if norm_z < 1e-15:\n new_z = np.array([0, 0, 1], float)\n else:\n new_z /= np.linalg.norm(new_z)\n new_x = coordinates[ref3] - origin\n new_x -= np.dot(new_x, new_z) * new_z\n norm_x = np.linalg.norm(new_x)\n if norm_x < 1e-15:\n new_x = random_orthonormal(new_z)\n else:\n new_x /= np.linalg.norm(new_x)\n new_y = -np.cross(new_z, new_x)\n x = distance * np.cos(dihed) * np.sin(angle)\n y = distance * np.sin(dihed) * np.sin(angle)\n z = distance * np.cos(angle)\n coordinates[ref0] = origin + x * new_x + y * new_y + z * new_z\n ref0 += 1\n return numbers, coordinates\n",
"role": "user"
},
{
"content": "zmat_to_cart",
"role": "assistant"
}
] |
def x(self, existing_refs):
ref0 = existing_refs[0]
for ref in existing_refs:
result = None
for n in sorted(self.graph.neighbors[ref]):
if self.new_index[n] > self.new_index[ref0]:
continue
if n in existing_refs:
continue
if result is None or self.graph.numbers[n] <= self.graph.numbers[
result]:
result = n
if result is not None:
return result
raise RuntimeError('Could not find new reference.')
|
get_new_ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, existing_refs):\n ref0 = existing_refs[0]\n for ref in existing_refs:\n result = None\n for n in sorted(self.graph.neighbors[ref]):\n if self.new_index[n] > self.new_index[ref0]:\n continue\n if n in existing_refs:\n continue\n if result is None or self.graph.numbers[n] <= self.graph.numbers[\n result]:\n result = n\n if result is not None:\n return result\n raise RuntimeError('Could not find new reference.')\n",
"role": "user"
},
{
"content": "get_new_ref",
"role": "assistant"
}
] |
def x(self, coordinates):
N = len(self.graph.numbers)
if coordinates.shape != (N, 3):
raise ValueError('The shape of the coordinates must be (%i, 3)' % N)
result = np.zeros(N, dtype=self.dtype)
for i in range(N):
ref0 = self.old_index[i]
rel1 = -1
rel2 = -1
rel3 = -1
distance = 0
angle = 0
dihed = 0
if i > 0:
ref1 = self._get_new_ref([ref0])
distance = np.linalg.norm(coordinates[ref0] - coordinates[ref1])
rel1 = i - self.new_index[ref1]
if i > 1:
ref2 = self._get_new_ref([ref0, ref1])
angle, = ic.bend_angle(coordinates[[ref0, ref1, ref2]])
rel2 = i - self.new_index[ref2]
if i > 2:
ref3 = self._get_new_ref([ref0, ref1, ref2])
dihed, = ic.dihed_angle(coordinates[[ref0, ref1, ref2, ref3]])
rel3 = i - self.new_index[ref3]
result[i] = self.graph.numbers[i
], distance, rel1, angle, rel2, dihed, rel3
return result
|
cart_to_zmat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coordinates):\n N = len(self.graph.numbers)\n if coordinates.shape != (N, 3):\n raise ValueError('The shape of the coordinates must be (%i, 3)' % N)\n result = np.zeros(N, dtype=self.dtype)\n for i in range(N):\n ref0 = self.old_index[i]\n rel1 = -1\n rel2 = -1\n rel3 = -1\n distance = 0\n angle = 0\n dihed = 0\n if i > 0:\n ref1 = self._get_new_ref([ref0])\n distance = np.linalg.norm(coordinates[ref0] - coordinates[ref1])\n rel1 = i - self.new_index[ref1]\n if i > 1:\n ref2 = self._get_new_ref([ref0, ref1])\n angle, = ic.bend_angle(coordinates[[ref0, ref1, ref2]])\n rel2 = i - self.new_index[ref2]\n if i > 2:\n ref3 = self._get_new_ref([ref0, ref1, ref2])\n dihed, = ic.dihed_angle(coordinates[[ref0, ref1, ref2, ref3]])\n rel3 = i - self.new_index[ref3]\n result[i] = self.graph.numbers[i\n ], distance, rel1, angle, rel2, dihed, rel3\n return result\n",
"role": "user"
},
{
"content": "cart_to_zmat",
"role": "assistant"
}
] |
def x(self, ipa_string):
canonical = [(c.canonical_representation,) for c in ipa_string]
split = split_using_dictionary(canonical, self, self.max_key_length,
single_char_parsing=False)
for sub in split:
if not sub in self.ipa_canonical_representation_to_mapped_str:
return False
return True
|
can_map_ipa_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ipa_string):\n canonical = [(c.canonical_representation,) for c in ipa_string]\n split = split_using_dictionary(canonical, self, self.max_key_length,\n single_char_parsing=False)\n for sub in split:\n if not sub in self.ipa_canonical_representation_to_mapped_str:\n return False\n return True\n",
"role": "user"
},
{
"content": "can_map_ipa_string",
"role": "assistant"
}
] |
def x(self, ipa_string, ignore=False, return_as_list=False, return_can_map=
False):
acc = []
can_map = True
canonical = [(c.canonical_representation,) for c in ipa_string]
split = split_using_dictionary(canonical, self, self.max_key_length,
single_char_parsing=False)
for sub in split:
try:
acc.append(self.ipa_canonical_representation_to_mapped_str[sub])
except KeyError:
if ignore:
can_map = False
else:
raise ValueError(
'The IPA string contains an IPA character that is not mapped: %s'
% sub)
mapped = acc if return_as_list else u''.join(acc)
if return_can_map:
return can_map, mapped
return mapped
|
map_ipa_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ipa_string, ignore=False, return_as_list=False, return_can_map=\n False):\n acc = []\n can_map = True\n canonical = [(c.canonical_representation,) for c in ipa_string]\n split = split_using_dictionary(canonical, self, self.max_key_length,\n single_char_parsing=False)\n for sub in split:\n try:\n acc.append(self.ipa_canonical_representation_to_mapped_str[sub])\n except KeyError:\n if ignore:\n can_map = False\n else:\n raise ValueError(\n 'The IPA string contains an IPA character that is not mapped: %s'\n % sub)\n mapped = acc if return_as_list else u''.join(acc)\n if return_can_map:\n return can_map, mapped\n return mapped\n",
"role": "user"
},
{
"content": "map_ipa_string",
"role": "assistant"
}
] |
def x(self, unicode_string, ignore=False, single_char_parsing=False,
return_as_list=False, return_can_map=False):
if unicode_string is None:
return None
ipa_string = IPAString(unicode_string=unicode_string, ignore=ignore,
single_char_parsing=single_char_parsing)
return self.map_ipa_string(ipa_string=ipa_string, ignore=ignore,
return_as_list=return_as_list, return_can_map=return_can_map)
|
map_unicode_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, unicode_string, ignore=False, single_char_parsing=False,\n return_as_list=False, return_can_map=False):\n if unicode_string is None:\n return None\n ipa_string = IPAString(unicode_string=unicode_string, ignore=ignore,\n single_char_parsing=single_char_parsing)\n return self.map_ipa_string(ipa_string=ipa_string, ignore=ignore,\n return_as_list=return_as_list, return_can_map=return_can_map)\n",
"role": "user"
},
{
"content": "map_unicode_string",
"role": "assistant"
}
] |
def x(invalid_chars, vargs):
if len(invalid_chars) > 0:
if vargs['print_invalid']:
print(u''.join(invalid_chars))
if vargs['unicode']:
for u_char in sorted(set(invalid_chars)):
print(u"'%s'\t%s\t%s" % (u_char, hex(ord(u_char)),
unicodedata.name(u_char, 'UNKNOWN')))
|
print_invalid_chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(invalid_chars, vargs):\n if len(invalid_chars) > 0:\n if vargs['print_invalid']:\n print(u''.join(invalid_chars))\n if vargs['unicode']:\n for u_char in sorted(set(invalid_chars)):\n print(u\"'%s'\\t%s\\t%s\" % (u_char, hex(ord(u_char)),\n unicodedata.name(u_char, 'UNKNOWN')))\n",
"role": "user"
},
{
"content": "print_invalid_chars",
"role": "assistant"
}
] |
def x(string, vargs):
try:
ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'
], single_char_parsing=vargs['single_char_parsing'])
print(vargs['separator'].join([(u'%s' % c) for c in ipa_string]))
except ValueError as exc:
print_error(str(exc))
|
command_canonize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n try:\n ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'\n ], single_char_parsing=vargs['single_char_parsing'])\n print(vargs['separator'].join([(u'%s' % c) for c in ipa_string]))\n except ValueError as exc:\n print_error(str(exc))\n",
"role": "user"
},
{
"content": "command_canonize",
"role": "assistant"
}
] |
def x(string, vargs):
try:
ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'
], single_char_parsing=vargs['single_char_parsing'])
for c in ipa_string:
print(u"'%s'\t%s (%s)" % (c.unicode_repr, c.name,
unicode_to_hex(c.unicode_repr)))
except ValueError as exc:
print_error(str(exc))
|
command_chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n try:\n ipa_string = IPAString(unicode_string=string, ignore=vargs['ignore'\n ], single_char_parsing=vargs['single_char_parsing'])\n for c in ipa_string:\n print(u\"'%s'\\t%s (%s)\" % (c.unicode_repr, c.name,\n unicode_to_hex(c.unicode_repr)))\n except ValueError as exc:\n print_error(str(exc))\n",
"role": "user"
},
{
"content": "command_chars",
"role": "assistant"
}
] |
def x(string, vargs):
is_valid = is_valid_ipa(string)
print(is_valid)
if not is_valid:
valid_chars, invalid_chars = remove_invalid_ipa_characters(
unicode_string=string, return_invalid=True)
print_invalid_chars(invalid_chars, vargs)
|
command_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n is_valid = is_valid_ipa(string)\n print(is_valid)\n if not is_valid:\n valid_chars, invalid_chars = remove_invalid_ipa_characters(\n unicode_string=string, return_invalid=True)\n print_invalid_chars(invalid_chars, vargs)\n",
"role": "user"
},
{
"content": "command_check",
"role": "assistant"
}
] |
def x(string, vargs):
valid_chars, invalid_chars = remove_invalid_ipa_characters(unicode_string
=string, return_invalid=True, single_char_parsing=vargs[
'single_char_parsing'])
print(u''.join(valid_chars))
print_invalid_chars(invalid_chars, vargs)
|
command_clean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n valid_chars, invalid_chars = remove_invalid_ipa_characters(unicode_string\n =string, return_invalid=True, single_char_parsing=vargs[\n 'single_char_parsing'])\n print(u''.join(valid_chars))\n print_invalid_chars(invalid_chars, vargs)\n",
"role": "user"
},
{
"content": "command_clean",
"role": "assistant"
}
] |
def x(string, vargs):
try:
l = ARPABETMapper().map_unicode_string(unicode_string=string,
ignore=vargs['ignore'], single_char_parsing=vargs[
'single_char_parsing'], return_as_list=True)
print(vargs['separator'].join(l))
except ValueError as exc:
print_error(str(exc))
|
command_u2a
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n try:\n l = ARPABETMapper().map_unicode_string(unicode_string=string,\n ignore=vargs['ignore'], single_char_parsing=vargs[\n 'single_char_parsing'], return_as_list=True)\n print(vargs['separator'].join(l))\n except ValueError as exc:\n print_error(str(exc))\n",
"role": "user"
},
{
"content": "command_u2a",
"role": "assistant"
}
] |
def x(string, vargs):
try:
l = KirshenbaumMapper().map_unicode_string(unicode_string=string,
ignore=vargs['ignore'], single_char_parsing=vargs[
'single_char_parsing'], return_as_list=True)
print(vargs['separator'].join(l))
except ValueError as exc:
print_error(str(exc))
|
command_u2k
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, vargs):\n try:\n l = KirshenbaumMapper().map_unicode_string(unicode_string=string,\n ignore=vargs['ignore'], single_char_parsing=vargs[\n 'single_char_parsing'], return_as_list=True)\n print(vargs['separator'].join(l))\n except ValueError as exc:\n print_error(str(exc))\n",
"role": "user"
},
{
"content": "command_u2k",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=DESCRIPTION)
for arg in ARGUMENTS:
if 'action' in arg:
if arg['short'] is not None:
parser.add_argument(arg['short'], arg['long'], action=arg[
'action'], help=arg['help'])
else:
parser.add_argument(arg['long'], action=arg['action'], help
=arg['help'])
elif arg['short'] is not None:
parser.add_argument(arg['short'], arg['long'], nargs=arg[
'nargs'], type=arg['type'], default=arg['default'], help=
arg['help'])
else:
parser.add_argument(arg['long'], nargs=arg['nargs'], type=arg[
'type'], default=arg['default'], help=arg['help'])
vargs = vars(parser.parse_args())
command = vargs['command']
string = to_unicode_string(vargs['string'])
if command not in COMMAND_MAP:
parser.print_help()
sys.exit(2)
COMMAND_MAP[command](string, vargs)
sys.exit(0)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=DESCRIPTION)\n for arg in ARGUMENTS:\n if 'action' in arg:\n if arg['short'] is not None:\n parser.add_argument(arg['short'], arg['long'], action=arg[\n 'action'], help=arg['help'])\n else:\n parser.add_argument(arg['long'], action=arg['action'], help\n =arg['help'])\n elif arg['short'] is not None:\n parser.add_argument(arg['short'], arg['long'], nargs=arg[\n 'nargs'], type=arg['type'], default=arg['default'], help=\n arg['help'])\n else:\n parser.add_argument(arg['long'], nargs=arg['nargs'], type=arg[\n 'type'], default=arg['default'], help=arg['help'])\n vargs = vars(parser.parse_args())\n command = vargs['command']\n string = to_unicode_string(vargs['string'])\n if command not in COMMAND_MAP:\n parser.print_help()\n sys.exit(2)\n COMMAND_MAP[command](string, vargs)\n sys.exit(0)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, value):
if value is None:
self.__ipa_chars = []
elif is_list_of_ipachars(value):
self.__ipa_chars = value
else:
raise TypeError('ipa_chars only accepts a list of IPAChar objects')
|
ipa_chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value is None:\n self.__ipa_chars = []\n elif is_list_of_ipachars(value):\n self.__ipa_chars = value\n else:\n raise TypeError('ipa_chars only accepts a list of IPAChar objects')\n",
"role": "user"
},
{
"content": "ipa_chars",
"role": "assistant"
}
] |
def x(self, other, ignore=False):
def x(other):
my_ipa_chars = self.canonical_representation.ipa_chars
if len(my_ipa_chars) != len(other):
return False
for i in range(len(my_ipa_chars)):
if not my_ipa_chars[i].is_equivalent(other[i]):
return False
return True
if is_unicode_string(other):
try:
return is_equivalent_to_list_of_ipachars(IPAString(
unicode_string=other, ignore=ignore).ipa_chars)
except:
return False
if is_list_of_ipachars(other):
try:
return is_equivalent_to_list_of_ipachars(other)
except:
return False
if isinstance(other, IPAString):
return is_equivalent_to_list_of_ipachars(other.
canonical_representation.ipa_chars)
return False
|
is_equivalent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, ignore=False):\n\n def x(other):\n my_ipa_chars = self.canonical_representation.ipa_chars\n if len(my_ipa_chars) != len(other):\n return False\n for i in range(len(my_ipa_chars)):\n if not my_ipa_chars[i].is_equivalent(other[i]):\n return False\n return True\n if is_unicode_string(other):\n try:\n return is_equivalent_to_list_of_ipachars(IPAString(\n unicode_string=other, ignore=ignore).ipa_chars)\n except:\n return False\n if is_list_of_ipachars(other):\n try:\n return is_equivalent_to_list_of_ipachars(other)\n except:\n return False\n if isinstance(other, IPAString):\n return is_equivalent_to_list_of_ipachars(other.\n canonical_representation.ipa_chars)\n return False\n",
"role": "user"
},
{
"content": "is_equivalent",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.