source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(user_provided_project):
home = os.path.expanduser('~')
if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):
with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:
projects = yaml.load(fp.read())
if len(projects) == 1:
project = projects[0]
elif user_provided_project in [project['name'] for project in projects
]:
for inner_project in projects:
if user_provided_project == inner_project['name']:
project = inner_project
else:
print('Select your project')
for i, project in enumerate(projects):
print('[' + str(i) + ']: ' + project['name'])
project_index = int_input('project', -1, len(projects),
show_range=False)
project = projects[project_index]
else:
print('Transfer is not configured.')
print('Please run:')
print('')
print(colored(' transfer --configure', 'green'))
return
print(colored('Project selected: ' + project['name'], 'cyan'))
return project
|
select_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_provided_project):\n home = os.path.expanduser('~')\n if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):\n with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:\n projects = yaml.load(fp.read())\n if len(projects) == 1:\n project = projects[0]\n elif user_provided_project in [project['name'] for project in projects\n ]:\n for inner_project in projects:\n if user_provided_project == inner_project['name']:\n project = inner_project\n else:\n print('Select your project')\n for i, project in enumerate(projects):\n print('[' + str(i) + ']: ' + project['name'])\n project_index = int_input('project', -1, len(projects),\n show_range=False)\n project = projects[project_index]\n else:\n print('Transfer is not configured.')\n print('Please run:')\n print('')\n print(colored(' transfer --configure', 'green'))\n return\n print(colored('Project selected: ' + project['name'], 'cyan'))\n return project\n",
"role": "user"
},
{
"content": "select_project",
"role": "assistant"
}
] |
def x(config, suffix=None):
home = os.path.expanduser('~')
if suffix is not None:
config_path = os.path.join(home, '.transfer', suffix)
else:
config_path = os.path.join(home, '.transfer')
os.makedirs(config_path, exist_ok=True)
with open(os.path.join(config_path, 'config.yaml'), 'w') as fp:
yaml.dump(config, fp)
|
store_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config, suffix=None):\n home = os.path.expanduser('~')\n if suffix is not None:\n config_path = os.path.join(home, '.transfer', suffix)\n else:\n config_path = os.path.join(home, '.transfer')\n os.makedirs(config_path, exist_ok=True)\n with open(os.path.join(config_path, 'config.yaml'), 'w') as fp:\n yaml.dump(config, fp)\n",
"role": "user"
},
{
"content": "store_config",
"role": "assistant"
}
] |
def x(updated_project):
home = os.path.expanduser('~')
if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):
with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:
projects = yaml.load(fp.read())
replace_index = -1
for i, project in enumerate(projects):
if project['name'] == updated_project['name']:
replace_index = i
if replace_index > -1:
projects[replace_index] = updated_project
store_config(projects)
else:
print('Not saving configuration')
print(colored('Project: ' + updated_project['name'] +
' was not found in configured projects!', 'red'))
else:
print('Transfer is not configured.')
print('Please run:')
print('')
print(colored(' transfer --configure', 'cyan'))
return
|
update_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(updated_project):\n home = os.path.expanduser('~')\n if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):\n with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:\n projects = yaml.load(fp.read())\n replace_index = -1\n for i, project in enumerate(projects):\n if project['name'] == updated_project['name']:\n replace_index = i\n if replace_index > -1:\n projects[replace_index] = updated_project\n store_config(projects)\n else:\n print('Not saving configuration')\n print(colored('Project: ' + updated_project['name'] +\n ' was not found in configured projects!', 'red'))\n else:\n print('Transfer is not configured.')\n print('Please run:')\n print('')\n print(colored(' transfer --configure', 'cyan'))\n return\n",
"role": "user"
},
{
"content": "update_config",
"role": "assistant"
}
] |
def x(*params):
result = {}
for index, param in enumerate(params):
if param is None:
continue
elif isinstance(param, int):
result[index] = HasAtomNumber(param)
else:
result[index] = param
return result
|
atom_criteria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*params):\n result = {}\n for index, param in enumerate(params):\n if param is None:\n continue\n elif isinstance(param, int):\n result[index] = HasAtomNumber(param)\n else:\n result[index] = param\n return result\n",
"role": "user"
},
{
"content": "atom_criteria",
"role": "assistant"
}
] |
def x(self, symbols):
if len(symbols) != self.size:
raise TypeError(
'The number of symbols in the graph does not match the length of the atomic numbers array.'
)
for symbol in symbols:
if not isinstance(symbol, str):
raise TypeError('All symbols must be strings.')
|
check_symbols
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, symbols):\n if len(symbols) != self.size:\n raise TypeError(\n 'The number of symbols in the graph does not match the length of the atomic numbers array.'\n )\n for symbol in symbols:\n if not isinstance(symbol, str):\n raise TypeError('All symbols must be strings.')\n",
"role": "user"
},
{
"content": "check_symbols",
"role": "assistant"
}
] |
def x(cls, molecule, do_orders=False, scaling=1.0):
from molmod.bonds import bonds
unit_cell = molecule.unit_cell
pair_search = PairSearchIntra(molecule.coordinates, bonds.max_length *
bonds.bond_tolerance * scaling, unit_cell)
orders = []
lengths = []
edges = []
for i0, i1, delta, distance in pair_search:
bond_order = bonds.bonded(molecule.numbers[i0], molecule.numbers[i1
], distance / scaling)
if bond_order is not None:
if do_orders:
orders.append(bond_order)
lengths.append(distance)
edges.append((i0, i1))
if do_orders:
result = cls(edges, molecule.numbers, orders, symbols=molecule.symbols)
else:
result = cls(edges, molecule.numbers, symbols=molecule.symbols)
slated_for_removal = set([])
threshold = 0.5 ** 0.5
for c, ns in result.neighbors.items():
lengths_ns = []
for n in ns:
delta = molecule.coordinates[n] - molecule.coordinates[c]
if unit_cell is not None:
delta = unit_cell.shortest_vector(delta)
length = np.linalg.norm(delta)
lengths_ns.append([length, delta, n])
lengths_ns.sort(reverse=True, key=lambda r: r[0])
for i0, (length0, delta0, n0) in enumerate(lengths_ns):
for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]):
if length1 == 0.0:
continue
cosine = np.dot(delta0, delta1) / length0 / length1
if cosine > threshold:
slated_for_removal.add((c, n1))
lengths_ns[i1][0] = 0.0
mask = np.ones(len(edges), bool)
for i0, i1 in slated_for_removal:
edge_index = result.edge_index.get(frozenset([i0, i1]))
if edge_index is None:
raise ValueError(
'Could not find edge that has to be removed: %i %i' % (i0, i1))
mask[edge_index] = False
edges = [edges[i] for i in range(len(edges)) if mask[i]]
if do_orders:
bond_order = [bond_order[i] for i in range(len(bond_order)) if mask[i]]
result = cls(edges, molecule.numbers, orders)
else:
result = cls(edges, molecule.numbers)
lengths = [lengths[i] for i in range(len(lengths)) if mask[i]]
result.bond_lengths = np.array(lengths)
return result
|
from_geometry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, molecule, do_orders=False, scaling=1.0):\n from molmod.bonds import bonds\n unit_cell = molecule.unit_cell\n pair_search = PairSearchIntra(molecule.coordinates, bonds.max_length *\n bonds.bond_tolerance * scaling, unit_cell)\n orders = []\n lengths = []\n edges = []\n for i0, i1, delta, distance in pair_search:\n bond_order = bonds.bonded(molecule.numbers[i0], molecule.numbers[i1\n ], distance / scaling)\n if bond_order is not None:\n if do_orders:\n orders.append(bond_order)\n lengths.append(distance)\n edges.append((i0, i1))\n if do_orders:\n result = cls(edges, molecule.numbers, orders, symbols=molecule.symbols)\n else:\n result = cls(edges, molecule.numbers, symbols=molecule.symbols)\n slated_for_removal = set([])\n threshold = 0.5 ** 0.5\n for c, ns in result.neighbors.items():\n lengths_ns = []\n for n in ns:\n delta = molecule.coordinates[n] - molecule.coordinates[c]\n if unit_cell is not None:\n delta = unit_cell.shortest_vector(delta)\n length = np.linalg.norm(delta)\n lengths_ns.append([length, delta, n])\n lengths_ns.sort(reverse=True, key=lambda r: r[0])\n for i0, (length0, delta0, n0) in enumerate(lengths_ns):\n for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]):\n if length1 == 0.0:\n continue\n cosine = np.dot(delta0, delta1) / length0 / length1\n if cosine > threshold:\n slated_for_removal.add((c, n1))\n lengths_ns[i1][0] = 0.0\n mask = np.ones(len(edges), bool)\n for i0, i1 in slated_for_removal:\n edge_index = result.edge_index.get(frozenset([i0, i1]))\n if edge_index is None:\n raise ValueError(\n 'Could not find edge that has to be removed: %i %i' % (i0, i1))\n mask[edge_index] = False\n edges = [edges[i] for i in range(len(edges)) if mask[i]]\n if do_orders:\n bond_order = [bond_order[i] for i in range(len(bond_order)) if mask[i]]\n result = cls(edges, molecule.numbers, orders)\n else:\n result = cls(edges, molecule.numbers)\n lengths = [lengths[i] for i in range(len(lengths)) if mask[i]]\n result.bond_lengths = np.array(lengths)\n return result\n",
"role": "user"
},
{
"content": "from_geometry",
"role": "assistant"
}
] |
def x(cls, s):
atom_str, edge_str = s.split()
numbers = np.array([int(s) for s in atom_str.split(',')])
edges = []
orders = []
for s in edge_str.split(','):
i, j, o = (int(w) for w in s.split('_'))
edges.append((i, j))
orders.append(o)
return cls(edges, numbers, np.array(orders))
|
from_blob
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n atom_str, edge_str = s.split()\n numbers = np.array([int(s) for s in atom_str.split(',')])\n edges = []\n orders = []\n for s in edge_str.split(','):\n i, j, o = (int(w) for w in s.split('_'))\n edges.append((i, j))\n orders.append(o)\n return cls(edges, numbers, np.array(orders))\n",
"role": "user"
},
{
"content": "from_blob",
"role": "assistant"
}
] |
def x(self):
atom_str = ','.join(str(number) for number in self.numbers)
edge_str = ','.join('%i_%i_%i' % (i, j, o) for (i, j), o in zip(self.
edges, self.orders))
return '%s %s' % (atom_str, edge_str)
|
blob
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n atom_str = ','.join(str(number) for number in self.numbers)\n edge_str = ','.join('%i_%i_%i' % (i, j, o) for (i, j), o in zip(self.\n edges, self.orders))\n return '%s %s' % (atom_str, edge_str)\n",
"role": "user"
},
{
"content": "blob",
"role": "assistant"
}
] |
def x(self, i):
number = self.numbers[i]
if number == 0:
return Graph.get_vertex_string(self, i)
else:
return '%03i' % number
|
get_vertex_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n number = self.numbers[i]\n if number == 0:\n return Graph.get_vertex_string(self, i)\n else:\n return '%03i' % number\n",
"role": "user"
},
{
"content": "get_vertex_string",
"role": "assistant"
}
] |
def x(self, i):
order = self.orders[i]
if order == 0:
return Graph.get_edge_string(self, i)
else:
return '%03i' % order
|
get_edge_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n order = self.orders[i]\n if order == 0:\n return Graph.get_edge_string(self, i)\n else:\n return '%03i' % order\n",
"role": "user"
},
{
"content": "get_edge_string",
"role": "assistant"
}
] |
def x(self, subvertices, normalize=False):
graph = Graph.get_subgraph(self, subvertices, normalize)
if normalize:
new_numbers = self.numbers[graph._old_vertex_indexes]
else:
new_numbers = self.numbers
if self.symbols is None:
new_symbols = None
elif normalize:
new_symbols = tuple(self.symbols[i] for i in graph._old_vertex_indexes)
else:
new_symbols = self.symbols
new_orders = self.orders[graph._old_edge_indexes]
result = MolecularGraph(graph.edges, new_numbers, new_orders, new_symbols)
if normalize:
result._old_vertex_indexes = graph._old_vertex_indexes
result._old_edge_indexes = graph._old_edge_indexes
return result
|
get_subgraph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subvertices, normalize=False):\n graph = Graph.get_subgraph(self, subvertices, normalize)\n if normalize:\n new_numbers = self.numbers[graph._old_vertex_indexes]\n else:\n new_numbers = self.numbers\n if self.symbols is None:\n new_symbols = None\n elif normalize:\n new_symbols = tuple(self.symbols[i] for i in graph._old_vertex_indexes)\n else:\n new_symbols = self.symbols\n new_orders = self.orders[graph._old_edge_indexes]\n result = MolecularGraph(graph.edges, new_numbers, new_orders, new_symbols)\n if normalize:\n result._old_vertex_indexes = graph._old_vertex_indexes\n result._old_edge_indexes = graph._old_edge_indexes\n return result\n",
"role": "user"
},
{
"content": "get_subgraph",
"role": "assistant"
}
] |
def x(self, formal_charges=None):
new_edges = list(self.edges)
counter = self.num_vertices
for i in range(self.num_vertices):
num_elec = self.numbers[i]
if formal_charges is not None:
num_elec -= int(formal_charges[i])
if num_elec >= 5 and num_elec <= 9:
num_hydrogen = num_elec - 10 + 8
elif num_elec >= 13 and num_elec <= 17:
num_hydrogen = num_elec - 18 + 8
elif num_elec == 35:
num_hydrogen = 1
else:
continue
if num_hydrogen > 4:
num_hydrogen = 8 - num_hydrogen
for n in self.neighbors[i]:
bo = self.orders[self.edge_index[frozenset([i, n])]]
if bo <= 0:
bo = 1
num_hydrogen -= int(bo)
for j in range(num_hydrogen):
new_edges.append((i, counter))
counter += 1
new_numbers = np.zeros(counter, int)
new_numbers[:self.num_vertices] = self.numbers
new_numbers[self.num_vertices:] = 1
new_orders = np.zeros(len(new_edges), int)
new_orders[:self.num_edges] = self.orders
new_orders[self.num_edges:] = 1
result = MolecularGraph(new_edges, new_numbers, new_orders)
return result
|
add_hydrogens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, formal_charges=None):\n new_edges = list(self.edges)\n counter = self.num_vertices\n for i in range(self.num_vertices):\n num_elec = self.numbers[i]\n if formal_charges is not None:\n num_elec -= int(formal_charges[i])\n if num_elec >= 5 and num_elec <= 9:\n num_hydrogen = num_elec - 10 + 8\n elif num_elec >= 13 and num_elec <= 17:\n num_hydrogen = num_elec - 18 + 8\n elif num_elec == 35:\n num_hydrogen = 1\n else:\n continue\n if num_hydrogen > 4:\n num_hydrogen = 8 - num_hydrogen\n for n in self.neighbors[i]:\n bo = self.orders[self.edge_index[frozenset([i, n])]]\n if bo <= 0:\n bo = 1\n num_hydrogen -= int(bo)\n for j in range(num_hydrogen):\n new_edges.append((i, counter))\n counter += 1\n new_numbers = np.zeros(counter, int)\n new_numbers[:self.num_vertices] = self.numbers\n new_numbers[self.num_vertices:] = 1\n new_orders = np.zeros(len(new_edges), int)\n new_orders[:self.num_edges] = self.orders\n new_orders[self.num_edges:] = 1\n result = MolecularGraph(new_edges, new_numbers, new_orders)\n return result\n",
"role": "user"
},
{
"content": "add_hydrogens",
"role": "assistant"
}
] |
def x(self, match, new_relations, subject_graph, one_match):
if not CustomPattern.check_next_match(self, match, new_relations,
subject_graph, one_match):
return False
if self.strong:
vertex1_start = match.forward[self.pattern_graph.central_vertex]
for vertex1 in new_relations.values():
paths = list(subject_graph.iter_shortest_paths(vertex1,
vertex1_start))
if self.size % 2 == 0 and len(match) == self.size:
if len(paths) != 2:
return False
for path in paths:
if len(path) != len(match) // 2 + 1:
return False
else:
if len(paths) != 1:
return False
if len(paths[0]) != (len(match) + 1) // 2:
return False
return True
|
check_next_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match, new_relations, subject_graph, one_match):\n if not CustomPattern.check_next_match(self, match, new_relations,\n subject_graph, one_match):\n return False\n if self.strong:\n vertex1_start = match.forward[self.pattern_graph.central_vertex]\n for vertex1 in new_relations.values():\n paths = list(subject_graph.iter_shortest_paths(vertex1,\n vertex1_start))\n if self.size % 2 == 0 and len(match) == self.size:\n if len(paths) != 2:\n return False\n for path in paths:\n if len(path) != len(match) // 2 + 1:\n return False\n else:\n if len(paths) != 1:\n return False\n if len(paths[0]) != (len(match) + 1) // 2:\n return False\n return True\n",
"role": "user"
},
{
"content": "check_next_match",
"role": "assistant"
}
] |
def x(self, match, subject_graph):
if not CustomPattern.complete(self, match, subject_graph):
return False
if self.strong:
if self.size % 2 == 0:
for i in range(self.size // 2):
vertex1_start = match.forward[i]
vertex1_stop = match.forward[(i + self.size // 2) % self.size]
paths = list(subject_graph.iter_shortest_paths(
vertex1_start, vertex1_stop))
if len(paths) != 2:
return False
for path in paths:
if len(path) != self.size // 2 + 1:
return False
else:
for i in range(self.size // 2 + 1):
vertex1_start = match.forward[i]
vertex1_stop = match.forward[(i + self.size // 2) % self.size]
paths = list(subject_graph.iter_shortest_paths(
vertex1_start, vertex1_stop))
if len(paths) > 1:
return False
if len(paths[0]) != self.size // 2 + 1:
return False
vertex1_stop = match.forward[(i + self.size // 2 + 1) %
self.size]
paths = list(subject_graph.iter_shortest_paths(
vertex1_start, vertex1_stop))
if len(paths) > 1:
return False
if len(paths[0]) != self.size // 2 + 1:
return False
return True
|
complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match, subject_graph):\n if not CustomPattern.complete(self, match, subject_graph):\n return False\n if self.strong:\n if self.size % 2 == 0:\n for i in range(self.size // 2):\n vertex1_start = match.forward[i]\n vertex1_stop = match.forward[(i + self.size // 2) % self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) != 2:\n return False\n for path in paths:\n if len(path) != self.size // 2 + 1:\n return False\n else:\n for i in range(self.size // 2 + 1):\n vertex1_start = match.forward[i]\n vertex1_stop = match.forward[(i + self.size // 2) % self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) > 1:\n return False\n if len(paths[0]) != self.size // 2 + 1:\n return False\n vertex1_stop = match.forward[(i + self.size // 2 + 1) %\n self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) > 1:\n return False\n if len(paths[0]) != self.size // 2 + 1:\n return False\n return True\n",
"role": "user"
},
{
"content": "complete",
"role": "assistant"
}
] |
def x(self, value):
if isinstance(value, float):
return 'f'
elif isinstance(value, int):
return 'i'
else:
raise ValueError('Only integer or floating point values can be stored.'
)
|
get_kind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if isinstance(value, float):\n return 'f'\n elif isinstance(value, int):\n return 'i'\n else:\n raise ValueError('Only integer or floating point values can be stored.'\n )\n",
"role": "user"
},
{
"content": "get_kind",
"role": "assistant"
}
] |
def x(self, f, name):
value = self.get()
kind = self.get_kind(value)
print('% 40s kind=%s value=%s' % (name, kind, value), file=f)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, name):\n value = self.get()\n kind = self.get_kind(value)\n print('% 40s kind=%s value=%s' % (name, kind, value), file=f)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(self, copy=False):
array = getattr(self.owner, self.name)
if copy:
return array.copy()
else:
return array
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, copy=False):\n array = getattr(self.owner, self.name)\n if copy:\n return array.copy()\n else:\n return array\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, f, name):
array = self.get()
print('% 40s kind=%s shape=(%s)' % (name, array.dtype.kind, ','.join(
[str(int(size_axis)) for size_axis in array.shape])), file=f)
counter = 0
for value in array.flat:
counter += 1
print('% 20s' % value, end=' ', file=f)
if counter % 4 == 0:
print(file=f)
if counter % 4 != 0:
print(file=f)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, name):\n array = self.get()\n print('% 40s kind=%s shape=(%s)' % (name, array.dtype.kind, ','.join(\n [str(int(size_axis)) for size_axis in array.shape])), file=f)\n counter = 0\n for value in array.flat:\n counter += 1\n print('% 20s' % value, end=' ', file=f)\n if counter % 4 == 0:\n print(file=f)\n if counter % 4 != 0:\n print(file=f)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(self, f, skip):
array = self.get()
counter = 0
counter_limit = array.size
convert = array.dtype.type
while counter < counter_limit:
line = f.readline()
words = line.split()
for word in words:
if counter >= counter_limit:
raise FileFormatError('Wrong array data: too many values.')
if not skip:
array.flat[counter] = convert(word)
counter += 1
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, skip):\n array = self.get()\n counter = 0\n counter_limit = array.size\n convert = array.dtype.type\n while counter < counter_limit:\n line = f.readline()\n words = line.split()\n for word in words:\n if counter >= counter_limit:\n raise FileFormatError('Wrong array data: too many values.')\n if not skip:\n array.flat[counter] = convert(word)\n counter += 1\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self, name, AttrCls):
if not issubclass(AttrCls, StateAttr):
raise TypeError('The second argument must a StateAttr instance.')
if len(name) > 40:
raise ValueError('Name can count at most 40 characters.')
self._fields[name] = AttrCls(self._owner, name)
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, AttrCls):\n if not issubclass(AttrCls, StateAttr):\n raise TypeError('The second argument must a StateAttr instance.')\n if len(name) > 40:\n raise ValueError('Name can count at most 40 characters.')\n self._fields[name] = AttrCls(self._owner, name)\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(self, subset=None):
if subset is None:
return dict((name, attr.get(copy=True)) for name, attr in self.
_fields.items())
else:
return dict((name, attr.get(copy=True)) for name, attr in self.
_fields.items() if name in subset)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subset=None):\n if subset is None:\n return dict((name, attr.get(copy=True)) for name, attr in self.\n _fields.items())\n else:\n return dict((name, attr.get(copy=True)) for name, attr in self.\n _fields.items() if name in subset)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, new_fields, subset=None):
for name in new_fields:
if name not in self._fields and (subset is None or name in subset):
raise ValueError("new_fields contains an unknown field '%s'." %
name)
if subset is not None:
for name in subset:
if name not in self._fields:
raise ValueError(
"name '%s' in subset is not a known field in self._fields."
% name)
if name not in new_fields:
raise ValueError(
"name '%s' in subset is not a known field in new_fields." %
name)
if subset is None:
if len(new_fields) != len(self._fields):
raise ValueError('new_fields contains too many fields.')
for name, attr in self._fields.items():
if name in subset:
attr.set(new_fields[name])
|
set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_fields, subset=None):\n for name in new_fields:\n if name not in self._fields and (subset is None or name in subset):\n raise ValueError(\"new_fields contains an unknown field '%s'.\" %\n name)\n if subset is not None:\n for name in subset:\n if name not in self._fields:\n raise ValueError(\n \"name '%s' in subset is not a known field in self._fields.\"\n % name)\n if name not in new_fields:\n raise ValueError(\n \"name '%s' in subset is not a known field in new_fields.\" %\n name)\n if subset is None:\n if len(new_fields) != len(self._fields):\n raise ValueError('new_fields contains too many fields.')\n for name, attr in self._fields.items():\n if name in subset:\n attr.set(new_fields[name])\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(self, filename):
with open(filename, 'w') as f:
for name in sorted(self._fields):
self._fields[name].dump(f, name)
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n with open(filename, 'w') as f:\n for name in sorted(self._fields):\n self._fields[name].dump(f, name)\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(self, filename, subset=None):
with open(filename, 'r') as f:
name = None
num_names = 0
while True:
line = f.readline()
if len(line) == 0:
break
words = line.split()
name = words[0]
attr = self._fields.get(name)
if attr is None:
raise FileFormatError('Wrong header: unknown field %s' % name)
if not words[1].startswith('kind='):
raise FileFormatError('Malformatted array header line. (kind)')
kind = words[1][5:]
expected_kind = attr.get_kind(attr.get())
if kind != expected_kind:
raise FileFormatError(
'Wrong header: kind of field %s does not match. Got %s, expected %s'
% (name, kind, expected_kind))
skip = subset is not None and name not in subset
print(words)
if words[2].startswith('shape=(') and words[2].endswith(')'):
if not isinstance(attr, ArrayAttr):
raise FileFormatError("field '%s' is not an array." % name)
shape = words[2][7:-1]
if shape[-1] == ', ':
shape = shape[:-1]
try:
shape = tuple(int(word) for word in shape.split(','))
except ValueError:
raise FileFormatError('Malformatted array header. (shape)')
expected_shape = attr.get().shape
if shape != expected_shape:
raise FileFormatError(
'Wrong header: shape of field %s does not match. Got %s, expected %s'
% (name, shape, expected_shape))
attr.load(f, skip)
elif words[2].startswith('value='):
if not isinstance(attr, ScalarAttr):
raise FileFormatError(
"field '%s' is not a single value." % name)
if not skip:
if kind == 'i':
attr.set(int(words[2][6:]))
else:
attr.set(float(words[2][6:]))
else:
raise FileFormatError(
'Malformatted array header line. (shape/value)')
num_names += 1
if num_names != len(self._fields) and subset is None:
raise FileFormatError('Some fields are missing in the file.')
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, subset=None):\n with open(filename, 'r') as f:\n name = None\n num_names = 0\n while True:\n line = f.readline()\n if len(line) == 0:\n break\n words = line.split()\n name = words[0]\n attr = self._fields.get(name)\n if attr is None:\n raise FileFormatError('Wrong header: unknown field %s' % name)\n if not words[1].startswith('kind='):\n raise FileFormatError('Malformatted array header line. (kind)')\n kind = words[1][5:]\n expected_kind = attr.get_kind(attr.get())\n if kind != expected_kind:\n raise FileFormatError(\n 'Wrong header: kind of field %s does not match. Got %s, expected %s'\n % (name, kind, expected_kind))\n skip = subset is not None and name not in subset\n print(words)\n if words[2].startswith('shape=(') and words[2].endswith(')'):\n if not isinstance(attr, ArrayAttr):\n raise FileFormatError(\"field '%s' is not an array.\" % name)\n shape = words[2][7:-1]\n if shape[-1] == ', ':\n shape = shape[:-1]\n try:\n shape = tuple(int(word) for word in shape.split(','))\n except ValueError:\n raise FileFormatError('Malformatted array header. (shape)')\n expected_shape = attr.get().shape\n if shape != expected_shape:\n raise FileFormatError(\n 'Wrong header: shape of field %s does not match. Got %s, expected %s'\n % (name, shape, expected_shape))\n attr.load(f, skip)\n elif words[2].startswith('value='):\n if not isinstance(attr, ScalarAttr):\n raise FileFormatError(\n \"field '%s' is not a single value.\" % name)\n if not skip:\n if kind == 'i':\n attr.set(int(words[2][6:]))\n else:\n attr.set(float(words[2][6:]))\n else:\n raise FileFormatError(\n 'Malformatted array header line. (shape/value)')\n num_names += 1\n if num_names != len(self._fields) and subset is None:\n raise FileFormatError('Some fields are missing in the file.')\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
def x(unit_names):
tmp = {'A': units.angstrom, 'pm': units.picometer, 'nm': units.
nanometer}
return [tmp[unit_name] for unit_name in unit_names]
def x(BOND_TYPE, words, col):
nlow = int(words[2])
nhigh = int(words[3])
for i, conversion in zip(range((len(words) - 4) // 3), conversions):
word = words[col + 3 + i * 3]
if word != 'NA':
self.lengths[BOND_TYPE][frozenset([nlow, nhigh])] = float(word
) * conversion
return
with pkg_resources.resource_stream(__name__, 'data/bonds.csv') as f:
for line in f:
words = line.decode('utf-8').split()
if len(words) > 0 and words[0][0] != '#':
if words[0] == 'unit':
conversions = read_units(words[1:])
else:
read_length(BOND_SINGLE, words, 1)
read_length(BOND_DOUBLE, words, 2)
read_length(BOND_TRIPLE, words, 3)
|
load_bond_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(unit_names):\n tmp = {'A': units.angstrom, 'pm': units.picometer, 'nm': units.\n nanometer}\n return [tmp[unit_name] for unit_name in unit_names]\n\n def x(BOND_TYPE, words, col):\n nlow = int(words[2])\n nhigh = int(words[3])\n for i, conversion in zip(range((len(words) - 4) // 3), conversions):\n word = words[col + 3 + i * 3]\n if word != 'NA':\n self.lengths[BOND_TYPE][frozenset([nlow, nhigh])] = float(word\n ) * conversion\n return\n with pkg_resources.resource_stream(__name__, 'data/bonds.csv') as f:\n for line in f:\n words = line.decode('utf-8').split()\n if len(words) > 0 and words[0][0] != '#':\n if words[0] == 'unit':\n conversions = read_units(words[1:])\n else:\n read_length(BOND_SINGLE, words, 1)\n read_length(BOND_DOUBLE, words, 2)\n read_length(BOND_TRIPLE, words, 3)\n",
"role": "user"
},
{
"content": "load_bond_data",
"role": "assistant"
}
] |
def x(self):
dataset = self.lengths[BOND_SINGLE]
for n1 in periodic.iter_numbers():
for n2 in periodic.iter_numbers():
if n1 <= n2:
pair = frozenset([n1, n2])
atom1 = periodic[n1]
atom2 = periodic[n2]
if (pair not in dataset and atom1.covalent_radius is not
None and atom2.covalent_radius is not None):
dataset[pair
] = atom1.covalent_radius + atom2.covalent_radius
|
approximate_unkown_bond_lengths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dataset = self.lengths[BOND_SINGLE]\n for n1 in periodic.iter_numbers():\n for n2 in periodic.iter_numbers():\n if n1 <= n2:\n pair = frozenset([n1, n2])\n atom1 = periodic[n1]\n atom2 = periodic[n2]\n if (pair not in dataset and atom1.covalent_radius is not\n None and atom2.covalent_radius is not None):\n dataset[pair\n ] = atom1.covalent_radius + atom2.covalent_radius\n",
"role": "user"
},
{
"content": "approximate_unkown_bond_lengths",
"role": "assistant"
}
] |
def x(self, n1, n2, distance):
if distance > self.max_length * self.bond_tolerance:
return None
deviation = 0.0
pair = frozenset([n1, n2])
result = None
for bond_type in bond_types:
bond_length = self.lengths[bond_type].get(pair)
if (bond_length is not None and distance < bond_length * self.
bond_tolerance):
if result is None:
result = bond_type
deviation = abs(bond_length - distance)
else:
new_deviation = abs(bond_length - distance)
if deviation > new_deviation:
result = bond_type
deviation = new_deviation
return result
|
bonded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n1, n2, distance):\n if distance > self.max_length * self.bond_tolerance:\n return None\n deviation = 0.0\n pair = frozenset([n1, n2])\n result = None\n for bond_type in bond_types:\n bond_length = self.lengths[bond_type].get(pair)\n if (bond_length is not None and distance < bond_length * self.\n bond_tolerance):\n if result is None:\n result = bond_type\n deviation = abs(bond_length - distance)\n else:\n new_deviation = abs(bond_length - distance)\n if deviation > new_deviation:\n result = bond_type\n deviation = new_deviation\n return result\n",
"role": "user"
},
{
"content": "bonded",
"role": "assistant"
}
] |
def x(self, n1, n2, bond_type=BOND_SINGLE):
dataset = self.lengths.get(bond_type)
if dataset == None:
return None
return dataset.get(frozenset([n1, n2]))
|
get_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n1, n2, bond_type=BOND_SINGLE):\n dataset = self.lengths.get(bond_type)\n if dataset == None:\n return None\n return dataset.get(frozenset([n1, n2]))\n",
"role": "user"
},
{
"content": "get_length",
"role": "assistant"
}
] |
def x(cls, lengths, angles):
for length in lengths:
if length <= 0:
raise ValueError('The length parameters must be strictly positive.'
)
for angle in angles:
if angle <= 0 or angle >= np.pi:
raise ValueError(
'The angle parameters must lie in the range ]0 deg, 180 deg[.')
del length
del angle
matrix = np.zeros((3, 3), float)
matrix[0, 0] = lengths[0]
matrix[0, 1] = np.cos(angles[2]) * lengths[1]
matrix[1, 1] = np.sin(angles[2]) * lengths[1]
u_a = lengths[0] * lengths[2] * np.cos(angles[1])
u_b = lengths[1] * lengths[2] * np.cos(angles[0])
matrix[0, 2] = u_a / matrix[0, 0]
matrix[1, 2] = (u_b - matrix[0, 1] * matrix[0, 2]) / matrix[1, 1]
u_c = lengths[2] ** 2 - matrix[0, 2] ** 2 - matrix[1, 2] ** 2
if u_c < 0:
raise ValueError(
'The given cell parameters do not correspond to a unit cell.')
matrix[2, 2] = np.sqrt(u_c)
active = np.ones(3, bool)
return cls(matrix, active)
|
from_parameters3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, lengths, angles):\n for length in lengths:\n if length <= 0:\n raise ValueError('The length parameters must be strictly positive.'\n )\n for angle in angles:\n if angle <= 0 or angle >= np.pi:\n raise ValueError(\n 'The angle parameters must lie in the range ]0 deg, 180 deg[.')\n del length\n del angle\n matrix = np.zeros((3, 3), float)\n matrix[0, 0] = lengths[0]\n matrix[0, 1] = np.cos(angles[2]) * lengths[1]\n matrix[1, 1] = np.sin(angles[2]) * lengths[1]\n u_a = lengths[0] * lengths[2] * np.cos(angles[1])\n u_b = lengths[1] * lengths[2] * np.cos(angles[0])\n matrix[0, 2] = u_a / matrix[0, 0]\n matrix[1, 2] = (u_b - matrix[0, 1] * matrix[0, 2]) / matrix[1, 1]\n u_c = lengths[2] ** 2 - matrix[0, 2] ** 2 - matrix[1, 2] ** 2\n if u_c < 0:\n raise ValueError(\n 'The given cell parameters do not correspond to a unit cell.')\n matrix[2, 2] = np.sqrt(u_c)\n active = np.ones(3, bool)\n return cls(matrix, active)\n",
"role": "user"
},
{
"content": "from_parameters3",
"role": "assistant"
}
] |
def x(self):
active = self.active_inactive[0]
if len(active) == 0:
return -1
elif len(active) == 1:
return np.linalg.norm(self.matrix[:, active[0]])
elif len(active) == 2:
return np.linalg.norm(np.cross(self.matrix[:, active[0]], self.
matrix[:, active[1]]))
elif len(active) == 3:
return abs(np.linalg.det(self.matrix))
|
volume
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n active = self.active_inactive[0]\n if len(active) == 0:\n return -1\n elif len(active) == 1:\n return np.linalg.norm(self.matrix[:, active[0]])\n elif len(active) == 2:\n return np.linalg.norm(np.cross(self.matrix[:, active[0]], self.\n matrix[:, active[1]]))\n elif len(active) == 3:\n return abs(np.linalg.det(self.matrix))\n",
"role": "user"
},
{
"content": "volume",
"role": "assistant"
}
] |
def x(self):
active_indices = []
inactive_indices = []
for index, active in enumerate(self.active):
if active:
active_indices.append(index)
else:
inactive_indices.append(index)
return active_indices, inactive_indices
|
active_inactive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n active_indices = []\n inactive_indices = []\n for index, active in enumerate(self.active):\n if active:\n active_indices.append(index)\n else:\n inactive_indices.append(index)\n return active_indices, inactive_indices\n",
"role": "user"
},
{
"content": "active_inactive",
"role": "assistant"
}
] |
def x(self):
U, S, Vt = np.linalg.svd(self.matrix * self.active)
Sinv = np.zeros(S.shape, float)
for i in range(3):
if abs(S[i]) < self.eps:
Sinv[i] = 0.0
else:
Sinv[i] = 1.0 / S[i]
return np.dot(U * Sinv, Vt) * self.active
|
reciprocal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n U, S, Vt = np.linalg.svd(self.matrix * self.active)\n Sinv = np.zeros(S.shape, float)\n for i in range(3):\n if abs(S[i]) < self.eps:\n Sinv[i] = 0.0\n else:\n Sinv[i] = 1.0 / S[i]\n return np.dot(U * Sinv, Vt) * self.active\n",
"role": "user"
},
{
"content": "reciprocal",
"role": "assistant"
}
] |
def x(self):
length_a = np.linalg.norm(self.matrix[:, 0])
length_b = np.linalg.norm(self.matrix[:, 1])
length_c = np.linalg.norm(self.matrix[:, 2])
alpha = np.arccos(np.dot(self.matrix[:, 1], self.matrix[:, 2]) / (
length_b * length_c))
beta = np.arccos(np.dot(self.matrix[:, 2], self.matrix[:, 0]) / (
length_c * length_a))
gamma = np.arccos(np.dot(self.matrix[:, 0], self.matrix[:, 1]) / (
length_a * length_b))
return np.array([length_a, length_b, length_c], float), np.array([alpha,
beta, gamma], float)
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n length_a = np.linalg.norm(self.matrix[:, 0])\n length_b = np.linalg.norm(self.matrix[:, 1])\n length_c = np.linalg.norm(self.matrix[:, 2])\n alpha = np.arccos(np.dot(self.matrix[:, 1], self.matrix[:, 2]) / (\n length_b * length_c))\n beta = np.arccos(np.dot(self.matrix[:, 2], self.matrix[:, 0]) / (\n length_c * length_a))\n gamma = np.arccos(np.dot(self.matrix[:, 0], self.matrix[:, 1]) / (\n length_a * length_b))\n return np.array([length_a, length_b, length_c], float), np.array([alpha,\n beta, gamma], float)\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self):
active, inactive = self.active_inactive
order = active + inactive
return UnitCell(self.matrix[:, order], self.active[order])
|
ordered
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n active, inactive = self.active_inactive\n order = active + inactive\n return UnitCell(self.matrix[:, order], self.active[order])\n",
"role": "user"
},
{
"content": "ordered",
"role": "assistant"
}
] |
def x(self):
from molmod.transformations import Rotation
new_x = self.matrix[:, 0].copy()
new_x /= np.linalg.norm(new_x)
new_z = np.cross(new_x, self.matrix[:, 1])
new_z /= np.linalg.norm(new_z)
new_y = np.cross(new_z, new_x)
new_y /= np.linalg.norm(new_y)
return Rotation(np.array([new_x, new_y, new_z]))
|
alignment_a
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from molmod.transformations import Rotation\n new_x = self.matrix[:, 0].copy()\n new_x /= np.linalg.norm(new_x)\n new_z = np.cross(new_x, self.matrix[:, 1])\n new_z /= np.linalg.norm(new_z)\n new_y = np.cross(new_z, new_x)\n new_y /= np.linalg.norm(new_y)\n return Rotation(np.array([new_x, new_y, new_z]))\n",
"role": "user"
},
{
"content": "alignment_a",
"role": "assistant"
}
] |
def x(self):
result_invsq = (self.reciprocal ** 2).sum(axis=0)
result = np.zeros(3, float)
for i in range(3):
if result_invsq[i] > 0:
result[i] = result_invsq[i] ** -0.5
return result
|
spacings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result_invsq = (self.reciprocal ** 2).sum(axis=0)\n result = np.zeros(3, float)\n for i in range(3):\n if result_invsq[i] > 0:\n result[i] = result_invsq[i] ** -0.5\n return result\n",
"role": "user"
},
{
"content": "spacings",
"role": "assistant"
}
] |
def x(self, vector):
act = self.active_inactive[0]
if len(act) == 3:
raise ValueError('The unit cell already has three active cell vectors.'
)
matrix = np.zeros((3, 3), float)
active = np.zeros(3, bool)
if len(act) == 0:
matrix[:, 0] = vector
active[0] = True
return UnitCell(matrix, active)
a = self.matrix[:, act[0]]
matrix[:, 0] = a
active[0] = True
if len(act) == 1:
matrix[:, 1] = vector
active[1] = True
return UnitCell(matrix, active)
b = self.matrix[:, act[1]]
matrix[:, 1] = b
active[1] = True
if len(act) == 2:
matrix[:, 2] = vector
active[2] = True
return UnitCell(matrix, active)
|
add_cell_vector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vector):\n act = self.active_inactive[0]\n if len(act) == 3:\n raise ValueError('The unit cell already has three active cell vectors.'\n )\n matrix = np.zeros((3, 3), float)\n active = np.zeros(3, bool)\n if len(act) == 0:\n matrix[:, 0] = vector\n active[0] = True\n return UnitCell(matrix, active)\n a = self.matrix[:, act[0]]\n matrix[:, 0] = a\n active[0] = True\n if len(act) == 1:\n matrix[:, 1] = vector\n active[1] = True\n return UnitCell(matrix, active)\n b = self.matrix[:, act[1]]\n matrix[:, 1] = b\n active[1] = True\n if len(act) == 2:\n matrix[:, 2] = vector\n active[2] = True\n return UnitCell(matrix, active)\n",
"role": "user"
},
{
"content": "add_cell_vector",
"role": "assistant"
}
] |
def x(self, radius, mic=False):
result = np.zeros(3, int)
for i in range(3):
if self.spacings[i] > 0:
if mic:
result[i] = np.ceil(radius / self.spacings[i] - 0.5)
else:
result[i] = np.ceil(radius / self.spacings[i])
return result
|
get_radius_ranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, radius, mic=False):\n result = np.zeros(3, int)\n for i in range(3):\n if self.spacings[i] > 0:\n if mic:\n result[i] = np.ceil(radius / self.spacings[i] - 0.5)\n else:\n result[i] = np.ceil(radius / self.spacings[i])\n return result\n",
"role": "user"
},
{
"content": "get_radius_ranges",
"role": "assistant"
}
] |
def x(self, radius, max_ranges=None):
if max_ranges is None:
max_ranges = np.array([-1, -1, -1])
ranges = self.get_radius_ranges(radius) * 2 + 1
mask = (max_ranges != -1) & (max_ranges < ranges)
ranges[mask] = max_ranges[mask]
max_size = np.product(self.get_radius_ranges(radius) * 2 + 1)
indexes = np.zeros((max_size, 3), int)
from molmod.ext import unit_cell_get_radius_indexes
reciprocal = self.reciprocal * self.active
matrix = self.matrix * self.active
size = unit_cell_get_radius_indexes(matrix, reciprocal, radius,
max_ranges, indexes)
return indexes[:size]
|
get_radius_indexes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, radius, max_ranges=None):\n if max_ranges is None:\n max_ranges = np.array([-1, -1, -1])\n ranges = self.get_radius_ranges(radius) * 2 + 1\n mask = (max_ranges != -1) & (max_ranges < ranges)\n ranges[mask] = max_ranges[mask]\n max_size = np.product(self.get_radius_ranges(radius) * 2 + 1)\n indexes = np.zeros((max_size, 3), int)\n from molmod.ext import unit_cell_get_radius_indexes\n reciprocal = self.reciprocal * self.active\n matrix = self.matrix * self.active\n size = unit_cell_get_radius_indexes(matrix, reciprocal, radius,\n max_ranges, indexes)\n return indexes[:size]\n",
"role": "user"
},
{
"content": "get_radius_indexes",
"role": "assistant"
}
] |
def x(graph, unit_cell=None, verbose=False):
N = len(graph.numbers)
from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition
search_direction = ConjugateGradient()
line_search = NewtonLineSearch()
convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)
stop_loss = StopLossCondition(max_iter=500, fun_margin=0.1)
ff = ToyFF(graph, unit_cell)
x_init = np.random.normal(0, 1, N * 3)
ff.dm_quad = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
ff.dm_quad = 1.0
ff.dm_reci = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
x_init += np.random.uniform(-0.01, 0.01, len(x_init))
ff.dm_quad = 0.0
ff.dm_reci = 0.2
ff.bond_quad = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
ff.bond_quad = 0.0
ff.bond_hyper = 1.0
ff.span_quad = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
x_opt = x_init
mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))
return mol
|
guess_geometry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, unit_cell=None, verbose=False):\n N = len(graph.numbers)\n from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition\n search_direction = ConjugateGradient()\n line_search = NewtonLineSearch()\n convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)\n stop_loss = StopLossCondition(max_iter=500, fun_margin=0.1)\n ff = ToyFF(graph, unit_cell)\n x_init = np.random.normal(0, 1, N * 3)\n ff.dm_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.dm_quad = 1.0\n ff.dm_reci = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_init += np.random.uniform(-0.01, 0.01, len(x_init))\n ff.dm_quad = 0.0\n ff.dm_reci = 0.2\n ff.bond_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.bond_quad = 0.0\n ff.bond_hyper = 1.0\n ff.span_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_opt = x_init\n mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))\n return mol\n",
"role": "user"
},
{
"content": "guess_geometry",
"role": "assistant"
}
] |
def x(graph, mol, unit_cell=None, verbose=False):
N = len(graph.numbers)
from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition
search_direction = ConjugateGradient()
line_search = NewtonLineSearch()
convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)
stop_loss = StopLossCondition(max_iter=500, fun_margin=1.0)
ff = ToyFF(graph, unit_cell)
x_init = mol.coordinates.ravel()
ff.dm_reci = 0.2
ff.bond_quad = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
ff.bond_quad = 0.0
ff.bond_hyper = 1.0
ff.span_quad = 1.0
minimizer = Minimizer(x_init, ff, search_direction, line_search,
convergence, stop_loss, anagrad=True, verbose=verbose)
x_init = minimizer.x
x_opt = x_init
mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))
return mol
|
tune_geometry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, mol, unit_cell=None, verbose=False):\n N = len(graph.numbers)\n from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition\n search_direction = ConjugateGradient()\n line_search = NewtonLineSearch()\n convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)\n stop_loss = StopLossCondition(max_iter=500, fun_margin=1.0)\n ff = ToyFF(graph, unit_cell)\n x_init = mol.coordinates.ravel()\n ff.dm_reci = 0.2\n ff.bond_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.bond_quad = 0.0\n ff.bond_hyper = 1.0\n ff.span_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_opt = x_init\n mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))\n return mol\n",
"role": "user"
},
{
"content": "tune_geometry",
"role": "assistant"
}
] |
def x(self, coordinates=None):
if coordinates is not None:
self.coordinates = coordinates
self.numc = len(self.coordinates)
self.distances = np.zeros((self.numc, self.numc), float)
self.deltas = np.zeros((self.numc, self.numc, 3), float)
self.directions = np.zeros((self.numc, self.numc, 3), float)
self.dirouters = np.zeros((self.numc, self.numc, 3, 3), float)
for index1, coordinate1 in enumerate(self.coordinates):
for index2, coordinate2 in enumerate(self.coordinates):
delta = coordinate1 - coordinate2
self.deltas[index1, index2] = delta
distance = np.linalg.norm(delta)
self.distances[index1, index2] = distance
if index1 != index2:
tmp = delta / distance
self.directions[index1, index2] = tmp
self.dirouters[index1, index2] = np.outer(tmp, tmp)
|
update_coordinates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coordinates=None):\n if coordinates is not None:\n self.coordinates = coordinates\n self.numc = len(self.coordinates)\n self.distances = np.zeros((self.numc, self.numc), float)\n self.deltas = np.zeros((self.numc, self.numc, 3), float)\n self.directions = np.zeros((self.numc, self.numc, 3), float)\n self.dirouters = np.zeros((self.numc, self.numc, 3, 3), float)\n for index1, coordinate1 in enumerate(self.coordinates):\n for index2, coordinate2 in enumerate(self.coordinates):\n delta = coordinate1 - coordinate2\n self.deltas[index1, index2] = delta\n distance = np.linalg.norm(delta)\n self.distances[index1, index2] = distance\n if index1 != index2:\n tmp = delta / distance\n self.directions[index1, index2] = tmp\n self.dirouters[index1, index2] = np.outer(tmp, tmp)\n",
"role": "user"
},
{
"content": "update_coordinates",
"role": "assistant"
}
] |
def x(self):
result = 0.0
for index1 in range(self.numc):
for index2 in range(index1):
if self.scaling[index1, index2] > 0:
for se, ve in self.yield_pair_energies(index1, index2):
result += se * ve * self.scaling[index1, index2]
return result
|
energy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = 0.0\n for index1 in range(self.numc):\n for index2 in range(index1):\n if self.scaling[index1, index2] > 0:\n for se, ve in self.yield_pair_energies(index1, index2):\n result += se * ve * self.scaling[index1, index2]\n return result\n",
"role": "user"
},
{
"content": "energy",
"role": "assistant"
}
] |
def x(self, index1):
result = np.zeros(3, float)
for index2 in range(self.numc):
if self.scaling[index1, index2] > 0:
for (se, ve), (sg, vg) in zip(self.yield_pair_energies(index1,
index2), self.yield_pair_gradients(index1, index2)):
result += (sg * self.directions[index1, index2] * ve + se * vg
) * self.scaling[index1, index2]
return result
|
gradient_component
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1):\n result = np.zeros(3, float)\n for index2 in range(self.numc):\n if self.scaling[index1, index2] > 0:\n for (se, ve), (sg, vg) in zip(self.yield_pair_energies(index1,\n index2), self.yield_pair_gradients(index1, index2)):\n result += (sg * self.directions[index1, index2] * ve + se * vg\n ) * self.scaling[index1, index2]\n return result\n",
"role": "user"
},
{
"content": "gradient_component",
"role": "assistant"
}
] |
def x(self):
result = np.zeros((self.numc, 3), float)
for index1 in range(self.numc):
result[index1] = self.gradient_component(index1)
return result
|
gradient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = np.zeros((self.numc, 3), float)\n for index1 in range(self.numc):\n result[index1] = self.gradient_component(index1)\n return result\n",
"role": "user"
},
{
"content": "gradient",
"role": "assistant"
}
] |
def x(self, index1, index2):
result = np.zeros((3, 3), float)
if index1 == index2:
for index3 in range(self.numc):
if self.scaling[index1, index3] > 0:
d_1 = 1 / self.distances[index1, index3]
for (se, ve), (sg, vg), (sh, vh) in zip(self.
yield_pair_energies(index1, index3), self.
yield_pair_gradients(index1, index3), self.
yield_pair_hessians(index1, index3)):
result += (+sh * self.dirouters[index1, index3] * ve +
sg * (np.identity(3, float) - self.dirouters[index1,
index3]) * ve * d_1 + sg * np.outer(self.directions
[index1, index3], vg) + sg * np.outer(vg, self.
directions[index1, index3]) + se * vh) * self.scaling[
index1, index3]
elif self.scaling[index1, index2] > 0:
d_1 = 1 / self.distances[index1, index2]
for (se, ve), (sg, vg), (sh, vh) in zip(self.yield_pair_energies(
index1, index2), self.yield_pair_gradients(index1, index2),
self.yield_pair_hessians(index1, index2)):
result -= (+sh * self.dirouters[index1, index2] * ve + sg * (np
.identity(3, float) - self.dirouters[index1, index2]) * ve *
d_1 + sg * np.outer(self.directions[index1, index2], vg) +
sg * np.outer(vg, self.directions[index1, index2]) + se * vh
) * self.scaling[index1, index2]
return result
|
hessian_component
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n result = np.zeros((3, 3), float)\n if index1 == index2:\n for index3 in range(self.numc):\n if self.scaling[index1, index3] > 0:\n d_1 = 1 / self.distances[index1, index3]\n for (se, ve), (sg, vg), (sh, vh) in zip(self.\n yield_pair_energies(index1, index3), self.\n yield_pair_gradients(index1, index3), self.\n yield_pair_hessians(index1, index3)):\n result += (+sh * self.dirouters[index1, index3] * ve + \n sg * (np.identity(3, float) - self.dirouters[index1,\n index3]) * ve * d_1 + sg * np.outer(self.directions\n [index1, index3], vg) + sg * np.outer(vg, self.\n directions[index1, index3]) + se * vh) * self.scaling[\n index1, index3]\n elif self.scaling[index1, index2] > 0:\n d_1 = 1 / self.distances[index1, index2]\n for (se, ve), (sg, vg), (sh, vh) in zip(self.yield_pair_energies(\n index1, index2), self.yield_pair_gradients(index1, index2),\n self.yield_pair_hessians(index1, index2)):\n result -= (+sh * self.dirouters[index1, index2] * ve + sg * (np\n .identity(3, float) - self.dirouters[index1, index2]) * ve *\n d_1 + sg * np.outer(self.directions[index1, index2], vg) + \n sg * np.outer(vg, self.directions[index1, index2]) + se * vh\n ) * self.scaling[index1, index2]\n return result\n",
"role": "user"
},
{
"content": "hessian_component",
"role": "assistant"
}
] |
def x(self):
result = np.zeros((self.numc, 3, self.numc, 3), float)
for index1 in range(self.numc):
for index2 in range(self.numc):
result[index1, :, index2, :] = self.hessian_component(index1,
index2)
return result
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = np.zeros((self.numc, 3, self.numc, 3), float)\n for index1 in range(self.numc):\n for index2 in range(self.numc):\n result[index1, :, index2, :] = self.hessian_component(index1,\n index2)\n return result\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, index1, index2):
d_1 = 1 / self.distances[index1, index2]
if self.charges is not None:
c1 = self.charges[index1]
c2 = self.charges[index2]
yield c1 * c2 * d_1, 1
if self.dipoles is not None:
d_3 = d_1 ** 3
d_5 = d_1 ** 5
delta = self.deltas[index1, index2]
p1 = self.dipoles[index1]
p2 = self.dipoles[index2]
yield d_3 * np.dot(p1, p2), 1
yield -3 * d_5, np.dot(p1, delta) * np.dot(delta, p2)
if self.charges is not None:
yield c1 * d_3, np.dot(p2, delta)
yield c2 * d_3, np.dot(p1, -delta)
|
yield_pair_energies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n d_1 = 1 / self.distances[index1, index2]\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield c1 * c2 * d_1, 1\n if self.dipoles is not None:\n d_3 = d_1 ** 3\n d_5 = d_1 ** 5\n delta = self.deltas[index1, index2]\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield d_3 * np.dot(p1, p2), 1\n yield -3 * d_5, np.dot(p1, delta) * np.dot(delta, p2)\n if self.charges is not None:\n yield c1 * d_3, np.dot(p2, delta)\n yield c2 * d_3, np.dot(p1, -delta)\n",
"role": "user"
},
{
"content": "yield_pair_energies",
"role": "assistant"
}
] |
def x(self, index1, index2):
d_2 = 1 / self.distances[index1, index2] ** 2
if self.charges is not None:
c1 = self.charges[index1]
c2 = self.charges[index2]
yield -c1 * c2 * d_2, np.zeros(3)
if self.dipoles is not None:
d_4 = d_2 ** 2
d_6 = d_2 ** 3
delta = self.deltas[index1, index2]
p1 = self.dipoles[index1]
p2 = self.dipoles[index2]
yield -3 * d_4 * np.dot(p1, p2), np.zeros(3)
yield 15 * d_6, p1 * np.dot(p2, delta) + p2 * np.dot(p1, delta)
if self.charges is not None:
yield -3 * c1 * d_4, p2
yield -3 * c2 * d_4, -p1
|
yield_pair_gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n d_2 = 1 / self.distances[index1, index2] ** 2\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield -c1 * c2 * d_2, np.zeros(3)\n if self.dipoles is not None:\n d_4 = d_2 ** 2\n d_6 = d_2 ** 3\n delta = self.deltas[index1, index2]\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield -3 * d_4 * np.dot(p1, p2), np.zeros(3)\n yield 15 * d_6, p1 * np.dot(p2, delta) + p2 * np.dot(p1, delta)\n if self.charges is not None:\n yield -3 * c1 * d_4, p2\n yield -3 * c2 * d_4, -p1\n",
"role": "user"
},
{
"content": "yield_pair_gradients",
"role": "assistant"
}
] |
def x(self, index1, index2):
d_1 = 1 / self.distances[index1, index2]
d_3 = d_1 ** 3
if self.charges is not None:
c1 = self.charges[index1]
c2 = self.charges[index2]
yield 2 * c1 * c2 * d_3, np.zeros((3, 3))
if self.dipoles is not None:
d_5 = d_1 ** 5
d_7 = d_1 ** 7
p1 = self.dipoles[index1]
p2 = self.dipoles[index2]
yield 12 * d_5 * np.dot(p1, p2), np.zeros((3, 3))
yield -90 * d_7, np.outer(p1, p2) + np.outer(p2, p1)
if self.charges is not None:
yield 12 * c1 * d_5, np.zeros((3, 3))
yield 12 * c2 * d_5, np.zeros((3, 3))
|
yield_pair_hessians
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n d_1 = 1 / self.distances[index1, index2]\n d_3 = d_1 ** 3\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield 2 * c1 * c2 * d_3, np.zeros((3, 3))\n if self.dipoles is not None:\n d_5 = d_1 ** 5\n d_7 = d_1 ** 7\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield 12 * d_5 * np.dot(p1, p2), np.zeros((3, 3))\n yield -90 * d_7, np.outer(p1, p2) + np.outer(p2, p1)\n if self.charges is not None:\n yield 12 * c1 * d_5, np.zeros((3, 3))\n yield 12 * c2 * d_5, np.zeros((3, 3))\n",
"role": "user"
},
{
"content": "yield_pair_hessians",
"role": "assistant"
}
] |
def x(self):
result = np.zeros(self.numc, float)
for index1 in range(self.numc):
result[index1] = self.esp_component(index1)
return result
|
esp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = np.zeros(self.numc, float)\n for index1 in range(self.numc):\n result[index1] = self.esp_component(index1)\n return result\n",
"role": "user"
},
{
"content": "esp",
"role": "assistant"
}
] |
def x(self):
result = np.zeros((self.numc, 3), float)
for index1 in range(self.numc):
result[index1] = self.efield_component(index1)
return result
|
efield
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = np.zeros((self.numc, 3), float)\n for index1 in range(self.numc):\n result[index1] = self.efield_component(index1)\n return result\n",
"role": "user"
},
{
"content": "efield",
"role": "assistant"
}
] |
def x(self, index1, index2):
strength = self.strengths[index1, index2]
distance = self.distances[index1, index2]
yield strength * distance ** -6, 1
|
yield_pair_energies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n strength = self.strengths[index1, index2]\n distance = self.distances[index1, index2]\n yield strength * distance ** -6, 1\n",
"role": "user"
},
{
"content": "yield_pair_energies",
"role": "assistant"
}
] |
def x(self, index1, index2):
strength = self.strengths[index1, index2]
distance = self.distances[index1, index2]
yield -6 * strength * distance ** -7, np.zeros(3)
|
yield_pair_gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n strength = self.strengths[index1, index2]\n distance = self.distances[index1, index2]\n yield -6 * strength * distance ** -7, np.zeros(3)\n",
"role": "user"
},
{
"content": "yield_pair_gradients",
"role": "assistant"
}
] |
def x(self, index1, index2):
A = self.As[index1, index2]
B = self.Bs[index1, index2]
distance = self.distances[index1, index2]
yield A * np.exp(-B * distance), 1
|
yield_pair_energies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n A = self.As[index1, index2]\n B = self.Bs[index1, index2]\n distance = self.distances[index1, index2]\n yield A * np.exp(-B * distance), 1\n",
"role": "user"
},
{
"content": "yield_pair_energies",
"role": "assistant"
}
] |
def x(self, index1, index2):
A = self.As[index1, index2]
B = self.Bs[index1, index2]
distance = self.distances[index1, index2]
yield -B * A * np.exp(-B * distance), np.zeros(3)
|
yield_pair_gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index1, index2):\n A = self.As[index1, index2]\n B = self.Bs[index1, index2]\n distance = self.distances[index1, index2]\n yield -B * A * np.exp(-B * distance), np.zeros(3)\n",
"role": "user"
},
{
"content": "yield_pair_gradients",
"role": "assistant"
}
] |
def x(cml_filename):
parser = make_parser()
parser.setFeature(feature_namespaces, 0)
dh = CMLMoleculeLoader()
parser.setContentHandler(dh)
parser.parse(cml_filename)
return dh.molecules
|
load_cml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cml_filename):\n parser = make_parser()\n parser.setFeature(feature_namespaces, 0)\n dh = CMLMoleculeLoader()\n parser.setContentHandler(dh)\n parser.parse(cml_filename)\n return dh.molecules\n",
"role": "user"
},
{
"content": "load_cml",
"role": "assistant"
}
] |
def x(f, molecule):
extra = getattr(molecule, 'extra', {})
attr_str = ' '.join("%s='%s'" % (key, value) for key, value in extra.
items())
f.write(" <molecule id='%s' %s>\n" % (molecule.title, attr_str))
f.write(' <atomArray>\n')
atoms_extra = getattr(molecule, 'atoms_extra', {})
for counter, number, coordinate in zip(range(molecule.size), molecule.
numbers, molecule.coordinates / angstrom):
atom_extra = atoms_extra.get(counter, {})
attr_str = ' '.join("%s='%s'" % (key, value) for key, value in
atom_extra.items())
f.write(
" <atom id='a%i' elementType='%s' x3='%s' y3='%s' z3='%s' %s />\n"
% (counter, periodic[number].symbol, coordinate[0], coordinate
[1], coordinate[2], attr_str))
f.write(' </atomArray>\n')
if molecule.graph is not None:
bonds_extra = getattr(molecule, 'bonds_extra', {})
f.write(' <bondArray>\n')
for edge in molecule.graph.edges:
bond_extra = bonds_extra.get(edge, {})
attr_str = ' '.join("%s='%s'" % (key, value) for key, value in
bond_extra.items())
i1, i2 = edge
f.write(" <bond atomRefs2='a%i a%i' %s />\n" % (i1, i2, attr_str)
)
f.write(' </bondArray>\n')
f.write(' </molecule>\n')
|
dump_cml_molecule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, molecule):\n extra = getattr(molecule, 'extra', {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in extra.\n items())\n f.write(\" <molecule id='%s' %s>\\n\" % (molecule.title, attr_str))\n f.write(' <atomArray>\\n')\n atoms_extra = getattr(molecule, 'atoms_extra', {})\n for counter, number, coordinate in zip(range(molecule.size), molecule.\n numbers, molecule.coordinates / angstrom):\n atom_extra = atoms_extra.get(counter, {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in\n atom_extra.items())\n f.write(\n \" <atom id='a%i' elementType='%s' x3='%s' y3='%s' z3='%s' %s />\\n\"\n % (counter, periodic[number].symbol, coordinate[0], coordinate\n [1], coordinate[2], attr_str))\n f.write(' </atomArray>\\n')\n if molecule.graph is not None:\n bonds_extra = getattr(molecule, 'bonds_extra', {})\n f.write(' <bondArray>\\n')\n for edge in molecule.graph.edges:\n bond_extra = bonds_extra.get(edge, {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in\n bond_extra.items())\n i1, i2 = edge\n f.write(\" <bond atomRefs2='a%i a%i' %s />\\n\" % (i1, i2, attr_str)\n )\n f.write(' </bondArray>\\n')\n f.write(' </molecule>\\n')\n",
"role": "user"
},
{
"content": "dump_cml_molecule",
"role": "assistant"
}
] |
def x(f, molecules):
if isinstance(f, str):
f = open(f, 'w')
close = True
else:
close = False
f.write("<?xml version='1.0'?>\n")
f.write("<list xmlns='http://www.xml-cml.org/schema'>\n")
for molecule in molecules:
_dump_cml_molecule(f, molecule)
f.write('</list>\n')
if close:
f.close()
|
dump_cml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, molecules):\n if isinstance(f, str):\n f = open(f, 'w')\n close = True\n else:\n close = False\n f.write(\"<?xml version='1.0'?>\\n\")\n f.write(\"<list xmlns='http://www.xml-cml.org/schema'>\\n\")\n for molecule in molecules:\n _dump_cml_molecule(f, molecule)\n f.write('</list>\\n')\n if close:\n f.close()\n",
"role": "user"
},
{
"content": "dump_cml",
"role": "assistant"
}
] |
def x(self, attrs, exclude):
result = {}
for key in attrs.getNames():
if key not in exclude:
result[str(key)] = str(attrs[key])
return result
|
get_extra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attrs, exclude):\n result = {}\n for key in attrs.getNames():\n if key not in exclude:\n result[str(key)] = str(attrs[key])\n return result\n",
"role": "user"
},
{
"content": "get_extra",
"role": "assistant"
}
] |
def x(self, filename, field_labels=None):
def x(f):
datatype = None
while datatype is None:
line = f.readline()
if line == '':
return False
label = line[:43].strip()
if field_labels is not None:
if len(field_labels) == 0:
return False
elif label not in field_labels:
return True
else:
field_labels.discard(label)
line = line[43:]
words = line.split()
if len(words) == 0:
return True
if words[0] == 'I':
datatype = int
unreadable = 0
elif words[0] == 'R':
datatype = float
unreadable = np.nan
if len(words) == 2:
try:
value = datatype(words[1])
except ValueError:
return True
elif len(words) == 3:
if words[1] != 'N=':
raise FileFormatError(
'Unexpected line in formatted checkpoint file %s\n%s' %
(filename, line[:-1]))
length = int(words[2])
value = np.zeros(length, datatype)
counter = 0
try:
while counter < length:
line = f.readline()
if line == '':
raise FileFormatError(
'Unexpected end of formatted checkpoint file %s' %
filename)
for word in line.split():
try:
value[counter] = datatype(word)
except (ValueError, OverflowError) as e:
print(
'WARNING: could not interpret word while reading %s: %s'
% (word, self.filename))
if self.ignore_errors:
value[counter] = unreadable
else:
raise
counter += 1
except ValueError:
return True
else:
raise FileFormatError(
'Unexpected line in formatted checkpoint file %s\n%s' % (
filename, line[:-1]))
self.fields[label] = value
return True
self.fields = {}
with open(filename, 'r') as f:
self.title = f.readline()[:-1].strip()
words = f.readline().split()
if len(words) == 3:
self.command, self.lot, self.basis = words
elif len(words) == 2:
self.command, self.lot = words
else:
raise FileFormatError(
'The second line of the FCHK file should contain two or three words.'
)
while read_field(f):
pass
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, field_labels=None):\n\n def x(f):\n datatype = None\n while datatype is None:\n line = f.readline()\n if line == '':\n return False\n label = line[:43].strip()\n if field_labels is not None:\n if len(field_labels) == 0:\n return False\n elif label not in field_labels:\n return True\n else:\n field_labels.discard(label)\n line = line[43:]\n words = line.split()\n if len(words) == 0:\n return True\n if words[0] == 'I':\n datatype = int\n unreadable = 0\n elif words[0] == 'R':\n datatype = float\n unreadable = np.nan\n if len(words) == 2:\n try:\n value = datatype(words[1])\n except ValueError:\n return True\n elif len(words) == 3:\n if words[1] != 'N=':\n raise FileFormatError(\n 'Unexpected line in formatted checkpoint file %s\\n%s' %\n (filename, line[:-1]))\n length = int(words[2])\n value = np.zeros(length, datatype)\n counter = 0\n try:\n while counter < length:\n line = f.readline()\n if line == '':\n raise FileFormatError(\n 'Unexpected end of formatted checkpoint file %s' %\n filename)\n for word in line.split():\n try:\n value[counter] = datatype(word)\n except (ValueError, OverflowError) as e:\n print(\n 'WARNING: could not interpret word while reading %s: %s'\n % (word, self.filename))\n if self.ignore_errors:\n value[counter] = unreadable\n else:\n raise\n counter += 1\n except ValueError:\n return True\n else:\n raise FileFormatError(\n 'Unexpected line in formatted checkpoint file %s\\n%s' % (\n filename, line[:-1]))\n self.fields[label] = value\n return True\n self.fields = {}\n with open(filename, 'r') as f:\n self.title = f.readline()[:-1].strip()\n words = f.readline().split()\n if len(words) == 3:\n self.command, self.lot, self.basis = words\n elif len(words) == 2:\n self.command, self.lot = words\n else:\n raise FileFormatError(\n 'The second line of the FCHK file should contain two or three words.'\n )\n while read_field(f):\n pass\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self):
if ('Atomic numbers' in self.fields and 'Current cartesian coordinates' in
self.fields):
self.molecule = Molecule(self.fields['Atomic numbers'], np.reshape(
self.fields['Current cartesian coordinates'], (-1, 3)), self.title)
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if ('Atomic numbers' in self.fields and 'Current cartesian coordinates' in\n self.fields):\n self.molecule = Molecule(self.fields['Atomic numbers'], np.reshape(\n self.fields['Current cartesian coordinates'], (-1, 3)), self.title)\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(self):
coor_array = self.fields.get('Opt point 1 Geometries')
if coor_array is None:
return []
else:
return np.reshape(coor_array, (-1, len(self.molecule.numbers), 3))
|
get_optimization_coordinates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n coor_array = self.fields.get('Opt point 1 Geometries')\n if coor_array is None:\n return []\n else:\n return np.reshape(coor_array, (-1, len(self.molecule.numbers), 3))\n",
"role": "user"
},
{
"content": "get_optimization_coordinates",
"role": "assistant"
}
] |
def x(self):
opt_coor = self.get_optimization_coordinates()
if len(opt_coor) == 0:
return None
else:
return Molecule(self.molecule.numbers, opt_coor[-1])
|
get_optimized_molecule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n opt_coor = self.get_optimization_coordinates()\n if len(opt_coor) == 0:\n return None\n else:\n return Molecule(self.molecule.numbers, opt_coor[-1])\n",
"role": "user"
},
{
"content": "get_optimized_molecule",
"role": "assistant"
}
] |
def x(self):
grad_array = self.fields.get('Opt point 1 Gradient at each geome')
if grad_array is None:
return []
else:
return np.reshape(grad_array, (-1, len(self.molecule.numbers), 3))
|
get_optimization_gradients
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n grad_array = self.fields.get('Opt point 1 Gradient at each geome')\n if grad_array is None:\n return []\n else:\n return np.reshape(grad_array, (-1, len(self.molecule.numbers), 3))\n",
"role": "user"
},
{
"content": "get_optimization_gradients",
"role": "assistant"
}
] |
def x(self):
force_const = self.fields.get('Cartesian Force Constants')
if force_const is None:
return None
N = len(self.molecule.numbers)
result = np.zeros((3 * N, 3 * N), float)
counter = 0
for row in range(3 * N):
result[row, :row + 1] = force_const[counter:counter + row + 1]
result[:row + 1, row] = force_const[counter:counter + row + 1]
counter += row + 1
return result
|
get_hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n force_const = self.fields.get('Cartesian Force Constants')\n if force_const is None:\n return None\n N = len(self.molecule.numbers)\n result = np.zeros((3 * N, 3 * N), float)\n counter = 0\n for row in range(3 * N):\n result[row, :row + 1] = force_const[counter:counter + row + 1]\n result[:row + 1, row] = force_const[counter:counter + row + 1]\n counter += row + 1\n return result\n",
"role": "user"
},
{
"content": "get_hessian",
"role": "assistant"
}
] |
def x(self, **kwargs):
attrs = {}
for key, descriptor in self.__class__.__dict__.items():
if isinstance(descriptor, ReadOnlyAttribute):
attrs[key] = descriptor.__get__(self)
for key in kwargs:
if key not in attrs:
raise TypeError('Unknown attribute: %s' % key)
attrs.update(kwargs)
return self.__class__(**attrs)
|
copy_with
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n attrs = {}\n for key, descriptor in self.__class__.__dict__.items():\n if isinstance(descriptor, ReadOnlyAttribute):\n attrs[key] = descriptor.__get__(self)\n for key in kwargs:\n if key not in attrs:\n raise TypeError('Unknown attribute: %s' % key)\n attrs.update(kwargs)\n return self.__class__(**attrs)\n",
"role": "user"
},
{
"content": "copy_with",
"role": "assistant"
}
] |
def x(self, filename):
data = {}
parsers = [FirstDataParser(), CoordinateParser(), EnergyGradParser(),
SkipApproxHessian(), HessianParser(), MassParser()]
with open(filename) as f:
while True:
line = f.readline()
if line == '':
break
for parser in parsers:
if parser.test(line, data):
parser.read(line, f, data)
break
self.__dict__.update(data)
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n data = {}\n parsers = [FirstDataParser(), CoordinateParser(), EnergyGradParser(),\n SkipApproxHessian(), HessianParser(), MassParser()]\n with open(filename) as f:\n while True:\n line = f.readline()\n if line == '':\n break\n for parser in parsers:\n if parser.test(line, data):\n parser.read(line, f, data)\n break\n self.__dict__.update(data)\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
self.used = True
data['title'] = f.readline().strip()
data['symmetry'] = f.readline().split()[0]
if data['symmetry'] != 'C1':
raise NotImplementedError('Only C1 symmetry is supported.')
symbols = []
while line != ' $END \n':
line = f.readline()
if line[0] != ' ':
symbols.append(line.split()[0])
data['symbols'] = symbols
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n self.used = True\n data['title'] = f.readline().strip()\n data['symmetry'] = f.readline().split()[0]\n if data['symmetry'] != 'C1':\n raise NotImplementedError('Only C1 symmetry is supported.')\n symbols = []\n while line != ' $END \\n':\n line = f.readline()\n if line[0] != ' ':\n symbols.append(line.split()[0])\n data['symbols'] = symbols\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
f.readline()
f.readline()
N = len(data['symbols'])
numbers = data.get('numbers')
if numbers is None:
numbers = np.zeros(N, int)
data['numbers'] = numbers
coordinates = data.get('coordinates')
if coordinates is None:
coordinates = np.zeros((N, 3), float)
data['coordinates'] = coordinates
for i in range(N):
words = f.readline().split()
numbers[i] = int(float(words[1]))
coordinates[i, 0] = float(words[2]) * angstrom
coordinates[i, 1] = float(words[3]) * angstrom
coordinates[i, 2] = float(words[4]) * angstrom
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n f.readline()\n f.readline()\n N = len(data['symbols'])\n numbers = data.get('numbers')\n if numbers is None:\n numbers = np.zeros(N, int)\n data['numbers'] = numbers\n coordinates = data.get('coordinates')\n if coordinates is None:\n coordinates = np.zeros((N, 3), float)\n data['coordinates'] = coordinates\n for i in range(N):\n words = f.readline().split()\n numbers[i] = int(float(words[1]))\n coordinates[i, 0] = float(words[2]) * angstrom\n coordinates[i, 1] = float(words[3]) * angstrom\n coordinates[i, 2] = float(words[4]) * angstrom\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
data['energy'] = float(f.readline().split()[1])
N = len(data['symbols'])
gradient = data.get('gradient')
if gradient is None:
gradient = np.zeros((N, 3), float)
data['gradient'] = gradient
for i in range(N):
words = f.readline().split()
gradient[i, 0] = float(words[2])
gradient[i, 1] = float(words[3])
gradient[i, 2] = float(words[4])
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n data['energy'] = float(f.readline().split()[1])\n N = len(data['symbols'])\n gradient = data.get('gradient')\n if gradient is None:\n gradient = np.zeros((N, 3), float)\n data['gradient'] = gradient\n for i in range(N):\n words = f.readline().split()\n gradient[i, 0] = float(words[2])\n gradient[i, 1] = float(words[3])\n gradient[i, 2] = float(words[4])\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
line = f.readline()
assert line == ' $HESS\n'
while line != ' $END\n':
line = f.readline()
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n line = f.readline()\n assert line == ' $HESS\\n'\n while line != ' $END\\n':\n line = f.readline()\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
assert 'hessian' not in data
f.readline()
N = len(data['symbols'])
hessian = np.zeros((3 * N, 3 * N), float)
tmp = hessian.ravel()
counter = 0
while True:
line = f.readline()
if line == ' $END\n':
break
line = line[5:-1]
for j in range(len(line) // 15):
tmp[counter] = float(line[j * 15:(j + 1) * 15])
counter += 1
data['hessian'] = hessian
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n assert 'hessian' not in data\n f.readline()\n N = len(data['symbols'])\n hessian = np.zeros((3 * N, 3 * N), float)\n tmp = hessian.ravel()\n counter = 0\n while True:\n line = f.readline()\n if line == ' $END\\n':\n break\n line = line[5:-1]\n for j in range(len(line) // 15):\n tmp[counter] = float(line[j * 15:(j + 1) * 15])\n counter += 1\n data['hessian'] = hessian\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, line, f, data):
N = len(data['symbols'])
masses = np.zeros(N, float)
counter = 0
while counter < N:
words = f.readline().split()
for word in words:
masses[counter] = float(word) * amu
counter += 1
data['masses'] = masses
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, f, data):\n N = len(data['symbols'])\n masses = np.zeros(N, float)\n counter = 0\n while counter < N:\n words = f.readline().split()\n for word in words:\n masses[counter] = float(word) * amu\n counter += 1\n data['masses'] = masses\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(graph):
bond_params = {(6, 1): 310 * kcalmol / angstrom ** 2, (6, 6): 220 *
kcalmol / angstrom ** 2}
for key, val in list(bond_params.items()):
if key[0] != key[1]:
bond_params[key[1], key[0]] = val
bend_params = {(1, 6, 1): 35 * kcalmol / rad ** 2, (1, 6, 6): 30 *
kcalmol / rad ** 2, (6, 6, 6): 60 * kcalmol / rad ** 2}
for key, val in list(bend_params.items()):
if key[0] != key[2]:
bend_params[key[2], key[1], key[0]] = val
terms = []
for i0, i1 in graph.edges:
K = bond_params[graph.numbers[i0], graph.numbers[i1]]
terms.append(BondStretchTerm(K, i0, i1))
for i1 in range(graph.num_vertices):
n = list(graph.neighbors[i1])
for index, i0 in enumerate(n):
for i2 in n[:index]:
K = bend_params[graph.numbers[i0], graph.numbers[i1], graph
.numbers[i2]]
terms.append(BendAngleTerm(K, i0, i1, i2))
return ForceField(terms)
|
setup_hydrocarbon_ff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph):\n bond_params = {(6, 1): 310 * kcalmol / angstrom ** 2, (6, 6): 220 *\n kcalmol / angstrom ** 2}\n for key, val in list(bond_params.items()):\n if key[0] != key[1]:\n bond_params[key[1], key[0]] = val\n bend_params = {(1, 6, 1): 35 * kcalmol / rad ** 2, (1, 6, 6): 30 *\n kcalmol / rad ** 2, (6, 6, 6): 60 * kcalmol / rad ** 2}\n for key, val in list(bend_params.items()):\n if key[0] != key[2]:\n bend_params[key[2], key[1], key[0]] = val\n terms = []\n for i0, i1 in graph.edges:\n K = bond_params[graph.numbers[i0], graph.numbers[i1]]\n terms.append(BondStretchTerm(K, i0, i1))\n for i1 in range(graph.num_vertices):\n n = list(graph.neighbors[i1])\n for index, i0 in enumerate(n):\n for i2 in n[:index]:\n K = bend_params[graph.numbers[i0], graph.numbers[i1], graph\n .numbers[i2]]\n terms.append(BendAngleTerm(K, i0, i1, i2))\n return ForceField(terms)\n",
"role": "user"
},
{
"content": "setup_hydrocarbon_ff",
"role": "assistant"
}
] |
def x(self, coordinates, hessian):
q, g = self.icfn(coordinates[list(self.indexes)], 1)
for ja, ia in enumerate(self.indexes):
for jb, ib in enumerate(self.indexes):
contrib = 2 * self.force_constant * numpy.outer(g[ja], g[jb])
hessian[3 * ia:3 * ia + 3, 3 * ib:3 * ib + 3] += contrib
|
add_to_hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coordinates, hessian):\n q, g = self.icfn(coordinates[list(self.indexes)], 1)\n for ja, ia in enumerate(self.indexes):\n for jb, ib in enumerate(self.indexes):\n contrib = 2 * self.force_constant * numpy.outer(g[ja], g[jb])\n hessian[3 * ia:3 * ia + 3, 3 * ib:3 * ib + 3] += contrib\n",
"role": "user"
},
{
"content": "add_to_hessian",
"role": "assistant"
}
] |
def x(self, coordinates):
N3 = coordinates.size
hessian = numpy.zeros((N3, N3), float)
for term in self.terms:
term.add_to_hessian(coordinates, hessian)
return hessian
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coordinates):\n N3 = coordinates.size\n hessian = numpy.zeros((N3, N3), float)\n for term in self.terms:\n term.add_to_hessian(coordinates, hessian)\n return hessian\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(molecule, graph, threshold=0.001 * angstrom):
result = 0
for match in graph.symmetries:
permutation = list(j for i, j in sorted(match.forward.items()))
new_coordinates = molecule.coordinates[permutation]
rmsd = fit_rmsd(molecule.coordinates, new_coordinates)[2]
if rmsd < threshold:
result += 1
return result
|
compute_rotsym
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(molecule, graph, threshold=0.001 * angstrom):\n result = 0\n for match in graph.symmetries:\n permutation = list(j for i, j in sorted(match.forward.items()))\n new_coordinates = molecule.coordinates[permutation]\n rmsd = fit_rmsd(molecule.coordinates, new_coordinates)[2]\n if rmsd < threshold:\n result += 1\n return result\n",
"role": "user"
},
{
"content": "compute_rotsym",
"role": "assistant"
}
] |
def x(quat1, quat2):
return np.array([quat1[0] * quat2[0] - np.dot(quat1[1:], quat2[1:]),
quat1[0] * quat2[1] + quat2[0] * quat1[1] + quat1[2] * quat2[3] -
quat1[3] * quat2[2], quat1[0] * quat2[2] + quat2[0] * quat1[2] +
quat1[3] * quat2[1] - quat1[1] * quat2[3], quat1[0] * quat2[3] +
quat2[0] * quat1[3] + quat1[1] * quat2[2] - quat1[2] * quat2[1]], float
)
|
quaternion_product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quat1, quat2):\n return np.array([quat1[0] * quat2[0] - np.dot(quat1[1:], quat2[1:]), \n quat1[0] * quat2[1] + quat2[0] * quat1[1] + quat1[2] * quat2[3] - \n quat1[3] * quat2[2], quat1[0] * quat2[2] + quat2[0] * quat1[2] + \n quat1[3] * quat2[1] - quat1[1] * quat2[3], quat1[0] * quat2[3] + \n quat2[0] * quat1[3] + quat1[1] * quat2[2] - quat1[2] * quat2[1]], float\n )\n",
"role": "user"
},
{
"content": "quaternion_product",
"role": "assistant"
}
] |
def x(quat, vector):
dp = np.dot(quat[1:], vector)
cos = 2 * quat[0] * quat[0] - 1
return np.array([2 * (quat[0] * (quat[2] * vector[2] - quat[3] * vector
[1]) + quat[1] * dp) + cos * vector[0], 2 * (quat[0] * (quat[3] *
vector[0] - quat[1] * vector[2]) + quat[2] * dp) + cos * vector[1],
2 * (quat[0] * (quat[1] * vector[1] - quat[2] * vector[0]) + quat[3
] * dp) + cos * vector[2]], float)
|
quaternion_rotation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quat, vector):\n dp = np.dot(quat[1:], vector)\n cos = 2 * quat[0] * quat[0] - 1\n return np.array([2 * (quat[0] * (quat[2] * vector[2] - quat[3] * vector\n [1]) + quat[1] * dp) + cos * vector[0], 2 * (quat[0] * (quat[3] *\n vector[0] - quat[1] * vector[2]) + quat[2] * dp) + cos * vector[1],\n 2 * (quat[0] * (quat[1] * vector[1] - quat[2] * vector[0]) + quat[3\n ] * dp) + cos * vector[2]], float)\n",
"role": "user"
},
{
"content": "quaternion_rotation",
"role": "assistant"
}
] |
def x(rotation_matrix):
invert = np.linalg.det(rotation_matrix) < 0
if invert:
factor = -1
else:
factor = 1
c2 = 0.25 * (factor * np.trace(rotation_matrix) + 1)
if c2 < 0:
c2 = 0.0
c = np.sqrt(c2)
r2 = 0.5 * (1 + factor * np.diagonal(rotation_matrix)) - c2
r = np.zeros(3, float)
for index, r2_comp in enumerate(r2):
if r2_comp < 0:
continue
else:
row, col = off_diagonals[index]
if rotation_matrix[row, col] - rotation_matrix[col, row] < 0:
r[index] = -np.sqrt(r2_comp)
else:
r[index] = +np.sqrt(r2_comp)
return factor, np.array([c, r[0], r[1], r[2]], float)
|
rotation_matrix_to_quaternion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rotation_matrix):\n invert = np.linalg.det(rotation_matrix) < 0\n if invert:\n factor = -1\n else:\n factor = 1\n c2 = 0.25 * (factor * np.trace(rotation_matrix) + 1)\n if c2 < 0:\n c2 = 0.0\n c = np.sqrt(c2)\n r2 = 0.5 * (1 + factor * np.diagonal(rotation_matrix)) - c2\n r = np.zeros(3, float)\n for index, r2_comp in enumerate(r2):\n if r2_comp < 0:\n continue\n else:\n row, col = off_diagonals[index]\n if rotation_matrix[row, col] - rotation_matrix[col, row] < 0:\n r[index] = -np.sqrt(r2_comp)\n else:\n r[index] = +np.sqrt(r2_comp)\n return factor, np.array([c, r[0], r[1], r[2]], float)\n",
"role": "user"
},
{
"content": "rotation_matrix_to_quaternion",
"role": "assistant"
}
] |
def x(quaternion):
c, x, y, z = quaternion
return np.array([[c * c + x * x - y * y - z * z, 2 * x * y - 2 * c * z,
2 * x * z + 2 * c * y], [2 * x * y + 2 * c * z, c * c - x * x + y *
y - z * z, 2 * y * z - 2 * c * x], [2 * x * z - 2 * c * y, 2 * y *
z + 2 * c * x, c * c - x * x - y * y + z * z]], float)
|
quaternion_to_rotation_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quaternion):\n c, x, y, z = quaternion\n return np.array([[c * c + x * x - y * y - z * z, 2 * x * y - 2 * c * z,\n 2 * x * z + 2 * c * y], [2 * x * y + 2 * c * z, c * c - x * x + y *\n y - z * z, 2 * y * z - 2 * c * x], [2 * x * z - 2 * c * y, 2 * y *\n z + 2 * c * x, c * c - x * x - y * y + z * z]], float)\n",
"role": "user"
},
{
"content": "quaternion_to_rotation_matrix",
"role": "assistant"
}
] |
def x(a, b):
result = np.dot(a, b) / np.linalg.norm(a) / np.linalg.norm(b)
return np.clip(result, -1, 1)
|
cosine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n result = np.dot(a, b) / np.linalg.norm(a) / np.linalg.norm(b)\n return np.clip(result, -1, 1)\n",
"role": "user"
},
{
"content": "cosine",
"role": "assistant"
}
] |
def x(size=3):
while True:
result = np.random.normal(0, 1, size)
length = np.linalg.norm(result)
if length > 0.001:
return result / length
|
random_unit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(size=3):\n while True:\n result = np.random.normal(0, 1, size)\n length = np.linalg.norm(result)\n if length > 0.001:\n return result / length\n",
"role": "user"
},
{
"content": "random_unit",
"role": "assistant"
}
] |
def x(normal):
u = normal_fns[np.argmin(np.fabs(normal))](normal)
u /= np.linalg.norm(u)
v = np.cross(normal, u)
v /= np.linalg.norm(v)
alpha = np.random.uniform(0.0, np.pi * 2)
return np.cos(alpha) * u + np.sin(alpha) * v
|
random_orthonormal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(normal):\n u = normal_fns[np.argmin(np.fabs(normal))](normal)\n u /= np.linalg.norm(u)\n v = np.cross(normal, u)\n v /= np.linalg.norm(v)\n alpha = np.random.uniform(0.0, np.pi * 2)\n return np.cos(alpha) * u + np.sin(alpha) * v\n",
"role": "user"
},
{
"content": "random_orthonormal",
"role": "assistant"
}
] |
def x(a, b, c):
normal = np.cross(a - c, b - c)
norm = np.linalg.norm(normal)
return normal / norm
|
triangle_normal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c):\n normal = np.cross(a - c, b - c)\n norm = np.linalg.norm(normal)\n return normal / norm\n",
"role": "user"
},
{
"content": "triangle_normal",
"role": "assistant"
}
] |
def x(r1, r2):
if r1.size != r2.size:
raise ValueError('Both arguments must have the same input size.')
if r1.deriv != r2.deriv:
raise ValueError('Both arguments must have the same deriv.')
return r1.x * r2.x + r1.y * r2.y + r1.z * r2.z
|
dot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r1, r2):\n if r1.size != r2.size:\n raise ValueError('Both arguments must have the same input size.')\n if r1.deriv != r2.deriv:\n raise ValueError('Both arguments must have the same deriv.')\n return r1.x * r2.x + r1.y * r2.y + r1.z * r2.z\n",
"role": "user"
},
{
"content": "dot",
"role": "assistant"
}
] |
def x(r1, r2):
if r1.size != r2.size:
raise ValueError('Both arguments must have the same input size.')
if r1.deriv != r2.deriv:
raise ValueError('Both arguments must have the same deriv.')
result = Vector3(r1.size, r1.deriv)
result.x = r1.y * r2.z - r1.z * r2.y
result.y = r1.z * r2.x - r1.x * r2.z
result.z = r1.x * r2.y - r1.y * r2.x
return result
|
cross
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r1, r2):\n if r1.size != r2.size:\n raise ValueError('Both arguments must have the same input size.')\n if r1.deriv != r2.deriv:\n raise ValueError('Both arguments must have the same deriv.')\n result = Vector3(r1.size, r1.deriv)\n result.x = r1.y * r2.z - r1.z * r2.y\n result.y = r1.z * r2.x - r1.x * r2.z\n result.z = r1.x * r2.y - r1.y * r2.x\n return result\n",
"role": "user"
},
{
"content": "cross",
"role": "assistant"
}
] |
def x(rs, fn_low, deriv=0):
v = 0.0
d = np.zeros((4, 3), float)
dd = np.zeros((4, 3, 4, 3), float)
for p in np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]]):
opbend = _opbend_transform([rs[p[0]], rs[p[1]], rs[p[2]], rs[3]],
fn_low, deriv)
v += opbend[0] / 3
index0 = np.where(p == 0)[0][0]
index1 = np.where(p == 1)[0][0]
index2 = np.where(p == 2)[0][0]
index3 = 3
if deriv > 0:
d[0] += opbend[1][index0] / 3
d[1] += opbend[1][index1] / 3
d[2] += opbend[1][index2] / 3
d[3] += opbend[1][index3] / 3
if deriv > 1:
dd[0, :, 0, :] += opbend[2][index0, :, index0, :] / 3
dd[0, :, 1, :] += opbend[2][index0, :, index1, :] / 3
dd[0, :, 2, :] += opbend[2][index0, :, index2, :] / 3
dd[0, :, 3, :] += opbend[2][index0, :, index3, :] / 3
dd[1, :, 0, :] += opbend[2][index1, :, index0, :] / 3
dd[1, :, 1, :] += opbend[2][index1, :, index1, :] / 3
dd[1, :, 2, :] += opbend[2][index1, :, index2, :] / 3
dd[1, :, 3, :] += opbend[2][index1, :, index3, :] / 3
dd[2, :, 0, :] += opbend[2][index2, :, index0, :] / 3
dd[2, :, 1, :] += opbend[2][index2, :, index1, :] / 3
dd[2, :, 2, :] += opbend[2][index2, :, index2, :] / 3
dd[2, :, 3, :] += opbend[2][index2, :, index3, :] / 3
dd[3, :, 0, :] += opbend[2][index3, :, index0, :] / 3
dd[3, :, 1, :] += opbend[2][index3, :, index1, :] / 3
dd[3, :, 2, :] += opbend[2][index3, :, index2, :] / 3
dd[3, :, 3, :] += opbend[2][index3, :, index3, :] / 3
if deriv == 0:
return v,
elif deriv == 1:
return v, d
elif deriv == 2:
return v, d, dd
else:
raise ValueError('deriv must be 0, 1 or 2.')
|
opbend_transform_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rs, fn_low, deriv=0):\n v = 0.0\n d = np.zeros((4, 3), float)\n dd = np.zeros((4, 3, 4, 3), float)\n for p in np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]]):\n opbend = _opbend_transform([rs[p[0]], rs[p[1]], rs[p[2]], rs[3]],\n fn_low, deriv)\n v += opbend[0] / 3\n index0 = np.where(p == 0)[0][0]\n index1 = np.where(p == 1)[0][0]\n index2 = np.where(p == 2)[0][0]\n index3 = 3\n if deriv > 0:\n d[0] += opbend[1][index0] / 3\n d[1] += opbend[1][index1] / 3\n d[2] += opbend[1][index2] / 3\n d[3] += opbend[1][index3] / 3\n if deriv > 1:\n dd[0, :, 0, :] += opbend[2][index0, :, index0, :] / 3\n dd[0, :, 1, :] += opbend[2][index0, :, index1, :] / 3\n dd[0, :, 2, :] += opbend[2][index0, :, index2, :] / 3\n dd[0, :, 3, :] += opbend[2][index0, :, index3, :] / 3\n dd[1, :, 0, :] += opbend[2][index1, :, index0, :] / 3\n dd[1, :, 1, :] += opbend[2][index1, :, index1, :] / 3\n dd[1, :, 2, :] += opbend[2][index1, :, index2, :] / 3\n dd[1, :, 3, :] += opbend[2][index1, :, index3, :] / 3\n dd[2, :, 0, :] += opbend[2][index2, :, index0, :] / 3\n dd[2, :, 1, :] += opbend[2][index2, :, index1, :] / 3\n dd[2, :, 2, :] += opbend[2][index2, :, index2, :] / 3\n dd[2, :, 3, :] += opbend[2][index2, :, index3, :] / 3\n dd[3, :, 0, :] += opbend[2][index3, :, index0, :] / 3\n dd[3, :, 1, :] += opbend[2][index3, :, index1, :] / 3\n dd[3, :, 2, :] += opbend[2][index3, :, index2, :] / 3\n dd[3, :, 3, :] += opbend[2][index3, :, index3, :] / 3\n if deriv == 0:\n return v,\n elif deriv == 1:\n return v, d\n elif deriv == 2:\n return v, d, dd\n else:\n raise ValueError('deriv must be 0, 1 or 2.')\n",
"role": "user"
},
{
"content": "opbend_transform_mean",
"role": "assistant"
}
] |
def x(r, deriv):
r = Vector3(3, deriv, r, (0, 1, 2))
d = r.norm()
return d.results()
|
bond_length_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r, deriv):\n r = Vector3(3, deriv, r, (0, 1, 2))\n d = r.norm()\n return d.results()\n",
"role": "user"
},
{
"content": "bond_length_low",
"role": "assistant"
}
] |
def x(a, b, deriv):
a = Vector3(6, deriv, a, (0, 1, 2))
b = Vector3(6, deriv, b, (3, 4, 5))
a /= a.norm()
b /= b.norm()
return dot(a, b).results()
|
bend_cos_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, deriv):\n a = Vector3(6, deriv, a, (0, 1, 2))\n b = Vector3(6, deriv, b, (3, 4, 5))\n a /= a.norm()\n b /= b.norm()\n return dot(a, b).results()\n",
"role": "user"
},
{
"content": "bend_cos_low",
"role": "assistant"
}
] |
def x(a, b, deriv):
result = _bend_cos_low(a, b, deriv)
return _cos_to_angle(result, deriv)
|
bend_angle_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, deriv):\n result = _bend_cos_low(a, b, deriv)\n return _cos_to_angle(result, deriv)\n",
"role": "user"
},
{
"content": "bend_angle_low",
"role": "assistant"
}
] |
def x(a, b, c, deriv):
a = Vector3(9, deriv, a, (0, 1, 2))
b = Vector3(9, deriv, b, (3, 4, 5))
c = Vector3(9, deriv, c, (6, 7, 8))
b /= b.norm()
tmp = b.copy()
tmp *= dot(a, b)
a -= tmp
tmp = b.copy()
tmp *= dot(c, b)
c -= tmp
a /= a.norm()
c /= c.norm()
return dot(a, c).results()
|
dihed_cos_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c, deriv):\n a = Vector3(9, deriv, a, (0, 1, 2))\n b = Vector3(9, deriv, b, (3, 4, 5))\n c = Vector3(9, deriv, c, (6, 7, 8))\n b /= b.norm()\n tmp = b.copy()\n tmp *= dot(a, b)\n a -= tmp\n tmp = b.copy()\n tmp *= dot(c, b)\n c -= tmp\n a /= a.norm()\n c /= c.norm()\n return dot(a, c).results()\n",
"role": "user"
},
{
"content": "dihed_cos_low",
"role": "assistant"
}
] |
def x(av, bv, cv, deriv):
a = Vector3(9, deriv, av, (0, 1, 2))
b = Vector3(9, deriv, bv, (3, 4, 5))
c = Vector3(9, deriv, cv, (6, 7, 8))
b /= b.norm()
tmp = b.copy()
tmp *= dot(a, b)
a -= tmp
tmp = b.copy()
tmp *= dot(c, b)
c -= tmp
a /= a.norm()
c /= c.norm()
result = dot(a, c).results()
if abs(result[0]) < 0.5:
sign = 1 - (np.linalg.det([av, bv, cv]) > 0) * 2
return _cos_to_angle(result, deriv, sign)
else:
d = cross(b, a)
side = (result[0] > 0) * 2 - 1
result = dot(d, c).results()
return _sin_to_angle(result, deriv, side)
|
dihed_angle_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(av, bv, cv, deriv):\n a = Vector3(9, deriv, av, (0, 1, 2))\n b = Vector3(9, deriv, bv, (3, 4, 5))\n c = Vector3(9, deriv, cv, (6, 7, 8))\n b /= b.norm()\n tmp = b.copy()\n tmp *= dot(a, b)\n a -= tmp\n tmp = b.copy()\n tmp *= dot(c, b)\n c -= tmp\n a /= a.norm()\n c /= c.norm()\n result = dot(a, c).results()\n if abs(result[0]) < 0.5:\n sign = 1 - (np.linalg.det([av, bv, cv]) > 0) * 2\n return _cos_to_angle(result, deriv, sign)\n else:\n d = cross(b, a)\n side = (result[0] > 0) * 2 - 1\n result = dot(d, c).results()\n return _sin_to_angle(result, deriv, side)\n",
"role": "user"
},
{
"content": "dihed_angle_low",
"role": "assistant"
}
] |
def x(av, bv, cv, deriv):
a = Vector3(9, deriv, av, (0, 1, 2))
b = Vector3(9, deriv, bv, (3, 4, 5))
c = Vector3(9, deriv, cv, (6, 7, 8))
n = cross(a, b)
n /= n.norm()
dist = dot(c, n)
return dist.results()
|
opdist_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(av, bv, cv, deriv):\n a = Vector3(9, deriv, av, (0, 1, 2))\n b = Vector3(9, deriv, bv, (3, 4, 5))\n c = Vector3(9, deriv, cv, (6, 7, 8))\n n = cross(a, b)\n n /= n.norm()\n dist = dot(c, n)\n return dist.results()\n",
"role": "user"
},
{
"content": "opdist_low",
"role": "assistant"
}
] |
def x(a, b, c, deriv):
a = Vector3(9, deriv, a, (0, 1, 2))
b = Vector3(9, deriv, b, (3, 4, 5))
c = Vector3(9, deriv, c, (6, 7, 8))
n = cross(a, b)
n /= n.norm()
c /= c.norm()
temp = dot(n, c)
result = temp.copy()
result.v = np.sqrt(1.0 - temp.v ** 2)
if result.deriv > 0:
result.d *= -temp.v
result.d /= result.v
if result.deriv > 1:
result.dd *= -temp.v
result.dd /= result.v
temp2 = np.array([temp.d]).transpose() * temp.d
temp2 /= result.v ** 3
result.dd -= temp2
return result.results()
|
opbend_cos_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c, deriv):\n a = Vector3(9, deriv, a, (0, 1, 2))\n b = Vector3(9, deriv, b, (3, 4, 5))\n c = Vector3(9, deriv, c, (6, 7, 8))\n n = cross(a, b)\n n /= n.norm()\n c /= c.norm()\n temp = dot(n, c)\n result = temp.copy()\n result.v = np.sqrt(1.0 - temp.v ** 2)\n if result.deriv > 0:\n result.d *= -temp.v\n result.d /= result.v\n if result.deriv > 1:\n result.dd *= -temp.v\n result.dd /= result.v\n temp2 = np.array([temp.d]).transpose() * temp.d\n temp2 /= result.v ** 3\n result.dd -= temp2\n return result.results()\n",
"role": "user"
},
{
"content": "opbend_cos_low",
"role": "assistant"
}
] |
def x(a, b, c, deriv=0):
result = _opbend_cos_low(a, b, c, deriv)
sign = np.sign(np.linalg.det([a, b, c]))
return _cos_to_angle(result, deriv, sign)
|
opbend_angle_low
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c, deriv=0):\n result = _opbend_cos_low(a, b, c, deriv)\n sign = np.sign(np.linalg.det([a, b, c]))\n return _cos_to_angle(result, deriv, sign)\n",
"role": "user"
},
{
"content": "opbend_angle_low",
"role": "assistant"
}
] |
def x(result, deriv, sign=1):
v = np.arccos(np.clip(result[0], -1, 1))
if deriv == 0:
return v * sign,
if abs(result[0]) >= 1:
factor1 = 0
else:
factor1 = -1.0 / np.sqrt(1 - result[0] ** 2)
d = factor1 * result[1]
if deriv == 1:
return v * sign, d * sign
factor2 = result[0] * factor1 ** 3
dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]
if deriv == 2:
return v * sign, d * sign, dd * sign
raise ValueError('deriv must be 0, 1 or 2.')
|
cos_to_angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, deriv, sign=1):\n v = np.arccos(np.clip(result[0], -1, 1))\n if deriv == 0:\n return v * sign,\n if abs(result[0]) >= 1:\n factor1 = 0\n else:\n factor1 = -1.0 / np.sqrt(1 - result[0] ** 2)\n d = factor1 * result[1]\n if deriv == 1:\n return v * sign, d * sign\n factor2 = result[0] * factor1 ** 3\n dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]\n if deriv == 2:\n return v * sign, d * sign, dd * sign\n raise ValueError('deriv must be 0, 1 or 2.')\n",
"role": "user"
},
{
"content": "cos_to_angle",
"role": "assistant"
}
] |
def x(result, deriv, side=1):
v = np.arcsin(np.clip(result[0], -1, 1))
sign = side
if sign == -1:
if v < 0:
offset = -np.pi
else:
offset = np.pi
else:
offset = 0.0
if deriv == 0:
return v * sign + offset,
if abs(result[0]) >= 1:
factor1 = 0
else:
factor1 = 1.0 / np.sqrt(1 - result[0] ** 2)
d = factor1 * result[1]
if deriv == 1:
return v * sign + offset, d * sign
factor2 = result[0] * factor1 ** 3
dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]
if deriv == 2:
return v * sign + offset, d * sign, dd * sign
raise ValueError('deriv must be 0, 1 or 2.')
|
sin_to_angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, deriv, side=1):\n v = np.arcsin(np.clip(result[0], -1, 1))\n sign = side\n if sign == -1:\n if v < 0:\n offset = -np.pi\n else:\n offset = np.pi\n else:\n offset = 0.0\n if deriv == 0:\n return v * sign + offset,\n if abs(result[0]) >= 1:\n factor1 = 0\n else:\n factor1 = 1.0 / np.sqrt(1 - result[0] ** 2)\n d = factor1 * result[1]\n if deriv == 1:\n return v * sign + offset, d * sign\n factor2 = result[0] * factor1 ** 3\n dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]\n if deriv == 2:\n return v * sign + offset, d * sign, dd * sign\n raise ValueError('deriv must be 0, 1 or 2.')\n",
"role": "user"
},
{
"content": "sin_to_angle",
"role": "assistant"
}
] |
def x(self):
result = Scalar(self.size, self.deriv)
result.v = self.v
if self.deriv > 0:
result.d[:] = self.d[:]
if self.deriv > 1:
result.dd[:] = self.dd[:]
return result
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = Scalar(self.size, self.deriv)\n result.v = self.v\n if self.deriv > 0:\n result.d[:] = self.d[:]\n if self.deriv > 1:\n result.dd[:] = self.dd[:]\n return result\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.