source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if self.deriv == 0: return self.v, if self.deriv == 1: return self.v, self.d if self.deriv == 2: return self.v, self.d, self.dd
results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.deriv == 0:\n return self.v,\n if self.deriv == 1:\n return self.v, self.d\n if self.deriv == 2:\n return self.v, self.d, self.dd\n", "role": "user" }, { "content": "results", "role": "assistant" } ]
def x(self): self.v = 1 / self.v tmp = self.v ** 2 if self.deriv > 1: self.dd[:] = tmp * (2 * self.v * np.outer(self.d, self.d) - self.dd) if self.deriv > 0: self.d[:] = -tmp * self.d[:]
inv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.v = 1 / self.v\n tmp = self.v ** 2\n if self.deriv > 1:\n self.dd[:] = tmp * (2 * self.v * np.outer(self.d, self.d) - self.dd)\n if self.deriv > 0:\n self.d[:] = -tmp * self.d[:]\n", "role": "user" }, { "content": "inv", "role": "assistant" } ]
def x(self): result = Vector3(self.size, self.deriv) result.x.v = self.x.v result.y.v = self.y.v result.z.v = self.z.v if self.deriv > 0: result.x.d[:] = self.x.d result.y.d[:] = self.y.d result.z.d[:] = self.z.d if self.deriv > 1: result.x.dd[:] = self.x.dd result.y.dd[:] = self.y.dd result.z.dd[:] = self.z.dd return result
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Vector3(self.size, self.deriv)\n result.x.v = self.x.v\n result.y.v = self.y.v\n result.z.v = self.z.v\n if self.deriv > 0:\n result.x.d[:] = self.x.d\n result.y.d[:] = self.y.d\n result.z.d[:] = self.z.d\n if self.deriv > 1:\n result.x.dd[:] = self.x.dd\n result.y.dd[:] = self.y.dd\n result.z.dd[:] = self.z.dd\n return result\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self): result = Scalar(self.size, self.deriv) result.v = np.sqrt(self.x.v ** 2 + self.y.v ** 2 + self.z.v ** 2) if self.deriv > 0: result.d += self.x.v * self.x.d result.d += self.y.v * self.y.d result.d += self.z.v * self.z.d result.d /= result.v if self.deriv > 1: result.dd += self.x.v * self.x.dd result.dd += self.y.v * self.y.dd result.dd += self.z.v * self.z.dd denom = result.v ** 2 result.dd += (1 - self.x.v ** 2 / denom) * np.outer(self.x.d, self.x.d) result.dd += (1 - self.y.v ** 2 / denom) * np.outer(self.y.d, self.y.d) result.dd += (1 - self.z.v ** 2 / denom) * np.outer(self.z.d, self.z.d) tmp = -self.x.v * self.y.v / denom * np.outer(self.x.d, self.y.d) result.dd += tmp + tmp.transpose() tmp = -self.y.v * self.z.v / denom * np.outer(self.y.d, self.z.d) result.dd += tmp + tmp.transpose() tmp = -self.z.v * self.x.v / denom * np.outer(self.z.d, self.x.d) result.dd += tmp + tmp.transpose() result.dd /= result.v return result
norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Scalar(self.size, self.deriv)\n result.v = np.sqrt(self.x.v ** 2 + self.y.v ** 2 + self.z.v ** 2)\n if self.deriv > 0:\n result.d += self.x.v * self.x.d\n result.d += self.y.v * self.y.d\n result.d += self.z.v * self.z.d\n result.d /= result.v\n if self.deriv > 1:\n result.dd += self.x.v * self.x.dd\n result.dd += self.y.v * self.y.dd\n result.dd += self.z.v * self.z.dd\n denom = result.v ** 2\n result.dd += (1 - self.x.v ** 2 / denom) * np.outer(self.x.d, self.x.d)\n result.dd += (1 - self.y.v ** 2 / denom) * np.outer(self.y.d, self.y.d)\n result.dd += (1 - self.z.v ** 2 / denom) * np.outer(self.z.d, self.z.d)\n tmp = -self.x.v * self.y.v / denom * np.outer(self.x.d, self.y.d)\n result.dd += tmp + tmp.transpose()\n tmp = -self.y.v * self.z.v / denom * np.outer(self.y.d, self.z.d)\n result.dd += tmp + tmp.transpose()\n tmp = -self.z.v * self.x.v / denom * np.outer(self.z.d, self.x.d)\n result.dd += tmp + tmp.transpose()\n result.dd /= result.v\n return result\n", "role": "user" }, { "content": "norm", "role": "assistant" } ]
def x(self): line = self._f.readline() if len(line) == 0: raise StopIteration return line
get_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n line = self._f.readline()\n if len(line) == 0:\n raise StopIteration\n return line\n", "role": "user" }, { "content": "get_line", "role": "assistant" } ]
def x(self): line = self._get_line() pos = line.rfind('t=') if pos >= 0: time = float(line[pos + 2:]) * picosecond else: time = 0.0 num_atoms = int(self._get_line()) if self.num_atoms is not None and self.num_atoms != num_atoms: raise ValueError( 'The number of atoms must be the same over the entire file.') pos = np.zeros((num_atoms, 3), np.float32) vel = np.zeros((num_atoms, 3), np.float32) for i in range(num_atoms): words = self._get_line()[22:].split() pos[i, 0] = float(words[0]) pos[i, 1] = float(words[1]) pos[i, 2] = float(words[2]) vel[i, 0] = float(words[3]) vel[i, 1] = float(words[4]) vel[i, 2] = float(words[5]) pos *= nanometer vel *= nanometer / picosecond cell = np.zeros((3, 3), np.float32) words = self._get_line().split() if len(words) >= 3: cell[0, 0] = float(words[0]) cell[1, 1] = float(words[1]) cell[2, 2] = float(words[2]) if len(words) == 9: cell[1, 0] = float(words[3]) cell[2, 0] = float(words[4]) cell[0, 1] = float(words[5]) cell[2, 1] = float(words[6]) cell[0, 2] = float(words[7]) cell[1, 2] = float(words[8]) cell *= nanometer return time, pos, vel, cell
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n line = self._get_line()\n pos = line.rfind('t=')\n if pos >= 0:\n time = float(line[pos + 2:]) * picosecond\n else:\n time = 0.0\n num_atoms = int(self._get_line())\n if self.num_atoms is not None and self.num_atoms != num_atoms:\n raise ValueError(\n 'The number of atoms must be the same over the entire file.')\n pos = np.zeros((num_atoms, 3), np.float32)\n vel = np.zeros((num_atoms, 3), np.float32)\n for i in range(num_atoms):\n words = self._get_line()[22:].split()\n pos[i, 0] = float(words[0])\n pos[i, 1] = float(words[1])\n pos[i, 2] = float(words[2])\n vel[i, 0] = float(words[3])\n vel[i, 1] = float(words[4])\n vel[i, 2] = float(words[5])\n pos *= nanometer\n vel *= nanometer / picosecond\n cell = np.zeros((3, 3), np.float32)\n words = self._get_line().split()\n if len(words) >= 3:\n cell[0, 0] = float(words[0])\n cell[1, 1] = float(words[1])\n cell[2, 2] = float(words[2])\n if len(words) == 9:\n cell[1, 0] = float(words[3])\n cell[2, 0] = float(words[4])\n cell[0, 1] = float(words[5])\n cell[2, 1] = float(words[6])\n cell[0, 2] = float(words[7])\n cell[1, 2] = float(words[8])\n cell *= nanometer\n return time, pos, vel, cell\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(self): self._get_line() num_atoms = int(self._get_line()) if self.num_atoms is not None and self.num_atoms != num_atoms: raise ValueError( 'The number of atoms must be the same over the entire file.') for i in range(num_atoms + 1): self._get_line()
skip_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._get_line()\n num_atoms = int(self._get_line())\n if self.num_atoms is not None and self.num_atoms != num_atoms:\n raise ValueError(\n 'The number of atoms must be the same over the entire file.')\n for i in range(num_atoms + 1):\n self._get_line()\n", "role": "user" }, { "content": "skip_frame", "role": "assistant" } ]
def x(graph): ics = [] for i0, i1 in graph.edges: ics.append(BondLength(i0, i1)) for i1 in range(graph.num_vertices): n = list(graph.neighbors[i1]) for index, i0 in enumerate(n): for i2 in n[:index]: ics.append(BendingAngle(i0, i1, i2)) for i1, i2 in graph.edges: for i0 in graph.neighbors[i1]: if i0 == i2: continue for i3 in graph.neighbors[i2]: if i3 == i1 or i3 == i0: continue ics.append(DihedralAngle(i0, i1, i2, i3)) return ics
setup_ics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph):\n ics = []\n for i0, i1 in graph.edges:\n ics.append(BondLength(i0, i1))\n for i1 in range(graph.num_vertices):\n n = list(graph.neighbors[i1])\n for index, i0 in enumerate(n):\n for i2 in n[:index]:\n ics.append(BendingAngle(i0, i1, i2))\n for i1, i2 in graph.edges:\n for i0 in graph.neighbors[i1]:\n if i0 == i2:\n continue\n for i3 in graph.neighbors[i2]:\n if i3 == i1 or i3 == i0:\n continue\n ics.append(DihedralAngle(i0, i1, i2, i3))\n return ics\n", "role": "user" }, { "content": "setup_ics", "role": "assistant" } ]
def x(ics, coordinates): N3 = coordinates.size jacobian = numpy.zeros((N3, len(ics)), float) for j, ic in enumerate(ics): ic.fill_jacobian_column(jacobian[:, j], coordinates) return jacobian
compute_jacobian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ics, coordinates):\n N3 = coordinates.size\n jacobian = numpy.zeros((N3, len(ics)), float)\n for j, ic in enumerate(ics):\n ic.fill_jacobian_column(jacobian[:, j], coordinates)\n return jacobian\n", "role": "user" }, { "content": "compute_jacobian", "role": "assistant" } ]
def x(self, jaccol, coordinates): q, g = self.icfn(coordinates[list(self.indexes)], 1) for i, j in enumerate(self.indexes): jaccol[3 * j:3 * j + 3] += g[i] return jaccol
fill_jacobian_column
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, jaccol, coordinates):\n q, g = self.icfn(coordinates[list(self.indexes)], 1)\n for i, j in enumerate(self.indexes):\n jaccol[3 * j:3 * j + 3] += g[i]\n return jaccol\n", "role": "user" }, { "content": "fill_jacobian_column", "role": "assistant" } ]
def x(a, b, margin=1.0, cutoff=10.0): return similarity_measure(a.table_labels, a.table_distances, b. table_labels, b.table_distances, margin, cutoff)
compute_similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, margin=1.0, cutoff=10.0):\n return similarity_measure(a.table_labels, a.table_distances, b.\n table_labels, b.table_distances, margin, cutoff)\n", "role": "user" }, { "content": "compute_similarity", "role": "assistant" } ]
def x(cls, molecule, labels=None): if labels is None: labels = molecule.numbers return cls(molecule.distance_matrix, labels)
from_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, molecule, labels=None):\n if labels is None:\n labels = molecule.numbers\n return cls(molecule.distance_matrix, labels)\n", "role": "user" }, { "content": "from_molecule", "role": "assistant" } ]
def x(cls, molecular_graph, labels=None): if labels is None: labels = molecular_graph.numbers.astype(int) return cls(molecular_graph.distances, labels)
from_molecular_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, molecular_graph, labels=None):\n if labels is None:\n labels = molecular_graph.numbers.astype(int)\n return cls(molecular_graph.distances, labels)\n", "role": "user" }, { "content": "from_molecular_graph", "role": "assistant" } ]
def x(cls, coordinates, labels): from molmod.ext import molecules_distance_matrix distance_matrix = molecules_distance_matrix(coordinates) return cls(distance_matrix, labels)
from_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, coordinates, labels):\n from molmod.ext import molecules_distance_matrix\n distance_matrix = molecules_distance_matrix(coordinates)\n return cls(distance_matrix, labels)\n", "role": "user" }, { "content": "from_coordinates", "role": "assistant" } ]
def x(filename): with open(filename) as f: result = {} while True: line = f.readline() if line == '': break if len(line) < 54: raise IOError( 'Header lines must be at least 54 characters long.') key = line[:40].strip() kind = line[47:52].strip() value = line[53:-1] if kind == 'str': result[key] = value elif kind == 'int': result[key] = int(value) elif kind == 'bln': result[key] = value.lower() in ['true', '1', 'yes'] elif kind == 'flt': result[key] = float(value) elif kind[3:5] == 'ar': if kind[:3] == 'str': dtype = np.dtype('U22') elif kind[:3] == 'int': dtype = int elif kind[:3] == 'bln': dtype = bool elif kind[:3] == 'flt': dtype = float else: raise IOError('Unsupported kind: %s' % kind) shape = tuple(int(i) for i in value.split(',')) array = np.zeros(shape, dtype) if array.size > 0: work = array.ravel() counter = 0 while True: short = f.readline().split() if len(short) == 0: raise IOError('Insufficient data') for s in short: if dtype == bool: work[counter] = s.lower() in ['true', '1', 'yes'] elif callable(dtype): work[counter] = dtype(s) else: work[counter] = s counter += 1 if counter == array.size: break if counter == array.size: break result[key] = array elif kind == 'none': result[key] = None else: raise IOError('Unsupported kind: %s' % kind) return result
load_chk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename) as f:\n result = {}\n while True:\n line = f.readline()\n if line == '':\n break\n if len(line) < 54:\n raise IOError(\n 'Header lines must be at least 54 characters long.')\n key = line[:40].strip()\n kind = line[47:52].strip()\n value = line[53:-1]\n if kind == 'str':\n result[key] = value\n elif kind == 'int':\n result[key] = int(value)\n elif kind == 'bln':\n result[key] = value.lower() in ['true', '1', 'yes']\n elif kind == 'flt':\n result[key] = float(value)\n elif kind[3:5] == 'ar':\n if kind[:3] == 'str':\n dtype = np.dtype('U22')\n elif kind[:3] == 'int':\n dtype = int\n elif kind[:3] == 'bln':\n dtype = bool\n elif kind[:3] == 'flt':\n dtype = float\n else:\n raise IOError('Unsupported kind: %s' % kind)\n shape = tuple(int(i) for i in value.split(','))\n array = np.zeros(shape, dtype)\n if array.size > 0:\n work = array.ravel()\n counter = 0\n while True:\n short = f.readline().split()\n if len(short) == 0:\n raise IOError('Insufficient data')\n for s in short:\n if dtype == bool:\n work[counter] = s.lower() in ['true', '1',\n 'yes']\n elif callable(dtype):\n work[counter] = dtype(s)\n else:\n work[counter] = s\n counter += 1\n if counter == array.size:\n break\n if counter == array.size:\n break\n result[key] = array\n elif kind == 'none':\n result[key] = None\n else:\n raise IOError('Unsupported kind: %s' % kind)\n return result\n", "role": "user" }, { "content": "load_chk", "role": "assistant" } ]
def x(filename, data): with open(filename, 'w') as f: for key, value in sorted(data.items()): if not isinstance(key, str): raise TypeError('The keys must be strings.') if len(key) > 40: raise ValueError( 'Key strings cannot be longer than 40 characters.') if '\n' in key: raise ValueError('Key strings cannot contain newlines.') if isinstance(value, str): if len(value) > 256: raise ValueError( 'Only small strings are supported (256 chars).') if '\n' in value: raise ValueError('The string cannot contain new lines.') print('%40s kind=str %s' % (key.ljust(40), value), file=f) elif isinstance(value, bool): print('%40s kind=bln %s' % (key.ljust(40), value), file=f) elif isinstance(value, (int, np.integer)): print('%40s kind=int %i' % (key.ljust(40), value), file=f) elif isinstance(value, float): print('%40s kind=flt %22.15e' % (key.ljust(40), value), file=f) elif isinstance(value, np.ndarray) or isinstance(value, list ) or isinstance(value, tuple): if isinstance(value, list) or isinstance(value, tuple): value = np.array(value) if value.dtype.fields is not None: raise TypeError('Arrays with fields are not supported.') shape_str = ','.join(str(i) for i in value.shape) if issubclass(value.dtype.type, (str, np.unicode, np.bytes_)): value = value.astype(np.unicode) for cell in value.flat: if len(cell) >= 22: raise ValueError( 'In case of string arrays, a string may contain at most 21 characters.' ) if ' ' in cell or '\n' in cell: raise ValueError( 'In case of string arrays, a string may not contain spaces or new lines.' ) print('%40s kind=strar %s' % (key.ljust(40), shape_str ), file=f) format_str = '%22s' elif issubclass(value.dtype.type, np.integer): print('%40s kind=intar %s' % (key.ljust(40), shape_str ), file=f) format_str = '%22i' elif issubclass(value.dtype.type, np.bool_): print('%40s kind=blnar %s' % (key.ljust(40), shape_str ), file=f) format_str = '%22s' elif issubclass(value.dtype.type, float): print('%40s kind=fltar %s' % (key.ljust(40), shape_str ), file=f) format_str = '%22.15e' else: raise TypeError('Numpy array type %s not supported.' % value.dtype.type) short_len = 4 short = [] for x in value.ravel(): short.append(x) if len(short) == 4: print(' '.join(format_str % s for s in short), file=f) short = [] if len(short) > 0: print(' '.join(format_str % s for s in short), file=f) elif value is None: print('%40s kind=none None' % key.ljust(40), file=f) else: raise TypeError('Type %s not supported.' % type(value))
dump_chk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, data):\n with open(filename, 'w') as f:\n for key, value in sorted(data.items()):\n if not isinstance(key, str):\n raise TypeError('The keys must be strings.')\n if len(key) > 40:\n raise ValueError(\n 'Key strings cannot be longer than 40 characters.')\n if '\\n' in key:\n raise ValueError('Key strings cannot contain newlines.')\n if isinstance(value, str):\n if len(value) > 256:\n raise ValueError(\n 'Only small strings are supported (256 chars).')\n if '\\n' in value:\n raise ValueError('The string cannot contain new lines.')\n print('%40s kind=str %s' % (key.ljust(40), value), file=f)\n elif isinstance(value, bool):\n print('%40s kind=bln %s' % (key.ljust(40), value), file=f)\n elif isinstance(value, (int, np.integer)):\n print('%40s kind=int %i' % (key.ljust(40), value), file=f)\n elif isinstance(value, float):\n print('%40s kind=flt %22.15e' % (key.ljust(40), value),\n file=f)\n elif isinstance(value, np.ndarray) or isinstance(value, list\n ) or isinstance(value, tuple):\n if isinstance(value, list) or isinstance(value, tuple):\n value = np.array(value)\n if value.dtype.fields is not None:\n raise TypeError('Arrays with fields are not supported.')\n shape_str = ','.join(str(i) for i in value.shape)\n if issubclass(value.dtype.type, (str, np.unicode, np.bytes_)):\n value = value.astype(np.unicode)\n for cell in value.flat:\n if len(cell) >= 22:\n raise ValueError(\n 'In case of string arrays, a string may contain at most 21 characters.'\n )\n if ' ' in cell or '\\n' in cell:\n raise ValueError(\n 'In case of string arrays, a string may not contain spaces or new lines.'\n )\n print('%40s kind=strar %s' % (key.ljust(40), shape_str\n ), file=f)\n format_str = '%22s'\n elif issubclass(value.dtype.type, np.integer):\n print('%40s kind=intar %s' % (key.ljust(40), shape_str\n ), file=f)\n format_str = '%22i'\n elif issubclass(value.dtype.type, np.bool_):\n print('%40s kind=blnar %s' % (key.ljust(40), shape_str\n ), file=f)\n format_str = '%22s'\n elif issubclass(value.dtype.type, float):\n print('%40s kind=fltar %s' % (key.ljust(40), shape_str\n ), file=f)\n format_str = '%22.15e'\n else:\n raise TypeError('Numpy array type %s not supported.' %\n value.dtype.type)\n short_len = 4\n short = []\n for x in value.ravel():\n short.append(x)\n if len(short) == 4:\n print(' '.join(format_str % s for s in short), file=f)\n short = []\n if len(short) > 0:\n print(' '.join(format_str % s for s in short), file=f)\n elif value is None:\n print('%40s kind=none None' % key.ljust(40), file=f)\n else:\n raise TypeError('Type %s not supported.' % type(value))\n", "role": "user" }, { "content": "dump_chk", "role": "assistant" } ]
def x(self): self.title = None self.numbers = np.zeros(0, int) self.atom_types = [] self.charges = [] self.names = [] self.molecules = np.zeros(0, int) self.bonds = np.zeros((0, 2), int) self.bends = np.zeros((0, 3), int) self.dihedrals = np.zeros((0, 4), int) self.impropers = np.zeros((0, 4), int) self.name_cache = {}
clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.title = None\n self.numbers = np.zeros(0, int)\n self.atom_types = []\n self.charges = []\n self.names = []\n self.molecules = np.zeros(0, int)\n self.bonds = np.zeros((0, 2), int)\n self.bends = np.zeros((0, 3), int)\n self.dihedrals = np.zeros((0, 4), int)\n self.impropers = np.zeros((0, 4), int)\n self.name_cache = {}\n", "role": "user" }, { "content": "clear", "role": "assistant" } ]
def x(self, filename): self.clear() with open(filename) as f: line = next(f) if not line.startswith('PSF'): raise FileFormatError( "Error while reading: A PSF file must start with a line 'PSF'." ) current_section = None sections = {} for line in f: line = line.strip() if line == '': continue elif '!N' in line: words = line.split() current_section = [] section_name = words[1][2:] if section_name.endswith(':'): section_name = section_name[:-1] sections[section_name] = current_section else: current_section.append(line) self.title = sections['TITLE'][0] molecules = [] numbers = [] for line in sections['ATOM']: words = line.split() self.atom_types.append(words[5]) self.charges.append(float(words[6])) self.names.append(words[3]) molecules.append(int(words[2])) atom = periodic[words[4]] if atom is None: numbers.append(0) else: numbers.append(periodic[words[4]].number) self.molecules = np.array(molecules) - 1 self.numbers = np.array(numbers) self.charges = np.array(self.charges) tmp = [] for line in sections['BOND']: tmp.extend(int(word) for word in line.split()) self.bonds = np.reshape(np.array(tmp), (-1, 2)) - 1 tmp = [] for line in sections['THETA']: tmp.extend(int(word) for word in line.split()) self.bends = np.reshape(np.array(tmp), (-1, 3)) - 1 tmp = [] for line in sections['PHI']: tmp.extend(int(word) for word in line.split()) self.dihedrals = np.reshape(np.array(tmp), (-1, 4)) - 1 tmp = [] for line in sections['IMPHI']: tmp.extend(int(word) for word in line.split()) self.impropers = np.reshape(np.array(tmp), (-1, 4)) - 1
read_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n self.clear()\n with open(filename) as f:\n line = next(f)\n if not line.startswith('PSF'):\n raise FileFormatError(\n \"Error while reading: A PSF file must start with a line 'PSF'.\"\n )\n current_section = None\n sections = {}\n for line in f:\n line = line.strip()\n if line == '':\n continue\n elif '!N' in line:\n words = line.split()\n current_section = []\n section_name = words[1][2:]\n if section_name.endswith(':'):\n section_name = section_name[:-1]\n sections[section_name] = current_section\n else:\n current_section.append(line)\n self.title = sections['TITLE'][0]\n molecules = []\n numbers = []\n for line in sections['ATOM']:\n words = line.split()\n self.atom_types.append(words[5])\n self.charges.append(float(words[6]))\n self.names.append(words[3])\n molecules.append(int(words[2]))\n atom = periodic[words[4]]\n if atom is None:\n numbers.append(0)\n else:\n numbers.append(periodic[words[4]].number)\n self.molecules = np.array(molecules) - 1\n self.numbers = np.array(numbers)\n self.charges = np.array(self.charges)\n tmp = []\n for line in sections['BOND']:\n tmp.extend(int(word) for word in line.split())\n self.bonds = np.reshape(np.array(tmp), (-1, 2)) - 1\n tmp = []\n for line in sections['THETA']:\n tmp.extend(int(word) for word in line.split())\n self.bends = np.reshape(np.array(tmp), (-1, 3)) - 1\n tmp = []\n for line in sections['PHI']:\n tmp.extend(int(word) for word in line.split())\n self.dihedrals = np.reshape(np.array(tmp), (-1, 4)) - 1\n tmp = []\n for line in sections['IMPHI']:\n tmp.extend(int(word) for word in line.split())\n self.impropers = np.reshape(np.array(tmp), (-1, 4)) - 1\n", "role": "user" }, { "content": "read_from_file", "role": "assistant" } ]
def x(self, graph, group=None): if group is not None: graph = graph.get_subgraph(group, normalize=True) fingerprint = graph.fingerprint.tobytes() name = self.name_cache.get(fingerprint) if name is None: name = 'NM%02i' % len(self.name_cache) self.name_cache[fingerprint] = name return name
get_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graph, group=None):\n if group is not None:\n graph = graph.get_subgraph(group, normalize=True)\n fingerprint = graph.fingerprint.tobytes()\n name = self.name_cache.get(fingerprint)\n if name is None:\n name = 'NM%02i' % len(self.name_cache)\n self.name_cache[fingerprint] = name\n return name\n", "role": "user" }, { "content": "get_name", "role": "assistant" } ]
def x(self, f): print('PSF', file=f) print(file=f) print(' 1 !NTITLE', file=f) print(self.title, file=f) print(file=f) print('% 7i !NATOM' % len(self.numbers), file=f) if len(self.numbers) > 0: for index, (number, atom_type, charge, name, molecule) in enumerate(zip (self.numbers, self.atom_types, self.charges, self.names, self. molecules)): atom = periodic[number] print('% 7i % 4s % 4i NAME % 6s % 6s % 8.4f % 12.6f 0' % (index + 1, name, molecule + 1, atom.symbol, atom_type, charge, atom .mass / unified), file=f) print(file=f) print('% 7i !NBOND' % len(self.bonds), file=f) if len(self.bonds) > 0: tmp = [] for bond in self.bonds: tmp.extend(bond + 1) if len(tmp) >= 8: print(' '.join('% 7i' % v for v in tmp[:8]), file=f) tmp = tmp[8:] if len(tmp) > 0: print(' '.join('% 7i' % v for v in tmp), file=f) print(file=f) print('% 7i !NTHETA' % len(self.bends), file=f) if len(self.bends) > 0: tmp = [] for bend in self.bends: tmp.extend(bend + 1) if len(tmp) >= 9: print(' ' + ' '.join('% 6i' % v for v in tmp[:9]), file=f) tmp = tmp[9:] if len(tmp) > 0: print(' ' + ' '.join('% 6i' % v for v in tmp), file=f) print(file=f) print('% 7i !NPHI' % len(self.dihedrals), file=f) if len(self.dihedrals) > 0: tmp = [] for dihedral in self.dihedrals: tmp.extend(dihedral + 1) if len(tmp) >= 8: print(' ' + ' '.join('% 6i' % v for v in tmp[:8]), file=f) tmp = tmp[8:] if len(tmp) > 0: print(' ' + ' '.join('% 6i' % v for v in tmp), file=f) print(file=f) print('% 7i !NIMPHI' % len(self.impropers), file=f) if len(self.impropers) > 0: tmp = [] for improper in self.impropers: tmp.extend(improper + 1) if len(tmp) >= 8: print(' ' + ' '.join('% 6i' % v for v in tmp[:8]), file=f) tmp = tmp[8:] if len(tmp) > 0: print(' ' + ' '.join('% 6i' % v for v in tmp), file=f) print(file=f) print(' 0 !NDON', file=f) print(file=f) print(' 0 !NNB', file=f) print(file=f) print(' 0 !NGRP', file=f) print(file=f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f):\n print('PSF', file=f)\n print(file=f)\n print(' 1 !NTITLE', file=f)\n print(self.title, file=f)\n print(file=f)\n print('% 7i !NATOM' % len(self.numbers), file=f)\n if len(self.numbers) > 0:\n for index, (number, atom_type, charge, name, molecule) in enumerate(zip\n (self.numbers, self.atom_types, self.charges, self.names, self.\n molecules)):\n atom = periodic[number]\n print('% 7i % 4s % 4i NAME % 6s % 6s % 8.4f % 12.6f 0' % (index +\n 1, name, molecule + 1, atom.symbol, atom_type, charge, atom\n .mass / unified), file=f)\n print(file=f)\n print('% 7i !NBOND' % len(self.bonds), file=f)\n if len(self.bonds) > 0:\n tmp = []\n for bond in self.bonds:\n tmp.extend(bond + 1)\n if len(tmp) >= 8:\n print(' '.join('% 7i' % v for v in tmp[:8]), file=f)\n tmp = tmp[8:]\n if len(tmp) > 0:\n print(' '.join('% 7i' % v for v in tmp), file=f)\n print(file=f)\n print('% 7i !NTHETA' % len(self.bends), file=f)\n if len(self.bends) > 0:\n tmp = []\n for bend in self.bends:\n tmp.extend(bend + 1)\n if len(tmp) >= 9:\n print(' ' + ' '.join('% 6i' % v for v in tmp[:9]), file=f)\n tmp = tmp[9:]\n if len(tmp) > 0:\n print(' ' + ' '.join('% 6i' % v for v in tmp), file=f)\n print(file=f)\n print('% 7i !NPHI' % len(self.dihedrals), file=f)\n if len(self.dihedrals) > 0:\n tmp = []\n for dihedral in self.dihedrals:\n tmp.extend(dihedral + 1)\n if len(tmp) >= 8:\n print(' ' + ' '.join('% 6i' % v for v in tmp[:8]), file=f)\n tmp = tmp[8:]\n if len(tmp) > 0:\n print(' ' + ' '.join('% 6i' % v for v in tmp), file=f)\n print(file=f)\n print('% 7i !NIMPHI' % len(self.impropers), file=f)\n if len(self.impropers) > 0:\n tmp = []\n for improper in self.impropers:\n tmp.extend(improper + 1)\n if len(tmp) >= 8:\n print(' ' + ' '.join('% 6i' % v for v in tmp[:8]), file=f)\n tmp = tmp[8:]\n if len(tmp) > 0:\n print(' ' + ' '.join('% 6i' % v for v in tmp), file=f)\n print(file=f)\n print(' 0 !NDON', file=f)\n print(file=f)\n print(' 0 !NNB', file=f)\n print(file=f)\n print(' 0 !NGRP', file=f)\n print(file=f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, molecule, atom_types=None, charges=None, split=True): molecular_graph = MolecularGraph.from_geometry(molecule) self.add_molecular_graph(molecular_graph, atom_types, charges, split, molecule)
add_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, molecule, atom_types=None, charges=None, split=True):\n molecular_graph = MolecularGraph.from_geometry(molecule)\n self.add_molecular_graph(molecular_graph, atom_types, charges, split,\n molecule)\n", "role": "user" }, { "content": "add_molecule", "role": "assistant" } ]
def x(self, molecular_graph, atom_types=None, charges=None, split=True, molecule=None): new = len(molecular_graph.numbers) if new == 0: return prev = len(self.numbers) offset = prev self.numbers.resize(prev + new) self.numbers[-new:] = molecular_graph.numbers if atom_types is None: atom_types = [periodic[number].symbol for number in molecular_graph .numbers] self.atom_types.extend(atom_types) if charges is None: charges = [0.0] * len(molecular_graph.numbers) self.charges.extend(charges) self.molecules.resize(prev + new) if split: groups = molecular_graph.independent_vertices names = [self._get_name(molecular_graph, group) for group in groups] group_indices = np.zeros(new, int) for group_index, group in enumerate(groups): for index in group: group_indices[index] = group_index self.names.extend([names[group_index] for group_index in group_indices] ) if prev == 0: self.molecules[:] = group_indices else: self.molecules[-new:] = self.molecules[-new] + group_indices + 1 else: if prev == 0: self.molecules[-new:] = 0 else: self.molecules[-new:] = self.molecules[-new] + 1 name = self._get_name(molecular_graph) self.names.extend([name] * new) self._add_graph_bonds(molecular_graph, offset, atom_types, molecule) self._add_graph_bends(molecular_graph, offset, atom_types, molecule) self._add_graph_dihedrals(molecular_graph, offset, atom_types, molecule) self._add_graph_impropers(molecular_graph, offset, atom_types, molecule)
add_molecular_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, molecular_graph, atom_types=None, charges=None, split=True,\n molecule=None):\n new = len(molecular_graph.numbers)\n if new == 0:\n return\n prev = len(self.numbers)\n offset = prev\n self.numbers.resize(prev + new)\n self.numbers[-new:] = molecular_graph.numbers\n if atom_types is None:\n atom_types = [periodic[number].symbol for number in molecular_graph\n .numbers]\n self.atom_types.extend(atom_types)\n if charges is None:\n charges = [0.0] * len(molecular_graph.numbers)\n self.charges.extend(charges)\n self.molecules.resize(prev + new)\n if split:\n groups = molecular_graph.independent_vertices\n names = [self._get_name(molecular_graph, group) for group in groups]\n group_indices = np.zeros(new, int)\n for group_index, group in enumerate(groups):\n for index in group:\n group_indices[index] = group_index\n self.names.extend([names[group_index] for group_index in group_indices]\n )\n if prev == 0:\n self.molecules[:] = group_indices\n else:\n self.molecules[-new:] = self.molecules[-new] + group_indices + 1\n else:\n if prev == 0:\n self.molecules[-new:] = 0\n else:\n self.molecules[-new:] = self.molecules[-new] + 1\n name = self._get_name(molecular_graph)\n self.names.extend([name] * new)\n self._add_graph_bonds(molecular_graph, offset, atom_types, molecule)\n self._add_graph_bends(molecular_graph, offset, atom_types, molecule)\n self._add_graph_dihedrals(molecular_graph, offset, atom_types, molecule)\n self._add_graph_impropers(molecular_graph, offset, atom_types, molecule)\n", "role": "user" }, { "content": "add_molecular_graph", "role": "assistant" } ]
def x(self): groups = [] for a_index, m_index in enumerate(self.molecules): if m_index >= len(groups): groups.append([a_index]) else: groups[m_index].append(a_index) return groups
get_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n groups = []\n for a_index, m_index in enumerate(self.molecules):\n if m_index >= len(groups):\n groups.append([a_index])\n else:\n groups[m_index].append(a_index)\n return groups\n", "role": "user" }, { "content": "get_groups", "role": "assistant" } ]
def x(graph): for atom1, atom2 in graph.edges: try: affected_atoms1, affected_atoms2 = graph.get_halfs(atom1, atom2) yield affected_atoms1, affected_atoms2, (atom1, atom2) except GraphError: continue
iter_halfs_bond
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph):\n for atom1, atom2 in graph.edges:\n try:\n affected_atoms1, affected_atoms2 = graph.get_halfs(atom1, atom2)\n yield affected_atoms1, affected_atoms2, (atom1, atom2)\n except GraphError:\n continue\n", "role": "user" }, { "content": "iter_halfs_bond", "role": "assistant" } ]
def x(graph): for atom2 in range(graph.num_vertices): neighbors = list(graph.neighbors[atom2]) for index1, atom1 in enumerate(neighbors): for atom3 in neighbors[index1 + 1:]: try: affected_atoms = graph.get_halfs(atom2, atom1)[0] yield affected_atoms, (atom1, atom2, atom3) continue except GraphError: pass try: affected_atoms = graph.get_halfs(atom2, atom3)[0] yield affected_atoms, (atom3, atom2, atom1) except GraphError: pass
iter_halfs_bend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph):\n for atom2 in range(graph.num_vertices):\n neighbors = list(graph.neighbors[atom2])\n for index1, atom1 in enumerate(neighbors):\n for atom3 in neighbors[index1 + 1:]:\n try:\n affected_atoms = graph.get_halfs(atom2, atom1)[0]\n yield affected_atoms, (atom1, atom2, atom3)\n continue\n except GraphError:\n pass\n try:\n affected_atoms = graph.get_halfs(atom2, atom3)[0]\n yield affected_atoms, (atom3, atom2, atom1)\n except GraphError:\n pass\n", "role": "user" }, { "content": "iter_halfs_bend", "role": "assistant" } ]
def x(graph): edges = graph.edges for index1, (atom_a1, atom_b1) in enumerate(edges): for atom_a2, atom_b2 in edges[:index1]: try: affected_atoms1, affected_atoms2, hinge_atoms = (graph. get_halfs_double(atom_a1, atom_b1, atom_a2, atom_b2)) yield affected_atoms1, affected_atoms2, hinge_atoms except GraphError: pass
iter_halfs_double
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph):\n edges = graph.edges\n for index1, (atom_a1, atom_b1) in enumerate(edges):\n for atom_a2, atom_b2 in edges[:index1]:\n try:\n affected_atoms1, affected_atoms2, hinge_atoms = (graph.\n get_halfs_double(atom_a1, atom_b1, atom_a2, atom_b2))\n yield affected_atoms1, affected_atoms2, hinge_atoms\n except GraphError:\n pass\n", "role": "user" }, { "content": "iter_halfs_double", "role": "assistant" } ]
def x(molecule, bond_stretch_factor=0.15, torsion_amplitude=np.pi, bending_amplitude=0.3): do_stretch = bond_stretch_factor > 0 do_double_stretch = bond_stretch_factor > 0 do_bend = bending_amplitude > 0 do_double_bend = bending_amplitude > 0 do_torsion = torsion_amplitude > 0 results = [] if do_stretch or do_torsion: for affected_atoms1, affected_atoms2, hinge_atoms in iter_halfs_bond( molecule.graph): if do_stretch: length = np.linalg.norm(molecule.coordinates[hinge_atoms[0] ] - molecule.coordinates[hinge_atoms[1]]) results.append(RandomStretch(affected_atoms1, length * bond_stretch_factor, hinge_atoms)) if do_torsion and len(affected_atoms1) > 1 and len(affected_atoms2 ) > 1: results.append(RandomTorsion(affected_atoms1, torsion_amplitude, hinge_atoms)) if do_bend: for affected_atoms, hinge_atoms in iter_halfs_bend(molecule.graph): results.append(RandomBend(affected_atoms, bending_amplitude, hinge_atoms)) if do_double_stretch or do_double_bend: for affected_atoms1, affected_atoms2, hinge_atoms in iter_halfs_double( molecule.graph): if do_double_stretch: length1 = np.linalg.norm(molecule.coordinates[hinge_atoms[0 ]] - molecule.coordinates[hinge_atoms[1]]) length2 = np.linalg.norm(molecule.coordinates[hinge_atoms[2 ]] - molecule.coordinates[hinge_atoms[3]]) results.append(RandomDoubleStretch(affected_atoms1, 0.5 * ( length1 + length2) * bond_stretch_factor, hinge_atoms)) if do_double_bend and len(affected_atoms1) > 2 and len( affected_atoms2) > 2: if hinge_atoms[0] != hinge_atoms[2]: results.append(RandomTorsion(affected_atoms1, bending_amplitude, (hinge_atoms[0], hinge_atoms[2]))) if hinge_atoms[1] != hinge_atoms[3]: results.append(RandomTorsion(affected_atoms2, bending_amplitude, (hinge_atoms[1], hinge_atoms[3]))) return results
generate_manipulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, bond_stretch_factor=0.15, torsion_amplitude=np.pi,\n bending_amplitude=0.3):\n do_stretch = bond_stretch_factor > 0\n do_double_stretch = bond_stretch_factor > 0\n do_bend = bending_amplitude > 0\n do_double_bend = bending_amplitude > 0\n do_torsion = torsion_amplitude > 0\n results = []\n if do_stretch or do_torsion:\n for affected_atoms1, affected_atoms2, hinge_atoms in iter_halfs_bond(\n molecule.graph):\n if do_stretch:\n length = np.linalg.norm(molecule.coordinates[hinge_atoms[0]\n ] - molecule.coordinates[hinge_atoms[1]])\n results.append(RandomStretch(affected_atoms1, length *\n bond_stretch_factor, hinge_atoms))\n if do_torsion and len(affected_atoms1) > 1 and len(affected_atoms2\n ) > 1:\n results.append(RandomTorsion(affected_atoms1,\n torsion_amplitude, hinge_atoms))\n if do_bend:\n for affected_atoms, hinge_atoms in iter_halfs_bend(molecule.graph):\n results.append(RandomBend(affected_atoms, bending_amplitude,\n hinge_atoms))\n if do_double_stretch or do_double_bend:\n for affected_atoms1, affected_atoms2, hinge_atoms in iter_halfs_double(\n molecule.graph):\n if do_double_stretch:\n length1 = np.linalg.norm(molecule.coordinates[hinge_atoms[0\n ]] - molecule.coordinates[hinge_atoms[1]])\n length2 = np.linalg.norm(molecule.coordinates[hinge_atoms[2\n ]] - molecule.coordinates[hinge_atoms[3]])\n results.append(RandomDoubleStretch(affected_atoms1, 0.5 * (\n length1 + length2) * bond_stretch_factor, hinge_atoms))\n if do_double_bend and len(affected_atoms1) > 2 and len(\n affected_atoms2) > 2:\n if hinge_atoms[0] != hinge_atoms[2]:\n results.append(RandomTorsion(affected_atoms1,\n bending_amplitude, (hinge_atoms[0], hinge_atoms[2])))\n if hinge_atoms[1] != hinge_atoms[3]:\n results.append(RandomTorsion(affected_atoms2,\n bending_amplitude, (hinge_atoms[1], hinge_atoms[3])))\n return results\n", "role": "user" }, { "content": "generate_manipulations", "role": "assistant" } ]
def x(molecule, thresholds): for atom1 in range(molecule.graph.num_vertices): for atom2 in range(atom1): if molecule.graph.distances[atom1, atom2] > 2: distance = np.linalg.norm(molecule.coordinates[atom1] - molecule.coordinates[atom2]) if distance < thresholds[frozenset([molecule.numbers[atom1], molecule.numbers[atom2]])]: return False return True
check_nonbond
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, thresholds):\n for atom1 in range(molecule.graph.num_vertices):\n for atom2 in range(atom1):\n if molecule.graph.distances[atom1, atom2] > 2:\n distance = np.linalg.norm(molecule.coordinates[atom1] -\n molecule.coordinates[atom2])\n if distance < thresholds[frozenset([molecule.numbers[atom1],\n molecule.numbers[atom2]])]:\n return False\n return True\n", "role": "user" }, { "content": "check_nonbond", "role": "assistant" } ]
def x(molecule, manipulations, nonbond_thresholds, max_tries=1000): for m in range(max_tries): random_molecule = randomize_molecule_low(molecule, manipulations) if check_nonbond(random_molecule, nonbond_thresholds): return random_molecule
randomize_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, manipulations, nonbond_thresholds, max_tries=1000):\n for m in range(max_tries):\n random_molecule = randomize_molecule_low(molecule, manipulations)\n if check_nonbond(random_molecule, nonbond_thresholds):\n return random_molecule\n", "role": "user" }, { "content": "randomize_molecule", "role": "assistant" } ]
def x(molecule, manipulations): manipulations = copy.copy(manipulations) shuffle(manipulations) coordinates = molecule.coordinates.copy() for manipulation in manipulations: manipulation.apply(coordinates) return molecule.copy_with(coordinates=coordinates)
randomize_molecule_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, manipulations):\n manipulations = copy.copy(manipulations)\n shuffle(manipulations)\n coordinates = molecule.coordinates.copy()\n for manipulation in manipulations:\n manipulation.apply(coordinates)\n return molecule.copy_with(coordinates=coordinates)\n", "role": "user" }, { "content": "randomize_molecule_low", "role": "assistant" } ]
def x(molecule, manipulations, nonbond_thresholds, max_tries=1000): for m in range(max_tries): random_molecule, transformation = single_random_manipulation_low( molecule, manipulations) if check_nonbond(random_molecule, nonbond_thresholds): return random_molecule, transformation return None
single_random_manipulation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, manipulations, nonbond_thresholds, max_tries=1000):\n for m in range(max_tries):\n random_molecule, transformation = single_random_manipulation_low(\n molecule, manipulations)\n if check_nonbond(random_molecule, nonbond_thresholds):\n return random_molecule, transformation\n return None\n", "role": "user" }, { "content": "single_random_manipulation", "role": "assistant" } ]
def x(molecule, manipulations): manipulation = sample(manipulations, 1)[0] coordinates = molecule.coordinates.copy() transformation = manipulation.apply(coordinates) return molecule.copy_with(coordinates=coordinates), transformation
single_random_manipulation_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, manipulations):\n manipulation = sample(manipulations, 1)[0]\n coordinates = molecule.coordinates.copy()\n transformation = manipulation.apply(coordinates)\n return molecule.copy_with(coordinates=coordinates), transformation\n", "role": "user" }, { "content": "single_random_manipulation_low", "role": "assistant" } ]
def x(molecule0, molecule1, thresholds, shoot_max): center = np.zeros(3, float) angle = np.random.uniform(0, 2 * np.pi) axis = random_unit() rotation = Complete.about_axis(center, angle, axis) cor1 = np.dot(molecule1.coordinates, rotation.r) atom0 = np.random.randint(len(molecule0.numbers)) atom1 = np.random.randint(len(molecule1.numbers)) delta = molecule0.coordinates[atom0] - cor1[atom1] cor1 += delta direction = random_unit() cor1 += 1 * direction threshold_mat = np.zeros((len(molecule0.numbers), len(molecule1.numbers )), float) distance_mat = np.zeros((len(molecule0.numbers), len(molecule1.numbers) ), float) for i1, n1 in enumerate(molecule0.numbers): for i2, n2 in enumerate(molecule1.numbers): threshold = thresholds.get(frozenset([n1, n2])) threshold_mat[i1, i2] = threshold ** 2 while True: cor1 += 0.1 * direction distance_mat[:] = 0 for i in (0, 1, 2): distance_mat += np.subtract.outer(molecule0.coordinates[:, i], cor1[:, i]) ** 2 if (distance_mat > threshold_mat).all(): break while True: cor1 += direction * np.random.uniform(0, shoot_max) distance_mat[:] = 0 for i in (0, 1, 2): distance_mat += np.subtract.outer(molecule0.coordinates[:, i], cor1[:, i]) ** 2 if (distance_mat > threshold_mat).all(): break dimer = Molecule(np.concatenate([molecule0.numbers, molecule1.numbers]), np.concatenate([molecule0.coordinates, cor1])) dimer.direction = direction dimer.atom0 = atom0 dimer.atom1 = atom1 return dimer
random_dimer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule0, molecule1, thresholds, shoot_max):\n center = np.zeros(3, float)\n angle = np.random.uniform(0, 2 * np.pi)\n axis = random_unit()\n rotation = Complete.about_axis(center, angle, axis)\n cor1 = np.dot(molecule1.coordinates, rotation.r)\n atom0 = np.random.randint(len(molecule0.numbers))\n atom1 = np.random.randint(len(molecule1.numbers))\n delta = molecule0.coordinates[atom0] - cor1[atom1]\n cor1 += delta\n direction = random_unit()\n cor1 += 1 * direction\n threshold_mat = np.zeros((len(molecule0.numbers), len(molecule1.numbers\n )), float)\n distance_mat = np.zeros((len(molecule0.numbers), len(molecule1.numbers)\n ), float)\n for i1, n1 in enumerate(molecule0.numbers):\n for i2, n2 in enumerate(molecule1.numbers):\n threshold = thresholds.get(frozenset([n1, n2]))\n threshold_mat[i1, i2] = threshold ** 2\n while True:\n cor1 += 0.1 * direction\n distance_mat[:] = 0\n for i in (0, 1, 2):\n distance_mat += np.subtract.outer(molecule0.coordinates[:, i],\n cor1[:, i]) ** 2\n if (distance_mat > threshold_mat).all():\n break\n while True:\n cor1 += direction * np.random.uniform(0, shoot_max)\n distance_mat[:] = 0\n for i in (0, 1, 2):\n distance_mat += np.subtract.outer(molecule0.coordinates[:, i],\n cor1[:, i]) ** 2\n if (distance_mat > threshold_mat).all():\n break\n dimer = Molecule(np.concatenate([molecule0.numbers, molecule1.numbers]),\n np.concatenate([molecule0.coordinates, cor1]))\n dimer.direction = direction\n dimer.atom0 = atom0\n dimer.atom1 = atom1\n return dimer\n", "role": "user" }, { "content": "random_dimer", "role": "assistant" } ]
def x(cls, filename): with open(filename) as f: lines = list(line for line in f if line[0] != '#') r = [] t = [] for line in lines[:3]: values = list(float(word) for word in line.split()) r.append(values[:3]) t.append(values[3]) transformation = Complete(r, t) affected_atoms = set(int(word) for word in lines[3].split()) return cls(affected_atoms, transformation)
read_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename):\n with open(filename) as f:\n lines = list(line for line in f if line[0] != '#')\n r = []\n t = []\n for line in lines[:3]:\n values = list(float(word) for word in line.split())\n r.append(values[:3])\n t.append(values[3])\n transformation = Complete(r, t)\n affected_atoms = set(int(word) for word in lines[3].split())\n return cls(affected_atoms, transformation)\n", "role": "user" }, { "content": "read_from_file", "role": "assistant" } ]
def x(self, coordinates): for i in self.affected_atoms: coordinates[i] = self.transformation * coordinates[i]
apply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n for i in self.affected_atoms:\n coordinates[i] = self.transformation * coordinates[i]\n", "role": "user" }, { "content": "apply", "role": "assistant" } ]
def x(self, filename): r = self.transformation.r t = self.transformation.t with open(filename, 'w') as f: print('# A (random) transformation of a part of a molecule:', file=f) print('# The translation vector is in atomic units.', file=f) print('# Rx Ry Rz T', file=f) print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[0, 0], r[0, 1], r[0, 2 ], t[0]), file=f) print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[1, 0], r[1, 1], r[1, 2 ], t[1]), file=f) print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[2, 0], r[2, 1], r[2, 2 ], t[2]), file=f) print('# The indexes of the affected atoms:', file=f) print(' '.join(str(i) for i in self.affected_atoms), file=f)
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n r = self.transformation.r\n t = self.transformation.t\n with open(filename, 'w') as f:\n print('# A (random) transformation of a part of a molecule:', file=f)\n print('# The translation vector is in atomic units.', file=f)\n print('# Rx Ry Rz T', file=f)\n print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[0, 0], r[0, 1], r[0, 2\n ], t[0]), file=f)\n print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[1, 0], r[1, 1], r[1, 2\n ], t[1]), file=f)\n print('% 15.9e % 15.9e % 15.9e % 15.9e' % (r[2, 0], r[2, 1], r[2, 2\n ], t[2]), file=f)\n print('# The indexes of the affected atoms:', file=f)\n print(' '.join(str(i) for i in self.affected_atoms), file=f)\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(self, coordinates): transform = self.get_transformation(coordinates) result = MolecularDistortion(self.affected_atoms, transform) result.apply(coordinates) return result
apply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n transform = self.get_transformation(coordinates)\n result = MolecularDistortion(self.affected_atoms, transform)\n result.apply(coordinates)\n return result\n", "role": "user" }, { "content": "apply", "role": "assistant" } ]
def x(self, coordinates): atom1, atom2 = self.hinge_atoms direction = coordinates[atom1] - coordinates[atom2] direction /= np.linalg.norm(direction) direction *= np.random.uniform(-self.max_amplitude, self.max_amplitude) result = Translation(direction) return result
get_transformation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n atom1, atom2 = self.hinge_atoms\n direction = coordinates[atom1] - coordinates[atom2]\n direction /= np.linalg.norm(direction)\n direction *= np.random.uniform(-self.max_amplitude, self.max_amplitude)\n result = Translation(direction)\n return result\n", "role": "user" }, { "content": "get_transformation", "role": "assistant" } ]
def x(self, coordinates): atom1, atom2 = self.hinge_atoms center = coordinates[atom1] axis = coordinates[atom1] - coordinates[atom2] axis /= np.linalg.norm(axis) angle = np.random.uniform(-self.max_amplitude, self.max_amplitude) return Complete.about_axis(center, angle, axis)
get_transformation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n atom1, atom2 = self.hinge_atoms\n center = coordinates[atom1]\n axis = coordinates[atom1] - coordinates[atom2]\n axis /= np.linalg.norm(axis)\n angle = np.random.uniform(-self.max_amplitude, self.max_amplitude)\n return Complete.about_axis(center, angle, axis)\n", "role": "user" }, { "content": "get_transformation", "role": "assistant" } ]
def x(self, coordinates): atom1, atom2, atom3 = self.hinge_atoms center = coordinates[atom2] a = coordinates[atom1] - coordinates[atom2] b = coordinates[atom3] - coordinates[atom2] axis = np.cross(a, b) norm = np.linalg.norm(axis) if norm < 1e-05: axis = random_orthonormal(a) else: axis /= np.linalg.norm(axis) angle = np.random.uniform(-self.max_amplitude, self.max_amplitude) return Complete.about_axis(center, angle, axis)
get_transformation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n atom1, atom2, atom3 = self.hinge_atoms\n center = coordinates[atom2]\n a = coordinates[atom1] - coordinates[atom2]\n b = coordinates[atom3] - coordinates[atom2]\n axis = np.cross(a, b)\n norm = np.linalg.norm(axis)\n if norm < 1e-05:\n axis = random_orthonormal(a)\n else:\n axis /= np.linalg.norm(axis)\n angle = np.random.uniform(-self.max_amplitude, self.max_amplitude)\n return Complete.about_axis(center, angle, axis)\n", "role": "user" }, { "content": "get_transformation", "role": "assistant" } ]
def x(self, coordinates): atom1, atom2, atom3, atom4 = self.hinge_atoms a = coordinates[atom1] - coordinates[atom2] a /= np.linalg.norm(a) b = coordinates[atom3] - coordinates[atom4] b /= np.linalg.norm(b) direction = 0.5 * (a + b) direction *= np.random.uniform(-self.max_amplitude, self.max_amplitude) result = Translation(direction) return result
get_transformation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n atom1, atom2, atom3, atom4 = self.hinge_atoms\n a = coordinates[atom1] - coordinates[atom2]\n a /= np.linalg.norm(a)\n b = coordinates[atom3] - coordinates[atom4]\n b /= np.linalg.norm(b)\n direction = 0.5 * (a + b)\n direction *= np.random.uniform(-self.max_amplitude, self.max_amplitude)\n result = Translation(direction)\n return result\n", "role": "user" }, { "content": "get_transformation", "role": "assistant" } ]
def x(self, center_key): for shift in self.neighbor_indexes: key = tuple(np.add(center_key, shift).astype(int)) if self.integer_cell is not None: key = self.wrap_key(key) bin = self._bins.get(key) if bin is not None: yield key, bin
iter_surrounding
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, center_key):\n for shift in self.neighbor_indexes:\n key = tuple(np.add(center_key, shift).astype(int))\n if self.integer_cell is not None:\n key = self.wrap_key(key)\n bin = self._bins.get(key)\n if bin is not None:\n yield key, bin\n", "role": "user" }, { "content": "iter_surrounding", "role": "assistant" } ]
def x(self, key): return tuple(np.round(self.integer_cell.shortest_vector(key)).astype(int))
wrap_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n return tuple(np.round(self.integer_cell.shortest_vector(key)).astype(int))\n", "role": "user" }, { "content": "wrap_key", "role": "assistant" } ]
def x(self, cutoff, unit_cell, grid): if grid is None: if unit_cell is None: grid = cutoff / 2.9 else: divisions = np.ceil(unit_cell.spacings / cutoff) divisions[divisions < 1] = 1 grid = unit_cell / divisions if isinstance(grid, float): grid_cell = UnitCell(np.array([[grid, 0, 0], [0, grid, 0], [0, 0, grid]])) elif isinstance(grid, UnitCell): grid_cell = grid else: raise TypeError('Grid must be None, a float or a UnitCell instance.') if unit_cell is not None: integer_matrix = grid_cell.to_fractional(unit_cell.matrix.transpose() ).transpose() if abs((integer_matrix - np.round(integer_matrix)) * self.unit_cell .active).max() > 1e-06: raise ValueError( 'The unit cell vectors are not an integer linear combination of grid cell vectors.' ) integer_matrix = integer_matrix.round() integer_cell = UnitCell(integer_matrix, unit_cell.active) else: integer_cell = None return grid_cell, integer_cell
setup_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cutoff, unit_cell, grid):\n if grid is None:\n if unit_cell is None:\n grid = cutoff / 2.9\n else:\n divisions = np.ceil(unit_cell.spacings / cutoff)\n divisions[divisions < 1] = 1\n grid = unit_cell / divisions\n if isinstance(grid, float):\n grid_cell = UnitCell(np.array([[grid, 0, 0], [0, grid, 0], [0, 0,\n grid]]))\n elif isinstance(grid, UnitCell):\n grid_cell = grid\n else:\n raise TypeError('Grid must be None, a float or a UnitCell instance.')\n if unit_cell is not None:\n integer_matrix = grid_cell.to_fractional(unit_cell.matrix.transpose()\n ).transpose()\n if abs((integer_matrix - np.round(integer_matrix)) * self.unit_cell\n .active).max() > 1e-06:\n raise ValueError(\n 'The unit cell vectors are not an integer linear combination of grid cell vectors.'\n )\n integer_matrix = integer_matrix.round()\n integer_cell = UnitCell(integer_matrix, unit_cell.active)\n else:\n integer_cell = None\n return grid_cell, integer_cell\n", "role": "user" }, { "content": "setup_grid", "role": "assistant" } ]
def x(expression): try: g = globals() g.update(shorthands) return float(eval(str(expression), g)) except: raise ValueError("Could not interpret '%s' as a unit or a measure." % expression)
parse_unit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(expression):\n try:\n g = globals()\n g.update(shorthands)\n return float(eval(str(expression), g))\n except:\n raise ValueError(\"Could not interpret '%s' as a unit or a measure.\" %\n expression)\n", "role": "user" }, { "content": "parse_unit", "role": "assistant" } ]
def x(self): q = self.__parent__.parents() q.put(self) return q
parents
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n q = self.__parent__.parents()\n q.put(self)\n return q\n", "role": "user" }, { "content": "parents", "role": "assistant" } ]
def x(self): path = None nodes = self.parents() while not nodes.empty(): path = urljoin(path, nodes.get().path()) return path
url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n path = None\n nodes = self.parents()\n while not nodes.empty():\n path = urljoin(path, nodes.get().path())\n return path\n", "role": "user" }, { "content": "url", "role": "assistant" } ]
def x(self): if self._auth: return self._auth, self return self.__parent__.auth_required()
auth_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._auth:\n return self._auth, self\n return self.__parent__.auth_required()\n", "role": "user" }, { "content": "auth_required", "role": "assistant" } ]
def x(self, graph): if graph.num_vertices != self.size: raise TypeError( 'The number of vertices in the graph does not match the length of the atomic numbers array.' ) if (self.numbers != graph.numbers).any(): raise TypeError( 'The atomic numbers in the graph do not match the atomic numbers in the molecule.' )
check_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graph):\n if graph.num_vertices != self.size:\n raise TypeError(\n 'The number of vertices in the graph does not match the length of the atomic numbers array.'\n )\n if (self.numbers != graph.numbers).any():\n raise TypeError(\n 'The atomic numbers in the graph do not match the atomic numbers in the molecule.'\n )\n", "role": "user" }, { "content": "check_graph", "role": "assistant" } ]
def x(cls, filename): if filename.endswith('.cml'): from molmod.io import load_cml return load_cml(filename)[0] elif filename.endswith('.fchk'): from molmod.io import FCHKFile fchk = FCHKFile(filename, field_labels=[]) return fchk.molecule elif filename.endswith('.pdb'): from molmod.io import load_pdb return load_pdb(filename) elif filename.endswith('.sdf'): from molmod.io import SDFReader return next(SDFReader(filename)) elif filename.endswith('.xyz'): from molmod.io import XYZReader xyz_reader = XYZReader(filename) title, coordinates = next(xyz_reader) return Molecule(xyz_reader.numbers, coordinates, title, symbols= xyz_reader.symbols) else: raise ValueError('Could not determine file format for %s.' % filename)
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename):\n if filename.endswith('.cml'):\n from molmod.io import load_cml\n return load_cml(filename)[0]\n elif filename.endswith('.fchk'):\n from molmod.io import FCHKFile\n fchk = FCHKFile(filename, field_labels=[])\n return fchk.molecule\n elif filename.endswith('.pdb'):\n from molmod.io import load_pdb\n return load_pdb(filename)\n elif filename.endswith('.sdf'):\n from molmod.io import SDFReader\n return next(SDFReader(filename))\n elif filename.endswith('.xyz'):\n from molmod.io import XYZReader\n xyz_reader = XYZReader(filename)\n title, coordinates = next(xyz_reader)\n return Molecule(xyz_reader.numbers, coordinates, title, symbols=\n xyz_reader.symbols)\n else:\n raise ValueError('Could not determine file format for %s.' % filename)\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(self): return (self.coordinates * self.masses.reshape((-1, 1))).sum(axis=0 ) / self.mass
com
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.coordinates * self.masses.reshape((-1, 1))).sum(axis=0\n ) / self.mass\n", "role": "user" }, { "content": "com", "role": "assistant" } ]
def x(self): result = np.zeros((3, 3), float) for i in range(self.size): r = self.coordinates[i] - self.com result.ravel()[::4] += self.masses[i] * (r ** 2).sum() result -= self.masses[i] * np.outer(r, r) return result
inertia_tensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.zeros((3, 3), float)\n for i in range(self.size):\n r = self.coordinates[i] - self.com\n result.ravel()[::4] += self.masses[i] * (r ** 2).sum()\n result -= self.masses[i] * np.outer(r, r)\n return result\n", "role": "user" }, { "content": "inertia_tensor", "role": "assistant" } ]
def x(self): counts = {} for number in self.numbers: counts[number] = counts.get(number, 0) + 1 items = [] for number, count in sorted(counts.items(), reverse=True): if count == 1: items.append(periodic[number].symbol) else: items.append('%s%i' % (periodic[number].symbol, count)) return ''.join(items)
chemical_formula
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counts = {}\n for number in self.numbers:\n counts[number] = counts.get(number, 0) + 1\n items = []\n for number, count in sorted(counts.items(), reverse=True):\n if count == 1:\n items.append(periodic[number].symbol)\n else:\n items.append('%s%i' % (periodic[number].symbol, count))\n return ''.join(items)\n", "role": "user" }, { "content": "chemical_formula", "role": "assistant" } ]
def x(self): self.masses = np.array([periodic[n].mass for n in self.numbers])
set_default_masses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.masses = np.array([periodic[n].mass for n in self.numbers])\n", "role": "user" }, { "content": "set_default_masses", "role": "assistant" } ]
def x(self): self.symbols = tuple(periodic[n].symbol for n in self.numbers)
set_default_symbols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.symbols = tuple(periodic[n].symbol for n in self.numbers)\n", "role": "user" }, { "content": "set_default_symbols", "role": "assistant" } ]
def x(self, filename): if filename.endswith('.cml'): from molmod.io import dump_cml dump_cml(filename, [self]) elif filename.endswith('.xyz'): from molmod.io import XYZWriter symbols = [] for n in self.numbers: atom = periodic[n] if atom is None: symbols.append('X') else: symbols.append(atom.symbol) xyz_writer = XYZWriter(filename, symbols) xyz_writer.dump(self.title, self.coordinates) del xyz_writer else: raise ValueError('Could not determine file format for %s.' % filename)
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n if filename.endswith('.cml'):\n from molmod.io import dump_cml\n dump_cml(filename, [self])\n elif filename.endswith('.xyz'):\n from molmod.io import XYZWriter\n symbols = []\n for n in self.numbers:\n atom = periodic[n]\n if atom is None:\n symbols.append('X')\n else:\n symbols.append(atom.symbol)\n xyz_writer = XYZWriter(filename, symbols)\n xyz_writer.dump(self.title, self.coordinates)\n del xyz_writer\n else:\n raise ValueError('Could not determine file format for %s.' % filename)\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(self, other): if self.numbers.shape != other.numbers.shape or (self.numbers != other. numbers).all(): raise ValueError( 'The other molecule does not have the same numbers as this molecule.' ) return fit_rmsd(self.coordinates, other.coordinates)
rmsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if self.numbers.shape != other.numbers.shape or (self.numbers != other.\n numbers).all():\n raise ValueError(\n 'The other molecule does not have the same numbers as this molecule.'\n )\n return fit_rmsd(self.coordinates, other.coordinates)\n", "role": "user" }, { "content": "rmsd", "role": "assistant" } ]
def x(self, threshold=0.001 * angstrom): graph = MolecularGraph.from_geometry(self, scaling=1.5) try: return compute_rotsym(self, graph, threshold) except ValueError: raise ValueError( 'The rotational symmetry number can only be computed when the graph is fully connected.' )
compute_rotsym
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold=0.001 * angstrom):\n graph = MolecularGraph.from_geometry(self, scaling=1.5)\n try:\n return compute_rotsym(self, graph, threshold)\n except ValueError:\n raise ValueError(\n 'The rotational symmetry number can only be computed when the graph is fully connected.'\n )\n", "role": "user" }, { "content": "compute_rotsym", "role": "assistant" } ]
def x(self): if len(self._last) == 0: raise StopIteration return self._last[:self._last.find(':')]
get_current_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self._last) == 0:\n raise StopIteration\n return self._last[:self._last.find(':')]\n", "role": "user" }, { "content": "get_current_label", "role": "assistant" } ]
def x(self): self._last = self._f.readline() while len(self._last) > 0 and len(self._last[0].strip()) == 0: self._last = self._f.readline()
skip_section
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._last = self._f.readline()\n while len(self._last) > 0 and len(self._last[0].strip()) == 0:\n self._last = self._f.readline()\n", "role": "user" }, { "content": "skip_section", "role": "assistant" } ]
def x(self): lines = [self._last[self._last.find(':') + 1:]] self._last = self._f.readline() while len(self._last) > 0 and len(self._last[0].strip()) == 0: lines.append(self._last) self._last = self._f.readline() return lines
read_section
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lines = [self._last[self._last.find(':') + 1:]]\n self._last = self._f.readline()\n while len(self._last) > 0 and len(self._last[0].strip()) == 0:\n lines.append(self._last)\n self._last = self._f.readline()\n return lines\n", "role": "user" }, { "content": "read_section", "role": "assistant" } ]
def x(self, label): while self._get_current_label() != label: self._skip_section() return self._read_section()
get_next
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, label):\n while self._get_current_label() != label:\n self._skip_section()\n return self._read_section()\n", "role": "user" }, { "content": "get_next", "role": "assistant" } ]
def x(self): self._secfile.get_next('Frame Number') frame = ATRJFrame() energy_lines = self._secfile.get_next('Time/Energy') energy_words = energy_lines[0].split() frame.time = float(energy_words[0]) * picosecond frame.step = int(energy_words[1]) frame.total_energy = float(energy_words[2]) * kcalmol coord_lines = self._secfile.get_next('Coordinates') frame.coordinates = np.zeros((self.num_atoms, 3), float) for index, line in enumerate(coord_lines): words = line.split() frame.coordinates[index, 0] = float(words[1]) frame.coordinates[index, 1] = float(words[2]) frame.coordinates[index, 2] = float(words[3]) frame.coordinates *= angstrom return frame
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._secfile.get_next('Frame Number')\n frame = ATRJFrame()\n energy_lines = self._secfile.get_next('Time/Energy')\n energy_words = energy_lines[0].split()\n frame.time = float(energy_words[0]) * picosecond\n frame.step = int(energy_words[1])\n frame.total_energy = float(energy_words[2]) * kcalmol\n coord_lines = self._secfile.get_next('Coordinates')\n frame.coordinates = np.zeros((self.num_atoms, 3), float)\n for index, line in enumerate(coord_lines):\n words = line.split()\n frame.coordinates[index, 0] = float(words[1])\n frame.coordinates[index, 1] = float(words[2])\n frame.coordinates[index, 2] = float(words[3])\n frame.coordinates *= angstrom\n return frame\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(origin, axes, nrep): points = np.zeros((nrep[0], nrep[1], nrep[2], 3), float) points[:] = origin points[:] += np.outer(np.arange(nrep[0], dtype=float), axes[0]).reshape(( -1, 1, 1, 3)) points[:] += np.outer(np.arange(nrep[1], dtype=float), axes[1]).reshape(( 1, -1, 1, 3)) points[:] += np.outer(np.arange(nrep[2], dtype=float), axes[2]).reshape(( 1, 1, -1, 3)) return points
get_cube_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(origin, axes, nrep):\n points = np.zeros((nrep[0], nrep[1], nrep[2], 3), float)\n points[:] = origin\n points[:] += np.outer(np.arange(nrep[0], dtype=float), axes[0]).reshape((\n -1, 1, 1, 3))\n points[:] += np.outer(np.arange(nrep[1], dtype=float), axes[1]).reshape((\n 1, -1, 1, 3))\n points[:] += np.outer(np.arange(nrep[2], dtype=float), axes[2]).reshape((\n 1, 1, -1, 3))\n return points\n", "role": "user" }, { "content": "get_cube_points", "role": "assistant" } ]
def x(cls, filename): with open(filename) as f: molecule, origin, axes, nrep, subtitle, nuclear_charges = ( read_cube_header(f)) data = np.zeros(tuple(nrep), float) tmp = data.ravel() counter = 0 while True: line = f.readline() if len(line) == 0: break words = line.split() for word in words: tmp[counter] = float(word) counter += 1 return cls(molecule, origin, axes, nrep, data, subtitle, nuclear_charges)
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename):\n with open(filename) as f:\n molecule, origin, axes, nrep, subtitle, nuclear_charges = (\n read_cube_header(f))\n data = np.zeros(tuple(nrep), float)\n tmp = data.ravel()\n counter = 0\n while True:\n line = f.readline()\n if len(line) == 0:\n break\n words = line.split()\n for word in words:\n tmp[counter] = float(word)\n counter += 1\n return cls(molecule, origin, axes, nrep, data, subtitle, nuclear_charges)\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(self, fn): with open(fn, 'w') as f: f.write(' {}\n'.format(self.molecule.title)) f.write(' {}\n'.format(self.subtitle)) def x(n, v): f.write('%5i % 11.6f % 11.6f % 11.6f\n' % (n, v[0], v[1], v[2])) write_grid_line(self.molecule.size, self.origin) write_grid_line(self.data.shape[0], self.axes[0]) write_grid_line(self.data.shape[1], self.axes[1]) write_grid_line(self.data.shape[2], self.axes[2]) def x(n, nc, v): f.write('%5i % 11.6f % 11.6f % 11.6f % 11.6f\n' % (n, nc, v[0], v[1], v[2])) for i in range(self.molecule.size): write_atom_line(self.molecule.numbers[i], self.nuclear_charges[ i], self.molecule.coordinates[i]) for i0 in range(self.data.shape[0]): for i1 in range(self.data.shape[1]): col = 0 for i2 in range(self.data.shape[2]): value = self.data[i0, i1, i2] if col % 6 == 5: f.write(' % 12.5e\n' % value) else: f.write(' % 12.5e' % value) col += 1 if col % 6 != 5: f.write('\n')
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fn):\n with open(fn, 'w') as f:\n f.write(' {}\\n'.format(self.molecule.title))\n f.write(' {}\\n'.format(self.subtitle))\n\n def x(n, v):\n f.write('%5i % 11.6f % 11.6f % 11.6f\\n' % (n, v[0], v[1], v[2]))\n write_grid_line(self.molecule.size, self.origin)\n write_grid_line(self.data.shape[0], self.axes[0])\n write_grid_line(self.data.shape[1], self.axes[1])\n write_grid_line(self.data.shape[2], self.axes[2])\n\n def x(n, nc, v):\n f.write('%5i % 11.6f % 11.6f % 11.6f % 11.6f\\n' % (n, nc, v[0],\n v[1], v[2]))\n for i in range(self.molecule.size):\n write_atom_line(self.molecule.numbers[i], self.nuclear_charges[\n i], self.molecule.coordinates[i])\n for i0 in range(self.data.shape[0]):\n for i1 in range(self.data.shape[1]):\n col = 0\n for i2 in range(self.data.shape[2]):\n value = self.data[i0, i1, i2]\n if col % 6 == 5:\n f.write(' % 12.5e\\n' % value)\n else:\n f.write(' % 12.5e' % value)\n col += 1\n if col % 6 != 5:\n f.write('\\n')\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(self, newdata=None): if newdata is None: newdata = self.data.copy() return self.__class__(self.molecule, self.origin.copy(), self.axes.copy (), self.nrep.copy(), newdata, self.subtitle, self.nuclear_charges)
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, newdata=None):\n if newdata is None:\n newdata = self.data.copy()\n return self.__class__(self.molecule, self.origin.copy(), self.axes.copy\n (), self.nrep.copy(), newdata, self.subtitle, self.nuclear_charges)\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self): if len(self.__order) != sum(len(values) for values in self.__index.values() ): return False import copy tmp = copy.copy(self.__order) for key, values in self.__index.items(): for value in values: if value.name != key: return False if value in tmp: tmp.remove(value) else: return False if isinstance(value, CP2KSection): if not value._consistent(): return False return True
consistent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.__order) != sum(len(values) for values in self.__index.values()\n ):\n return False\n import copy\n tmp = copy.copy(self.__order)\n for key, values in self.__index.items():\n for value in values:\n if value.name != key:\n return False\n if value in tmp:\n tmp.remove(value)\n else:\n return False\n if isinstance(value, CP2KSection):\n if not value._consistent():\n return False\n return True\n", "role": "user" }, { "content": "consistent", "role": "assistant" } ]
def x(self, child): if not (isinstance(child, CP2KSection) or isinstance(child, CP2KKeyword)): raise TypeError( 'The child must be a CP2KSection or a CP2KKeyword, got: %s.' % child) l = self.__index.setdefault(child.name, []) l.append(child) self.__order.append(child)
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, child):\n if not (isinstance(child, CP2KSection) or isinstance(child, CP2KKeyword)):\n raise TypeError(\n 'The child must be a CP2KSection or a CP2KKeyword, got: %s.' %\n child)\n l = self.__index.setdefault(child.name, [])\n l.append(child)\n self.__order.append(child)\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(self, f, indent=''): for child in self.__order: child.dump(f, indent + ' ')
dump_children
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, indent=''):\n for child in self.__order:\n child.dump(f, indent + ' ')\n", "role": "user" }, { "content": "dump_children", "role": "assistant" } ]
def x(self, f, indent=''): print(('%s&%s %s' % (indent, self.__name, self.section_parameters)). rstrip(), file=f) self.dump_children(f, indent) print('%s&END %s' % (indent, self.__name), file=f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, indent=''):\n print(('%s&%s %s' % (indent, self.__name, self.section_parameters)).\n rstrip(), file=f)\n self.dump_children(f, indent)\n print('%s&END %s' % (indent, self.__name), file=f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, f): while True: line = f.readline() if len(line) == 0: raise EOFError line = line[:line.find('#')] line = line.strip() if len(line) > 0: return line
readline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f):\n while True:\n line = f.readline()\n if len(line) == 0:\n raise EOFError\n line = line[:line.find('#')]\n line = line.strip()\n if len(line) > 0:\n return line\n", "role": "user" }, { "content": "readline", "role": "assistant" } ]
def x(self, f): while True: line = self.readline(f) if line[0] == '&': if line[1:].startswith('END'): check_name = line[4:].strip().upper() if check_name != self.__name: raise FileFormatError('CP2KSection end mismatch, pos=%s', f.tell()) break else: section = CP2KSection() section.load(f, line) self.append(section) else: keyword = CP2KKeyword() keyword.load(line) self.append(keyword)
load_children
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f):\n while True:\n line = self.readline(f)\n if line[0] == '&':\n if line[1:].startswith('END'):\n check_name = line[4:].strip().upper()\n if check_name != self.__name:\n raise FileFormatError('CP2KSection end mismatch, pos=%s',\n f.tell())\n break\n else:\n section = CP2KSection()\n section.load(f, line)\n self.append(section)\n else:\n keyword = CP2KKeyword()\n keyword.load(line)\n self.append(keyword)\n", "role": "user" }, { "content": "load_children", "role": "assistant" } ]
def x(self, f, line=None): if line is None: line = f.readlin() words = line[1:].split() self.__name = words[0].upper() self.section_parameters = ' '.join(words[1:]) try: self.load_children(f) except EOFError: raise FileFormatError( "Unexpected end of file, section '%s' not ended." % self.__name)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, line=None):\n if line is None:\n line = f.readlin()\n words = line[1:].split()\n self.__name = words[0].upper()\n self.section_parameters = ' '.join(words[1:])\n try:\n self.load_children(f)\n except EOFError:\n raise FileFormatError(\n \"Unexpected end of file, section '%s' not ended.\" % self.__name)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, f, indent=''): if self.__unit is None: print(('%s%s %s' % (indent, self.__name, self.__value)).rstrip(), file=f) else: print(('%s%s [%s] %s' % (indent, self.__name, self.__unit, self. __value)).rstrip(), file=f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, indent=''):\n if self.__unit is None:\n print(('%s%s %s' % (indent, self.__name, self.__value)).rstrip(),\n file=f)\n else:\n print(('%s%s [%s] %s' % (indent, self.__name, self.__unit, self.\n __value)).rstrip(), file=f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, line): words = line.split() try: float(words[0]) self.__name = '' self.__value = ' '.join(words) except ValueError: self.__name = words[0].upper() if len(words) > 2 and words[1][0] == '[' and words[1][-1] == ']': self.unit = words[1][1:-1] self.__value = ' '.join(words[2:]) else: self.__value = ' '.join(words[1:])
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n words = line.split()\n try:\n float(words[0])\n self.__name = ''\n self.__value = ' '.join(words)\n except ValueError:\n self.__name = words[0].upper()\n if len(words) > 2 and words[1][0] == '[' and words[1][-1] == ']':\n self.unit = words[1][1:-1]\n self.__value = ' '.join(words[2:])\n else:\n self.__value = ' '.join(words[1:])\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, value): if not isinstance(value, str): raise TypeError('A value must be a string, got %s.' % value) self.__value = value
set_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if not isinstance(value, str):\n raise TypeError('A value must be a string, got %s.' % value)\n self.__value = value\n", "role": "user" }, { "content": "set_value", "role": "assistant" } ]
def x(filename): with open(filename) as f: result = CP2KInputFile() try: while True: result.load_children(f) except EOFError: pass return result
read_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename) as f:\n result = CP2KInputFile()\n try:\n while True:\n result.load_children(f)\n except EOFError:\n pass\n return result\n", "role": "user" }, { "content": "read_from_file", "role": "assistant" } ]
def x(self): pos = np.zeros((self.num_atoms, 3), float) vel = np.zeros((self.num_atoms, 3), float) for i in range(self.num_atoms): line = next(self._f) words = line.split() pos[i, 0] = float(words[1]) pos[i, 1] = float(words[2]) pos[i, 2] = float(words[3]) vel[i, 0] = float(words[4]) vel[i, 1] = float(words[5]) vel[i, 2] = float(words[6]) return pos, vel
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pos = np.zeros((self.num_atoms, 3), float)\n vel = np.zeros((self.num_atoms, 3), float)\n for i in range(self.num_atoms):\n line = next(self._f)\n words = line.split()\n pos[i, 0] = float(words[1])\n pos[i, 1] = float(words[2])\n pos[i, 2] = float(words[3])\n vel[i, 0] = float(words[4])\n vel[i, 1] = float(words[5])\n vel[i, 2] = float(words[6])\n return pos, vel\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(m): if m.shape != (4, 4): raise ValueError('The argument must be a 4x4 array.') if max(abs(m[3, 0:3])) > eps: raise ValueError( 'The given matrix does not have correct translational part') if abs(m[3, 3] - 1.0) > eps: raise ValueError( 'The lower right element of the given matrix must be 1.0.')
check_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m):\n if m.shape != (4, 4):\n raise ValueError('The argument must be a 4x4 array.')\n if max(abs(m[3, 0:3])) > eps:\n raise ValueError(\n 'The given matrix does not have correct translational part')\n if abs(m[3, 3] - 1.0) > eps:\n raise ValueError(\n 'The lower right element of the given matrix must be 1.0.')\n", "role": "user" }, { "content": "check_matrix", "role": "assistant" } ]
def x(ras, rbs, weights=None): if weights is None: ma = ras.mean(axis=0) mb = rbs.mean(axis=0) else: total_weight = weights.sum() ma = np.dot(weights, ras) / total_weight mb = np.dot(weights, rbs) / total_weight if weights is None: A = np.dot((rbs - mb).transpose(), ras - ma) else: weights = weights.reshape((-1, 1)) A = np.dot(((rbs - mb) * weights).transpose(), (ras - ma) * weights) v, s, wt = np.linalg.svd(A) s[:] = 1 if np.linalg.det(np.dot(v, wt)) < 0: s[2] = -1 r = np.dot(wt.T * s, v.T) return Complete(r, np.dot(r, -mb) + ma)
superpose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ras, rbs, weights=None):\n if weights is None:\n ma = ras.mean(axis=0)\n mb = rbs.mean(axis=0)\n else:\n total_weight = weights.sum()\n ma = np.dot(weights, ras) / total_weight\n mb = np.dot(weights, rbs) / total_weight\n if weights is None:\n A = np.dot((rbs - mb).transpose(), ras - ma)\n else:\n weights = weights.reshape((-1, 1))\n A = np.dot(((rbs - mb) * weights).transpose(), (ras - ma) * weights)\n v, s, wt = np.linalg.svd(A)\n s[:] = 1\n if np.linalg.det(np.dot(v, wt)) < 0:\n s[2] = -1\n r = np.dot(wt.T * s, v.T)\n return Complete(r, np.dot(r, -mb) + ma)\n", "role": "user" }, { "content": "superpose", "role": "assistant" } ]
def x(ras, rbs, weights=None): transformation = superpose(ras, rbs, weights) rbs_trans = transformation * rbs rmsd = compute_rmsd(ras, rbs_trans) return transformation, rbs_trans, rmsd
fit_rmsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ras, rbs, weights=None):\n transformation = superpose(ras, rbs, weights)\n rbs_trans = transformation * rbs\n rmsd = compute_rmsd(ras, rbs_trans)\n return transformation, rbs_trans, rmsd\n", "role": "user" }, { "content": "fit_rmsd", "role": "assistant" } ]
def x(self): result = Translation(-self.t) result._cache_inv = self return result
inv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Translation(-self.t)\n result._cache_inv = self\n return result\n", "role": "user" }, { "content": "inv", "role": "assistant" } ]
def x(self, x, columns=False): if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0 ] == 3 and columns: return x + self.t.reshape((3, 1)) if isinstance(x, np.ndarray) and (x.shape == (3,) or len(x.shape) == 2 and x.shape[1] == 3) and not columns: return x + self.t elif isinstance(x, Complete): return Complete(x.r, x.t + self.t) elif isinstance(x, Translation): return Translation(x.t + self.t) elif isinstance(x, Rotation): return Complete(x.r, self.t) elif isinstance(x, UnitCell): return x else: raise ValueError('Can not apply this translation to %s' % x)
apply_to
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, columns=False):\n if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0\n ] == 3 and columns:\n return x + self.t.reshape((3, 1))\n if isinstance(x, np.ndarray) and (x.shape == (3,) or len(x.shape) == 2 and\n x.shape[1] == 3) and not columns:\n return x + self.t\n elif isinstance(x, Complete):\n return Complete(x.r, x.t + self.t)\n elif isinstance(x, Translation):\n return Translation(x.t + self.t)\n elif isinstance(x, Rotation):\n return Complete(x.r, self.t)\n elif isinstance(x, UnitCell):\n return x\n else:\n raise ValueError('Can not apply this translation to %s' % x)\n", "role": "user" }, { "content": "apply_to", "role": "assistant" } ]
def x(self, other, t_threshold=0.001): return compute_rmsd(self.t, other.t) < t_threshold
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, t_threshold=0.001):\n return compute_rmsd(self.t, other.t) < t_threshold\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(self, r): if abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or np.dot(r [:, 0], r[:, 1]) > eps or np.dot(r[:, 1], r[:, 2]) > eps or np.dot(r [:, 2], r[:, 0]) > eps: raise ValueError( 'The rotation matrix is significantly non-orthonormal.')
check_r
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r):\n if abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or abs(np.dot(r[:, 0], r[:, \n 0]) - 1) > eps or abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or np.dot(r\n [:, 0], r[:, 1]) > eps or np.dot(r[:, 1], r[:, 2]) > eps or np.dot(r\n [:, 2], r[:, 0]) > eps:\n raise ValueError(\n 'The rotation matrix is significantly non-orthonormal.')\n", "role": "user" }, { "content": "check_r", "role": "assistant" } ]
def x(cls): axis = random_unit() angle = np.random.uniform(0, 2 * np.pi) invert = bool(np.random.randint(0, 2)) return Rotation.from_properties(angle, axis, invert)
random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n axis = random_unit()\n angle = np.random.uniform(0, 2 * np.pi)\n invert = bool(np.random.randint(0, 2))\n return Rotation.from_properties(angle, axis, invert)\n", "role": "user" }, { "content": "random", "role": "assistant" } ]
def x(cls, angle, axis, invert): norm = np.linalg.norm(axis) if norm > 0: x = axis[0] / norm y = axis[1] / norm z = axis[2] / norm c = np.cos(angle) s = np.sin(angle) r = (1 - 2 * invert) * np.array([[x * x * (1 - c) + c, x * y * (1 - c) - z * s, x * z * (1 - c) + y * s], [x * y * (1 - c) + z * s, y * y * (1 - c) + c, y * z * (1 - c) - x * s], [x * z * (1 - c) - y * s, y * z * (1 - c) + x * s, z * z * (1 - c) + c]]) else: r = np.identity(3) * (1 - 2 * invert) return cls(r)
from_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, angle, axis, invert):\n norm = np.linalg.norm(axis)\n if norm > 0:\n x = axis[0] / norm\n y = axis[1] / norm\n z = axis[2] / norm\n c = np.cos(angle)\n s = np.sin(angle)\n r = (1 - 2 * invert) * np.array([[x * x * (1 - c) + c, x * y * (1 -\n c) - z * s, x * z * (1 - c) + y * s], [x * y * (1 - c) + z * s,\n y * y * (1 - c) + c, y * z * (1 - c) - x * s], [x * z * (1 - c) -\n y * s, y * z * (1 - c) + x * s, z * z * (1 - c) + c]])\n else:\n r = np.identity(3) * (1 - 2 * invert)\n return cls(r)\n", "role": "user" }, { "content": "from_properties", "role": "assistant" } ]
def x(self): invert = np.linalg.det(self.r) < 0 factor = {(True): -1, (False): 1}[invert] cos_angle = 0.5 * (factor * np.trace(self.r) - 1) if cos_angle > 1: cos_angle = 1.0 if cos_angle < -1: cos_angle = -1.0 axis = 0.5 * factor * np.array([-self.r[1, 2] + self.r[2, 1], self.r[0, 2] - self.r[2, 0], -self.r[0, 1] + self.r[1, 0]]) sin_angle = np.linalg.norm(axis) if sin_angle == 0.0 and cos_angle > 0: axis[2] = 1.0 elif abs(sin_angle) < 1 - cos_angle: for index in range(3): axis[index] = {(True): -1, (False): 1}[axis[index] < 0] * np.sqrt( abs((factor * self.r[index, index] - cos_angle) / (1 - cos_angle))) else: axis = axis / sin_angle angle = np.arctan2(sin_angle, cos_angle) return angle, axis, invert
properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n invert = np.linalg.det(self.r) < 0\n factor = {(True): -1, (False): 1}[invert]\n cos_angle = 0.5 * (factor * np.trace(self.r) - 1)\n if cos_angle > 1:\n cos_angle = 1.0\n if cos_angle < -1:\n cos_angle = -1.0\n axis = 0.5 * factor * np.array([-self.r[1, 2] + self.r[2, 1], self.r[0,\n 2] - self.r[2, 0], -self.r[0, 1] + self.r[1, 0]])\n sin_angle = np.linalg.norm(axis)\n if sin_angle == 0.0 and cos_angle > 0:\n axis[2] = 1.0\n elif abs(sin_angle) < 1 - cos_angle:\n for index in range(3):\n axis[index] = {(True): -1, (False): 1}[axis[index] < 0] * np.sqrt(\n abs((factor * self.r[index, index] - cos_angle) / (1 -\n cos_angle)))\n else:\n axis = axis / sin_angle\n angle = np.arctan2(sin_angle, cos_angle)\n return angle, axis, invert\n", "role": "user" }, { "content": "properties", "role": "assistant" } ]
def x(self): result = np.identity(4, float) result[0:3, 0:3] = self.r return result
matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.identity(4, float)\n result[0:3, 0:3] = self.r\n return result\n", "role": "user" }, { "content": "matrix", "role": "assistant" } ]
def x(self): result = Rotation(self.r.transpose()) result._cache_inv = self return result
inv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Rotation(self.r.transpose())\n result._cache_inv = self\n return result\n", "role": "user" }, { "content": "inv", "role": "assistant" } ]
def x(self, x, columns=False): if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0 ] == 3 and columns: return np.dot(self.r, x) if isinstance(x, np.ndarray) and (x.shape == (3,) or len(x.shape) == 2 and x.shape[1] == 3) and not columns: return np.dot(x, self.r.transpose()) elif isinstance(x, Complete): return Complete(np.dot(self.r, x.r), np.dot(self.r, x.t)) elif isinstance(x, Translation): return Complete(self.r, np.dot(self.r, x.t)) elif isinstance(x, Rotation): return Rotation(np.dot(self.r, x.r)) elif isinstance(x, UnitCell): return UnitCell(np.dot(self.r, x.matrix), x.active) else: raise ValueError('Can not apply this rotation to %s' % x)
apply_to
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, columns=False):\n if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0\n ] == 3 and columns:\n return np.dot(self.r, x)\n if isinstance(x, np.ndarray) and (x.shape == (3,) or len(x.shape) == 2 and\n x.shape[1] == 3) and not columns:\n return np.dot(x, self.r.transpose())\n elif isinstance(x, Complete):\n return Complete(np.dot(self.r, x.r), np.dot(self.r, x.t))\n elif isinstance(x, Translation):\n return Complete(self.r, np.dot(self.r, x.t))\n elif isinstance(x, Rotation):\n return Rotation(np.dot(self.r, x.r))\n elif isinstance(x, UnitCell):\n return UnitCell(np.dot(self.r, x.matrix), x.active)\n else:\n raise ValueError('Can not apply this rotation to %s' % x)\n", "role": "user" }, { "content": "apply_to", "role": "assistant" } ]
def x(self, other, r_threshold=0.001): return compute_rmsd(self.r, other.r) < r_threshold
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, r_threshold=0.001):\n return compute_rmsd(self.r, other.r) < r_threshold\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(cls, angle, axis, invert, translation): rot = Rotation.from_properties(angle, axis, invert) return Complete(rot.r, translation)
from_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, angle, axis, invert, translation):\n rot = Rotation.from_properties(angle, axis, invert)\n return Complete(rot.r, translation)\n", "role": "user" }, { "content": "from_properties", "role": "assistant" } ]
def x(cls, c): if isinstance(c, Complete): return c elif isinstance(c, Translation): return Complete(np.identity(3, float), c.t) elif isinstance(c, Rotation): return Complete(c.r, np.zeros(3, float))
cast
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, c):\n if isinstance(c, Complete):\n return c\n elif isinstance(c, Translation):\n return Complete(np.identity(3, float), c.t)\n elif isinstance(c, Rotation):\n return Complete(c.r, np.zeros(3, float))\n", "role": "user" }, { "content": "cast", "role": "assistant" } ]
def x(cls, center, angle, axis, invert=False): return Translation(center) * Rotation.from_properties(angle, axis, invert ) * Translation(-center)
about_axis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, center, angle, axis, invert=False):\n return Translation(center) * Rotation.from_properties(angle, axis, invert\n ) * Translation(-center)\n", "role": "user" }, { "content": "about_axis", "role": "assistant" } ]
def x(self): rot = Rotation(self.r) angle, axis, invert = rot.properties return angle, axis, invert, self.t
properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n rot = Rotation(self.r)\n angle, axis, invert = rot.properties\n return angle, axis, invert, self.t\n", "role": "user" }, { "content": "properties", "role": "assistant" } ]
def x(self): result = Complete(self.r.transpose(), np.dot(self.r.transpose(), -self.t)) result._cache_inv = self return result
inv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Complete(self.r.transpose(), np.dot(self.r.transpose(), -self.t))\n result._cache_inv = self\n return result\n", "role": "user" }, { "content": "inv", "role": "assistant" } ]
def x(self, other, t_threshold=0.001, r_threshold=0.001): return compute_rmsd(self.t, other.t) < t_threshold and compute_rmsd(self .r, other.r) < r_threshold
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, t_threshold=0.001, r_threshold=0.001):\n return compute_rmsd(self.t, other.t) < t_threshold and compute_rmsd(self\n .r, other.r) < r_threshold\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(self): line = next(self._f) if line != 'ITEM: TIMESTEP\n': raise FileFormatError( "Expecting line 'ITEM: TIMESTEP' at the beginning of a time frame." ) try: line = next(self._f) step = int(line) except ValueError: raise FileFormatError( "Could not read the step number. Expected an integer. Got '%s'" % line[:-1]) line = next(self._f) if line != 'ITEM: NUMBER OF ATOMS\n': raise FileFormatError("Expecting line 'ITEM: NUMBER OF ATOMS'.") try: line = next(self._f) num_atoms = int(line) except ValueError: raise FileFormatError( "Could not read the number of atoms. Expected an integer. Got '%s'" % line[:-1]) if num_atoms != self.num_atoms: raise FileFormatError('A variable number of atoms is not supported.') for i in range(4): next(self._f) line = next(self._f) if line != 'ITEM: ATOMS\n': raise FileFormatError("Expecting line 'ITEM: ATOMS'.") fields = [list() for i in range(len(self.units))] for i in range(self.num_atoms): line = next(self._f) words = line.split()[1:] for j in range(len(fields)): fields[j].append(float(words[j])) fields = [step] + [(np.array(field) * unit) for field, unit in zip( fields, self.units)] return fields
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n line = next(self._f)\n if line != 'ITEM: TIMESTEP\\n':\n raise FileFormatError(\n \"Expecting line 'ITEM: TIMESTEP' at the beginning of a time frame.\"\n )\n try:\n line = next(self._f)\n step = int(line)\n except ValueError:\n raise FileFormatError(\n \"Could not read the step number. Expected an integer. Got '%s'\" %\n line[:-1])\n line = next(self._f)\n if line != 'ITEM: NUMBER OF ATOMS\\n':\n raise FileFormatError(\"Expecting line 'ITEM: NUMBER OF ATOMS'.\")\n try:\n line = next(self._f)\n num_atoms = int(line)\n except ValueError:\n raise FileFormatError(\n \"Could not read the number of atoms. Expected an integer. Got '%s'\"\n % line[:-1])\n if num_atoms != self.num_atoms:\n raise FileFormatError('A variable number of atoms is not supported.')\n for i in range(4):\n next(self._f)\n line = next(self._f)\n if line != 'ITEM: ATOMS\\n':\n raise FileFormatError(\"Expecting line 'ITEM: ATOMS'.\")\n fields = [list() for i in range(len(self.units))]\n for i in range(self.num_atoms):\n line = next(self._f)\n words = line.split()[1:]\n for j in range(len(fields)):\n fields[j].append(float(words[j]))\n fields = [step] + [(np.array(field) * unit) for field, unit in zip(\n fields, self.units)]\n return fields\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]