source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(user_provided_project): home = os.path.expanduser('~') if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')): with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp: projects = yaml.load(fp.read()) if len(projects) == 1: project = projects[0] elif user_provided_project in [project['name'] for project in projects ]: for inner_project in projects: if user_provided_project == inner_project['name']: project = inner_project else: print('Select your project') for i, project in enumerate(projects): print('[' + str(i) + ']: ' + project['name']) project_index = int_input('project', -1, len(projects), show_range=False) project = projects[project_index] else: print('Transfer is not configured.') print('Please run:') print('') print(colored(' transfer --configure', 'green')) return print(colored('Project selected: ' + project['name'], 'cyan')) return project
select_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_provided_project):\n home = os.path.expanduser('~')\n if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):\n with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:\n projects = yaml.load(fp.read())\n if len(projects) == 1:\n project = projects[0]\n elif user_provided_project in [project['name'] for project in projects\n ]:\n for inner_project in projects:\n if user_provided_project == inner_project['name']:\n project = inner_project\n else:\n print('Select your project')\n for i, project in enumerate(projects):\n print('[' + str(i) + ']: ' + project['name'])\n project_index = int_input('project', -1, len(projects),\n show_range=False)\n project = projects[project_index]\n else:\n print('Transfer is not configured.')\n print('Please run:')\n print('')\n print(colored(' transfer --configure', 'green'))\n return\n print(colored('Project selected: ' + project['name'], 'cyan'))\n return project\n", "role": "user" }, { "content": "select_project", "role": "assistant" } ]
def x(config, suffix=None): home = os.path.expanduser('~') if suffix is not None: config_path = os.path.join(home, '.transfer', suffix) else: config_path = os.path.join(home, '.transfer') os.makedirs(config_path, exist_ok=True) with open(os.path.join(config_path, 'config.yaml'), 'w') as fp: yaml.dump(config, fp)
store_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config, suffix=None):\n home = os.path.expanduser('~')\n if suffix is not None:\n config_path = os.path.join(home, '.transfer', suffix)\n else:\n config_path = os.path.join(home, '.transfer')\n os.makedirs(config_path, exist_ok=True)\n with open(os.path.join(config_path, 'config.yaml'), 'w') as fp:\n yaml.dump(config, fp)\n", "role": "user" }, { "content": "store_config", "role": "assistant" } ]
def x(updated_project): home = os.path.expanduser('~') if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')): with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp: projects = yaml.load(fp.read()) replace_index = -1 for i, project in enumerate(projects): if project['name'] == updated_project['name']: replace_index = i if replace_index > -1: projects[replace_index] = updated_project store_config(projects) else: print('Not saving configuration') print(colored('Project: ' + updated_project['name'] + ' was not found in configured projects!', 'red')) else: print('Transfer is not configured.') print('Please run:') print('') print(colored(' transfer --configure', 'cyan')) return
update_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(updated_project):\n home = os.path.expanduser('~')\n if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):\n with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:\n projects = yaml.load(fp.read())\n replace_index = -1\n for i, project in enumerate(projects):\n if project['name'] == updated_project['name']:\n replace_index = i\n if replace_index > -1:\n projects[replace_index] = updated_project\n store_config(projects)\n else:\n print('Not saving configuration')\n print(colored('Project: ' + updated_project['name'] +\n ' was not found in configured projects!', 'red'))\n else:\n print('Transfer is not configured.')\n print('Please run:')\n print('')\n print(colored(' transfer --configure', 'cyan'))\n return\n", "role": "user" }, { "content": "update_config", "role": "assistant" } ]
def x(*params): result = {} for index, param in enumerate(params): if param is None: continue elif isinstance(param, int): result[index] = HasAtomNumber(param) else: result[index] = param return result
atom_criteria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*params):\n result = {}\n for index, param in enumerate(params):\n if param is None:\n continue\n elif isinstance(param, int):\n result[index] = HasAtomNumber(param)\n else:\n result[index] = param\n return result\n", "role": "user" }, { "content": "atom_criteria", "role": "assistant" } ]
def x(self, symbols): if len(symbols) != self.size: raise TypeError( 'The number of symbols in the graph does not match the length of the atomic numbers array.' ) for symbol in symbols: if not isinstance(symbol, str): raise TypeError('All symbols must be strings.')
check_symbols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, symbols):\n if len(symbols) != self.size:\n raise TypeError(\n 'The number of symbols in the graph does not match the length of the atomic numbers array.'\n )\n for symbol in symbols:\n if not isinstance(symbol, str):\n raise TypeError('All symbols must be strings.')\n", "role": "user" }, { "content": "check_symbols", "role": "assistant" } ]
def x(cls, molecule, do_orders=False, scaling=1.0): from molmod.bonds import bonds unit_cell = molecule.unit_cell pair_search = PairSearchIntra(molecule.coordinates, bonds.max_length * bonds.bond_tolerance * scaling, unit_cell) orders = [] lengths = [] edges = [] for i0, i1, delta, distance in pair_search: bond_order = bonds.bonded(molecule.numbers[i0], molecule.numbers[i1 ], distance / scaling) if bond_order is not None: if do_orders: orders.append(bond_order) lengths.append(distance) edges.append((i0, i1)) if do_orders: result = cls(edges, molecule.numbers, orders, symbols=molecule.symbols) else: result = cls(edges, molecule.numbers, symbols=molecule.symbols) slated_for_removal = set([]) threshold = 0.5 ** 0.5 for c, ns in result.neighbors.items(): lengths_ns = [] for n in ns: delta = molecule.coordinates[n] - molecule.coordinates[c] if unit_cell is not None: delta = unit_cell.shortest_vector(delta) length = np.linalg.norm(delta) lengths_ns.append([length, delta, n]) lengths_ns.sort(reverse=True, key=lambda r: r[0]) for i0, (length0, delta0, n0) in enumerate(lengths_ns): for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]): if length1 == 0.0: continue cosine = np.dot(delta0, delta1) / length0 / length1 if cosine > threshold: slated_for_removal.add((c, n1)) lengths_ns[i1][0] = 0.0 mask = np.ones(len(edges), bool) for i0, i1 in slated_for_removal: edge_index = result.edge_index.get(frozenset([i0, i1])) if edge_index is None: raise ValueError( 'Could not find edge that has to be removed: %i %i' % (i0, i1)) mask[edge_index] = False edges = [edges[i] for i in range(len(edges)) if mask[i]] if do_orders: bond_order = [bond_order[i] for i in range(len(bond_order)) if mask[i]] result = cls(edges, molecule.numbers, orders) else: result = cls(edges, molecule.numbers) lengths = [lengths[i] for i in range(len(lengths)) if mask[i]] result.bond_lengths = np.array(lengths) return result
from_geometry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, molecule, do_orders=False, scaling=1.0):\n from molmod.bonds import bonds\n unit_cell = molecule.unit_cell\n pair_search = PairSearchIntra(molecule.coordinates, bonds.max_length *\n bonds.bond_tolerance * scaling, unit_cell)\n orders = []\n lengths = []\n edges = []\n for i0, i1, delta, distance in pair_search:\n bond_order = bonds.bonded(molecule.numbers[i0], molecule.numbers[i1\n ], distance / scaling)\n if bond_order is not None:\n if do_orders:\n orders.append(bond_order)\n lengths.append(distance)\n edges.append((i0, i1))\n if do_orders:\n result = cls(edges, molecule.numbers, orders, symbols=molecule.symbols)\n else:\n result = cls(edges, molecule.numbers, symbols=molecule.symbols)\n slated_for_removal = set([])\n threshold = 0.5 ** 0.5\n for c, ns in result.neighbors.items():\n lengths_ns = []\n for n in ns:\n delta = molecule.coordinates[n] - molecule.coordinates[c]\n if unit_cell is not None:\n delta = unit_cell.shortest_vector(delta)\n length = np.linalg.norm(delta)\n lengths_ns.append([length, delta, n])\n lengths_ns.sort(reverse=True, key=lambda r: r[0])\n for i0, (length0, delta0, n0) in enumerate(lengths_ns):\n for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]):\n if length1 == 0.0:\n continue\n cosine = np.dot(delta0, delta1) / length0 / length1\n if cosine > threshold:\n slated_for_removal.add((c, n1))\n lengths_ns[i1][0] = 0.0\n mask = np.ones(len(edges), bool)\n for i0, i1 in slated_for_removal:\n edge_index = result.edge_index.get(frozenset([i0, i1]))\n if edge_index is None:\n raise ValueError(\n 'Could not find edge that has to be removed: %i %i' % (i0, i1))\n mask[edge_index] = False\n edges = [edges[i] for i in range(len(edges)) if mask[i]]\n if do_orders:\n bond_order = [bond_order[i] for i in range(len(bond_order)) if mask[i]]\n result = cls(edges, molecule.numbers, orders)\n else:\n result = cls(edges, molecule.numbers)\n lengths = [lengths[i] for i in range(len(lengths)) if mask[i]]\n result.bond_lengths = np.array(lengths)\n return result\n", "role": "user" }, { "content": "from_geometry", "role": "assistant" } ]
def x(cls, s): atom_str, edge_str = s.split() numbers = np.array([int(s) for s in atom_str.split(',')]) edges = [] orders = [] for s in edge_str.split(','): i, j, o = (int(w) for w in s.split('_')) edges.append((i, j)) orders.append(o) return cls(edges, numbers, np.array(orders))
from_blob
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n atom_str, edge_str = s.split()\n numbers = np.array([int(s) for s in atom_str.split(',')])\n edges = []\n orders = []\n for s in edge_str.split(','):\n i, j, o = (int(w) for w in s.split('_'))\n edges.append((i, j))\n orders.append(o)\n return cls(edges, numbers, np.array(orders))\n", "role": "user" }, { "content": "from_blob", "role": "assistant" } ]
def x(self): atom_str = ','.join(str(number) for number in self.numbers) edge_str = ','.join('%i_%i_%i' % (i, j, o) for (i, j), o in zip(self. edges, self.orders)) return '%s %s' % (atom_str, edge_str)
blob
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n atom_str = ','.join(str(number) for number in self.numbers)\n edge_str = ','.join('%i_%i_%i' % (i, j, o) for (i, j), o in zip(self.\n edges, self.orders))\n return '%s %s' % (atom_str, edge_str)\n", "role": "user" }, { "content": "blob", "role": "assistant" } ]
def x(self, i): number = self.numbers[i] if number == 0: return Graph.get_vertex_string(self, i) else: return '%03i' % number
get_vertex_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n number = self.numbers[i]\n if number == 0:\n return Graph.get_vertex_string(self, i)\n else:\n return '%03i' % number\n", "role": "user" }, { "content": "get_vertex_string", "role": "assistant" } ]
def x(self, i): order = self.orders[i] if order == 0: return Graph.get_edge_string(self, i) else: return '%03i' % order
get_edge_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n order = self.orders[i]\n if order == 0:\n return Graph.get_edge_string(self, i)\n else:\n return '%03i' % order\n", "role": "user" }, { "content": "get_edge_string", "role": "assistant" } ]
def x(self, subvertices, normalize=False): graph = Graph.get_subgraph(self, subvertices, normalize) if normalize: new_numbers = self.numbers[graph._old_vertex_indexes] else: new_numbers = self.numbers if self.symbols is None: new_symbols = None elif normalize: new_symbols = tuple(self.symbols[i] for i in graph._old_vertex_indexes) else: new_symbols = self.symbols new_orders = self.orders[graph._old_edge_indexes] result = MolecularGraph(graph.edges, new_numbers, new_orders, new_symbols) if normalize: result._old_vertex_indexes = graph._old_vertex_indexes result._old_edge_indexes = graph._old_edge_indexes return result
get_subgraph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subvertices, normalize=False):\n graph = Graph.get_subgraph(self, subvertices, normalize)\n if normalize:\n new_numbers = self.numbers[graph._old_vertex_indexes]\n else:\n new_numbers = self.numbers\n if self.symbols is None:\n new_symbols = None\n elif normalize:\n new_symbols = tuple(self.symbols[i] for i in graph._old_vertex_indexes)\n else:\n new_symbols = self.symbols\n new_orders = self.orders[graph._old_edge_indexes]\n result = MolecularGraph(graph.edges, new_numbers, new_orders, new_symbols)\n if normalize:\n result._old_vertex_indexes = graph._old_vertex_indexes\n result._old_edge_indexes = graph._old_edge_indexes\n return result\n", "role": "user" }, { "content": "get_subgraph", "role": "assistant" } ]
def x(self, formal_charges=None): new_edges = list(self.edges) counter = self.num_vertices for i in range(self.num_vertices): num_elec = self.numbers[i] if formal_charges is not None: num_elec -= int(formal_charges[i]) if num_elec >= 5 and num_elec <= 9: num_hydrogen = num_elec - 10 + 8 elif num_elec >= 13 and num_elec <= 17: num_hydrogen = num_elec - 18 + 8 elif num_elec == 35: num_hydrogen = 1 else: continue if num_hydrogen > 4: num_hydrogen = 8 - num_hydrogen for n in self.neighbors[i]: bo = self.orders[self.edge_index[frozenset([i, n])]] if bo <= 0: bo = 1 num_hydrogen -= int(bo) for j in range(num_hydrogen): new_edges.append((i, counter)) counter += 1 new_numbers = np.zeros(counter, int) new_numbers[:self.num_vertices] = self.numbers new_numbers[self.num_vertices:] = 1 new_orders = np.zeros(len(new_edges), int) new_orders[:self.num_edges] = self.orders new_orders[self.num_edges:] = 1 result = MolecularGraph(new_edges, new_numbers, new_orders) return result
add_hydrogens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, formal_charges=None):\n new_edges = list(self.edges)\n counter = self.num_vertices\n for i in range(self.num_vertices):\n num_elec = self.numbers[i]\n if formal_charges is not None:\n num_elec -= int(formal_charges[i])\n if num_elec >= 5 and num_elec <= 9:\n num_hydrogen = num_elec - 10 + 8\n elif num_elec >= 13 and num_elec <= 17:\n num_hydrogen = num_elec - 18 + 8\n elif num_elec == 35:\n num_hydrogen = 1\n else:\n continue\n if num_hydrogen > 4:\n num_hydrogen = 8 - num_hydrogen\n for n in self.neighbors[i]:\n bo = self.orders[self.edge_index[frozenset([i, n])]]\n if bo <= 0:\n bo = 1\n num_hydrogen -= int(bo)\n for j in range(num_hydrogen):\n new_edges.append((i, counter))\n counter += 1\n new_numbers = np.zeros(counter, int)\n new_numbers[:self.num_vertices] = self.numbers\n new_numbers[self.num_vertices:] = 1\n new_orders = np.zeros(len(new_edges), int)\n new_orders[:self.num_edges] = self.orders\n new_orders[self.num_edges:] = 1\n result = MolecularGraph(new_edges, new_numbers, new_orders)\n return result\n", "role": "user" }, { "content": "add_hydrogens", "role": "assistant" } ]
def x(self, match, new_relations, subject_graph, one_match): if not CustomPattern.check_next_match(self, match, new_relations, subject_graph, one_match): return False if self.strong: vertex1_start = match.forward[self.pattern_graph.central_vertex] for vertex1 in new_relations.values(): paths = list(subject_graph.iter_shortest_paths(vertex1, vertex1_start)) if self.size % 2 == 0 and len(match) == self.size: if len(paths) != 2: return False for path in paths: if len(path) != len(match) // 2 + 1: return False else: if len(paths) != 1: return False if len(paths[0]) != (len(match) + 1) // 2: return False return True
check_next_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match, new_relations, subject_graph, one_match):\n if not CustomPattern.check_next_match(self, match, new_relations,\n subject_graph, one_match):\n return False\n if self.strong:\n vertex1_start = match.forward[self.pattern_graph.central_vertex]\n for vertex1 in new_relations.values():\n paths = list(subject_graph.iter_shortest_paths(vertex1,\n vertex1_start))\n if self.size % 2 == 0 and len(match) == self.size:\n if len(paths) != 2:\n return False\n for path in paths:\n if len(path) != len(match) // 2 + 1:\n return False\n else:\n if len(paths) != 1:\n return False\n if len(paths[0]) != (len(match) + 1) // 2:\n return False\n return True\n", "role": "user" }, { "content": "check_next_match", "role": "assistant" } ]
def x(self, match, subject_graph): if not CustomPattern.complete(self, match, subject_graph): return False if self.strong: if self.size % 2 == 0: for i in range(self.size // 2): vertex1_start = match.forward[i] vertex1_stop = match.forward[(i + self.size // 2) % self.size] paths = list(subject_graph.iter_shortest_paths( vertex1_start, vertex1_stop)) if len(paths) != 2: return False for path in paths: if len(path) != self.size // 2 + 1: return False else: for i in range(self.size // 2 + 1): vertex1_start = match.forward[i] vertex1_stop = match.forward[(i + self.size // 2) % self.size] paths = list(subject_graph.iter_shortest_paths( vertex1_start, vertex1_stop)) if len(paths) > 1: return False if len(paths[0]) != self.size // 2 + 1: return False vertex1_stop = match.forward[(i + self.size // 2 + 1) % self.size] paths = list(subject_graph.iter_shortest_paths( vertex1_start, vertex1_stop)) if len(paths) > 1: return False if len(paths[0]) != self.size // 2 + 1: return False return True
complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match, subject_graph):\n if not CustomPattern.complete(self, match, subject_graph):\n return False\n if self.strong:\n if self.size % 2 == 0:\n for i in range(self.size // 2):\n vertex1_start = match.forward[i]\n vertex1_stop = match.forward[(i + self.size // 2) % self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) != 2:\n return False\n for path in paths:\n if len(path) != self.size // 2 + 1:\n return False\n else:\n for i in range(self.size // 2 + 1):\n vertex1_start = match.forward[i]\n vertex1_stop = match.forward[(i + self.size // 2) % self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) > 1:\n return False\n if len(paths[0]) != self.size // 2 + 1:\n return False\n vertex1_stop = match.forward[(i + self.size // 2 + 1) %\n self.size]\n paths = list(subject_graph.iter_shortest_paths(\n vertex1_start, vertex1_stop))\n if len(paths) > 1:\n return False\n if len(paths[0]) != self.size // 2 + 1:\n return False\n return True\n", "role": "user" }, { "content": "complete", "role": "assistant" } ]
def x(self, value): if isinstance(value, float): return 'f' elif isinstance(value, int): return 'i' else: raise ValueError('Only integer or floating point values can be stored.' )
get_kind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if isinstance(value, float):\n return 'f'\n elif isinstance(value, int):\n return 'i'\n else:\n raise ValueError('Only integer or floating point values can be stored.'\n )\n", "role": "user" }, { "content": "get_kind", "role": "assistant" } ]
def x(self, f, name): value = self.get() kind = self.get_kind(value) print('% 40s kind=%s value=%s' % (name, kind, value), file=f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, name):\n value = self.get()\n kind = self.get_kind(value)\n print('% 40s kind=%s value=%s' % (name, kind, value), file=f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, copy=False): array = getattr(self.owner, self.name) if copy: return array.copy() else: return array
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, copy=False):\n array = getattr(self.owner, self.name)\n if copy:\n return array.copy()\n else:\n return array\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, f, name): array = self.get() print('% 40s kind=%s shape=(%s)' % (name, array.dtype.kind, ','.join( [str(int(size_axis)) for size_axis in array.shape])), file=f) counter = 0 for value in array.flat: counter += 1 print('% 20s' % value, end=' ', file=f) if counter % 4 == 0: print(file=f) if counter % 4 != 0: print(file=f)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, name):\n array = self.get()\n print('% 40s kind=%s shape=(%s)' % (name, array.dtype.kind, ','.join(\n [str(int(size_axis)) for size_axis in array.shape])), file=f)\n counter = 0\n for value in array.flat:\n counter += 1\n print('% 20s' % value, end=' ', file=f)\n if counter % 4 == 0:\n print(file=f)\n if counter % 4 != 0:\n print(file=f)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, f, skip): array = self.get() counter = 0 counter_limit = array.size convert = array.dtype.type while counter < counter_limit: line = f.readline() words = line.split() for word in words: if counter >= counter_limit: raise FileFormatError('Wrong array data: too many values.') if not skip: array.flat[counter] = convert(word) counter += 1
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, skip):\n array = self.get()\n counter = 0\n counter_limit = array.size\n convert = array.dtype.type\n while counter < counter_limit:\n line = f.readline()\n words = line.split()\n for word in words:\n if counter >= counter_limit:\n raise FileFormatError('Wrong array data: too many values.')\n if not skip:\n array.flat[counter] = convert(word)\n counter += 1\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, name, AttrCls): if not issubclass(AttrCls, StateAttr): raise TypeError('The second argument must a StateAttr instance.') if len(name) > 40: raise ValueError('Name can count at most 40 characters.') self._fields[name] = AttrCls(self._owner, name)
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, AttrCls):\n if not issubclass(AttrCls, StateAttr):\n raise TypeError('The second argument must a StateAttr instance.')\n if len(name) > 40:\n raise ValueError('Name can count at most 40 characters.')\n self._fields[name] = AttrCls(self._owner, name)\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self, subset=None): if subset is None: return dict((name, attr.get(copy=True)) for name, attr in self. _fields.items()) else: return dict((name, attr.get(copy=True)) for name, attr in self. _fields.items() if name in subset)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subset=None):\n if subset is None:\n return dict((name, attr.get(copy=True)) for name, attr in self.\n _fields.items())\n else:\n return dict((name, attr.get(copy=True)) for name, attr in self.\n _fields.items() if name in subset)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, new_fields, subset=None): for name in new_fields: if name not in self._fields and (subset is None or name in subset): raise ValueError("new_fields contains an unknown field '%s'." % name) if subset is not None: for name in subset: if name not in self._fields: raise ValueError( "name '%s' in subset is not a known field in self._fields." % name) if name not in new_fields: raise ValueError( "name '%s' in subset is not a known field in new_fields." % name) if subset is None: if len(new_fields) != len(self._fields): raise ValueError('new_fields contains too many fields.') for name, attr in self._fields.items(): if name in subset: attr.set(new_fields[name])
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_fields, subset=None):\n for name in new_fields:\n if name not in self._fields and (subset is None or name in subset):\n raise ValueError(\"new_fields contains an unknown field '%s'.\" %\n name)\n if subset is not None:\n for name in subset:\n if name not in self._fields:\n raise ValueError(\n \"name '%s' in subset is not a known field in self._fields.\"\n % name)\n if name not in new_fields:\n raise ValueError(\n \"name '%s' in subset is not a known field in new_fields.\" %\n name)\n if subset is None:\n if len(new_fields) != len(self._fields):\n raise ValueError('new_fields contains too many fields.')\n for name, attr in self._fields.items():\n if name in subset:\n attr.set(new_fields[name])\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(self, filename): with open(filename, 'w') as f: for name in sorted(self._fields): self._fields[name].dump(f, name)
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n with open(filename, 'w') as f:\n for name in sorted(self._fields):\n self._fields[name].dump(f, name)\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, filename, subset=None): with open(filename, 'r') as f: name = None num_names = 0 while True: line = f.readline() if len(line) == 0: break words = line.split() name = words[0] attr = self._fields.get(name) if attr is None: raise FileFormatError('Wrong header: unknown field %s' % name) if not words[1].startswith('kind='): raise FileFormatError('Malformatted array header line. (kind)') kind = words[1][5:] expected_kind = attr.get_kind(attr.get()) if kind != expected_kind: raise FileFormatError( 'Wrong header: kind of field %s does not match. Got %s, expected %s' % (name, kind, expected_kind)) skip = subset is not None and name not in subset print(words) if words[2].startswith('shape=(') and words[2].endswith(')'): if not isinstance(attr, ArrayAttr): raise FileFormatError("field '%s' is not an array." % name) shape = words[2][7:-1] if shape[-1] == ', ': shape = shape[:-1] try: shape = tuple(int(word) for word in shape.split(',')) except ValueError: raise FileFormatError('Malformatted array header. (shape)') expected_shape = attr.get().shape if shape != expected_shape: raise FileFormatError( 'Wrong header: shape of field %s does not match. Got %s, expected %s' % (name, shape, expected_shape)) attr.load(f, skip) elif words[2].startswith('value='): if not isinstance(attr, ScalarAttr): raise FileFormatError( "field '%s' is not a single value." % name) if not skip: if kind == 'i': attr.set(int(words[2][6:])) else: attr.set(float(words[2][6:])) else: raise FileFormatError( 'Malformatted array header line. (shape/value)') num_names += 1 if num_names != len(self._fields) and subset is None: raise FileFormatError('Some fields are missing in the file.')
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, subset=None):\n with open(filename, 'r') as f:\n name = None\n num_names = 0\n while True:\n line = f.readline()\n if len(line) == 0:\n break\n words = line.split()\n name = words[0]\n attr = self._fields.get(name)\n if attr is None:\n raise FileFormatError('Wrong header: unknown field %s' % name)\n if not words[1].startswith('kind='):\n raise FileFormatError('Malformatted array header line. (kind)')\n kind = words[1][5:]\n expected_kind = attr.get_kind(attr.get())\n if kind != expected_kind:\n raise FileFormatError(\n 'Wrong header: kind of field %s does not match. Got %s, expected %s'\n % (name, kind, expected_kind))\n skip = subset is not None and name not in subset\n print(words)\n if words[2].startswith('shape=(') and words[2].endswith(')'):\n if not isinstance(attr, ArrayAttr):\n raise FileFormatError(\"field '%s' is not an array.\" % name)\n shape = words[2][7:-1]\n if shape[-1] == ', ':\n shape = shape[:-1]\n try:\n shape = tuple(int(word) for word in shape.split(','))\n except ValueError:\n raise FileFormatError('Malformatted array header. (shape)')\n expected_shape = attr.get().shape\n if shape != expected_shape:\n raise FileFormatError(\n 'Wrong header: shape of field %s does not match. Got %s, expected %s'\n % (name, shape, expected_shape))\n attr.load(f, skip)\n elif words[2].startswith('value='):\n if not isinstance(attr, ScalarAttr):\n raise FileFormatError(\n \"field '%s' is not a single value.\" % name)\n if not skip:\n if kind == 'i':\n attr.set(int(words[2][6:]))\n else:\n attr.set(float(words[2][6:]))\n else:\n raise FileFormatError(\n 'Malformatted array header line. (shape/value)')\n num_names += 1\n if num_names != len(self._fields) and subset is None:\n raise FileFormatError('Some fields are missing in the file.')\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): def x(unit_names): tmp = {'A': units.angstrom, 'pm': units.picometer, 'nm': units. nanometer} return [tmp[unit_name] for unit_name in unit_names] def x(BOND_TYPE, words, col): nlow = int(words[2]) nhigh = int(words[3]) for i, conversion in zip(range((len(words) - 4) // 3), conversions): word = words[col + 3 + i * 3] if word != 'NA': self.lengths[BOND_TYPE][frozenset([nlow, nhigh])] = float(word ) * conversion return with pkg_resources.resource_stream(__name__, 'data/bonds.csv') as f: for line in f: words = line.decode('utf-8').split() if len(words) > 0 and words[0][0] != '#': if words[0] == 'unit': conversions = read_units(words[1:]) else: read_length(BOND_SINGLE, words, 1) read_length(BOND_DOUBLE, words, 2) read_length(BOND_TRIPLE, words, 3)
load_bond_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(unit_names):\n tmp = {'A': units.angstrom, 'pm': units.picometer, 'nm': units.\n nanometer}\n return [tmp[unit_name] for unit_name in unit_names]\n\n def x(BOND_TYPE, words, col):\n nlow = int(words[2])\n nhigh = int(words[3])\n for i, conversion in zip(range((len(words) - 4) // 3), conversions):\n word = words[col + 3 + i * 3]\n if word != 'NA':\n self.lengths[BOND_TYPE][frozenset([nlow, nhigh])] = float(word\n ) * conversion\n return\n with pkg_resources.resource_stream(__name__, 'data/bonds.csv') as f:\n for line in f:\n words = line.decode('utf-8').split()\n if len(words) > 0 and words[0][0] != '#':\n if words[0] == 'unit':\n conversions = read_units(words[1:])\n else:\n read_length(BOND_SINGLE, words, 1)\n read_length(BOND_DOUBLE, words, 2)\n read_length(BOND_TRIPLE, words, 3)\n", "role": "user" }, { "content": "load_bond_data", "role": "assistant" } ]
def x(self): dataset = self.lengths[BOND_SINGLE] for n1 in periodic.iter_numbers(): for n2 in periodic.iter_numbers(): if n1 <= n2: pair = frozenset([n1, n2]) atom1 = periodic[n1] atom2 = periodic[n2] if (pair not in dataset and atom1.covalent_radius is not None and atom2.covalent_radius is not None): dataset[pair ] = atom1.covalent_radius + atom2.covalent_radius
approximate_unkown_bond_lengths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dataset = self.lengths[BOND_SINGLE]\n for n1 in periodic.iter_numbers():\n for n2 in periodic.iter_numbers():\n if n1 <= n2:\n pair = frozenset([n1, n2])\n atom1 = periodic[n1]\n atom2 = periodic[n2]\n if (pair not in dataset and atom1.covalent_radius is not\n None and atom2.covalent_radius is not None):\n dataset[pair\n ] = atom1.covalent_radius + atom2.covalent_radius\n", "role": "user" }, { "content": "approximate_unkown_bond_lengths", "role": "assistant" } ]
def x(self, n1, n2, distance): if distance > self.max_length * self.bond_tolerance: return None deviation = 0.0 pair = frozenset([n1, n2]) result = None for bond_type in bond_types: bond_length = self.lengths[bond_type].get(pair) if (bond_length is not None and distance < bond_length * self. bond_tolerance): if result is None: result = bond_type deviation = abs(bond_length - distance) else: new_deviation = abs(bond_length - distance) if deviation > new_deviation: result = bond_type deviation = new_deviation return result
bonded
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n1, n2, distance):\n if distance > self.max_length * self.bond_tolerance:\n return None\n deviation = 0.0\n pair = frozenset([n1, n2])\n result = None\n for bond_type in bond_types:\n bond_length = self.lengths[bond_type].get(pair)\n if (bond_length is not None and distance < bond_length * self.\n bond_tolerance):\n if result is None:\n result = bond_type\n deviation = abs(bond_length - distance)\n else:\n new_deviation = abs(bond_length - distance)\n if deviation > new_deviation:\n result = bond_type\n deviation = new_deviation\n return result\n", "role": "user" }, { "content": "bonded", "role": "assistant" } ]
def x(self, n1, n2, bond_type=BOND_SINGLE): dataset = self.lengths.get(bond_type) if dataset == None: return None return dataset.get(frozenset([n1, n2]))
get_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n1, n2, bond_type=BOND_SINGLE):\n dataset = self.lengths.get(bond_type)\n if dataset == None:\n return None\n return dataset.get(frozenset([n1, n2]))\n", "role": "user" }, { "content": "get_length", "role": "assistant" } ]
def x(cls, lengths, angles): for length in lengths: if length <= 0: raise ValueError('The length parameters must be strictly positive.' ) for angle in angles: if angle <= 0 or angle >= np.pi: raise ValueError( 'The angle parameters must lie in the range ]0 deg, 180 deg[.') del length del angle matrix = np.zeros((3, 3), float) matrix[0, 0] = lengths[0] matrix[0, 1] = np.cos(angles[2]) * lengths[1] matrix[1, 1] = np.sin(angles[2]) * lengths[1] u_a = lengths[0] * lengths[2] * np.cos(angles[1]) u_b = lengths[1] * lengths[2] * np.cos(angles[0]) matrix[0, 2] = u_a / matrix[0, 0] matrix[1, 2] = (u_b - matrix[0, 1] * matrix[0, 2]) / matrix[1, 1] u_c = lengths[2] ** 2 - matrix[0, 2] ** 2 - matrix[1, 2] ** 2 if u_c < 0: raise ValueError( 'The given cell parameters do not correspond to a unit cell.') matrix[2, 2] = np.sqrt(u_c) active = np.ones(3, bool) return cls(matrix, active)
from_parameters3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, lengths, angles):\n for length in lengths:\n if length <= 0:\n raise ValueError('The length parameters must be strictly positive.'\n )\n for angle in angles:\n if angle <= 0 or angle >= np.pi:\n raise ValueError(\n 'The angle parameters must lie in the range ]0 deg, 180 deg[.')\n del length\n del angle\n matrix = np.zeros((3, 3), float)\n matrix[0, 0] = lengths[0]\n matrix[0, 1] = np.cos(angles[2]) * lengths[1]\n matrix[1, 1] = np.sin(angles[2]) * lengths[1]\n u_a = lengths[0] * lengths[2] * np.cos(angles[1])\n u_b = lengths[1] * lengths[2] * np.cos(angles[0])\n matrix[0, 2] = u_a / matrix[0, 0]\n matrix[1, 2] = (u_b - matrix[0, 1] * matrix[0, 2]) / matrix[1, 1]\n u_c = lengths[2] ** 2 - matrix[0, 2] ** 2 - matrix[1, 2] ** 2\n if u_c < 0:\n raise ValueError(\n 'The given cell parameters do not correspond to a unit cell.')\n matrix[2, 2] = np.sqrt(u_c)\n active = np.ones(3, bool)\n return cls(matrix, active)\n", "role": "user" }, { "content": "from_parameters3", "role": "assistant" } ]
def x(self): active = self.active_inactive[0] if len(active) == 0: return -1 elif len(active) == 1: return np.linalg.norm(self.matrix[:, active[0]]) elif len(active) == 2: return np.linalg.norm(np.cross(self.matrix[:, active[0]], self. matrix[:, active[1]])) elif len(active) == 3: return abs(np.linalg.det(self.matrix))
volume
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n active = self.active_inactive[0]\n if len(active) == 0:\n return -1\n elif len(active) == 1:\n return np.linalg.norm(self.matrix[:, active[0]])\n elif len(active) == 2:\n return np.linalg.norm(np.cross(self.matrix[:, active[0]], self.\n matrix[:, active[1]]))\n elif len(active) == 3:\n return abs(np.linalg.det(self.matrix))\n", "role": "user" }, { "content": "volume", "role": "assistant" } ]
def x(self): active_indices = [] inactive_indices = [] for index, active in enumerate(self.active): if active: active_indices.append(index) else: inactive_indices.append(index) return active_indices, inactive_indices
active_inactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n active_indices = []\n inactive_indices = []\n for index, active in enumerate(self.active):\n if active:\n active_indices.append(index)\n else:\n inactive_indices.append(index)\n return active_indices, inactive_indices\n", "role": "user" }, { "content": "active_inactive", "role": "assistant" } ]
def x(self): U, S, Vt = np.linalg.svd(self.matrix * self.active) Sinv = np.zeros(S.shape, float) for i in range(3): if abs(S[i]) < self.eps: Sinv[i] = 0.0 else: Sinv[i] = 1.0 / S[i] return np.dot(U * Sinv, Vt) * self.active
reciprocal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n U, S, Vt = np.linalg.svd(self.matrix * self.active)\n Sinv = np.zeros(S.shape, float)\n for i in range(3):\n if abs(S[i]) < self.eps:\n Sinv[i] = 0.0\n else:\n Sinv[i] = 1.0 / S[i]\n return np.dot(U * Sinv, Vt) * self.active\n", "role": "user" }, { "content": "reciprocal", "role": "assistant" } ]
def x(self): length_a = np.linalg.norm(self.matrix[:, 0]) length_b = np.linalg.norm(self.matrix[:, 1]) length_c = np.linalg.norm(self.matrix[:, 2]) alpha = np.arccos(np.dot(self.matrix[:, 1], self.matrix[:, 2]) / ( length_b * length_c)) beta = np.arccos(np.dot(self.matrix[:, 2], self.matrix[:, 0]) / ( length_c * length_a)) gamma = np.arccos(np.dot(self.matrix[:, 0], self.matrix[:, 1]) / ( length_a * length_b)) return np.array([length_a, length_b, length_c], float), np.array([alpha, beta, gamma], float)
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n length_a = np.linalg.norm(self.matrix[:, 0])\n length_b = np.linalg.norm(self.matrix[:, 1])\n length_c = np.linalg.norm(self.matrix[:, 2])\n alpha = np.arccos(np.dot(self.matrix[:, 1], self.matrix[:, 2]) / (\n length_b * length_c))\n beta = np.arccos(np.dot(self.matrix[:, 2], self.matrix[:, 0]) / (\n length_c * length_a))\n gamma = np.arccos(np.dot(self.matrix[:, 0], self.matrix[:, 1]) / (\n length_a * length_b))\n return np.array([length_a, length_b, length_c], float), np.array([alpha,\n beta, gamma], float)\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self): active, inactive = self.active_inactive order = active + inactive return UnitCell(self.matrix[:, order], self.active[order])
ordered
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n active, inactive = self.active_inactive\n order = active + inactive\n return UnitCell(self.matrix[:, order], self.active[order])\n", "role": "user" }, { "content": "ordered", "role": "assistant" } ]
def x(self): from molmod.transformations import Rotation new_x = self.matrix[:, 0].copy() new_x /= np.linalg.norm(new_x) new_z = np.cross(new_x, self.matrix[:, 1]) new_z /= np.linalg.norm(new_z) new_y = np.cross(new_z, new_x) new_y /= np.linalg.norm(new_y) return Rotation(np.array([new_x, new_y, new_z]))
alignment_a
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from molmod.transformations import Rotation\n new_x = self.matrix[:, 0].copy()\n new_x /= np.linalg.norm(new_x)\n new_z = np.cross(new_x, self.matrix[:, 1])\n new_z /= np.linalg.norm(new_z)\n new_y = np.cross(new_z, new_x)\n new_y /= np.linalg.norm(new_y)\n return Rotation(np.array([new_x, new_y, new_z]))\n", "role": "user" }, { "content": "alignment_a", "role": "assistant" } ]
def x(self): result_invsq = (self.reciprocal ** 2).sum(axis=0) result = np.zeros(3, float) for i in range(3): if result_invsq[i] > 0: result[i] = result_invsq[i] ** -0.5 return result
spacings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result_invsq = (self.reciprocal ** 2).sum(axis=0)\n result = np.zeros(3, float)\n for i in range(3):\n if result_invsq[i] > 0:\n result[i] = result_invsq[i] ** -0.5\n return result\n", "role": "user" }, { "content": "spacings", "role": "assistant" } ]
def x(self, vector): act = self.active_inactive[0] if len(act) == 3: raise ValueError('The unit cell already has three active cell vectors.' ) matrix = np.zeros((3, 3), float) active = np.zeros(3, bool) if len(act) == 0: matrix[:, 0] = vector active[0] = True return UnitCell(matrix, active) a = self.matrix[:, act[0]] matrix[:, 0] = a active[0] = True if len(act) == 1: matrix[:, 1] = vector active[1] = True return UnitCell(matrix, active) b = self.matrix[:, act[1]] matrix[:, 1] = b active[1] = True if len(act) == 2: matrix[:, 2] = vector active[2] = True return UnitCell(matrix, active)
add_cell_vector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vector):\n act = self.active_inactive[0]\n if len(act) == 3:\n raise ValueError('The unit cell already has three active cell vectors.'\n )\n matrix = np.zeros((3, 3), float)\n active = np.zeros(3, bool)\n if len(act) == 0:\n matrix[:, 0] = vector\n active[0] = True\n return UnitCell(matrix, active)\n a = self.matrix[:, act[0]]\n matrix[:, 0] = a\n active[0] = True\n if len(act) == 1:\n matrix[:, 1] = vector\n active[1] = True\n return UnitCell(matrix, active)\n b = self.matrix[:, act[1]]\n matrix[:, 1] = b\n active[1] = True\n if len(act) == 2:\n matrix[:, 2] = vector\n active[2] = True\n return UnitCell(matrix, active)\n", "role": "user" }, { "content": "add_cell_vector", "role": "assistant" } ]
def x(self, radius, mic=False): result = np.zeros(3, int) for i in range(3): if self.spacings[i] > 0: if mic: result[i] = np.ceil(radius / self.spacings[i] - 0.5) else: result[i] = np.ceil(radius / self.spacings[i]) return result
get_radius_ranges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, radius, mic=False):\n result = np.zeros(3, int)\n for i in range(3):\n if self.spacings[i] > 0:\n if mic:\n result[i] = np.ceil(radius / self.spacings[i] - 0.5)\n else:\n result[i] = np.ceil(radius / self.spacings[i])\n return result\n", "role": "user" }, { "content": "get_radius_ranges", "role": "assistant" } ]
def x(self, radius, max_ranges=None): if max_ranges is None: max_ranges = np.array([-1, -1, -1]) ranges = self.get_radius_ranges(radius) * 2 + 1 mask = (max_ranges != -1) & (max_ranges < ranges) ranges[mask] = max_ranges[mask] max_size = np.product(self.get_radius_ranges(radius) * 2 + 1) indexes = np.zeros((max_size, 3), int) from molmod.ext import unit_cell_get_radius_indexes reciprocal = self.reciprocal * self.active matrix = self.matrix * self.active size = unit_cell_get_radius_indexes(matrix, reciprocal, radius, max_ranges, indexes) return indexes[:size]
get_radius_indexes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, radius, max_ranges=None):\n if max_ranges is None:\n max_ranges = np.array([-1, -1, -1])\n ranges = self.get_radius_ranges(radius) * 2 + 1\n mask = (max_ranges != -1) & (max_ranges < ranges)\n ranges[mask] = max_ranges[mask]\n max_size = np.product(self.get_radius_ranges(radius) * 2 + 1)\n indexes = np.zeros((max_size, 3), int)\n from molmod.ext import unit_cell_get_radius_indexes\n reciprocal = self.reciprocal * self.active\n matrix = self.matrix * self.active\n size = unit_cell_get_radius_indexes(matrix, reciprocal, radius,\n max_ranges, indexes)\n return indexes[:size]\n", "role": "user" }, { "content": "get_radius_indexes", "role": "assistant" } ]
def x(graph, unit_cell=None, verbose=False): N = len(graph.numbers) from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition search_direction = ConjugateGradient() line_search = NewtonLineSearch() convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06) stop_loss = StopLossCondition(max_iter=500, fun_margin=0.1) ff = ToyFF(graph, unit_cell) x_init = np.random.normal(0, 1, N * 3) ff.dm_quad = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x ff.dm_quad = 1.0 ff.dm_reci = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x x_init += np.random.uniform(-0.01, 0.01, len(x_init)) ff.dm_quad = 0.0 ff.dm_reci = 0.2 ff.bond_quad = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x ff.bond_quad = 0.0 ff.bond_hyper = 1.0 ff.span_quad = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x x_opt = x_init mol = Molecule(graph.numbers, x_opt.reshape((N, 3))) return mol
guess_geometry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, unit_cell=None, verbose=False):\n N = len(graph.numbers)\n from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition\n search_direction = ConjugateGradient()\n line_search = NewtonLineSearch()\n convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)\n stop_loss = StopLossCondition(max_iter=500, fun_margin=0.1)\n ff = ToyFF(graph, unit_cell)\n x_init = np.random.normal(0, 1, N * 3)\n ff.dm_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.dm_quad = 1.0\n ff.dm_reci = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_init += np.random.uniform(-0.01, 0.01, len(x_init))\n ff.dm_quad = 0.0\n ff.dm_reci = 0.2\n ff.bond_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.bond_quad = 0.0\n ff.bond_hyper = 1.0\n ff.span_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_opt = x_init\n mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))\n return mol\n", "role": "user" }, { "content": "guess_geometry", "role": "assistant" } ]
def x(graph, mol, unit_cell=None, verbose=False): N = len(graph.numbers) from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition search_direction = ConjugateGradient() line_search = NewtonLineSearch() convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06) stop_loss = StopLossCondition(max_iter=500, fun_margin=1.0) ff = ToyFF(graph, unit_cell) x_init = mol.coordinates.ravel() ff.dm_reci = 0.2 ff.bond_quad = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x ff.bond_quad = 0.0 ff.bond_hyper = 1.0 ff.span_quad = 1.0 minimizer = Minimizer(x_init, ff, search_direction, line_search, convergence, stop_loss, anagrad=True, verbose=verbose) x_init = minimizer.x x_opt = x_init mol = Molecule(graph.numbers, x_opt.reshape((N, 3))) return mol
tune_geometry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, mol, unit_cell=None, verbose=False):\n N = len(graph.numbers)\n from molmod.minimizer import Minimizer, ConjugateGradient, NewtonLineSearch, ConvergenceCondition, StopLossCondition\n search_direction = ConjugateGradient()\n line_search = NewtonLineSearch()\n convergence = ConvergenceCondition(grad_rms=1e-06, step_rms=1e-06)\n stop_loss = StopLossCondition(max_iter=500, fun_margin=1.0)\n ff = ToyFF(graph, unit_cell)\n x_init = mol.coordinates.ravel()\n ff.dm_reci = 0.2\n ff.bond_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n ff.bond_quad = 0.0\n ff.bond_hyper = 1.0\n ff.span_quad = 1.0\n minimizer = Minimizer(x_init, ff, search_direction, line_search,\n convergence, stop_loss, anagrad=True, verbose=verbose)\n x_init = minimizer.x\n x_opt = x_init\n mol = Molecule(graph.numbers, x_opt.reshape((N, 3)))\n return mol\n", "role": "user" }, { "content": "tune_geometry", "role": "assistant" } ]
def x(self, coordinates=None): if coordinates is not None: self.coordinates = coordinates self.numc = len(self.coordinates) self.distances = np.zeros((self.numc, self.numc), float) self.deltas = np.zeros((self.numc, self.numc, 3), float) self.directions = np.zeros((self.numc, self.numc, 3), float) self.dirouters = np.zeros((self.numc, self.numc, 3, 3), float) for index1, coordinate1 in enumerate(self.coordinates): for index2, coordinate2 in enumerate(self.coordinates): delta = coordinate1 - coordinate2 self.deltas[index1, index2] = delta distance = np.linalg.norm(delta) self.distances[index1, index2] = distance if index1 != index2: tmp = delta / distance self.directions[index1, index2] = tmp self.dirouters[index1, index2] = np.outer(tmp, tmp)
update_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates=None):\n if coordinates is not None:\n self.coordinates = coordinates\n self.numc = len(self.coordinates)\n self.distances = np.zeros((self.numc, self.numc), float)\n self.deltas = np.zeros((self.numc, self.numc, 3), float)\n self.directions = np.zeros((self.numc, self.numc, 3), float)\n self.dirouters = np.zeros((self.numc, self.numc, 3, 3), float)\n for index1, coordinate1 in enumerate(self.coordinates):\n for index2, coordinate2 in enumerate(self.coordinates):\n delta = coordinate1 - coordinate2\n self.deltas[index1, index2] = delta\n distance = np.linalg.norm(delta)\n self.distances[index1, index2] = distance\n if index1 != index2:\n tmp = delta / distance\n self.directions[index1, index2] = tmp\n self.dirouters[index1, index2] = np.outer(tmp, tmp)\n", "role": "user" }, { "content": "update_coordinates", "role": "assistant" } ]
def x(self): result = 0.0 for index1 in range(self.numc): for index2 in range(index1): if self.scaling[index1, index2] > 0: for se, ve in self.yield_pair_energies(index1, index2): result += se * ve * self.scaling[index1, index2] return result
energy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = 0.0\n for index1 in range(self.numc):\n for index2 in range(index1):\n if self.scaling[index1, index2] > 0:\n for se, ve in self.yield_pair_energies(index1, index2):\n result += se * ve * self.scaling[index1, index2]\n return result\n", "role": "user" }, { "content": "energy", "role": "assistant" } ]
def x(self, index1): result = np.zeros(3, float) for index2 in range(self.numc): if self.scaling[index1, index2] > 0: for (se, ve), (sg, vg) in zip(self.yield_pair_energies(index1, index2), self.yield_pair_gradients(index1, index2)): result += (sg * self.directions[index1, index2] * ve + se * vg ) * self.scaling[index1, index2] return result
gradient_component
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1):\n result = np.zeros(3, float)\n for index2 in range(self.numc):\n if self.scaling[index1, index2] > 0:\n for (se, ve), (sg, vg) in zip(self.yield_pair_energies(index1,\n index2), self.yield_pair_gradients(index1, index2)):\n result += (sg * self.directions[index1, index2] * ve + se * vg\n ) * self.scaling[index1, index2]\n return result\n", "role": "user" }, { "content": "gradient_component", "role": "assistant" } ]
def x(self): result = np.zeros((self.numc, 3), float) for index1 in range(self.numc): result[index1] = self.gradient_component(index1) return result
gradient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.zeros((self.numc, 3), float)\n for index1 in range(self.numc):\n result[index1] = self.gradient_component(index1)\n return result\n", "role": "user" }, { "content": "gradient", "role": "assistant" } ]
def x(self, index1, index2): result = np.zeros((3, 3), float) if index1 == index2: for index3 in range(self.numc): if self.scaling[index1, index3] > 0: d_1 = 1 / self.distances[index1, index3] for (se, ve), (sg, vg), (sh, vh) in zip(self. yield_pair_energies(index1, index3), self. yield_pair_gradients(index1, index3), self. yield_pair_hessians(index1, index3)): result += (+sh * self.dirouters[index1, index3] * ve + sg * (np.identity(3, float) - self.dirouters[index1, index3]) * ve * d_1 + sg * np.outer(self.directions [index1, index3], vg) + sg * np.outer(vg, self. directions[index1, index3]) + se * vh) * self.scaling[ index1, index3] elif self.scaling[index1, index2] > 0: d_1 = 1 / self.distances[index1, index2] for (se, ve), (sg, vg), (sh, vh) in zip(self.yield_pair_energies( index1, index2), self.yield_pair_gradients(index1, index2), self.yield_pair_hessians(index1, index2)): result -= (+sh * self.dirouters[index1, index2] * ve + sg * (np .identity(3, float) - self.dirouters[index1, index2]) * ve * d_1 + sg * np.outer(self.directions[index1, index2], vg) + sg * np.outer(vg, self.directions[index1, index2]) + se * vh ) * self.scaling[index1, index2] return result
hessian_component
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n result = np.zeros((3, 3), float)\n if index1 == index2:\n for index3 in range(self.numc):\n if self.scaling[index1, index3] > 0:\n d_1 = 1 / self.distances[index1, index3]\n for (se, ve), (sg, vg), (sh, vh) in zip(self.\n yield_pair_energies(index1, index3), self.\n yield_pair_gradients(index1, index3), self.\n yield_pair_hessians(index1, index3)):\n result += (+sh * self.dirouters[index1, index3] * ve + \n sg * (np.identity(3, float) - self.dirouters[index1,\n index3]) * ve * d_1 + sg * np.outer(self.directions\n [index1, index3], vg) + sg * np.outer(vg, self.\n directions[index1, index3]) + se * vh) * self.scaling[\n index1, index3]\n elif self.scaling[index1, index2] > 0:\n d_1 = 1 / self.distances[index1, index2]\n for (se, ve), (sg, vg), (sh, vh) in zip(self.yield_pair_energies(\n index1, index2), self.yield_pair_gradients(index1, index2),\n self.yield_pair_hessians(index1, index2)):\n result -= (+sh * self.dirouters[index1, index2] * ve + sg * (np\n .identity(3, float) - self.dirouters[index1, index2]) * ve *\n d_1 + sg * np.outer(self.directions[index1, index2], vg) + \n sg * np.outer(vg, self.directions[index1, index2]) + se * vh\n ) * self.scaling[index1, index2]\n return result\n", "role": "user" }, { "content": "hessian_component", "role": "assistant" } ]
def x(self): result = np.zeros((self.numc, 3, self.numc, 3), float) for index1 in range(self.numc): for index2 in range(self.numc): result[index1, :, index2, :] = self.hessian_component(index1, index2) return result
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.zeros((self.numc, 3, self.numc, 3), float)\n for index1 in range(self.numc):\n for index2 in range(self.numc):\n result[index1, :, index2, :] = self.hessian_component(index1,\n index2)\n return result\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, index1, index2): d_1 = 1 / self.distances[index1, index2] if self.charges is not None: c1 = self.charges[index1] c2 = self.charges[index2] yield c1 * c2 * d_1, 1 if self.dipoles is not None: d_3 = d_1 ** 3 d_5 = d_1 ** 5 delta = self.deltas[index1, index2] p1 = self.dipoles[index1] p2 = self.dipoles[index2] yield d_3 * np.dot(p1, p2), 1 yield -3 * d_5, np.dot(p1, delta) * np.dot(delta, p2) if self.charges is not None: yield c1 * d_3, np.dot(p2, delta) yield c2 * d_3, np.dot(p1, -delta)
yield_pair_energies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n d_1 = 1 / self.distances[index1, index2]\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield c1 * c2 * d_1, 1\n if self.dipoles is not None:\n d_3 = d_1 ** 3\n d_5 = d_1 ** 5\n delta = self.deltas[index1, index2]\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield d_3 * np.dot(p1, p2), 1\n yield -3 * d_5, np.dot(p1, delta) * np.dot(delta, p2)\n if self.charges is not None:\n yield c1 * d_3, np.dot(p2, delta)\n yield c2 * d_3, np.dot(p1, -delta)\n", "role": "user" }, { "content": "yield_pair_energies", "role": "assistant" } ]
def x(self, index1, index2): d_2 = 1 / self.distances[index1, index2] ** 2 if self.charges is not None: c1 = self.charges[index1] c2 = self.charges[index2] yield -c1 * c2 * d_2, np.zeros(3) if self.dipoles is not None: d_4 = d_2 ** 2 d_6 = d_2 ** 3 delta = self.deltas[index1, index2] p1 = self.dipoles[index1] p2 = self.dipoles[index2] yield -3 * d_4 * np.dot(p1, p2), np.zeros(3) yield 15 * d_6, p1 * np.dot(p2, delta) + p2 * np.dot(p1, delta) if self.charges is not None: yield -3 * c1 * d_4, p2 yield -3 * c2 * d_4, -p1
yield_pair_gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n d_2 = 1 / self.distances[index1, index2] ** 2\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield -c1 * c2 * d_2, np.zeros(3)\n if self.dipoles is not None:\n d_4 = d_2 ** 2\n d_6 = d_2 ** 3\n delta = self.deltas[index1, index2]\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield -3 * d_4 * np.dot(p1, p2), np.zeros(3)\n yield 15 * d_6, p1 * np.dot(p2, delta) + p2 * np.dot(p1, delta)\n if self.charges is not None:\n yield -3 * c1 * d_4, p2\n yield -3 * c2 * d_4, -p1\n", "role": "user" }, { "content": "yield_pair_gradients", "role": "assistant" } ]
def x(self, index1, index2): d_1 = 1 / self.distances[index1, index2] d_3 = d_1 ** 3 if self.charges is not None: c1 = self.charges[index1] c2 = self.charges[index2] yield 2 * c1 * c2 * d_3, np.zeros((3, 3)) if self.dipoles is not None: d_5 = d_1 ** 5 d_7 = d_1 ** 7 p1 = self.dipoles[index1] p2 = self.dipoles[index2] yield 12 * d_5 * np.dot(p1, p2), np.zeros((3, 3)) yield -90 * d_7, np.outer(p1, p2) + np.outer(p2, p1) if self.charges is not None: yield 12 * c1 * d_5, np.zeros((3, 3)) yield 12 * c2 * d_5, np.zeros((3, 3))
yield_pair_hessians
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n d_1 = 1 / self.distances[index1, index2]\n d_3 = d_1 ** 3\n if self.charges is not None:\n c1 = self.charges[index1]\n c2 = self.charges[index2]\n yield 2 * c1 * c2 * d_3, np.zeros((3, 3))\n if self.dipoles is not None:\n d_5 = d_1 ** 5\n d_7 = d_1 ** 7\n p1 = self.dipoles[index1]\n p2 = self.dipoles[index2]\n yield 12 * d_5 * np.dot(p1, p2), np.zeros((3, 3))\n yield -90 * d_7, np.outer(p1, p2) + np.outer(p2, p1)\n if self.charges is not None:\n yield 12 * c1 * d_5, np.zeros((3, 3))\n yield 12 * c2 * d_5, np.zeros((3, 3))\n", "role": "user" }, { "content": "yield_pair_hessians", "role": "assistant" } ]
def x(self): result = np.zeros(self.numc, float) for index1 in range(self.numc): result[index1] = self.esp_component(index1) return result
esp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.zeros(self.numc, float)\n for index1 in range(self.numc):\n result[index1] = self.esp_component(index1)\n return result\n", "role": "user" }, { "content": "esp", "role": "assistant" } ]
def x(self): result = np.zeros((self.numc, 3), float) for index1 in range(self.numc): result[index1] = self.efield_component(index1) return result
efield
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = np.zeros((self.numc, 3), float)\n for index1 in range(self.numc):\n result[index1] = self.efield_component(index1)\n return result\n", "role": "user" }, { "content": "efield", "role": "assistant" } ]
def x(self, index1, index2): strength = self.strengths[index1, index2] distance = self.distances[index1, index2] yield strength * distance ** -6, 1
yield_pair_energies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n strength = self.strengths[index1, index2]\n distance = self.distances[index1, index2]\n yield strength * distance ** -6, 1\n", "role": "user" }, { "content": "yield_pair_energies", "role": "assistant" } ]
def x(self, index1, index2): strength = self.strengths[index1, index2] distance = self.distances[index1, index2] yield -6 * strength * distance ** -7, np.zeros(3)
yield_pair_gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n strength = self.strengths[index1, index2]\n distance = self.distances[index1, index2]\n yield -6 * strength * distance ** -7, np.zeros(3)\n", "role": "user" }, { "content": "yield_pair_gradients", "role": "assistant" } ]
def x(self, index1, index2): A = self.As[index1, index2] B = self.Bs[index1, index2] distance = self.distances[index1, index2] yield A * np.exp(-B * distance), 1
yield_pair_energies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n A = self.As[index1, index2]\n B = self.Bs[index1, index2]\n distance = self.distances[index1, index2]\n yield A * np.exp(-B * distance), 1\n", "role": "user" }, { "content": "yield_pair_energies", "role": "assistant" } ]
def x(self, index1, index2): A = self.As[index1, index2] B = self.Bs[index1, index2] distance = self.distances[index1, index2] yield -B * A * np.exp(-B * distance), np.zeros(3)
yield_pair_gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index1, index2):\n A = self.As[index1, index2]\n B = self.Bs[index1, index2]\n distance = self.distances[index1, index2]\n yield -B * A * np.exp(-B * distance), np.zeros(3)\n", "role": "user" }, { "content": "yield_pair_gradients", "role": "assistant" } ]
def x(cml_filename): parser = make_parser() parser.setFeature(feature_namespaces, 0) dh = CMLMoleculeLoader() parser.setContentHandler(dh) parser.parse(cml_filename) return dh.molecules
load_cml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cml_filename):\n parser = make_parser()\n parser.setFeature(feature_namespaces, 0)\n dh = CMLMoleculeLoader()\n parser.setContentHandler(dh)\n parser.parse(cml_filename)\n return dh.molecules\n", "role": "user" }, { "content": "load_cml", "role": "assistant" } ]
def x(f, molecule): extra = getattr(molecule, 'extra', {}) attr_str = ' '.join("%s='%s'" % (key, value) for key, value in extra. items()) f.write(" <molecule id='%s' %s>\n" % (molecule.title, attr_str)) f.write(' <atomArray>\n') atoms_extra = getattr(molecule, 'atoms_extra', {}) for counter, number, coordinate in zip(range(molecule.size), molecule. numbers, molecule.coordinates / angstrom): atom_extra = atoms_extra.get(counter, {}) attr_str = ' '.join("%s='%s'" % (key, value) for key, value in atom_extra.items()) f.write( " <atom id='a%i' elementType='%s' x3='%s' y3='%s' z3='%s' %s />\n" % (counter, periodic[number].symbol, coordinate[0], coordinate [1], coordinate[2], attr_str)) f.write(' </atomArray>\n') if molecule.graph is not None: bonds_extra = getattr(molecule, 'bonds_extra', {}) f.write(' <bondArray>\n') for edge in molecule.graph.edges: bond_extra = bonds_extra.get(edge, {}) attr_str = ' '.join("%s='%s'" % (key, value) for key, value in bond_extra.items()) i1, i2 = edge f.write(" <bond atomRefs2='a%i a%i' %s />\n" % (i1, i2, attr_str) ) f.write(' </bondArray>\n') f.write(' </molecule>\n')
dump_cml_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, molecule):\n extra = getattr(molecule, 'extra', {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in extra.\n items())\n f.write(\" <molecule id='%s' %s>\\n\" % (molecule.title, attr_str))\n f.write(' <atomArray>\\n')\n atoms_extra = getattr(molecule, 'atoms_extra', {})\n for counter, number, coordinate in zip(range(molecule.size), molecule.\n numbers, molecule.coordinates / angstrom):\n atom_extra = atoms_extra.get(counter, {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in\n atom_extra.items())\n f.write(\n \" <atom id='a%i' elementType='%s' x3='%s' y3='%s' z3='%s' %s />\\n\"\n % (counter, periodic[number].symbol, coordinate[0], coordinate\n [1], coordinate[2], attr_str))\n f.write(' </atomArray>\\n')\n if molecule.graph is not None:\n bonds_extra = getattr(molecule, 'bonds_extra', {})\n f.write(' <bondArray>\\n')\n for edge in molecule.graph.edges:\n bond_extra = bonds_extra.get(edge, {})\n attr_str = ' '.join(\"%s='%s'\" % (key, value) for key, value in\n bond_extra.items())\n i1, i2 = edge\n f.write(\" <bond atomRefs2='a%i a%i' %s />\\n\" % (i1, i2, attr_str)\n )\n f.write(' </bondArray>\\n')\n f.write(' </molecule>\\n')\n", "role": "user" }, { "content": "dump_cml_molecule", "role": "assistant" } ]
def x(f, molecules): if isinstance(f, str): f = open(f, 'w') close = True else: close = False f.write("<?xml version='1.0'?>\n") f.write("<list xmlns='http://www.xml-cml.org/schema'>\n") for molecule in molecules: _dump_cml_molecule(f, molecule) f.write('</list>\n') if close: f.close()
dump_cml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, molecules):\n if isinstance(f, str):\n f = open(f, 'w')\n close = True\n else:\n close = False\n f.write(\"<?xml version='1.0'?>\\n\")\n f.write(\"<list xmlns='http://www.xml-cml.org/schema'>\\n\")\n for molecule in molecules:\n _dump_cml_molecule(f, molecule)\n f.write('</list>\\n')\n if close:\n f.close()\n", "role": "user" }, { "content": "dump_cml", "role": "assistant" } ]
def x(self, attrs, exclude): result = {} for key in attrs.getNames(): if key not in exclude: result[str(key)] = str(attrs[key]) return result
get_extra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attrs, exclude):\n result = {}\n for key in attrs.getNames():\n if key not in exclude:\n result[str(key)] = str(attrs[key])\n return result\n", "role": "user" }, { "content": "get_extra", "role": "assistant" } ]
def x(self, filename, field_labels=None): def x(f): datatype = None while datatype is None: line = f.readline() if line == '': return False label = line[:43].strip() if field_labels is not None: if len(field_labels) == 0: return False elif label not in field_labels: return True else: field_labels.discard(label) line = line[43:] words = line.split() if len(words) == 0: return True if words[0] == 'I': datatype = int unreadable = 0 elif words[0] == 'R': datatype = float unreadable = np.nan if len(words) == 2: try: value = datatype(words[1]) except ValueError: return True elif len(words) == 3: if words[1] != 'N=': raise FileFormatError( 'Unexpected line in formatted checkpoint file %s\n%s' % (filename, line[:-1])) length = int(words[2]) value = np.zeros(length, datatype) counter = 0 try: while counter < length: line = f.readline() if line == '': raise FileFormatError( 'Unexpected end of formatted checkpoint file %s' % filename) for word in line.split(): try: value[counter] = datatype(word) except (ValueError, OverflowError) as e: print( 'WARNING: could not interpret word while reading %s: %s' % (word, self.filename)) if self.ignore_errors: value[counter] = unreadable else: raise counter += 1 except ValueError: return True else: raise FileFormatError( 'Unexpected line in formatted checkpoint file %s\n%s' % ( filename, line[:-1])) self.fields[label] = value return True self.fields = {} with open(filename, 'r') as f: self.title = f.readline()[:-1].strip() words = f.readline().split() if len(words) == 3: self.command, self.lot, self.basis = words elif len(words) == 2: self.command, self.lot = words else: raise FileFormatError( 'The second line of the FCHK file should contain two or three words.' ) while read_field(f): pass
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, field_labels=None):\n\n def x(f):\n datatype = None\n while datatype is None:\n line = f.readline()\n if line == '':\n return False\n label = line[:43].strip()\n if field_labels is not None:\n if len(field_labels) == 0:\n return False\n elif label not in field_labels:\n return True\n else:\n field_labels.discard(label)\n line = line[43:]\n words = line.split()\n if len(words) == 0:\n return True\n if words[0] == 'I':\n datatype = int\n unreadable = 0\n elif words[0] == 'R':\n datatype = float\n unreadable = np.nan\n if len(words) == 2:\n try:\n value = datatype(words[1])\n except ValueError:\n return True\n elif len(words) == 3:\n if words[1] != 'N=':\n raise FileFormatError(\n 'Unexpected line in formatted checkpoint file %s\\n%s' %\n (filename, line[:-1]))\n length = int(words[2])\n value = np.zeros(length, datatype)\n counter = 0\n try:\n while counter < length:\n line = f.readline()\n if line == '':\n raise FileFormatError(\n 'Unexpected end of formatted checkpoint file %s' %\n filename)\n for word in line.split():\n try:\n value[counter] = datatype(word)\n except (ValueError, OverflowError) as e:\n print(\n 'WARNING: could not interpret word while reading %s: %s'\n % (word, self.filename))\n if self.ignore_errors:\n value[counter] = unreadable\n else:\n raise\n counter += 1\n except ValueError:\n return True\n else:\n raise FileFormatError(\n 'Unexpected line in formatted checkpoint file %s\\n%s' % (\n filename, line[:-1]))\n self.fields[label] = value\n return True\n self.fields = {}\n with open(filename, 'r') as f:\n self.title = f.readline()[:-1].strip()\n words = f.readline().split()\n if len(words) == 3:\n self.command, self.lot, self.basis = words\n elif len(words) == 2:\n self.command, self.lot = words\n else:\n raise FileFormatError(\n 'The second line of the FCHK file should contain two or three words.'\n )\n while read_field(f):\n pass\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self): if ('Atomic numbers' in self.fields and 'Current cartesian coordinates' in self.fields): self.molecule = Molecule(self.fields['Atomic numbers'], np.reshape( self.fields['Current cartesian coordinates'], (-1, 3)), self.title)
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if ('Atomic numbers' in self.fields and 'Current cartesian coordinates' in\n self.fields):\n self.molecule = Molecule(self.fields['Atomic numbers'], np.reshape(\n self.fields['Current cartesian coordinates'], (-1, 3)), self.title)\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(self): coor_array = self.fields.get('Opt point 1 Geometries') if coor_array is None: return [] else: return np.reshape(coor_array, (-1, len(self.molecule.numbers), 3))
get_optimization_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n coor_array = self.fields.get('Opt point 1 Geometries')\n if coor_array is None:\n return []\n else:\n return np.reshape(coor_array, (-1, len(self.molecule.numbers), 3))\n", "role": "user" }, { "content": "get_optimization_coordinates", "role": "assistant" } ]
def x(self): opt_coor = self.get_optimization_coordinates() if len(opt_coor) == 0: return None else: return Molecule(self.molecule.numbers, opt_coor[-1])
get_optimized_molecule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n opt_coor = self.get_optimization_coordinates()\n if len(opt_coor) == 0:\n return None\n else:\n return Molecule(self.molecule.numbers, opt_coor[-1])\n", "role": "user" }, { "content": "get_optimized_molecule", "role": "assistant" } ]
def x(self): grad_array = self.fields.get('Opt point 1 Gradient at each geome') if grad_array is None: return [] else: return np.reshape(grad_array, (-1, len(self.molecule.numbers), 3))
get_optimization_gradients
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n grad_array = self.fields.get('Opt point 1 Gradient at each geome')\n if grad_array is None:\n return []\n else:\n return np.reshape(grad_array, (-1, len(self.molecule.numbers), 3))\n", "role": "user" }, { "content": "get_optimization_gradients", "role": "assistant" } ]
def x(self): force_const = self.fields.get('Cartesian Force Constants') if force_const is None: return None N = len(self.molecule.numbers) result = np.zeros((3 * N, 3 * N), float) counter = 0 for row in range(3 * N): result[row, :row + 1] = force_const[counter:counter + row + 1] result[:row + 1, row] = force_const[counter:counter + row + 1] counter += row + 1 return result
get_hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n force_const = self.fields.get('Cartesian Force Constants')\n if force_const is None:\n return None\n N = len(self.molecule.numbers)\n result = np.zeros((3 * N, 3 * N), float)\n counter = 0\n for row in range(3 * N):\n result[row, :row + 1] = force_const[counter:counter + row + 1]\n result[:row + 1, row] = force_const[counter:counter + row + 1]\n counter += row + 1\n return result\n", "role": "user" }, { "content": "get_hessian", "role": "assistant" } ]
def x(self, **kwargs): attrs = {} for key, descriptor in self.__class__.__dict__.items(): if isinstance(descriptor, ReadOnlyAttribute): attrs[key] = descriptor.__get__(self) for key in kwargs: if key not in attrs: raise TypeError('Unknown attribute: %s' % key) attrs.update(kwargs) return self.__class__(**attrs)
copy_with
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n attrs = {}\n for key, descriptor in self.__class__.__dict__.items():\n if isinstance(descriptor, ReadOnlyAttribute):\n attrs[key] = descriptor.__get__(self)\n for key in kwargs:\n if key not in attrs:\n raise TypeError('Unknown attribute: %s' % key)\n attrs.update(kwargs)\n return self.__class__(**attrs)\n", "role": "user" }, { "content": "copy_with", "role": "assistant" } ]
def x(self, filename): data = {} parsers = [FirstDataParser(), CoordinateParser(), EnergyGradParser(), SkipApproxHessian(), HessianParser(), MassParser()] with open(filename) as f: while True: line = f.readline() if line == '': break for parser in parsers: if parser.test(line, data): parser.read(line, f, data) break self.__dict__.update(data)
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n data = {}\n parsers = [FirstDataParser(), CoordinateParser(), EnergyGradParser(),\n SkipApproxHessian(), HessianParser(), MassParser()]\n with open(filename) as f:\n while True:\n line = f.readline()\n if line == '':\n break\n for parser in parsers:\n if parser.test(line, data):\n parser.read(line, f, data)\n break\n self.__dict__.update(data)\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): self.used = True data['title'] = f.readline().strip() data['symmetry'] = f.readline().split()[0] if data['symmetry'] != 'C1': raise NotImplementedError('Only C1 symmetry is supported.') symbols = [] while line != ' $END \n': line = f.readline() if line[0] != ' ': symbols.append(line.split()[0]) data['symbols'] = symbols
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n self.used = True\n data['title'] = f.readline().strip()\n data['symmetry'] = f.readline().split()[0]\n if data['symmetry'] != 'C1':\n raise NotImplementedError('Only C1 symmetry is supported.')\n symbols = []\n while line != ' $END \\n':\n line = f.readline()\n if line[0] != ' ':\n symbols.append(line.split()[0])\n data['symbols'] = symbols\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): f.readline() f.readline() N = len(data['symbols']) numbers = data.get('numbers') if numbers is None: numbers = np.zeros(N, int) data['numbers'] = numbers coordinates = data.get('coordinates') if coordinates is None: coordinates = np.zeros((N, 3), float) data['coordinates'] = coordinates for i in range(N): words = f.readline().split() numbers[i] = int(float(words[1])) coordinates[i, 0] = float(words[2]) * angstrom coordinates[i, 1] = float(words[3]) * angstrom coordinates[i, 2] = float(words[4]) * angstrom
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n f.readline()\n f.readline()\n N = len(data['symbols'])\n numbers = data.get('numbers')\n if numbers is None:\n numbers = np.zeros(N, int)\n data['numbers'] = numbers\n coordinates = data.get('coordinates')\n if coordinates is None:\n coordinates = np.zeros((N, 3), float)\n data['coordinates'] = coordinates\n for i in range(N):\n words = f.readline().split()\n numbers[i] = int(float(words[1]))\n coordinates[i, 0] = float(words[2]) * angstrom\n coordinates[i, 1] = float(words[3]) * angstrom\n coordinates[i, 2] = float(words[4]) * angstrom\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): data['energy'] = float(f.readline().split()[1]) N = len(data['symbols']) gradient = data.get('gradient') if gradient is None: gradient = np.zeros((N, 3), float) data['gradient'] = gradient for i in range(N): words = f.readline().split() gradient[i, 0] = float(words[2]) gradient[i, 1] = float(words[3]) gradient[i, 2] = float(words[4])
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n data['energy'] = float(f.readline().split()[1])\n N = len(data['symbols'])\n gradient = data.get('gradient')\n if gradient is None:\n gradient = np.zeros((N, 3), float)\n data['gradient'] = gradient\n for i in range(N):\n words = f.readline().split()\n gradient[i, 0] = float(words[2])\n gradient[i, 1] = float(words[3])\n gradient[i, 2] = float(words[4])\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): line = f.readline() assert line == ' $HESS\n' while line != ' $END\n': line = f.readline()
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n line = f.readline()\n assert line == ' $HESS\\n'\n while line != ' $END\\n':\n line = f.readline()\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): assert 'hessian' not in data f.readline() N = len(data['symbols']) hessian = np.zeros((3 * N, 3 * N), float) tmp = hessian.ravel() counter = 0 while True: line = f.readline() if line == ' $END\n': break line = line[5:-1] for j in range(len(line) // 15): tmp[counter] = float(line[j * 15:(j + 1) * 15]) counter += 1 data['hessian'] = hessian
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n assert 'hessian' not in data\n f.readline()\n N = len(data['symbols'])\n hessian = np.zeros((3 * N, 3 * N), float)\n tmp = hessian.ravel()\n counter = 0\n while True:\n line = f.readline()\n if line == ' $END\\n':\n break\n line = line[5:-1]\n for j in range(len(line) // 15):\n tmp[counter] = float(line[j * 15:(j + 1) * 15])\n counter += 1\n data['hessian'] = hessian\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, line, f, data): N = len(data['symbols']) masses = np.zeros(N, float) counter = 0 while counter < N: words = f.readline().split() for word in words: masses[counter] = float(word) * amu counter += 1 data['masses'] = masses
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line, f, data):\n N = len(data['symbols'])\n masses = np.zeros(N, float)\n counter = 0\n while counter < N:\n words = f.readline().split()\n for word in words:\n masses[counter] = float(word) * amu\n counter += 1\n data['masses'] = masses\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(graph): bond_params = {(6, 1): 310 * kcalmol / angstrom ** 2, (6, 6): 220 * kcalmol / angstrom ** 2} for key, val in list(bond_params.items()): if key[0] != key[1]: bond_params[key[1], key[0]] = val bend_params = {(1, 6, 1): 35 * kcalmol / rad ** 2, (1, 6, 6): 30 * kcalmol / rad ** 2, (6, 6, 6): 60 * kcalmol / rad ** 2} for key, val in list(bend_params.items()): if key[0] != key[2]: bend_params[key[2], key[1], key[0]] = val terms = [] for i0, i1 in graph.edges: K = bond_params[graph.numbers[i0], graph.numbers[i1]] terms.append(BondStretchTerm(K, i0, i1)) for i1 in range(graph.num_vertices): n = list(graph.neighbors[i1]) for index, i0 in enumerate(n): for i2 in n[:index]: K = bend_params[graph.numbers[i0], graph.numbers[i1], graph .numbers[i2]] terms.append(BendAngleTerm(K, i0, i1, i2)) return ForceField(terms)
setup_hydrocarbon_ff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph):\n bond_params = {(6, 1): 310 * kcalmol / angstrom ** 2, (6, 6): 220 *\n kcalmol / angstrom ** 2}\n for key, val in list(bond_params.items()):\n if key[0] != key[1]:\n bond_params[key[1], key[0]] = val\n bend_params = {(1, 6, 1): 35 * kcalmol / rad ** 2, (1, 6, 6): 30 *\n kcalmol / rad ** 2, (6, 6, 6): 60 * kcalmol / rad ** 2}\n for key, val in list(bend_params.items()):\n if key[0] != key[2]:\n bend_params[key[2], key[1], key[0]] = val\n terms = []\n for i0, i1 in graph.edges:\n K = bond_params[graph.numbers[i0], graph.numbers[i1]]\n terms.append(BondStretchTerm(K, i0, i1))\n for i1 in range(graph.num_vertices):\n n = list(graph.neighbors[i1])\n for index, i0 in enumerate(n):\n for i2 in n[:index]:\n K = bend_params[graph.numbers[i0], graph.numbers[i1], graph\n .numbers[i2]]\n terms.append(BendAngleTerm(K, i0, i1, i2))\n return ForceField(terms)\n", "role": "user" }, { "content": "setup_hydrocarbon_ff", "role": "assistant" } ]
def x(self, coordinates, hessian): q, g = self.icfn(coordinates[list(self.indexes)], 1) for ja, ia in enumerate(self.indexes): for jb, ib in enumerate(self.indexes): contrib = 2 * self.force_constant * numpy.outer(g[ja], g[jb]) hessian[3 * ia:3 * ia + 3, 3 * ib:3 * ib + 3] += contrib
add_to_hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates, hessian):\n q, g = self.icfn(coordinates[list(self.indexes)], 1)\n for ja, ia in enumerate(self.indexes):\n for jb, ib in enumerate(self.indexes):\n contrib = 2 * self.force_constant * numpy.outer(g[ja], g[jb])\n hessian[3 * ia:3 * ia + 3, 3 * ib:3 * ib + 3] += contrib\n", "role": "user" }, { "content": "add_to_hessian", "role": "assistant" } ]
def x(self, coordinates): N3 = coordinates.size hessian = numpy.zeros((N3, N3), float) for term in self.terms: term.add_to_hessian(coordinates, hessian) return hessian
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coordinates):\n N3 = coordinates.size\n hessian = numpy.zeros((N3, N3), float)\n for term in self.terms:\n term.add_to_hessian(coordinates, hessian)\n return hessian\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(molecule, graph, threshold=0.001 * angstrom): result = 0 for match in graph.symmetries: permutation = list(j for i, j in sorted(match.forward.items())) new_coordinates = molecule.coordinates[permutation] rmsd = fit_rmsd(molecule.coordinates, new_coordinates)[2] if rmsd < threshold: result += 1 return result
compute_rotsym
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(molecule, graph, threshold=0.001 * angstrom):\n result = 0\n for match in graph.symmetries:\n permutation = list(j for i, j in sorted(match.forward.items()))\n new_coordinates = molecule.coordinates[permutation]\n rmsd = fit_rmsd(molecule.coordinates, new_coordinates)[2]\n if rmsd < threshold:\n result += 1\n return result\n", "role": "user" }, { "content": "compute_rotsym", "role": "assistant" } ]
def x(quat1, quat2): return np.array([quat1[0] * quat2[0] - np.dot(quat1[1:], quat2[1:]), quat1[0] * quat2[1] + quat2[0] * quat1[1] + quat1[2] * quat2[3] - quat1[3] * quat2[2], quat1[0] * quat2[2] + quat2[0] * quat1[2] + quat1[3] * quat2[1] - quat1[1] * quat2[3], quat1[0] * quat2[3] + quat2[0] * quat1[3] + quat1[1] * quat2[2] - quat1[2] * quat2[1]], float )
quaternion_product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quat1, quat2):\n return np.array([quat1[0] * quat2[0] - np.dot(quat1[1:], quat2[1:]), \n quat1[0] * quat2[1] + quat2[0] * quat1[1] + quat1[2] * quat2[3] - \n quat1[3] * quat2[2], quat1[0] * quat2[2] + quat2[0] * quat1[2] + \n quat1[3] * quat2[1] - quat1[1] * quat2[3], quat1[0] * quat2[3] + \n quat2[0] * quat1[3] + quat1[1] * quat2[2] - quat1[2] * quat2[1]], float\n )\n", "role": "user" }, { "content": "quaternion_product", "role": "assistant" } ]
def x(quat, vector): dp = np.dot(quat[1:], vector) cos = 2 * quat[0] * quat[0] - 1 return np.array([2 * (quat[0] * (quat[2] * vector[2] - quat[3] * vector [1]) + quat[1] * dp) + cos * vector[0], 2 * (quat[0] * (quat[3] * vector[0] - quat[1] * vector[2]) + quat[2] * dp) + cos * vector[1], 2 * (quat[0] * (quat[1] * vector[1] - quat[2] * vector[0]) + quat[3 ] * dp) + cos * vector[2]], float)
quaternion_rotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quat, vector):\n dp = np.dot(quat[1:], vector)\n cos = 2 * quat[0] * quat[0] - 1\n return np.array([2 * (quat[0] * (quat[2] * vector[2] - quat[3] * vector\n [1]) + quat[1] * dp) + cos * vector[0], 2 * (quat[0] * (quat[3] *\n vector[0] - quat[1] * vector[2]) + quat[2] * dp) + cos * vector[1],\n 2 * (quat[0] * (quat[1] * vector[1] - quat[2] * vector[0]) + quat[3\n ] * dp) + cos * vector[2]], float)\n", "role": "user" }, { "content": "quaternion_rotation", "role": "assistant" } ]
def x(rotation_matrix): invert = np.linalg.det(rotation_matrix) < 0 if invert: factor = -1 else: factor = 1 c2 = 0.25 * (factor * np.trace(rotation_matrix) + 1) if c2 < 0: c2 = 0.0 c = np.sqrt(c2) r2 = 0.5 * (1 + factor * np.diagonal(rotation_matrix)) - c2 r = np.zeros(3, float) for index, r2_comp in enumerate(r2): if r2_comp < 0: continue else: row, col = off_diagonals[index] if rotation_matrix[row, col] - rotation_matrix[col, row] < 0: r[index] = -np.sqrt(r2_comp) else: r[index] = +np.sqrt(r2_comp) return factor, np.array([c, r[0], r[1], r[2]], float)
rotation_matrix_to_quaternion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rotation_matrix):\n invert = np.linalg.det(rotation_matrix) < 0\n if invert:\n factor = -1\n else:\n factor = 1\n c2 = 0.25 * (factor * np.trace(rotation_matrix) + 1)\n if c2 < 0:\n c2 = 0.0\n c = np.sqrt(c2)\n r2 = 0.5 * (1 + factor * np.diagonal(rotation_matrix)) - c2\n r = np.zeros(3, float)\n for index, r2_comp in enumerate(r2):\n if r2_comp < 0:\n continue\n else:\n row, col = off_diagonals[index]\n if rotation_matrix[row, col] - rotation_matrix[col, row] < 0:\n r[index] = -np.sqrt(r2_comp)\n else:\n r[index] = +np.sqrt(r2_comp)\n return factor, np.array([c, r[0], r[1], r[2]], float)\n", "role": "user" }, { "content": "rotation_matrix_to_quaternion", "role": "assistant" } ]
def x(quaternion): c, x, y, z = quaternion return np.array([[c * c + x * x - y * y - z * z, 2 * x * y - 2 * c * z, 2 * x * z + 2 * c * y], [2 * x * y + 2 * c * z, c * c - x * x + y * y - z * z, 2 * y * z - 2 * c * x], [2 * x * z - 2 * c * y, 2 * y * z + 2 * c * x, c * c - x * x - y * y + z * z]], float)
quaternion_to_rotation_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quaternion):\n c, x, y, z = quaternion\n return np.array([[c * c + x * x - y * y - z * z, 2 * x * y - 2 * c * z,\n 2 * x * z + 2 * c * y], [2 * x * y + 2 * c * z, c * c - x * x + y *\n y - z * z, 2 * y * z - 2 * c * x], [2 * x * z - 2 * c * y, 2 * y *\n z + 2 * c * x, c * c - x * x - y * y + z * z]], float)\n", "role": "user" }, { "content": "quaternion_to_rotation_matrix", "role": "assistant" } ]
def x(a, b): result = np.dot(a, b) / np.linalg.norm(a) / np.linalg.norm(b) return np.clip(result, -1, 1)
cosine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b):\n result = np.dot(a, b) / np.linalg.norm(a) / np.linalg.norm(b)\n return np.clip(result, -1, 1)\n", "role": "user" }, { "content": "cosine", "role": "assistant" } ]
def x(size=3): while True: result = np.random.normal(0, 1, size) length = np.linalg.norm(result) if length > 0.001: return result / length
random_unit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(size=3):\n while True:\n result = np.random.normal(0, 1, size)\n length = np.linalg.norm(result)\n if length > 0.001:\n return result / length\n", "role": "user" }, { "content": "random_unit", "role": "assistant" } ]
def x(normal): u = normal_fns[np.argmin(np.fabs(normal))](normal) u /= np.linalg.norm(u) v = np.cross(normal, u) v /= np.linalg.norm(v) alpha = np.random.uniform(0.0, np.pi * 2) return np.cos(alpha) * u + np.sin(alpha) * v
random_orthonormal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(normal):\n u = normal_fns[np.argmin(np.fabs(normal))](normal)\n u /= np.linalg.norm(u)\n v = np.cross(normal, u)\n v /= np.linalg.norm(v)\n alpha = np.random.uniform(0.0, np.pi * 2)\n return np.cos(alpha) * u + np.sin(alpha) * v\n", "role": "user" }, { "content": "random_orthonormal", "role": "assistant" } ]
def x(a, b, c): normal = np.cross(a - c, b - c) norm = np.linalg.norm(normal) return normal / norm
triangle_normal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, c):\n normal = np.cross(a - c, b - c)\n norm = np.linalg.norm(normal)\n return normal / norm\n", "role": "user" }, { "content": "triangle_normal", "role": "assistant" } ]
def x(r1, r2): if r1.size != r2.size: raise ValueError('Both arguments must have the same input size.') if r1.deriv != r2.deriv: raise ValueError('Both arguments must have the same deriv.') return r1.x * r2.x + r1.y * r2.y + r1.z * r2.z
dot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r1, r2):\n if r1.size != r2.size:\n raise ValueError('Both arguments must have the same input size.')\n if r1.deriv != r2.deriv:\n raise ValueError('Both arguments must have the same deriv.')\n return r1.x * r2.x + r1.y * r2.y + r1.z * r2.z\n", "role": "user" }, { "content": "dot", "role": "assistant" } ]
def x(r1, r2): if r1.size != r2.size: raise ValueError('Both arguments must have the same input size.') if r1.deriv != r2.deriv: raise ValueError('Both arguments must have the same deriv.') result = Vector3(r1.size, r1.deriv) result.x = r1.y * r2.z - r1.z * r2.y result.y = r1.z * r2.x - r1.x * r2.z result.z = r1.x * r2.y - r1.y * r2.x return result
cross
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r1, r2):\n if r1.size != r2.size:\n raise ValueError('Both arguments must have the same input size.')\n if r1.deriv != r2.deriv:\n raise ValueError('Both arguments must have the same deriv.')\n result = Vector3(r1.size, r1.deriv)\n result.x = r1.y * r2.z - r1.z * r2.y\n result.y = r1.z * r2.x - r1.x * r2.z\n result.z = r1.x * r2.y - r1.y * r2.x\n return result\n", "role": "user" }, { "content": "cross", "role": "assistant" } ]
def x(rs, fn_low, deriv=0): v = 0.0 d = np.zeros((4, 3), float) dd = np.zeros((4, 3, 4, 3), float) for p in np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]]): opbend = _opbend_transform([rs[p[0]], rs[p[1]], rs[p[2]], rs[3]], fn_low, deriv) v += opbend[0] / 3 index0 = np.where(p == 0)[0][0] index1 = np.where(p == 1)[0][0] index2 = np.where(p == 2)[0][0] index3 = 3 if deriv > 0: d[0] += opbend[1][index0] / 3 d[1] += opbend[1][index1] / 3 d[2] += opbend[1][index2] / 3 d[3] += opbend[1][index3] / 3 if deriv > 1: dd[0, :, 0, :] += opbend[2][index0, :, index0, :] / 3 dd[0, :, 1, :] += opbend[2][index0, :, index1, :] / 3 dd[0, :, 2, :] += opbend[2][index0, :, index2, :] / 3 dd[0, :, 3, :] += opbend[2][index0, :, index3, :] / 3 dd[1, :, 0, :] += opbend[2][index1, :, index0, :] / 3 dd[1, :, 1, :] += opbend[2][index1, :, index1, :] / 3 dd[1, :, 2, :] += opbend[2][index1, :, index2, :] / 3 dd[1, :, 3, :] += opbend[2][index1, :, index3, :] / 3 dd[2, :, 0, :] += opbend[2][index2, :, index0, :] / 3 dd[2, :, 1, :] += opbend[2][index2, :, index1, :] / 3 dd[2, :, 2, :] += opbend[2][index2, :, index2, :] / 3 dd[2, :, 3, :] += opbend[2][index2, :, index3, :] / 3 dd[3, :, 0, :] += opbend[2][index3, :, index0, :] / 3 dd[3, :, 1, :] += opbend[2][index3, :, index1, :] / 3 dd[3, :, 2, :] += opbend[2][index3, :, index2, :] / 3 dd[3, :, 3, :] += opbend[2][index3, :, index3, :] / 3 if deriv == 0: return v, elif deriv == 1: return v, d elif deriv == 2: return v, d, dd else: raise ValueError('deriv must be 0, 1 or 2.')
opbend_transform_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rs, fn_low, deriv=0):\n v = 0.0\n d = np.zeros((4, 3), float)\n dd = np.zeros((4, 3, 4, 3), float)\n for p in np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]]):\n opbend = _opbend_transform([rs[p[0]], rs[p[1]], rs[p[2]], rs[3]],\n fn_low, deriv)\n v += opbend[0] / 3\n index0 = np.where(p == 0)[0][0]\n index1 = np.where(p == 1)[0][0]\n index2 = np.where(p == 2)[0][0]\n index3 = 3\n if deriv > 0:\n d[0] += opbend[1][index0] / 3\n d[1] += opbend[1][index1] / 3\n d[2] += opbend[1][index2] / 3\n d[3] += opbend[1][index3] / 3\n if deriv > 1:\n dd[0, :, 0, :] += opbend[2][index0, :, index0, :] / 3\n dd[0, :, 1, :] += opbend[2][index0, :, index1, :] / 3\n dd[0, :, 2, :] += opbend[2][index0, :, index2, :] / 3\n dd[0, :, 3, :] += opbend[2][index0, :, index3, :] / 3\n dd[1, :, 0, :] += opbend[2][index1, :, index0, :] / 3\n dd[1, :, 1, :] += opbend[2][index1, :, index1, :] / 3\n dd[1, :, 2, :] += opbend[2][index1, :, index2, :] / 3\n dd[1, :, 3, :] += opbend[2][index1, :, index3, :] / 3\n dd[2, :, 0, :] += opbend[2][index2, :, index0, :] / 3\n dd[2, :, 1, :] += opbend[2][index2, :, index1, :] / 3\n dd[2, :, 2, :] += opbend[2][index2, :, index2, :] / 3\n dd[2, :, 3, :] += opbend[2][index2, :, index3, :] / 3\n dd[3, :, 0, :] += opbend[2][index3, :, index0, :] / 3\n dd[3, :, 1, :] += opbend[2][index3, :, index1, :] / 3\n dd[3, :, 2, :] += opbend[2][index3, :, index2, :] / 3\n dd[3, :, 3, :] += opbend[2][index3, :, index3, :] / 3\n if deriv == 0:\n return v,\n elif deriv == 1:\n return v, d\n elif deriv == 2:\n return v, d, dd\n else:\n raise ValueError('deriv must be 0, 1 or 2.')\n", "role": "user" }, { "content": "opbend_transform_mean", "role": "assistant" } ]
def x(r, deriv): r = Vector3(3, deriv, r, (0, 1, 2)) d = r.norm() return d.results()
bond_length_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r, deriv):\n r = Vector3(3, deriv, r, (0, 1, 2))\n d = r.norm()\n return d.results()\n", "role": "user" }, { "content": "bond_length_low", "role": "assistant" } ]
def x(a, b, deriv): a = Vector3(6, deriv, a, (0, 1, 2)) b = Vector3(6, deriv, b, (3, 4, 5)) a /= a.norm() b /= b.norm() return dot(a, b).results()
bend_cos_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, deriv):\n a = Vector3(6, deriv, a, (0, 1, 2))\n b = Vector3(6, deriv, b, (3, 4, 5))\n a /= a.norm()\n b /= b.norm()\n return dot(a, b).results()\n", "role": "user" }, { "content": "bend_cos_low", "role": "assistant" } ]
def x(a, b, deriv): result = _bend_cos_low(a, b, deriv) return _cos_to_angle(result, deriv)
bend_angle_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, deriv):\n result = _bend_cos_low(a, b, deriv)\n return _cos_to_angle(result, deriv)\n", "role": "user" }, { "content": "bend_angle_low", "role": "assistant" } ]
def x(a, b, c, deriv): a = Vector3(9, deriv, a, (0, 1, 2)) b = Vector3(9, deriv, b, (3, 4, 5)) c = Vector3(9, deriv, c, (6, 7, 8)) b /= b.norm() tmp = b.copy() tmp *= dot(a, b) a -= tmp tmp = b.copy() tmp *= dot(c, b) c -= tmp a /= a.norm() c /= c.norm() return dot(a, c).results()
dihed_cos_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, c, deriv):\n a = Vector3(9, deriv, a, (0, 1, 2))\n b = Vector3(9, deriv, b, (3, 4, 5))\n c = Vector3(9, deriv, c, (6, 7, 8))\n b /= b.norm()\n tmp = b.copy()\n tmp *= dot(a, b)\n a -= tmp\n tmp = b.copy()\n tmp *= dot(c, b)\n c -= tmp\n a /= a.norm()\n c /= c.norm()\n return dot(a, c).results()\n", "role": "user" }, { "content": "dihed_cos_low", "role": "assistant" } ]
def x(av, bv, cv, deriv): a = Vector3(9, deriv, av, (0, 1, 2)) b = Vector3(9, deriv, bv, (3, 4, 5)) c = Vector3(9, deriv, cv, (6, 7, 8)) b /= b.norm() tmp = b.copy() tmp *= dot(a, b) a -= tmp tmp = b.copy() tmp *= dot(c, b) c -= tmp a /= a.norm() c /= c.norm() result = dot(a, c).results() if abs(result[0]) < 0.5: sign = 1 - (np.linalg.det([av, bv, cv]) > 0) * 2 return _cos_to_angle(result, deriv, sign) else: d = cross(b, a) side = (result[0] > 0) * 2 - 1 result = dot(d, c).results() return _sin_to_angle(result, deriv, side)
dihed_angle_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(av, bv, cv, deriv):\n a = Vector3(9, deriv, av, (0, 1, 2))\n b = Vector3(9, deriv, bv, (3, 4, 5))\n c = Vector3(9, deriv, cv, (6, 7, 8))\n b /= b.norm()\n tmp = b.copy()\n tmp *= dot(a, b)\n a -= tmp\n tmp = b.copy()\n tmp *= dot(c, b)\n c -= tmp\n a /= a.norm()\n c /= c.norm()\n result = dot(a, c).results()\n if abs(result[0]) < 0.5:\n sign = 1 - (np.linalg.det([av, bv, cv]) > 0) * 2\n return _cos_to_angle(result, deriv, sign)\n else:\n d = cross(b, a)\n side = (result[0] > 0) * 2 - 1\n result = dot(d, c).results()\n return _sin_to_angle(result, deriv, side)\n", "role": "user" }, { "content": "dihed_angle_low", "role": "assistant" } ]
def x(av, bv, cv, deriv): a = Vector3(9, deriv, av, (0, 1, 2)) b = Vector3(9, deriv, bv, (3, 4, 5)) c = Vector3(9, deriv, cv, (6, 7, 8)) n = cross(a, b) n /= n.norm() dist = dot(c, n) return dist.results()
opdist_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(av, bv, cv, deriv):\n a = Vector3(9, deriv, av, (0, 1, 2))\n b = Vector3(9, deriv, bv, (3, 4, 5))\n c = Vector3(9, deriv, cv, (6, 7, 8))\n n = cross(a, b)\n n /= n.norm()\n dist = dot(c, n)\n return dist.results()\n", "role": "user" }, { "content": "opdist_low", "role": "assistant" } ]
def x(a, b, c, deriv): a = Vector3(9, deriv, a, (0, 1, 2)) b = Vector3(9, deriv, b, (3, 4, 5)) c = Vector3(9, deriv, c, (6, 7, 8)) n = cross(a, b) n /= n.norm() c /= c.norm() temp = dot(n, c) result = temp.copy() result.v = np.sqrt(1.0 - temp.v ** 2) if result.deriv > 0: result.d *= -temp.v result.d /= result.v if result.deriv > 1: result.dd *= -temp.v result.dd /= result.v temp2 = np.array([temp.d]).transpose() * temp.d temp2 /= result.v ** 3 result.dd -= temp2 return result.results()
opbend_cos_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, c, deriv):\n a = Vector3(9, deriv, a, (0, 1, 2))\n b = Vector3(9, deriv, b, (3, 4, 5))\n c = Vector3(9, deriv, c, (6, 7, 8))\n n = cross(a, b)\n n /= n.norm()\n c /= c.norm()\n temp = dot(n, c)\n result = temp.copy()\n result.v = np.sqrt(1.0 - temp.v ** 2)\n if result.deriv > 0:\n result.d *= -temp.v\n result.d /= result.v\n if result.deriv > 1:\n result.dd *= -temp.v\n result.dd /= result.v\n temp2 = np.array([temp.d]).transpose() * temp.d\n temp2 /= result.v ** 3\n result.dd -= temp2\n return result.results()\n", "role": "user" }, { "content": "opbend_cos_low", "role": "assistant" } ]
def x(a, b, c, deriv=0): result = _opbend_cos_low(a, b, c, deriv) sign = np.sign(np.linalg.det([a, b, c])) return _cos_to_angle(result, deriv, sign)
opbend_angle_low
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, c, deriv=0):\n result = _opbend_cos_low(a, b, c, deriv)\n sign = np.sign(np.linalg.det([a, b, c]))\n return _cos_to_angle(result, deriv, sign)\n", "role": "user" }, { "content": "opbend_angle_low", "role": "assistant" } ]
def x(result, deriv, sign=1): v = np.arccos(np.clip(result[0], -1, 1)) if deriv == 0: return v * sign, if abs(result[0]) >= 1: factor1 = 0 else: factor1 = -1.0 / np.sqrt(1 - result[0] ** 2) d = factor1 * result[1] if deriv == 1: return v * sign, d * sign factor2 = result[0] * factor1 ** 3 dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2] if deriv == 2: return v * sign, d * sign, dd * sign raise ValueError('deriv must be 0, 1 or 2.')
cos_to_angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, deriv, sign=1):\n v = np.arccos(np.clip(result[0], -1, 1))\n if deriv == 0:\n return v * sign,\n if abs(result[0]) >= 1:\n factor1 = 0\n else:\n factor1 = -1.0 / np.sqrt(1 - result[0] ** 2)\n d = factor1 * result[1]\n if deriv == 1:\n return v * sign, d * sign\n factor2 = result[0] * factor1 ** 3\n dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]\n if deriv == 2:\n return v * sign, d * sign, dd * sign\n raise ValueError('deriv must be 0, 1 or 2.')\n", "role": "user" }, { "content": "cos_to_angle", "role": "assistant" } ]
def x(result, deriv, side=1): v = np.arcsin(np.clip(result[0], -1, 1)) sign = side if sign == -1: if v < 0: offset = -np.pi else: offset = np.pi else: offset = 0.0 if deriv == 0: return v * sign + offset, if abs(result[0]) >= 1: factor1 = 0 else: factor1 = 1.0 / np.sqrt(1 - result[0] ** 2) d = factor1 * result[1] if deriv == 1: return v * sign + offset, d * sign factor2 = result[0] * factor1 ** 3 dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2] if deriv == 2: return v * sign + offset, d * sign, dd * sign raise ValueError('deriv must be 0, 1 or 2.')
sin_to_angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, deriv, side=1):\n v = np.arcsin(np.clip(result[0], -1, 1))\n sign = side\n if sign == -1:\n if v < 0:\n offset = -np.pi\n else:\n offset = np.pi\n else:\n offset = 0.0\n if deriv == 0:\n return v * sign + offset,\n if abs(result[0]) >= 1:\n factor1 = 0\n else:\n factor1 = 1.0 / np.sqrt(1 - result[0] ** 2)\n d = factor1 * result[1]\n if deriv == 1:\n return v * sign + offset, d * sign\n factor2 = result[0] * factor1 ** 3\n dd = factor2 * np.outer(result[1], result[1]) + factor1 * result[2]\n if deriv == 2:\n return v * sign + offset, d * sign, dd * sign\n raise ValueError('deriv must be 0, 1 or 2.')\n", "role": "user" }, { "content": "sin_to_angle", "role": "assistant" } ]
def x(self): result = Scalar(self.size, self.deriv) result.v = self.v if self.deriv > 0: result.d[:] = self.d[:] if self.deriv > 1: result.dd[:] = self.dd[:] return result
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = Scalar(self.size, self.deriv)\n result.v = self.v\n if self.deriv > 0:\n result.d[:] = self.d[:]\n if self.deriv > 1:\n result.dd[:] = self.dd[:]\n return result\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]