source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(psr, formbats=False):
if formbats:
psr.formbats()
res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[
psr.deleted == 0]
res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)
return numpy.sum(res * res / (1e-12 * err * err))
|
chisq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, formbats=False):\n if formbats:\n psr.formbats()\n res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[\n psr.deleted == 0]\n res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)\n return numpy.sum(res * res / (1e-12 * err * err))\n",
"role": "user"
},
{
"content": "chisq",
"role": "assistant"
}
] |
def x(psr, formbats=False, renormalize=True):
if formbats:
psr.formbats()
res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[
psr.deleted == 0]
res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)
M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[
psr.deleted == 0, 1:]
if renormalize:
norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))
M /= norm
else:
norm = 1.0
dr = -2 * numpy.dot(M.T, res / (1e-12 * err ** 2)) * norm
return dr
|
dchisq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, formbats=False, renormalize=True):\n if formbats:\n psr.formbats()\n res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[\n psr.deleted == 0]\n res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)\n M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[\n psr.deleted == 0, 1:]\n if renormalize:\n norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))\n M /= norm\n else:\n norm = 1.0\n dr = -2 * numpy.dot(M.T, res / (1e-12 * err ** 2)) * norm\n return dr\n",
"role": "user"
},
{
"content": "dchisq",
"role": "assistant"
}
] |
def x(psr, method='Nelder-Mead', history=False, formbats=False, renormalize
=True, bounds={}, **kwargs):
ctr, err = psr.vals(), psr.errs()
if numpy.any(err == 0.0):
print(
"Warning: one or more fit parameters have zero a priori error, and won't be searched."
)
hloc, hval = [], []
def x(xs):
psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])
ret = chisq(psr, formbats=formbats)
if numpy.isnan(ret):
print('Warning: chisq is nan at {0}.'.format(psr.vals()))
if history:
hloc.append(psr.vals())
hval.append(ret)
return ret
def x(xs):
psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])
dc = dchisq(psr, formbats=formbats, renormalize=renormalize)
ret = numpy.array([(d * e) for d, e in zip(dc, err)], 'd')
return ret
opts = kwargs.copy()
if method not in ['Nelder-Mead', 'Powell']:
opts['jac'] = dfunc
if method in ['L-BFGS-B']:
opts['bounds'] = [((float((bounds[par][0] - ctr[i]) / err[i]),
float((bounds[par][1] - ctr[i]) / err[i])) if par in bounds else
(None, None)) for i, par in enumerate(psr.pars())]
res = scipy.optimize.minimize(func, [0.0] * len(ctr), method=method, **opts
)
if hasattr(res, 'message'):
print(res.message)
minchisq = func(res.x)
if history:
return minchisq, numpy.array(hval), numpy.array(hloc)
else:
return minchisq
|
findmin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, method='Nelder-Mead', history=False, formbats=False, renormalize\n =True, bounds={}, **kwargs):\n ctr, err = psr.vals(), psr.errs()\n if numpy.any(err == 0.0):\n print(\n \"Warning: one or more fit parameters have zero a priori error, and won't be searched.\"\n )\n hloc, hval = [], []\n\n def x(xs):\n psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])\n ret = chisq(psr, formbats=formbats)\n if numpy.isnan(ret):\n print('Warning: chisq is nan at {0}.'.format(psr.vals()))\n if history:\n hloc.append(psr.vals())\n hval.append(ret)\n return ret\n\n def x(xs):\n psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])\n dc = dchisq(psr, formbats=formbats, renormalize=renormalize)\n ret = numpy.array([(d * e) for d, e in zip(dc, err)], 'd')\n return ret\n opts = kwargs.copy()\n if method not in ['Nelder-Mead', 'Powell']:\n opts['jac'] = dfunc\n if method in ['L-BFGS-B']:\n opts['bounds'] = [((float((bounds[par][0] - ctr[i]) / err[i]),\n float((bounds[par][1] - ctr[i]) / err[i])) if par in bounds else\n (None, None)) for i, par in enumerate(psr.pars())]\n res = scipy.optimize.minimize(func, [0.0] * len(ctr), method=method, **opts\n )\n if hasattr(res, 'message'):\n print(res.message)\n minchisq = func(res.x)\n if history:\n return minchisq, numpy.array(hval), numpy.array(hloc)\n else:\n return minchisq\n",
"role": "user"
},
{
"content": "findmin",
"role": "assistant"
}
] |
def x(psr, renormalize=True):
mask = psr.deleted == 0
res, err = psr.residuals(removemean=False)[mask], psr.toaerrs[mask]
M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[
mask, :]
C = numpy.diag((err * 1e-06) ** 2)
if renormalize:
norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))
M /= norm
else:
norm = np.ones_like(M[0, :])
mtcm = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), M))
mtcy = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), res))
xvar = numpy.linalg.inv(mtcm)
c = scipy.linalg.cho_factor(mtcm)
xhat = scipy.linalg.cho_solve(c, mtcy)
sol = psr.vals()
psr.vals(sol + xhat[1:] / norm[1:])
psr.errs(numpy.sqrt(numpy.diag(xvar)[1:]) / norm[1:])
return chisq(psr)
|
glsfit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, renormalize=True):\n mask = psr.deleted == 0\n res, err = psr.residuals(removemean=False)[mask], psr.toaerrs[mask]\n M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[\n mask, :]\n C = numpy.diag((err * 1e-06) ** 2)\n if renormalize:\n norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))\n M /= norm\n else:\n norm = np.ones_like(M[0, :])\n mtcm = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), M))\n mtcy = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), res))\n xvar = numpy.linalg.inv(mtcm)\n c = scipy.linalg.cho_factor(mtcm)\n xhat = scipy.linalg.cho_solve(c, mtcy)\n sol = psr.vals()\n psr.vals(sol + xhat[1:] / norm[1:])\n psr.errs(numpy.sqrt(numpy.diag(xvar)[1:]) / norm[1:])\n return chisq(psr)\n",
"role": "user"
},
{
"content": "glsfit",
"role": "assistant"
}
] |
def x(t, nmodes, freq=False, Tspan=None, logf=False, fmin=None, fmax=None):
N = len(t)
F = np.zeros((N, 2 * nmodes))
if Tspan is not None:
T = Tspan
else:
T = t.max() - t.min()
if fmin is not None and fmax is not None:
f = np.linspace(fmin, fmax, nmodes)
else:
f = np.linspace(1 / T, nmodes / T, nmodes)
if logf:
f = np.logspace(np.log10(1 / T), np.log10(nmodes / T), nmodes)
Ffreqs = np.zeros(2 * nmodes)
Ffreqs[0::2] = f
Ffreqs[1::2] = f
F[:, ::2] = np.sin(2 * np.pi * t[:, None] * f[None, :])
F[:, 1::2] = np.cos(2 * np.pi * t[:, None] * f[None, :])
if freq:
return F, Ffreqs
else:
return F
|
create_fourier_design_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t, nmodes, freq=False, Tspan=None, logf=False, fmin=None, fmax=None):\n N = len(t)\n F = np.zeros((N, 2 * nmodes))\n if Tspan is not None:\n T = Tspan\n else:\n T = t.max() - t.min()\n if fmin is not None and fmax is not None:\n f = np.linspace(fmin, fmax, nmodes)\n else:\n f = np.linspace(1 / T, nmodes / T, nmodes)\n if logf:\n f = np.logspace(np.log10(1 / T), np.log10(nmodes / T), nmodes)\n Ffreqs = np.zeros(2 * nmodes)\n Ffreqs[0::2] = f\n Ffreqs[1::2] = f\n F[:, ::2] = np.sin(2 * np.pi * t[:, None] * f[None, :])\n F[:, 1::2] = np.cos(2 * np.pi * t[:, None] * f[None, :])\n if freq:\n return F, Ffreqs\n else:\n return F\n",
"role": "user"
},
{
"content": "create_fourier_design_matrix",
"role": "assistant"
}
] |
def x(f, log10_A=-16, gamma=5):
fyr = 1 / 31600000.0
return (10 ** log10_A) ** 2 / 12.0 / np.pi ** 2 * fyr ** (gamma - 3
) * f ** -gamma
|
powerlaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, log10_A=-16, gamma=5):\n fyr = 1 / 31600000.0\n return (10 ** log10_A) ** 2 / 12.0 / np.pi ** 2 * fyr ** (gamma - 3\n ) * f ** -gamma\n",
"role": "user"
},
{
"content": "powerlaw",
"role": "assistant"
}
] |
def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=
1e-20, alpha=-0.66, logspacing=True):
gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing)
gwb.add_gwb(psr, dist)
return gwb
|
add_gwb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=\n 1e-20, alpha=-0.66, logspacing=True):\n gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing)\n gwb.add_gwb(psr, dist)\n return gwb\n",
"role": "user"
},
{
"content": "add_gwb",
"role": "assistant"
}
] |
def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=
1e-20, alpha=-0.66, logspacing=True, dipoleamps=None, dipoledir=None,
dipolemag=None):
gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing, dipoleamps,
dipoledir, dipolemag)
gwb.add_gwb(psr, dist)
return gwb
|
add_dipole_gwb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=\n 1e-20, alpha=-0.66, logspacing=True, dipoleamps=None, dipoledir=None,\n dipolemag=None):\n gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing, dipoleamps,\n dipoledir, dipolemag)\n gwb.add_gwb(psr, dist)\n return gwb\n",
"role": "user"
},
{
"content": "add_dipole_gwb",
"role": "assistant"
}
] |
def x(parfile, obstimes, toaerr, freq=1440.0, observatory='AXIS', flags='',
iters=3):
import tempfile
outfile = tempfile.NamedTemporaryFile(delete=False)
outfile.write(b'FORMAT 1\n')
outfile.write(b'MODE 1\n')
obsname = 'fake_' + os.path.basename(parfile)
if obsname[-4:] == '.par':
obsname = obsname[:-4]
for i, t in enumerate(obstimes):
outfile.write('{0} {1} {2} {3} {4} {5}\n'.format(obsname, _geti(
freq, i), t, _geti(toaerr, i), _geti(observatory, i), _geti(
flags, i)).encode('ascii'))
timfile = outfile.name
outfile.close()
pulsar = libstempo.tempopulsar(parfile, timfile, dofit=False)
for i in range(iters):
pulsar.stoas[:] -= pulsar.residuals() / 86400.0
pulsar.formbats()
os.remove(timfile)
return pulsar
|
fakepulsar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parfile, obstimes, toaerr, freq=1440.0, observatory='AXIS', flags='',\n iters=3):\n import tempfile\n outfile = tempfile.NamedTemporaryFile(delete=False)\n outfile.write(b'FORMAT 1\\n')\n outfile.write(b'MODE 1\\n')\n obsname = 'fake_' + os.path.basename(parfile)\n if obsname[-4:] == '.par':\n obsname = obsname[:-4]\n for i, t in enumerate(obstimes):\n outfile.write('{0} {1} {2} {3} {4} {5}\\n'.format(obsname, _geti(\n freq, i), t, _geti(toaerr, i), _geti(observatory, i), _geti(\n flags, i)).encode('ascii'))\n timfile = outfile.name\n outfile.close()\n pulsar = libstempo.tempopulsar(parfile, timfile, dofit=False)\n for i in range(iters):\n pulsar.stoas[:] -= pulsar.residuals() / 86400.0\n pulsar.formbats()\n os.remove(timfile)\n return pulsar\n",
"role": "user"
},
{
"content": "fakepulsar",
"role": "assistant"
}
] |
def x(psr, efac=1.0, flagid=None, flags=None, seed=None):
if seed is not None:
N.random.seed(seed)
efacvec = N.ones(psr.nobs)
if flags is None:
if not N.isscalar(efac):
raise ValueError('ERROR: If flags is None, efac must be a scalar')
else:
efacvec = N.ones(psr.nobs) * efac
if flags is not None and flagid is not None and not N.isscalar(efac):
if len(efac) == len(flags):
for ct, flag in enumerate(flags):
ind = flag == N.array(psr.flagvals(flagid))
efacvec[ind] = efac[ct]
psr.stoas[:] += efacvec * psr.toaerrs * (1e-06 / day) * N.random.randn(psr
.nobs)
|
add_efac
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, efac=1.0, flagid=None, flags=None, seed=None):\n if seed is not None:\n N.random.seed(seed)\n efacvec = N.ones(psr.nobs)\n if flags is None:\n if not N.isscalar(efac):\n raise ValueError('ERROR: If flags is None, efac must be a scalar')\n else:\n efacvec = N.ones(psr.nobs) * efac\n if flags is not None and flagid is not None and not N.isscalar(efac):\n if len(efac) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(psr.flagvals(flagid))\n efacvec[ind] = efac[ct]\n psr.stoas[:] += efacvec * psr.toaerrs * (1e-06 / day) * N.random.randn(psr\n .nobs)\n",
"role": "user"
},
{
"content": "add_efac",
"role": "assistant"
}
] |
def x(psr, equad, flagid=None, flags=None, seed=None):
if seed is not None:
N.random.seed(seed)
equadvec = N.zeros(psr.nobs)
if flags is None:
if not N.isscalar(equad):
raise ValueError('ERROR: If flags is None, equad must be a scalar')
else:
equadvec = N.ones(psr.nobs) * equad
if flags is not None and flagid is not None and not N.isscalar(equad):
if len(equad) == len(flags):
for ct, flag in enumerate(flags):
ind = flag == N.array(psr.flagvals(flagid))
equadvec[ind] = equad[ct]
psr.stoas[:] += equadvec / day * N.random.randn(psr.nobs)
|
add_equad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, equad, flagid=None, flags=None, seed=None):\n if seed is not None:\n N.random.seed(seed)\n equadvec = N.zeros(psr.nobs)\n if flags is None:\n if not N.isscalar(equad):\n raise ValueError('ERROR: If flags is None, equad must be a scalar')\n else:\n equadvec = N.ones(psr.nobs) * equad\n if flags is not None and flagid is not None and not N.isscalar(equad):\n if len(equad) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(psr.flagvals(flagid))\n equadvec[ind] = equad[ct]\n psr.stoas[:] += equadvec / day * N.random.randn(psr.nobs)\n",
"role": "user"
},
{
"content": "add_equad",
"role": "assistant"
}
] |
def x(psr, ecorr, flagid=None, flags=None, coarsegrain=0.1, seed=None):
if seed is not None:
N.random.seed(seed)
if flags is None:
t, U = quantize_fast(N.array(psr.toas(), 'd'), dt=coarsegrain)
elif flags is not None and flagid is not None:
t, f, U = quantize_fast(N.array(psr.toas(), 'd'), N.array(psr.
flagvals(flagid)), dt=coarsegrain)
ecorrvec = N.zeros(len(t))
if flags is None:
if not N.isscalar(ecorr):
raise ValueError('ERROR: If flags is None, jitter must be a scalar'
)
else:
ecorrvec = N.ones(len(t)) * ecorr
if flags is not None and flagid is not None and not N.isscalar(ecorr):
if len(ecorr) == len(flags):
for ct, flag in enumerate(flags):
ind = flag == N.array(f)
ecorrvec[ind] = ecorr[ct]
psr.stoas[:] += 1 / day * N.dot(U * ecorrvec, N.random.randn(U.shape[1]))
|
add_jitter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, ecorr, flagid=None, flags=None, coarsegrain=0.1, seed=None):\n if seed is not None:\n N.random.seed(seed)\n if flags is None:\n t, U = quantize_fast(N.array(psr.toas(), 'd'), dt=coarsegrain)\n elif flags is not None and flagid is not None:\n t, f, U = quantize_fast(N.array(psr.toas(), 'd'), N.array(psr.\n flagvals(flagid)), dt=coarsegrain)\n ecorrvec = N.zeros(len(t))\n if flags is None:\n if not N.isscalar(ecorr):\n raise ValueError('ERROR: If flags is None, jitter must be a scalar'\n )\n else:\n ecorrvec = N.ones(len(t)) * ecorr\n if flags is not None and flagid is not None and not N.isscalar(ecorr):\n if len(ecorr) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(f)\n ecorrvec[ind] = ecorr[ct]\n psr.stoas[:] += 1 / day * N.dot(U * ecorrvec, N.random.randn(U.shape[1]))\n",
"role": "user"
},
{
"content": "add_jitter",
"role": "assistant"
}
] |
def x(psr, A, gamma, components=10, seed=None):
if seed is not None:
N.random.seed(seed)
t = psr.toas()
minx, maxx = N.min(t), N.max(t)
x = (t - minx) / (maxx - minx)
T = day / year * (maxx - minx)
size = 2 * components
F = N.zeros((psr.nobs, size), 'd')
f = N.zeros(size, 'd')
for i in range(components):
F[:, 2 * i] = N.cos(2 * math.pi * (i + 1) * x)
F[:, 2 * i + 1] = N.sin(2 * math.pi * (i + 1) * x)
f[2 * i] = f[2 * i + 1] = (i + 1) / T
norm = A ** 2 * year ** 2 / (12 * math.pi ** 2 * T)
prior = norm * f ** -gamma
y = N.sqrt(prior) * N.random.randn(size)
psr.stoas[:] += 1.0 / day * N.dot(F, y)
|
add_rednoise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, A, gamma, components=10, seed=None):\n if seed is not None:\n N.random.seed(seed)\n t = psr.toas()\n minx, maxx = N.min(t), N.max(t)\n x = (t - minx) / (maxx - minx)\n T = day / year * (maxx - minx)\n size = 2 * components\n F = N.zeros((psr.nobs, size), 'd')\n f = N.zeros(size, 'd')\n for i in range(components):\n F[:, 2 * i] = N.cos(2 * math.pi * (i + 1) * x)\n F[:, 2 * i + 1] = N.sin(2 * math.pi * (i + 1) * x)\n f[2 * i] = f[2 * i + 1] = (i + 1) / T\n norm = A ** 2 * year ** 2 / (12 * math.pi ** 2 * T)\n prior = norm * f ** -gamma\n y = N.sqrt(prior) * N.random.randn(size)\n psr.stoas[:] += 1.0 / day * N.dot(F, y)\n",
"role": "user"
},
{
"content": "add_rednoise",
"role": "assistant"
}
] |
def x(psr, f, A, offset=0.5):
t = psr.toas()
t0 = offset * (N.max(t) - N.min(t))
sine = A * N.cos(2 * math.pi * f * day * (t - t0))
psr.stoas[:] += sine / day
|
add_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, f, A, offset=0.5):\n t = psr.toas()\n t0 = offset * (N.max(t) - N.min(t))\n sine = A * N.cos(2 * math.pi * f * day * (t - t0))\n psr.stoas[:] += sine / day\n",
"role": "user"
},
{
"content": "add_line",
"role": "assistant"
}
] |
def x(psr, epoch, amp):
heaviside = lambda x: 0.5 * (N.sign(x) + 1)
psr.stoas[:] -= amp * heaviside(psr.toas() - epoch) * (psr.toas() - epoch
) * 86400.0
|
add_glitch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, epoch, amp):\n heaviside = lambda x: 0.5 * (N.sign(x) + 1)\n psr.stoas[:] -= amp * heaviside(psr.toas() - epoch) * (psr.toas() - epoch\n ) * 86400.0\n",
"role": "user"
},
{
"content": "add_glitch",
"role": "assistant"
}
] |
def x(psr, gwtheta, gwphi, mc, dist, fgw, phase0, psi, inc, pdist=1.0,
pphase=None, psrTerm=True, evolve=True, phase_approx=False, tref=0):
mc *= eu.SOLAR2S
dist *= eu.MPC2S
w0 = N.pi * fgw
phase0 /= 2
w053 = w0 ** (-5 / 3)
cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)
singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)
sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)
incfac1, incfac2 = 0.5 * (3 + N.cos(2 * inc)), 2 * N.cos(inc)
m = N.array([singwphi, -cosgwphi, 0.0])
n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])
omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -
cosgwtheta])
fac1 = 256 / 5 * mc ** (5 / 3) * w0 ** (8 / 3)
fac2 = 1 / 32 / mc ** (5 / 3)
fac3 = mc ** (5 / 3) / dist
if 'RAJ' and 'DECJ' in psr.pars():
ptheta = N.pi / 2 - psr['DECJ'].val
pphi = psr['RAJ'].val
elif 'ELONG' and 'ELAT' in psr.pars():
fac = 180.0 / N.pi
coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac
), str(psr['ELAT'].val * fac)))
ptheta = N.pi / 2 - float(repr(coords.dec))
pphi = float(repr(coords.ra))
phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi
), N.cos(ptheta)])
fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(
omhat, phat))
fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))
cosMu = -N.dot(omhat, phat)
toas = psr.toas() * 86400 - tref
if pphase is not None:
pd = pphase / (2 * N.pi * fgw * (1 - cosMu)) / eu.KPC2S
else:
pd = pdist
pd *= eu.KPC2S
tp = toas - pd * (1 - cosMu)
if evolve:
omega = w0 * (1 - fac1 * toas) ** (-3 / 8)
omega_p = w0 * (1 - fac1 * tp) ** (-3 / 8)
phase = phase0 + fac2 * (w053 - omega ** (-5 / 3))
phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3))
elif phase_approx:
omega = w0
omega_p = w0 * (1 + fac1 * pd * (1 - cosMu)) ** (-3 / 8)
phase = phase0 + omega * toas
phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3)) + omega_p * toas
else:
omega = w0
omega_p = omega
phase = phase0 + omega * toas
phase_p = phase0 + omega * tp
At = N.sin(2 * phase) * incfac1
Bt = N.cos(2 * phase) * incfac2
At_p = N.sin(2 * phase_p) * incfac1
Bt_p = N.cos(2 * phase_p) * incfac2
alpha = fac3 / omega ** (1 / 3)
alpha_p = fac3 / omega_p ** (1 / 3)
rplus = alpha * (At * cos2psi + Bt * sin2psi)
rcross = alpha * (-At * sin2psi + Bt * cos2psi)
rplus_p = alpha_p * (At_p * cos2psi + Bt_p * sin2psi)
rcross_p = alpha_p * (-At_p * sin2psi + Bt_p * cos2psi)
if psrTerm:
res = fplus * (rplus_p - rplus) + fcross * (rcross_p - rcross)
else:
res = -fplus * rplus - fcross * rcross
psr.stoas[:] += res / 86400
|
add_cgw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, gwtheta, gwphi, mc, dist, fgw, phase0, psi, inc, pdist=1.0,\n pphase=None, psrTerm=True, evolve=True, phase_approx=False, tref=0):\n mc *= eu.SOLAR2S\n dist *= eu.MPC2S\n w0 = N.pi * fgw\n phase0 /= 2\n w053 = w0 ** (-5 / 3)\n cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)\n singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)\n sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)\n incfac1, incfac2 = 0.5 * (3 + N.cos(2 * inc)), 2 * N.cos(inc)\n m = N.array([singwphi, -cosgwphi, 0.0])\n n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])\n omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -\n cosgwtheta])\n fac1 = 256 / 5 * mc ** (5 / 3) * w0 ** (8 / 3)\n fac2 = 1 / 32 / mc ** (5 / 3)\n fac3 = mc ** (5 / 3) / dist\n if 'RAJ' and 'DECJ' in psr.pars():\n ptheta = N.pi / 2 - psr['DECJ'].val\n pphi = psr['RAJ'].val\n elif 'ELONG' and 'ELAT' in psr.pars():\n fac = 180.0 / N.pi\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac\n ), str(psr['ELAT'].val * fac)))\n ptheta = N.pi / 2 - float(repr(coords.dec))\n pphi = float(repr(coords.ra))\n phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi\n ), N.cos(ptheta)])\n fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(\n omhat, phat))\n fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))\n cosMu = -N.dot(omhat, phat)\n toas = psr.toas() * 86400 - tref\n if pphase is not None:\n pd = pphase / (2 * N.pi * fgw * (1 - cosMu)) / eu.KPC2S\n else:\n pd = pdist\n pd *= eu.KPC2S\n tp = toas - pd * (1 - cosMu)\n if evolve:\n omega = w0 * (1 - fac1 * toas) ** (-3 / 8)\n omega_p = w0 * (1 - fac1 * tp) ** (-3 / 8)\n phase = phase0 + fac2 * (w053 - omega ** (-5 / 3))\n phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3))\n elif phase_approx:\n omega = w0\n omega_p = w0 * (1 + fac1 * pd * (1 - cosMu)) ** (-3 / 8)\n phase = phase0 + omega * toas\n phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3)) + omega_p * toas\n else:\n omega = w0\n omega_p = omega\n phase = phase0 + omega * toas\n phase_p = phase0 + omega * tp\n At = N.sin(2 * phase) * incfac1\n Bt = N.cos(2 * phase) * incfac2\n At_p = N.sin(2 * phase_p) * incfac1\n Bt_p = N.cos(2 * phase_p) * incfac2\n alpha = fac3 / omega ** (1 / 3)\n alpha_p = fac3 / omega_p ** (1 / 3)\n rplus = alpha * (At * cos2psi + Bt * sin2psi)\n rcross = alpha * (-At * sin2psi + Bt * cos2psi)\n rplus_p = alpha_p * (At_p * cos2psi + Bt_p * sin2psi)\n rcross_p = alpha_p * (-At_p * sin2psi + Bt_p * cos2psi)\n if psrTerm:\n res = fplus * (rplus_p - rplus) + fcross * (rcross_p - rcross)\n else:\n res = -fplus * rplus - fcross * rcross\n psr.stoas[:] += res / 86400\n",
"role": "user"
},
{
"content": "add_cgw",
"role": "assistant"
}
] |
def x(psr, gwtheta, gwphi, mc, dist, F, inc, psi, gamma0, e0, l0, q, nmax=
100, nset=None, pd=None, periEv=True, psrTerm=True, tref=0, check=True,
useFile=True):
cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)
singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)
sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)
m = N.array([singwphi, -cosgwphi, 0.0])
n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])
omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -
cosgwtheta])
if 'RAJ' and 'DECJ' in psr.pars():
ptheta = N.pi / 2 - psr['DECJ'].val
pphi = psr['RAJ'].val
elif 'ELONG' and 'ELAT' in psr.pars():
fac = 180.0 / N.pi
coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac
), str(psr['ELAT'].val * fac)))
ptheta = N.pi / 2 - float(repr(coords.dec))
pphi = float(repr(coords.ra))
phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi
), N.cos(ptheta)])
fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(
omhat, phat))
fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))
cosMu = -N.dot(omhat, phat)
toas = N.double(psr.toas()) * 86400 - tref
if check:
y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array
([0.0, toas.max()]))
Fc0, ec0, gc0, phic0 = y[0, :]
Fc1, ec1, gc1, phic1 = y[-1, :]
Tobs = 1 / (toas.max() - toas.min())
if N.abs(Fc0 - Fc1) > 1 / Tobs:
print(
'WARNING: Frequency is evolving over more than one frequency bin.'
)
print('F0 = {0}, F1 = {1}, delta f = {2}'.format(Fc0, Fc1, 1 /
Tobs))
if periEv == False:
gammadot = 0.0
else:
gammadot = eu.get_gammadot(F, mc, q, e0)
if nset is not None:
nharm = nset
elif useFile:
if e0 > 0.001 and e0 < 0.999:
nharm = min(int(ecc_interp(e0)), nmax) + 1
elif e0 < 0.001:
nharm = 3
else:
nharm = nmax
else:
nharm = nmax
splus, scross = eu.calculate_splus_scross(nharm, mc, dist, F, e0, toas,
l0, gamma0, gammadot, inc)
if psrTerm:
pd *= eu.KPC2S
tp = toas - pd * (1 - cosMu)
y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array
([0.0, tp.min()]))
if N.any(y):
Fp, ep, gp, lp = y[-1, :]
gammadotp = eu.get_gammadot(Fp, mc, q, ep)
if useFile:
if ep > 0.001 and ep < 0.999:
nharm = min(int(ecc_interp(ep)), nmax)
elif ep < 0.001:
nharm = 3
else:
nharm = nmax
else:
nharm = nmax
splusp, scrossp = eu.calculate_splus_scross(nharm, mc, dist, Fp,
ep, toas, lp, gp, gammadotp, inc)
rr = (fplus * cos2psi - fcross * sin2psi) * (splusp - splus) + (
fplus * sin2psi + fcross * cos2psi) * (scrossp - scross)
else:
rr = N.zeros(len(p.toas))
else:
rr = -(fplus * cos2psi - fcross * sin2psi) * splus - (fplus *
sin2psi + fcross * cos2psi) * scross
psr.stoas[:] += rr / 86400
|
add_ecc_cgw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, gwtheta, gwphi, mc, dist, F, inc, psi, gamma0, e0, l0, q, nmax=\n 100, nset=None, pd=None, periEv=True, psrTerm=True, tref=0, check=True,\n useFile=True):\n cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)\n singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)\n sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)\n m = N.array([singwphi, -cosgwphi, 0.0])\n n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])\n omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -\n cosgwtheta])\n if 'RAJ' and 'DECJ' in psr.pars():\n ptheta = N.pi / 2 - psr['DECJ'].val\n pphi = psr['RAJ'].val\n elif 'ELONG' and 'ELAT' in psr.pars():\n fac = 180.0 / N.pi\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac\n ), str(psr['ELAT'].val * fac)))\n ptheta = N.pi / 2 - float(repr(coords.dec))\n pphi = float(repr(coords.ra))\n phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi\n ), N.cos(ptheta)])\n fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(\n omhat, phat))\n fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))\n cosMu = -N.dot(omhat, phat)\n toas = N.double(psr.toas()) * 86400 - tref\n if check:\n y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array\n ([0.0, toas.max()]))\n Fc0, ec0, gc0, phic0 = y[0, :]\n Fc1, ec1, gc1, phic1 = y[-1, :]\n Tobs = 1 / (toas.max() - toas.min())\n if N.abs(Fc0 - Fc1) > 1 / Tobs:\n print(\n 'WARNING: Frequency is evolving over more than one frequency bin.'\n )\n print('F0 = {0}, F1 = {1}, delta f = {2}'.format(Fc0, Fc1, 1 /\n Tobs))\n if periEv == False:\n gammadot = 0.0\n else:\n gammadot = eu.get_gammadot(F, mc, q, e0)\n if nset is not None:\n nharm = nset\n elif useFile:\n if e0 > 0.001 and e0 < 0.999:\n nharm = min(int(ecc_interp(e0)), nmax) + 1\n elif e0 < 0.001:\n nharm = 3\n else:\n nharm = nmax\n else:\n nharm = nmax\n splus, scross = eu.calculate_splus_scross(nharm, mc, dist, F, e0, toas,\n l0, gamma0, gammadot, inc)\n if psrTerm:\n pd *= eu.KPC2S\n tp = toas - pd * (1 - cosMu)\n y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array\n ([0.0, tp.min()]))\n if N.any(y):\n Fp, ep, gp, lp = y[-1, :]\n gammadotp = eu.get_gammadot(Fp, mc, q, ep)\n if useFile:\n if ep > 0.001 and ep < 0.999:\n nharm = min(int(ecc_interp(ep)), nmax)\n elif ep < 0.001:\n nharm = 3\n else:\n nharm = nmax\n else:\n nharm = nmax\n splusp, scrossp = eu.calculate_splus_scross(nharm, mc, dist, Fp,\n ep, toas, lp, gp, gammadotp, inc)\n rr = (fplus * cos2psi - fcross * sin2psi) * (splusp - splus) + (\n fplus * sin2psi + fcross * cos2psi) * (scrossp - scross)\n else:\n rr = N.zeros(len(p.toas))\n else:\n rr = -(fplus * cos2psi - fcross * sin2psi) * splus - (fplus *\n sin2psi + fcross * cos2psi) * scross\n psr.stoas[:] += rr / 86400\n",
"role": "user"
},
{
"content": "add_ecc_cgw",
"role": "assistant"
}
] |
def x(interpolator):
xs = interpolator.x
ys = interpolator.y
def x(x):
if x < xs[0]:
return ys[0]
elif x > xs[-1]:
return ys[-1]
else:
return interpolator(x)
def x(xs):
return N.array(map(pointwise, N.array(xs)))
return ufunclike
|
extrap1d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(interpolator):\n xs = interpolator.x\n ys = interpolator.y\n\n def x(x):\n if x < xs[0]:\n return ys[0]\n elif x > xs[-1]:\n return ys[-1]\n else:\n return interpolator(x)\n\n def x(xs):\n return N.array(map(pointwise, N.array(xs)))\n return ufunclike\n",
"role": "user"
},
{
"content": "extrap1d",
"role": "assistant"
}
] |
def x(psr, Amp, gam, noCorr=False, seed=None, turnover=False, clm=[N.sqrt(
4.0 * N.pi)], lmax=0, f0=1e-09, beta=1, power=1, userSpec=None, npts=
600, howml=10):
if seed is not None:
N.random.seed(seed)
Npulsars = len(psr)
start = N.min([(p.toas().min() * 86400) for p in psr]) - 86400
stop = N.max([(p.toas().max() * 86400) for p in psr]) + 86400
dur = stop - start
if npts is None:
npts = dur / (86400 * 14)
ut = N.linspace(start, stop, npts)
dt = dur / npts
if noCorr:
ORF = N.diag(N.ones(Npulsars) * 2)
else:
psrlocs = N.zeros((Npulsars, 2))
for ii in range(Npulsars):
if 'RAJ' and 'DECJ' in psr[ii].pars():
psrlocs[ii] = N.double(psr[ii]['RAJ'].val), N.double(psr[ii
]['DECJ'].val)
elif 'ELONG' and 'ELAT' in psr[ii].pars():
fac = 180.0 / N.pi
if 'B' in psr[ii].name:
epoch = '1950'
else:
epoch = '2000'
coords = ephem.Equatorial(ephem.Ecliptic(str(psr[ii][
'ELONG'].val * fac), str(psr[ii]['ELAT'].val * fac)),
epoch=epoch)
psrlocs[ii] = float(repr(coords.ra)), float(repr(coords.dec))
psrlocs[:, 1] = N.pi / 2.0 - psrlocs[:, 1]
anisbasis = N.array(anis.CorrBasis(psrlocs, lmax))
ORF = sum(clm[kk] * anisbasis[kk] for kk in range(len(anisbasis)))
ORF *= 2.0
f = N.arange(0, 1 / (2 * dt), 1 / (dur * howml))
f[0] = f[1]
Nf = len(f)
M = N.linalg.cholesky(ORF)
w = N.zeros((Npulsars, Nf), complex)
for ll in range(Npulsars):
w[ll, :] = N.random.randn(Nf) + 1.0j * N.random.randn(Nf)
if userSpec is None:
f1yr = 1 / 31600000.0
alpha = -0.5 * (gam - 3)
hcf = Amp * (f / f1yr) ** alpha
if turnover:
si = alpha - beta
hcf /= (1 + (f / f0) ** (power * si)) ** (1 / power)
elif userSpec is not None:
freqs = userSpec[:, 0]
if len(userSpec[:, 0]) != len(freqs):
raise ValueError(
'Number of supplied spectral points does not match number of frequencies!'
)
else:
fspec_in = interp.interp1d(N.log10(freqs), N.log10(userSpec[:,
1]), kind='linear')
fspec_ex = extrap1d(fspec_in)
hcf = 10.0 ** fspec_ex(N.log10(f))
C = 1 / 96 / N.pi ** 2 * hcf ** 2 / f ** 3 * dur * howml
Res_f = N.dot(M, w)
for ll in range(Npulsars):
Res_f[ll] = Res_f[ll] * C ** 0.5
Res_f[ll, 0] = 0
Res_f[ll, -1] = 0
Res_f2 = N.zeros((Npulsars, 2 * Nf - 2), complex)
Res_t = N.zeros((Npulsars, 2 * Nf - 2))
Res_f2[:, 0:Nf] = Res_f[:, 0:Nf]
Res_f2[:, Nf:2 * Nf - 2] = N.conj(Res_f[:, Nf - 2:0:-1])
Res_t = N.real(N.fft.ifft(Res_f2) / dt)
Res = N.zeros((Npulsars, npts))
res_gw = []
for ll in range(Npulsars):
Res[ll, :] = Res_t[ll, 10:npts + 10]
f = interp.interp1d(ut, Res[ll, :], kind='linear')
res_gw.append(f(psr[ll].toas() * 86400))
ct = 0
for p in psr:
p.stoas[:] += res_gw[ct] / 86400.0
ct += 1
|
createGWB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, Amp, gam, noCorr=False, seed=None, turnover=False, clm=[N.sqrt(\n 4.0 * N.pi)], lmax=0, f0=1e-09, beta=1, power=1, userSpec=None, npts=\n 600, howml=10):\n if seed is not None:\n N.random.seed(seed)\n Npulsars = len(psr)\n start = N.min([(p.toas().min() * 86400) for p in psr]) - 86400\n stop = N.max([(p.toas().max() * 86400) for p in psr]) + 86400\n dur = stop - start\n if npts is None:\n npts = dur / (86400 * 14)\n ut = N.linspace(start, stop, npts)\n dt = dur / npts\n if noCorr:\n ORF = N.diag(N.ones(Npulsars) * 2)\n else:\n psrlocs = N.zeros((Npulsars, 2))\n for ii in range(Npulsars):\n if 'RAJ' and 'DECJ' in psr[ii].pars():\n psrlocs[ii] = N.double(psr[ii]['RAJ'].val), N.double(psr[ii\n ]['DECJ'].val)\n elif 'ELONG' and 'ELAT' in psr[ii].pars():\n fac = 180.0 / N.pi\n if 'B' in psr[ii].name:\n epoch = '1950'\n else:\n epoch = '2000'\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr[ii][\n 'ELONG'].val * fac), str(psr[ii]['ELAT'].val * fac)),\n epoch=epoch)\n psrlocs[ii] = float(repr(coords.ra)), float(repr(coords.dec))\n psrlocs[:, 1] = N.pi / 2.0 - psrlocs[:, 1]\n anisbasis = N.array(anis.CorrBasis(psrlocs, lmax))\n ORF = sum(clm[kk] * anisbasis[kk] for kk in range(len(anisbasis)))\n ORF *= 2.0\n f = N.arange(0, 1 / (2 * dt), 1 / (dur * howml))\n f[0] = f[1]\n Nf = len(f)\n M = N.linalg.cholesky(ORF)\n w = N.zeros((Npulsars, Nf), complex)\n for ll in range(Npulsars):\n w[ll, :] = N.random.randn(Nf) + 1.0j * N.random.randn(Nf)\n if userSpec is None:\n f1yr = 1 / 31600000.0\n alpha = -0.5 * (gam - 3)\n hcf = Amp * (f / f1yr) ** alpha\n if turnover:\n si = alpha - beta\n hcf /= (1 + (f / f0) ** (power * si)) ** (1 / power)\n elif userSpec is not None:\n freqs = userSpec[:, 0]\n if len(userSpec[:, 0]) != len(freqs):\n raise ValueError(\n 'Number of supplied spectral points does not match number of frequencies!'\n )\n else:\n fspec_in = interp.interp1d(N.log10(freqs), N.log10(userSpec[:, \n 1]), kind='linear')\n fspec_ex = extrap1d(fspec_in)\n hcf = 10.0 ** fspec_ex(N.log10(f))\n C = 1 / 96 / N.pi ** 2 * hcf ** 2 / f ** 3 * dur * howml\n Res_f = N.dot(M, w)\n for ll in range(Npulsars):\n Res_f[ll] = Res_f[ll] * C ** 0.5\n Res_f[ll, 0] = 0\n Res_f[ll, -1] = 0\n Res_f2 = N.zeros((Npulsars, 2 * Nf - 2), complex)\n Res_t = N.zeros((Npulsars, 2 * Nf - 2))\n Res_f2[:, 0:Nf] = Res_f[:, 0:Nf]\n Res_f2[:, Nf:2 * Nf - 2] = N.conj(Res_f[:, Nf - 2:0:-1])\n Res_t = N.real(N.fft.ifft(Res_f2) / dt)\n Res = N.zeros((Npulsars, npts))\n res_gw = []\n for ll in range(Npulsars):\n Res[ll, :] = Res_t[ll, 10:npts + 10]\n f = interp.interp1d(ut, Res[ll, :], kind='linear')\n res_gw.append(f(psr[ll].toas() * 86400))\n ct = 0\n for p in psr:\n p.stoas[:] += res_gw[ct] / 86400.0\n ct += 1\n",
"role": "user"
},
{
"content": "createGWB",
"role": "assistant"
}
] |
def x(psr):
npsr = len(psr)
ORF = N.zeros((npsr, npsr))
phati = N.zeros(3)
phatj = N.zeros(3)
ptheta = [(N.pi / 2 - p['DECJ'].val) for p in psr]
pphi = [p['RAJ'].val for p in psr]
for ll in range(0, npsr):
phati[0] = N.cos(pphi[ll]) * N.sin(ptheta[ll])
phati[1] = N.sin(pphi[ll]) * N.sin(ptheta[ll])
phati[2] = N.cos(ptheta[ll])
for kk in range(0, npsr):
phatj[0] = N.cos(pphi[kk]) * N.sin(ptheta[kk])
phatj[1] = N.sin(pphi[kk]) * N.sin(ptheta[kk])
phatj[2] = N.cos(ptheta[kk])
if ll != kk:
xip = (1.0 - N.sum(phati * phatj)) / 2.0
ORF[ll, kk] = 3.0 * (1.0 / 3.0 + xip * (N.log(xip) - 1.0 / 6.0)
)
else:
ORF[ll, kk] = 2.0
return ORF
|
computeORFMatrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr):\n npsr = len(psr)\n ORF = N.zeros((npsr, npsr))\n phati = N.zeros(3)\n phatj = N.zeros(3)\n ptheta = [(N.pi / 2 - p['DECJ'].val) for p in psr]\n pphi = [p['RAJ'].val for p in psr]\n for ll in range(0, npsr):\n phati[0] = N.cos(pphi[ll]) * N.sin(ptheta[ll])\n phati[1] = N.sin(pphi[ll]) * N.sin(ptheta[ll])\n phati[2] = N.cos(ptheta[ll])\n for kk in range(0, npsr):\n phatj[0] = N.cos(pphi[kk]) * N.sin(ptheta[kk])\n phatj[1] = N.sin(pphi[kk]) * N.sin(ptheta[kk])\n phatj[2] = N.cos(ptheta[kk])\n if ll != kk:\n xip = (1.0 - N.sum(phati * phatj)) / 2.0\n ORF[ll, kk] = 3.0 * (1.0 / 3.0 + xip * (N.log(xip) - 1.0 / 6.0)\n )\n else:\n ORF[ll, kk] = 2.0\n return ORF\n",
"role": "user"
},
{
"content": "computeORFMatrix",
"role": "assistant"
}
] |
def x(psr, deleted=False, group=None, **kwargs):
res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs
if not deleted and N.any(psr.deleted != 0):
res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr
.deleted == 0]
print('Plotting {0}/{1} nondeleted points.'.format(len(res), psr.nobs))
meanres = math.sqrt(N.mean(res ** 2)) / 1e-06
if group is None:
i = N.argsort(t)
P.errorbar(t[i], res[i] / 1e-06, yerr=errs[i], fmt='x', **kwargs)
else:
if not deleted and N.any(psr.deleted):
flagmask = psr.flagvals(group)[~psr.deleted]
else:
flagmask = psr.flagvals(group)
unique = list(set(flagmask))
for flagval in unique:
f = flagmask == flagval
flagres, flagt, flagerrs = res[f], t[f], errs[f]
i = N.argsort(flagt)
P.errorbar(flagt[i], flagres[i] / 1e-06, yerr=flagerrs[i], fmt=
'x', **kwargs)
P.legend(unique, numpoints=1, bbox_to_anchor=(1.1, 1.1))
P.xlabel('MJD')
P.ylabel('res [us]')
P.title('{0} - rms res = {1:.2f} us'.format(psr.name, meanres))
|
plotres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psr, deleted=False, group=None, **kwargs):\n res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs\n if not deleted and N.any(psr.deleted != 0):\n res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr\n .deleted == 0]\n print('Plotting {0}/{1} nondeleted points.'.format(len(res), psr.nobs))\n meanres = math.sqrt(N.mean(res ** 2)) / 1e-06\n if group is None:\n i = N.argsort(t)\n P.errorbar(t[i], res[i] / 1e-06, yerr=errs[i], fmt='x', **kwargs)\n else:\n if not deleted and N.any(psr.deleted):\n flagmask = psr.flagvals(group)[~psr.deleted]\n else:\n flagmask = psr.flagvals(group)\n unique = list(set(flagmask))\n for flagval in unique:\n f = flagmask == flagval\n flagres, flagt, flagerrs = res[f], t[f], errs[f]\n i = N.argsort(flagt)\n P.errorbar(flagt[i], flagres[i] / 1e-06, yerr=flagerrs[i], fmt=\n 'x', **kwargs)\n P.legend(unique, numpoints=1, bbox_to_anchor=(1.1, 1.1))\n P.xlabel('MJD')\n P.ylabel('res [us]')\n P.title('{0} - rms res = {1:.2f} us'.format(psr.name, meanres))\n",
"role": "user"
},
{
"content": "plotres",
"role": "assistant"
}
] |
def x(gwb):
theta, phi, omega, polarization = gwb.gw_dist()
rho = phi - N.pi
eta = 0.5 * N.pi - theta
P.title('GWB source population')
ax = P.axes(projection='mollweide')
foo = P.scatter(rho, eta, marker='.', s=1)
return foo
|
plotgwsrc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gwb):\n theta, phi, omega, polarization = gwb.gw_dist()\n rho = phi - N.pi\n eta = 0.5 * N.pi - theta\n P.title('GWB source population')\n ax = P.axes(projection='mollweide')\n foo = P.scatter(rho, eta, marker='.', s=1)\n return foo\n",
"role": "user"
},
{
"content": "plotgwsrc",
"role": "assistant"
}
] |
def x(pulsar, efac=1.0, equad=None, jitter=None, Ared=None, gammared=None,
marginalize=True, normalize=True, redcomponents=10, usedeleted=True):
mask = Mask(pulsar, usedeleted)
err = 1e-06 * mask(pulsar.toaerrs)
Cdiag = (efac * err) ** 2
if equad:
Cdiag = Cdiag + (1e-06 * equad) ** 2 * N.ones(len(err))
if Ared:
redf, F = _setuprednoise(pulsar, redcomponents)
F = mask(F)
phi = Ared ** 2 * redf ** -gammared
if jitter:
t, U = _quantize(86400.0 * mask(pulsar.toas()), 1.0)
phi_j = (1e-06 * jitter) ** 2 * N.ones(U.shape[1])
phi = N.hstack((phi, phi_j)) if Ared else phi_j
F = N.hstack((F, U)) if Ared else U
if Ared or jitter:
invphi = N.diag(1 / phi)
Ninv = N.diag(1 / Cdiag)
NinvF = dot(Ninv, F)
X = invphi + dot(F.T, NinvF)
Cinv = Ninv - dot(NinvF, N.linalg.inv(X), NinvF.T)
logCdet = N.sum(N.log(Cdiag)) + N.sum(N.log(phi)) + N.linalg.slogdet(X
)[1]
else:
Cinv = N.diag(1 / Cdiag)
logCdet = N.sum(N.log(Cdiag))
if marginalize:
M = mask(pulsar.designmatrix())
res = mask(N.array(pulsar.residuals(updatebats=False), 'd'))
CinvM = N.dot(Cinv, M)
A = dot(M.T, CinvM)
invA = N.linalg.inv(A)
CinvMres = dot(res, CinvM)
ret = -0.5 * dot(res, Cinv, res) + 0.5 * dot(CinvMres, invA, CinvMres.T
)
if normalize:
ret = ret - 0.5 * logCdet - 0.5 * N.linalg.slogdet(A)[1] - 0.5 * (M
.shape[0] - M.shape[1]) * math.log(2.0 * math.pi)
else:
res = mask(N.array(pulsar.residuals(), 'd'))
ret = -0.5 * dot(res, Cinv, res)
if normalize:
ret = ret - 0.5 * logCdet - 0.5 * len(res) * math.log(2.0 * math.pi
)
return ret
|
loglike
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pulsar, efac=1.0, equad=None, jitter=None, Ared=None, gammared=None,\n marginalize=True, normalize=True, redcomponents=10, usedeleted=True):\n mask = Mask(pulsar, usedeleted)\n err = 1e-06 * mask(pulsar.toaerrs)\n Cdiag = (efac * err) ** 2\n if equad:\n Cdiag = Cdiag + (1e-06 * equad) ** 2 * N.ones(len(err))\n if Ared:\n redf, F = _setuprednoise(pulsar, redcomponents)\n F = mask(F)\n phi = Ared ** 2 * redf ** -gammared\n if jitter:\n t, U = _quantize(86400.0 * mask(pulsar.toas()), 1.0)\n phi_j = (1e-06 * jitter) ** 2 * N.ones(U.shape[1])\n phi = N.hstack((phi, phi_j)) if Ared else phi_j\n F = N.hstack((F, U)) if Ared else U\n if Ared or jitter:\n invphi = N.diag(1 / phi)\n Ninv = N.diag(1 / Cdiag)\n NinvF = dot(Ninv, F)\n X = invphi + dot(F.T, NinvF)\n Cinv = Ninv - dot(NinvF, N.linalg.inv(X), NinvF.T)\n logCdet = N.sum(N.log(Cdiag)) + N.sum(N.log(phi)) + N.linalg.slogdet(X\n )[1]\n else:\n Cinv = N.diag(1 / Cdiag)\n logCdet = N.sum(N.log(Cdiag))\n if marginalize:\n M = mask(pulsar.designmatrix())\n res = mask(N.array(pulsar.residuals(updatebats=False), 'd'))\n CinvM = N.dot(Cinv, M)\n A = dot(M.T, CinvM)\n invA = N.linalg.inv(A)\n CinvMres = dot(res, CinvM)\n ret = -0.5 * dot(res, Cinv, res) + 0.5 * dot(CinvMres, invA, CinvMres.T\n )\n if normalize:\n ret = ret - 0.5 * logCdet - 0.5 * N.linalg.slogdet(A)[1] - 0.5 * (M\n .shape[0] - M.shape[1]) * math.log(2.0 * math.pi)\n else:\n res = mask(N.array(pulsar.residuals(), 'd'))\n ret = -0.5 * dot(res, Cinv, res)\n if normalize:\n ret = ret - 0.5 * logCdet - 0.5 * len(res) * math.log(2.0 * math.pi\n )\n return ret\n",
"role": "user"
},
{
"content": "loglike",
"role": "assistant"
}
] |
def x(parlist):
ret = []
for par in parlist:
m = re.match('(.*)\\{([0-9]+)\\-([0-9]+)\\}', par)
if m is None:
ret.append(par)
else:
root, number1, number2 = m.group(1), m.group(2), m.group(3)
fmt = '{{0}}{{1:0{0}d}}'.format(len(number1)) if number1[0
] == '0' else '{0}{1:d}'
ret = ret + [fmt.format(root, i) for i in range(int(m.group(2)),
int(m.group(3)) + 1)]
return ret
|
expandranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parlist):\n ret = []\n for par in parlist:\n m = re.match('(.*)\\\\{([0-9]+)\\\\-([0-9]+)\\\\}', par)\n if m is None:\n ret.append(par)\n else:\n root, number1, number2 = m.group(1), m.group(2), m.group(3)\n fmt = '{{0}}{{1:0{0}d}}'.format(len(number1)) if number1[0\n ] == '0' else '{0}{1:d}'\n ret = ret + [fmt.format(root, i) for i in range(int(m.group(2)),\n int(m.group(3)) + 1)]\n return ret\n",
"role": "user"
},
{
"content": "expandranges",
"role": "assistant"
}
] |
def x(parlist, roots=['JUMP', 'DMXR1_', 'DMXR2_', 'DMX_', 'efac', 'log10_efac']
):
rootdict = {root: [] for root in roots}
res = []
for par in parlist:
found = False
for root in roots:
if len(par) > len(root) and par[:len(root)] == root:
rootdict[root].append(int(par[len(root):]))
found = True
if not found:
res.append(par)
for root in roots:
if rootdict[root]:
if len(rootdict[root]) > 1:
rmin, rmax = min(rootdict[root]), max(rootdict[root])
res.append('{0}{{{1}-{2}}}{3}'.format(root, rmin, rmax,
'(incomplete)' if rmax - rmin != len(rootdict[root]) -
1 else ''))
else:
res.append('{0}{1}'.format(root, rootdict[root][0]))
return res
|
findrange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parlist, roots=['JUMP', 'DMXR1_', 'DMXR2_', 'DMX_', 'efac', 'log10_efac']\n ):\n rootdict = {root: [] for root in roots}\n res = []\n for par in parlist:\n found = False\n for root in roots:\n if len(par) > len(root) and par[:len(root)] == root:\n rootdict[root].append(int(par[len(root):]))\n found = True\n if not found:\n res.append(par)\n for root in roots:\n if rootdict[root]:\n if len(rootdict[root]) > 1:\n rmin, rmax = min(rootdict[root]), max(rootdict[root])\n res.append('{0}{{{1}-{2}}}{3}'.format(root, rmin, rmax, \n '(incomplete)' if rmax - rmin != len(rootdict[root]) - \n 1 else ''))\n else:\n res.append('{0}{1}'.format(root, rootdict[root][0]))\n return res\n",
"role": "user"
},
{
"content": "findrange",
"role": "assistant"
}
] |
def x(data, skip=50, fraction=1.0):
w, s, d = data.chains.shape
start = int((1.0 - fraction) * s)
total = int((s - start) / skip)
return data.chains[:, start::skip, :].reshape((w * total, d))
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, skip=50, fraction=1.0):\n w, s, d = data.chains.shape\n start = int((1.0 - fraction) * s)\n total = int((s - start) / skip)\n return data.chains[:, start::skip, :].reshape((w * total, d))\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(data, index, min=None, max=None):
ret = data
if min is not None:
ret = ret[ret[:, index] > min, :]
if max is not None:
ret = ret[ret[:, index] < max, :]
return ret
|
cull
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, index, min=None, max=None):\n ret = data\n if min is not None:\n ret = ret[ret[:, index] > min, :]\n if max is not None:\n ret = ret[ret[:, index] < max, :]\n return ret\n",
"role": "user"
},
{
"content": "cull",
"role": "assistant"
}
] |
def x():
pth = resource_filename(Requirement.parse('libstempo'),
'libstempo/ecc_vs_nharm.txt')
fil = np.loadtxt(pth)
return interp1d(fil[:, 0], fil[:, 1])
|
make_ecc_interpolant
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n pth = resource_filename(Requirement.parse('libstempo'),\n 'libstempo/ecc_vs_nharm.txt')\n fil = np.loadtxt(pth)\n return interp1d(fil[:, 0], fil[:, 1])\n",
"role": "user"
},
{
"content": "make_ecc_interpolant",
"role": "assistant"
}
] |
def x(F, mc, e):
mc *= SOLAR2S
dedt = -304 / (15 * mc) * (2 * np.pi * mc * F) ** (8 / 3) * e * (1 +
121 / 304 * e ** 2) / (1 - e ** 2) ** (5 / 2)
return dedt
|
get_edot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(F, mc, e):\n mc *= SOLAR2S\n dedt = -304 / (15 * mc) * (2 * np.pi * mc * F) ** (8 / 3) * e * (1 + \n 121 / 304 * e ** 2) / (1 - e ** 2) ** (5 / 2)\n return dedt\n",
"role": "user"
},
{
"content": "get_edot",
"role": "assistant"
}
] |
def x(F, mc, e):
mc *= SOLAR2S
dFdt = 48 / (5 * np.pi * mc ** 2) * (2 * np.pi * mc * F) ** (11 / 3) * (
1 + 73 / 24 * e ** 2 + 37 / 96 * e ** 4) / (1 - e ** 2) ** (7 / 2)
return dFdt
|
get_Fdot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(F, mc, e):\n mc *= SOLAR2S\n dFdt = 48 / (5 * np.pi * mc ** 2) * (2 * np.pi * mc * F) ** (11 / 3) * (\n 1 + 73 / 24 * e ** 2 + 37 / 96 * e ** 4) / (1 - e ** 2) ** (7 / 2)\n return dFdt\n",
"role": "user"
},
{
"content": "get_Fdot",
"role": "assistant"
}
] |
def x(F, mc, q, e):
mc *= SOLAR2S
m = ((1 + q) ** 2 / q) ** (3 / 5) * mc
dgdt = 6 * np.pi * F * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (
1 + 0.25 * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (26 - 15 *
e ** 2))
return dgdt
|
get_gammadot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(F, mc, q, e):\n mc *= SOLAR2S\n m = ((1 + q) ** 2 / q) ** (3 / 5) * mc\n dgdt = 6 * np.pi * F * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (\n 1 + 0.25 * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (26 - 15 *\n e ** 2))\n return dgdt\n",
"role": "user"
},
{
"content": "get_gammadot",
"role": "assistant"
}
] |
def x(y, t, mc, q):
F = y[0]
e = y[1]
gamma = y[2]
phase = y[3]
m = ((1 + q) ** 2 / q) ** (3 / 5) * mc
dFdt = get_Fdot(F, mc, e)
dedt = get_edot(F, mc, e)
dgdt = get_gammadot(F, mc, q, e)
dphasedt = 2 * np.pi * F
return np.array([dFdt, dedt, dgdt, dphasedt])
|
get_coupled_ecc_eqns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, t, mc, q):\n F = y[0]\n e = y[1]\n gamma = y[2]\n phase = y[3]\n m = ((1 + q) ** 2 / q) ** (3 / 5) * mc\n dFdt = get_Fdot(F, mc, e)\n dedt = get_edot(F, mc, e)\n dgdt = get_gammadot(F, mc, q, e)\n dphasedt = 2 * np.pi * F\n return np.array([dFdt, dedt, dgdt, dphasedt])\n",
"role": "user"
},
{
"content": "get_coupled_ecc_eqns",
"role": "assistant"
}
] |
def x(F0, e0, gamma0, phase0, mc, q, t):
y0 = np.array([F0, e0, gamma0, phase0])
y, infodict = odeint(get_coupled_ecc_eqns, y0, t, args=(mc, q),
full_output=True)
if infodict['message'] == 'Integration successful.':
ret = y
else:
ret = 0
return ret
|
solve_coupled_ecc_solution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(F0, e0, gamma0, phase0, mc, q, t):\n y0 = np.array([F0, e0, gamma0, phase0])\n y, infodict = odeint(get_coupled_ecc_eqns, y0, t, args=(mc, q),\n full_output=True)\n if infodict['message'] == 'Integration successful.':\n ret = y\n else:\n ret = 0\n return ret\n",
"role": "user"
},
{
"content": "solve_coupled_ecc_solution",
"role": "assistant"
}
] |
def x(n, mc, dl, F, e):
mc *= SOLAR2S
dl *= MPC2S
omega = 2 * np.pi * F
amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl
ret = -amp * (ss.jn(n - 2, n * e) - 2 * e * ss.jn(n - 1, n * e) + 2 / n *
ss.jn(n, n * e) + 2 * e * ss.jn(n + 1, n * e) - ss.jn(n + 2, n * e))
return ret
|
get_an
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = -amp * (ss.jn(n - 2, n * e) - 2 * e * ss.jn(n - 1, n * e) + 2 / n *\n ss.jn(n, n * e) + 2 * e * ss.jn(n + 1, n * e) - ss.jn(n + 2, n * e))\n return ret\n",
"role": "user"
},
{
"content": "get_an",
"role": "assistant"
}
] |
def x(n, mc, dl, F, e):
mc *= SOLAR2S
dl *= MPC2S
omega = 2 * np.pi * F
amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl
ret = -amp * np.sqrt(1 - e ** 2) * (ss.jn(n - 2, n * e) - 2 * ss.jn(n,
n * e) + ss.jn(n + 2, n * e))
return ret
|
get_bn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = -amp * np.sqrt(1 - e ** 2) * (ss.jn(n - 2, n * e) - 2 * ss.jn(n, \n n * e) + ss.jn(n + 2, n * e))\n return ret\n",
"role": "user"
},
{
"content": "get_bn",
"role": "assistant"
}
] |
def x(n, mc, dl, F, e):
mc *= SOLAR2S
dl *= MPC2S
omega = 2 * np.pi * F
amp = 2 * mc ** (5 / 3) * omega ** (2 / 3) / dl
ret = amp * ss.jn(n, n * e) / (n * omega)
return ret
|
get_cn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = 2 * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = amp * ss.jn(n, n * e) / (n * omega)\n return ret\n",
"role": "user"
},
{
"content": "get_cn",
"role": "assistant"
}
] |
def x(nmax, mc, dl, F, e, t, l0, gamma, gammadot, inc):
n = np.arange(1, nmax)
an = get_an(n, mc, dl, F, e)
bn = get_bn(n, mc, dl, F, e)
cn = get_cn(n, mc, dl, F, e)
omega = 2 * np.pi * F
gt = gamma + gammadot * t
lt = l0 + omega * t
phase1 = n * np.tile(lt, (nmax - 1, 1)).T
phase2 = np.tile(gt, (nmax - 1, 1)).T
phasep = phase1 + 2 * phase2
phasem = phase1 - 2 * phase2
sp = np.sin(phasem) / (n * omega - 2 * gammadot) + np.sin(phasep) / (n *
omega + 2 * gammadot)
sm = np.sin(phasem) / (n * omega - 2 * gammadot) - np.sin(phasep) / (n *
omega + 2 * gammadot)
cp = np.cos(phasem) / (n * omega - 2 * gammadot) + np.cos(phasep) / (n *
omega + 2 * gammadot)
cm = np.cos(phasem) / (n * omega - 2 * gammadot) - np.cos(phasep) / (n *
omega + 2 * gammadot)
splus_n = -0.5 * (1 + np.cos(inc) ** 2) * (an * sp - bn * sm) + (1 - np
.cos(inc) ** 2) * cn * np.sin(phase1)
scross_n = np.cos(inc) * (an * cm - bn * cp)
return np.sum(splus_n, axis=1), np.sum(scross_n, axis=1)
|
calculate_splus_scross
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmax, mc, dl, F, e, t, l0, gamma, gammadot, inc):\n n = np.arange(1, nmax)\n an = get_an(n, mc, dl, F, e)\n bn = get_bn(n, mc, dl, F, e)\n cn = get_cn(n, mc, dl, F, e)\n omega = 2 * np.pi * F\n gt = gamma + gammadot * t\n lt = l0 + omega * t\n phase1 = n * np.tile(lt, (nmax - 1, 1)).T\n phase2 = np.tile(gt, (nmax - 1, 1)).T\n phasep = phase1 + 2 * phase2\n phasem = phase1 - 2 * phase2\n sp = np.sin(phasem) / (n * omega - 2 * gammadot) + np.sin(phasep) / (n *\n omega + 2 * gammadot)\n sm = np.sin(phasem) / (n * omega - 2 * gammadot) - np.sin(phasep) / (n *\n omega + 2 * gammadot)\n cp = np.cos(phasem) / (n * omega - 2 * gammadot) + np.cos(phasep) / (n *\n omega + 2 * gammadot)\n cm = np.cos(phasem) / (n * omega - 2 * gammadot) - np.cos(phasep) / (n *\n omega + 2 * gammadot)\n splus_n = -0.5 * (1 + np.cos(inc) ** 2) * (an * sp - bn * sm) + (1 - np\n .cos(inc) ** 2) * cn * np.sin(phase1)\n scross_n = np.cos(inc) * (an * cm - bn * cp)\n return np.sum(splus_n, axis=1), np.sum(scross_n, axis=1)\n",
"role": "user"
},
{
"content": "calculate_splus_scross",
"role": "assistant"
}
] |
def x(LogLikelihood, Prior, n_dims, n_params=None, n_clustering_params=None,
wrapped_params=None, importance_nested_sampling=True, multimodal=True,
const_efficiency_mode=False, n_live_points=400, evidence_tolerance=0.5,
sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-
1e+90, max_modes=100, mode_tolerance=-1e+90, outputfiles_basename=
'./multinest-', seed=-1, verbose=False, resume=True, context=None,
write_output=True, log_zero=-1e+100, max_iter=0, init_MPI=True,
dump_callback=None):
if n_params == None:
n_params = n_dims
if n_clustering_params == None:
n_clustering_params = n_dims
if wrapped_params == None:
wrapped_params = [0] * n_dims
WrappedType = c_int * len(wrapped_params)
wraps = WrappedType(*wrapped_params)
if sampling_efficiency == 'parameter':
sampling_efficiency = 0.8
if sampling_efficiency == 'model':
sampling_efficiency = 0.3
loglike_type = CFUNCTYPE(c_double, POINTER(c_double), c_int, c_int,
c_void_p)
dumper_type = CFUNCTYPE(c_void_p, c_int, c_int, c_int, POINTER(c_double
), POINTER(c_double), POINTER(c_double), c_double, c_double,
c_double, c_void_p)
if hasattr(LogLikelihood, 'loglike') and hasattr(Prior, 'remap'
) and hasattr(Prior, 'prior'):
def x(cube, ndim, nparams, nullcontext):
pprior = Prior.premap(cube)
try:
pars = Prior.remap(cube)
except ValueError:
return -N.inf
prior = pprior * Prior.prior(pars)
return -N.inf if not prior else math.log(prior
) + LogLikelihood.loglike(pars)
else:
def x(cube, ndim, nparams, nullcontext):
args = [cube, ndim, nparams] + ([] if context is None else context)
if Prior:
Prior(*args)
return LogLikelihood(*args)
def x(nSamples, nlive, nPar, physLive, posterior, paramConstr,
maxLogLike, logZ, logZerr, nullcontext):
if dump_callback:
pc = as_array(paramConstr, shape=(nPar, 4))
dump_callback(nSamples, nlive, nPar, as_array(physLive, shape=(
nPar + 1, nlive)).T, as_array(posterior, shape=(nPar + 2,
nSamples)).T, (pc[0, :], pc[1, :], pc[2, :], pc[3, :]),
maxLogLike, logZ, logZerr)
lib.run(c_bool(importance_nested_sampling), c_bool(multimodal), c_bool(
const_efficiency_mode), c_int(n_live_points), c_double(
evidence_tolerance), c_double(sampling_efficiency), c_int(n_dims),
c_int(n_params), c_int(n_clustering_params), c_int(max_modes),
c_int(n_iter_before_update), c_double(mode_tolerance),
create_string_buffer(outputfiles_basename.encode()), c_int(seed),
wraps, c_bool(verbose), c_bool(resume), c_bool(write_output),
c_bool(init_MPI), c_double(log_zero), c_int(max_iter), loglike_type
(loglike), dumper_type(dumper), c_void_p(0))
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(LogLikelihood, Prior, n_dims, n_params=None, n_clustering_params=None,\n wrapped_params=None, importance_nested_sampling=True, multimodal=True,\n const_efficiency_mode=False, n_live_points=400, evidence_tolerance=0.5,\n sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-\n 1e+90, max_modes=100, mode_tolerance=-1e+90, outputfiles_basename=\n './multinest-', seed=-1, verbose=False, resume=True, context=None,\n write_output=True, log_zero=-1e+100, max_iter=0, init_MPI=True,\n dump_callback=None):\n if n_params == None:\n n_params = n_dims\n if n_clustering_params == None:\n n_clustering_params = n_dims\n if wrapped_params == None:\n wrapped_params = [0] * n_dims\n WrappedType = c_int * len(wrapped_params)\n wraps = WrappedType(*wrapped_params)\n if sampling_efficiency == 'parameter':\n sampling_efficiency = 0.8\n if sampling_efficiency == 'model':\n sampling_efficiency = 0.3\n loglike_type = CFUNCTYPE(c_double, POINTER(c_double), c_int, c_int,\n c_void_p)\n dumper_type = CFUNCTYPE(c_void_p, c_int, c_int, c_int, POINTER(c_double\n ), POINTER(c_double), POINTER(c_double), c_double, c_double,\n c_double, c_void_p)\n if hasattr(LogLikelihood, 'loglike') and hasattr(Prior, 'remap'\n ) and hasattr(Prior, 'prior'):\n\n def x(cube, ndim, nparams, nullcontext):\n pprior = Prior.premap(cube)\n try:\n pars = Prior.remap(cube)\n except ValueError:\n return -N.inf\n prior = pprior * Prior.prior(pars)\n return -N.inf if not prior else math.log(prior\n ) + LogLikelihood.loglike(pars)\n else:\n\n def x(cube, ndim, nparams, nullcontext):\n args = [cube, ndim, nparams] + ([] if context is None else context)\n if Prior:\n Prior(*args)\n return LogLikelihood(*args)\n\n def x(nSamples, nlive, nPar, physLive, posterior, paramConstr,\n maxLogLike, logZ, logZerr, nullcontext):\n if dump_callback:\n pc = as_array(paramConstr, shape=(nPar, 4))\n dump_callback(nSamples, nlive, nPar, as_array(physLive, shape=(\n nPar + 1, nlive)).T, as_array(posterior, shape=(nPar + 2,\n nSamples)).T, (pc[0, :], pc[1, :], pc[2, :], pc[3, :]),\n maxLogLike, logZ, logZerr)\n lib.run(c_bool(importance_nested_sampling), c_bool(multimodal), c_bool(\n const_efficiency_mode), c_int(n_live_points), c_double(\n evidence_tolerance), c_double(sampling_efficiency), c_int(n_dims),\n c_int(n_params), c_int(n_clustering_params), c_int(max_modes),\n c_int(n_iter_before_update), c_double(mode_tolerance),\n create_string_buffer(outputfiles_basename.encode()), c_int(seed),\n wraps, c_bool(verbose), c_bool(resume), c_bool(write_output),\n c_bool(init_MPI), c_double(log_zero), c_int(max_iter), loglike_type\n (loglike), dumper_type(dumper), c_void_p(0))\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(dt, response, sequence, k=6, consider_shift=True, n_cores=1,
seq_align='start', trim_seq_len=None):
y = dt[response]
seq = dt[sequence]
if trim_seq_len is not None:
seq = pad_sequences(seq, align=seq_align, maxlen=trim_seq_len)
seq = [s.replace('N', '') for s in seq]
dt_kmer = kmer_count(seq, k)
Xsp = csc_matrix(dt_kmer)
en = ElasticNet(alpha=1, standardize=False, n_splits=3)
en.fit(Xsp, y)
nonzero_kmers = dt_kmer.columns.values[en.coef_ != 0].tolist()
def x(dt_kmer, y, selected_kmers, to_be_selected_kmers, consider_shift=True
):
F, pval = f_regression(dt_kmer[to_be_selected_kmers], y)
kmer = to_be_selected_kmers.pop(pval.argmin())
selected_kmers.append(kmer)
def x(s1, s2, consider_shift=True):
if hamming_distance(s1, s2) <= 1:
return False
if consider_shift and hamming_distance(s1[1:], s2[:-1]) == 0:
return False
if consider_shift and hamming_distance(s1[:-1], s2[1:]) == 0:
return False
return True
to_be_selected_kmers = [ckmer for ckmer in to_be_selected_kmers if
select_criterion(ckmer, kmer, consider_shift)]
if len(to_be_selected_kmers) == 0:
return selected_kmers
else:
lm = LinearRegression()
lm.fit(dt_kmer[selected_kmers], y)
y_new = y - lm.predict(dt_kmer[selected_kmers])
return find_next_best(dt_kmer, y_new, selected_kmers,
to_be_selected_kmers, consider_shift)
selected_kmers = find_next_best(dt_kmer, y, [], nonzero_kmers,
consider_shift)
return selected_kmers
|
best_kmers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dt, response, sequence, k=6, consider_shift=True, n_cores=1,\n seq_align='start', trim_seq_len=None):\n y = dt[response]\n seq = dt[sequence]\n if trim_seq_len is not None:\n seq = pad_sequences(seq, align=seq_align, maxlen=trim_seq_len)\n seq = [s.replace('N', '') for s in seq]\n dt_kmer = kmer_count(seq, k)\n Xsp = csc_matrix(dt_kmer)\n en = ElasticNet(alpha=1, standardize=False, n_splits=3)\n en.fit(Xsp, y)\n nonzero_kmers = dt_kmer.columns.values[en.coef_ != 0].tolist()\n\n def x(dt_kmer, y, selected_kmers, to_be_selected_kmers, consider_shift=True\n ):\n F, pval = f_regression(dt_kmer[to_be_selected_kmers], y)\n kmer = to_be_selected_kmers.pop(pval.argmin())\n selected_kmers.append(kmer)\n\n def x(s1, s2, consider_shift=True):\n if hamming_distance(s1, s2) <= 1:\n return False\n if consider_shift and hamming_distance(s1[1:], s2[:-1]) == 0:\n return False\n if consider_shift and hamming_distance(s1[:-1], s2[1:]) == 0:\n return False\n return True\n to_be_selected_kmers = [ckmer for ckmer in to_be_selected_kmers if\n select_criterion(ckmer, kmer, consider_shift)]\n if len(to_be_selected_kmers) == 0:\n return selected_kmers\n else:\n lm = LinearRegression()\n lm.fit(dt_kmer[selected_kmers], y)\n y_new = y - lm.predict(dt_kmer[selected_kmers])\n return find_next_best(dt_kmer, y_new, selected_kmers,\n to_be_selected_kmers, consider_shift)\n selected_kmers = find_next_best(dt_kmer, y, [], nonzero_kmers,\n consider_shift)\n return selected_kmers\n",
"role": "user"
},
{
"content": "best_kmers",
"role": "assistant"
}
] |
def x(seq_list, k):
all_kmers = generate_all_kmers(k)
kmer_count_list = []
for seq in seq_list:
kmer_count_list.append([seq.count(kmer) for kmer in all_kmers])
return pd.DataFrame(kmer_count_list, columns=all_kmers)
|
kmer_count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_list, k):\n all_kmers = generate_all_kmers(k)\n kmer_count_list = []\n for seq in seq_list:\n kmer_count_list.append([seq.count(kmer) for kmer in all_kmers])\n return pd.DataFrame(kmer_count_list, columns=all_kmers)\n",
"role": "user"
},
{
"content": "kmer_count",
"role": "assistant"
}
] |
def x(k):
bases = ['A', 'C', 'G', 'T']
return [''.join(p) for p in itertools.product(bases, repeat=k)]
|
generate_all_kmers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k):\n bases = ['A', 'C', 'G', 'T']\n return [''.join(p) for p in itertools.product(bases, repeat=k)]\n",
"role": "user"
},
{
"content": "generate_all_kmers",
"role": "assistant"
}
] |
def x(obj_dict):
return {key: (np.asarray(value) if value is not None else None) for key,
value in obj_dict.items()}
|
dict_to_numpy_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj_dict):\n return {key: (np.asarray(value) if value is not None else None) for key,\n value in obj_dict.items()}\n",
"role": "user"
},
{
"content": "dict_to_numpy_dict",
"role": "assistant"
}
] |
def x(obj_dict):
if type(obj_dict) == dict:
return {key: (rec_dict_to_numpy_dict(value) if value is not None else
None) for key, value in obj_dict.items()}
elif obj_dict is None:
return None
else:
return np.asarray(obj_dict)
|
rec_dict_to_numpy_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj_dict):\n if type(obj_dict) == dict:\n return {key: (rec_dict_to_numpy_dict(value) if value is not None else\n None) for key, value in obj_dict.items()}\n elif obj_dict is None:\n return None\n else:\n return np.asarray(obj_dict)\n",
"role": "user"
},
{
"content": "rec_dict_to_numpy_dict",
"role": "assistant"
}
] |
def x(a, b, exact=True):
if type(a) != type(b) and type(a) != np.ndarray and type(b) != np.ndarray:
return False
if type(a) == dict and type(b) == dict:
if not a.keys() == b.keys():
return False
for key in a.keys():
res = compare_numpy_dict(a[key], b[key], exact)
if res == False:
print('false for key = ', key)
return False
return True
if type(a) == np.ndarray or type(b) == np.ndarray:
if exact:
return (a == b).all()
else:
return np.testing.assert_almost_equal(a, b)
if a is None and b is None:
return True
raise NotImplementedError
|
compare_numpy_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, exact=True):\n if type(a) != type(b) and type(a) != np.ndarray and type(b) != np.ndarray:\n return False\n if type(a) == dict and type(b) == dict:\n if not a.keys() == b.keys():\n return False\n for key in a.keys():\n res = compare_numpy_dict(a[key], b[key], exact)\n if res == False:\n print('false for key = ', key)\n return False\n return True\n if type(a) == np.ndarray or type(b) == np.ndarray:\n if exact:\n return (a == b).all()\n else:\n return np.testing.assert_almost_equal(a, b)\n if a is None and b is None:\n return True\n raise NotImplementedError\n",
"role": "user"
},
{
"content": "compare_numpy_dict",
"role": "assistant"
}
] |
def x(start=0, end=100, n_bases=10, spline_order=3, add_intercept=True):
assert type(n_bases) == int
x = np.arange(start, end + 1)
knots = get_knots(start, end, n_bases, spline_order)
X_splines = get_X_spline(x, knots, n_bases, spline_order, add_intercept)
S = get_S(n_bases, spline_order, add_intercept)
return X_splines, S, knots
|
get_gam_splines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start=0, end=100, n_bases=10, spline_order=3, add_intercept=True):\n assert type(n_bases) == int\n x = np.arange(start, end + 1)\n knots = get_knots(start, end, n_bases, spline_order)\n X_splines = get_X_spline(x, knots, n_bases, spline_order, add_intercept)\n S = get_S(n_bases, spline_order, add_intercept)\n return X_splines, S, knots\n",
"role": "user"
},
{
"content": "get_gam_splines",
"role": "assistant"
}
] |
def x(start, end, n_bases=10, spline_order=3):
x_range = end - start
start = start - x_range * 0.001
end = end + x_range * 0.001
m = spline_order - 1
nk = n_bases - m
dknots = (end - start) / (nk - 1)
knots = np.linspace(start=start - dknots * (m + 1), stop=end + dknots *
(m + 1), num=nk + 2 * m + 2)
return knots.astype(np.float32)
|
get_knots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end, n_bases=10, spline_order=3):\n x_range = end - start\n start = start - x_range * 0.001\n end = end + x_range * 0.001\n m = spline_order - 1\n nk = n_bases - m\n dknots = (end - start) / (nk - 1)\n knots = np.linspace(start=start - dknots * (m + 1), stop=end + dknots *\n (m + 1), num=nk + 2 * m + 2)\n return knots.astype(np.float32)\n",
"role": "user"
},
{
"content": "get_knots",
"role": "assistant"
}
] |
def x(x, knots, n_bases=10, spline_order=3, add_intercept=True):
if len(x.shape) is not 1:
raise ValueError('x has to be 1 dimentional')
tck = [knots, np.zeros(n_bases), spline_order]
X = np.zeros([len(x), n_bases])
for i in range(n_bases):
vec = np.zeros(n_bases)
vec[i] = 1.0
tck[1] = vec
X[:, i] = si.splev(x, tck, der=0)
if add_intercept is True:
ones = np.ones_like(X[:, :1])
X = np.hstack([ones, X])
return X.astype(np.float32)
|
get_X_spline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, knots, n_bases=10, spline_order=3, add_intercept=True):\n if len(x.shape) is not 1:\n raise ValueError('x has to be 1 dimentional')\n tck = [knots, np.zeros(n_bases), spline_order]\n X = np.zeros([len(x), n_bases])\n for i in range(n_bases):\n vec = np.zeros(n_bases)\n vec[i] = 1.0\n tck[1] = vec\n X[:, i] = si.splev(x, tck, der=0)\n if add_intercept is True:\n ones = np.ones_like(X[:, :1])\n X = np.hstack([ones, X])\n return X.astype(np.float32)\n",
"role": "user"
},
{
"content": "get_X_spline",
"role": "assistant"
}
] |
def x(self, add_intercept=False):
S = self.S
if add_intercept is True:
zeros = np.zeros_like(S[:1, :])
S = np.vstack([zeros, S])
zeros = np.zeros_like(S[:, :1])
S = np.hstack([zeros, S])
return S
|
getS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, add_intercept=False):\n S = self.S\n if add_intercept is True:\n zeros = np.zeros_like(S[:1, :])\n S = np.vstack([zeros, S])\n zeros = np.zeros_like(S[:, :1])\n S = np.hstack([zeros, S])\n return S\n",
"role": "user"
},
{
"content": "getS",
"role": "assistant"
}
] |
def x(self, x, add_intercept=False):
if x.min() < self.start:
raise Warning('x.min() < self.start')
if x.max() > self.end:
raise Warning('x.max() > self.end')
return get_X_spline(x=x, knots=self.knots, n_bases=self.n_bases,
spline_order=self.spline_order, add_intercept=add_intercept)
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, add_intercept=False):\n if x.min() < self.start:\n raise Warning('x.min() < self.start')\n if x.max() > self.end:\n raise Warning('x.max() > self.end')\n return get_X_spline(x=x, knots=self.knots, n_bases=self.n_bases,\n spline_order=self.spline_order, add_intercept=add_intercept)\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x():
motifs = _load_motifs()
motif_names = sorted(list(motifs.keys()))
df = pd.Series(motif_names).str.split(expand=True)
df.rename(columns={(0): 'PWM_id', (1): 'info1', (2): 'info2'}, inplace=True
)
consensus = pd.Series([PWM(motifs[m]).get_consensus() for m in motif_names]
)
df['consensus'] = consensus
return df
|
get_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n motifs = _load_motifs()\n motif_names = sorted(list(motifs.keys()))\n df = pd.Series(motif_names).str.split(expand=True)\n df.rename(columns={(0): 'PWM_id', (1): 'info1', (2): 'info2'}, inplace=True\n )\n consensus = pd.Series([PWM(motifs[m]).get_consensus() for m in motif_names]\n )\n df['consensus'] = consensus\n return df\n",
"role": "user"
},
{
"content": "get_metadata",
"role": "assistant"
}
] |
def x(motif_name_list, pseudocountProb=0.0001):
l = _load_motifs()
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(l[m] + pseudocountProb, name=m) for m in motif_name_list]
return pwm_list
|
get_pwm_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motif_name_list, pseudocountProb=0.0001):\n l = _load_motifs()\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(l[m] + pseudocountProb, name=m) for m in motif_name_list]\n return pwm_list\n",
"role": "user"
},
{
"content": "get_pwm_list",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = y_true.round()
if len(y_true) == 0 or len(np.unique(y_true)) < 2:
return np.nan
return skm.roc_auc_score(y_true, y_pred)
|
auc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = y_true.round()\n if len(y_true) == 0 or len(np.unique(y_true)) < 2:\n return np.nan\n return skm.roc_auc_score(y_true, y_pred)\n",
"role": "user"
},
{
"content": "auc",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)
return skm.auc(recall, precision)
|
auprc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)\n return skm.auc(recall, precision)\n",
"role": "user"
},
{
"content": "auprc",
"role": "assistant"
}
] |
def x(y_true, y_pred, precision):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)
return recall[np.searchsorted(precision - precision, 0)]
|
recall_at_precision
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, precision):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)\n return recall[np.searchsorted(precision - precision, 0)]\n",
"role": "user"
},
{
"content": "recall_at_precision",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = np.round(y_true)
y_pred = np.round(y_pred)
return skm.accuracy_score(y_true, y_pred)
|
accuracy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.accuracy_score(y_true, y_pred)\n",
"role": "user"
},
{
"content": "accuracy",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = np.round(y_true)
y_pred = np.round(y_pred)
return skm.recall_score(y_true, y_pred)
|
tpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.recall_score(y_true, y_pred)\n",
"role": "user"
},
{
"content": "tpr",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = np.round(y_true)
y_pred = np.round(y_pred)
c = skm.confusion_matrix(y_true, y_pred)
return c[0, 0] / c[0].sum()
|
tnr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n c = skm.confusion_matrix(y_true, y_pred)\n return c[0, 0] / c[0].sum()\n",
"role": "user"
},
{
"content": "tnr",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = np.round(y_true)
y_pred = np.round(y_pred)
return skm.matthews_corrcoef(y_true, y_pred)
|
mcc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.matthews_corrcoef(y_true, y_pred)\n",
"role": "user"
},
{
"content": "mcc",
"role": "assistant"
}
] |
def x(y_true, y_pred, round=True):
y_true, y_pred = _mask_value_nan(y_true, y_pred)
if round:
y_true = np.round(y_true)
y_pred = np.round(y_pred)
return skm.f1_score(y_true, y_pred)
|
f1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.f1_score(y_true, y_pred)\n",
"role": "user"
},
{
"content": "f1",
"role": "assistant"
}
] |
def x(y_true, y_pred):
return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))
|
cat_acc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))\n",
"role": "user"
},
{
"content": "cat_acc",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true, y_pred = _mask_nan(y_true, y_pred)
return np.corrcoef(y_true, y_pred)[0, 1]
|
cor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return np.corrcoef(y_true, y_pred)[0, 1]\n",
"role": "user"
},
{
"content": "cor",
"role": "assistant"
}
] |
def x(y_true, y_pred, nb_sample=100000):
y_true, y_pred = _mask_nan(y_true, y_pred)
if len(y_true) > nb_sample:
idx = np.arange(len(y_true))
np.random.shuffle(idx)
idx = idx[:nb_sample]
y_true = y_true[idx]
y_pred = y_pred[idx]
return kendalltau(y_true, y_pred)[0]
|
kendall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, nb_sample=100000):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n if len(y_true) > nb_sample:\n idx = np.arange(len(y_true))\n np.random.shuffle(idx)\n idx = idx[:nb_sample]\n y_true = y_true[idx]\n y_pred = y_pred[idx]\n return kendalltau(y_true, y_pred)[0]\n",
"role": "user"
},
{
"content": "kendall",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true, y_pred = _mask_nan(y_true, y_pred)
return np.mean(np.abs(y_true - y_pred))
|
mad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return np.mean(np.abs(y_true - y_pred))\n",
"role": "user"
},
{
"content": "mad",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true, y_pred = _mask_nan(y_true, y_pred)
return ((y_true - y_pred) ** 2).mean(axis=None)
|
mse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return ((y_true - y_pred) ** 2).mean(axis=None)\n",
"role": "user"
},
{
"content": "mse",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true, y_pred = _mask_nan(y_true, y_pred)
var_resid = np.var(y_true - y_pred)
var_y_true = np.var(y_true)
return 1 - var_resid / var_y_true
|
var_explained
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n var_resid = np.var(y_true - y_pred)\n var_y_true = np.var(y_true)\n return 1 - var_resid / var_y_true\n",
"role": "user"
},
{
"content": "var_explained",
"role": "assistant"
}
] |
def x(params):
def x(myrange):
x = np.random.uniform(np.log10(myrange[0]), np.log10(myrange[1]))
return 10 ** x
def x(myrange):
x = np.random.uniform(myrange[0], myrange[1])
return x
def x(myset):
x = random.sample(myset, 1)
return x[0]
def x(myrange):
if type(myrange) is list:
return sample_log(myrange)
if type(myrange) is tuple:
return sample_unif(myrange)
if type(myrange) is set:
return sample_set(myrange)
return myrange
return {k: type_dep_sample(v) for k, v in params.items()}
|
sample_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n\n def x(myrange):\n x = np.random.uniform(np.log10(myrange[0]), np.log10(myrange[1]))\n return 10 ** x\n\n def x(myrange):\n x = np.random.uniform(myrange[0], myrange[1])\n return x\n\n def x(myset):\n x = random.sample(myset, 1)\n return x[0]\n\n def x(myrange):\n if type(myrange) is list:\n return sample_log(myrange)\n if type(myrange) is tuple:\n return sample_unif(myrange)\n if type(myrange) is set:\n return sample_set(myrange)\n return myrange\n return {k: type_dep_sample(v) for k, v in params.items()}\n",
"role": "user"
},
{
"content": "sample_params",
"role": "assistant"
}
] |
def x(y, z):
y = K.cast(K.round(y), K.floatx())
z = K.cast(K.round(z), K.floatx())
def x(y, z):
return K.sum(K.cast(y, K.floatx()) * K.cast(z, K.floatx()))
ones = K.ones_like(y)
zeros = K.zeros_like(y)
y_ones = K.equal(y, ones)
y_zeros = K.equal(y, zeros)
z_ones = K.equal(z, ones)
z_zeros = K.equal(z, zeros)
tp = count_matches(y_ones, z_ones)
tn = count_matches(y_zeros, z_zeros)
fp = count_matches(y_zeros, z_ones)
fn = count_matches(y_ones, z_zeros)
return tp, tn, fp, fn
|
contingency_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n y = K.cast(K.round(y), K.floatx())\n z = K.cast(K.round(z), K.floatx())\n\n def x(y, z):\n return K.sum(K.cast(y, K.floatx()) * K.cast(z, K.floatx()))\n ones = K.ones_like(y)\n zeros = K.zeros_like(y)\n y_ones = K.equal(y, ones)\n y_zeros = K.equal(y, zeros)\n z_ones = K.equal(z, ones)\n z_zeros = K.equal(z, zeros)\n tp = count_matches(y_ones, z_ones)\n tn = count_matches(y_zeros, z_zeros)\n fp = count_matches(y_zeros, z_ones)\n fn = count_matches(y_ones, z_zeros)\n return tp, tn, fp, fn\n",
"role": "user"
},
{
"content": "contingency_table",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return tp / (tp + fn)
|
tpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tp / (tp + fn)\n",
"role": "user"
},
{
"content": "tpr",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return tn / (tn + fp)
|
tnr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tn / (tn + fp)\n",
"role": "user"
},
{
"content": "tnr",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return fp / (fp + tn)
|
fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fp / (fp + tn)\n",
"role": "user"
},
{
"content": "fpr",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return fn / (fn + tp)
|
fnr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fn / (fn + tp)\n",
"role": "user"
},
{
"content": "fnr",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return tp / (tp + fp)
|
precision
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tp / (tp + fp)\n",
"role": "user"
},
{
"content": "precision",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return fp / (tp + fp)
|
fdr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fp / (tp + fp)\n",
"role": "user"
},
{
"content": "fdr",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return (tp + tn) / (tp + tn + fp + fn)
|
accuracy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return (tp + tn) / (tp + tn + fp + fn)\n",
"role": "user"
},
{
"content": "accuracy",
"role": "assistant"
}
] |
def x(y, z):
_recall = recall(y, z)
_prec = precision(y, z)
return 2 * (_prec * _recall) / (_prec + _recall)
|
f1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n _recall = recall(y, z)\n _prec = precision(y, z)\n return 2 * (_prec * _recall) / (_prec + _recall)\n",
"role": "user"
},
{
"content": "f1",
"role": "assistant"
}
] |
def x(y, z):
tp, tn, fp, fn = contingency_table(y, z)
return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) *
(tn + fn))
|
mcc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) *\n (tn + fn))\n",
"role": "user"
},
{
"content": "mcc",
"role": "assistant"
}
] |
def x(y, z):
weights = _cat_sample_weights(y)
_acc = K.cast(K.equal(K.argmax(y, axis=-1), K.argmax(z, axis=-1)), K.
floatx())
_acc = K.sum(_acc * weights) / K.sum(weights)
return _acc
|
cat_acc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, z):\n weights = _cat_sample_weights(y)\n _acc = K.cast(K.equal(K.argmax(y, axis=-1), K.argmax(z, axis=-1)), K.\n floatx())\n _acc = K.sum(_acc * weights) / K.sum(weights)\n return _acc\n",
"role": "user"
},
{
"content": "cat_acc",
"role": "assistant"
}
] |
def x(y_true, y_pred):
var_resid = K.var(y_true - y_pred)
var_y_true = K.var(y_true)
return 1 - var_resid / var_y_true
|
var_explained
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n var_resid = K.var(y_true - y_pred)\n var_y_true = K.var(y_true)\n return 1 - var_resid / var_y_true\n",
"role": "user"
},
{
"content": "var_explained",
"role": "assistant"
}
] |
def x(train, cv_n_folds=5, stratified=False, random_state=None):
test_len(train)
y = train[1]
n_rows = y.shape[0]
if stratified:
if len(y.shape) > 1:
if y.shape[1] > 1:
raise ValueError(
"Can't use stratified K-fold with multi-column response variable"
)
else:
y = y[:, 0]
return model_selection.StratifiedKFold(n_splits=cv_n_folds, shuffle
=True, random_state=random_state).split(X=np.zeros((n_rows, 1)),
y=y)
else:
return model_selection.KFold(n_splits=cv_n_folds, shuffle=True,
random_state=random_state).split(X=np.zeros((n_rows, 1)))
|
split_KFold_idx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(train, cv_n_folds=5, stratified=False, random_state=None):\n test_len(train)\n y = train[1]\n n_rows = y.shape[0]\n if stratified:\n if len(y.shape) > 1:\n if y.shape[1] > 1:\n raise ValueError(\n \"Can't use stratified K-fold with multi-column response variable\"\n )\n else:\n y = y[:, 0]\n return model_selection.StratifiedKFold(n_splits=cv_n_folds, shuffle\n =True, random_state=random_state).split(X=np.zeros((n_rows, 1)),\n y=y)\n else:\n return model_selection.KFold(n_splits=cv_n_folds, shuffle=True,\n random_state=random_state).split(X=np.zeros((n_rows, 1)))\n",
"role": "user"
},
{
"content": "split_KFold_idx",
"role": "assistant"
}
] |
def x(train, idx, keep_other=True):
test_len(train)
y = train[1][idx]
if isinstance(train[0], (list, tuple)):
x = [x[idx] for x in train[0]]
elif isinstance(train[0], dict):
x = {k: v[idx] for k, v in train[0].items()}
elif isinstance(train[0], np.ndarray):
x = train[0][idx]
else:
raise ValueError('Input can only be of type: list, dict or np.ndarray')
if keep_other:
return (x, y) + train[2:]
else:
return x, y
|
subset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(train, idx, keep_other=True):\n test_len(train)\n y = train[1][idx]\n if isinstance(train[0], (list, tuple)):\n x = [x[idx] for x in train[0]]\n elif isinstance(train[0], dict):\n x = {k: v[idx] for k, v in train[0].items()}\n elif isinstance(train[0], np.ndarray):\n x = train[0][idx]\n else:\n raise ValueError('Input can only be of type: list, dict or np.ndarray')\n if keep_other:\n return (x, y) + train[2:]\n else:\n return x, y\n",
"role": "user"
},
{
"content": "subset",
"role": "assistant"
}
] |
def x(dt, features, response, sequence, id_column=None, seq_align='end',
trim_seq_len=None):
if type(response) is str:
response = [response]
X_feat = np.array(dt[features], dtype='float32')
y = np.array(dt[response], dtype='float32')
X_seq = encodeDNA(seq_vec=dt[sequence], maxlen=trim_seq_len, seq_align=
seq_align)
X_seq = np.array(X_seq, dtype='float32')
id_vec = np.array(dt[id_column])
return X_feat, X_seq, y, id_vec
|
prepare_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dt, features, response, sequence, id_column=None, seq_align='end',\n trim_seq_len=None):\n if type(response) is str:\n response = [response]\n X_feat = np.array(dt[features], dtype='float32')\n y = np.array(dt[response], dtype='float32')\n X_seq = encodeDNA(seq_vec=dt[sequence], maxlen=trim_seq_len, seq_align=\n seq_align)\n X_seq = np.array(X_seq, dtype='float32')\n id_vec = np.array(dt[id_column])\n return X_feat, X_seq, y, id_vec\n",
"role": "user"
},
{
"content": "prepare_data",
"role": "assistant"
}
] |
def x(x, minval=None, maxval=None):
x = np.copy(x)
if minval is not None:
x[x < minval] = minval
if maxval is not None:
x[x > maxval] = maxval
return x
|
trunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, minval=None, maxval=None):\n x = np.copy(x)\n if minval is not None:\n x[x < minval] = minval\n if maxval is not None:\n x[x > maxval] = maxval\n return x\n",
"role": "user"
},
{
"content": "trunc",
"role": "assistant"
}
] |
def x(x, n_bases=10, spline_order=3, start=None, end=None, warn=True):
if len(x.shape) == 1:
x = x.reshape((-1, 1))
if start is None:
start = np.nanmin(x)
elif x.min() < start:
if warn:
print(
'WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start'
)
x = _trunc(x, minval=start)
if end is None:
end = np.nanmax(x)
elif x.max() > end:
if warn:
print(
'WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end'
)
x = _trunc(x, maxval=end)
bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order)
assert len(x.shape) == 2
n_rows = x.shape[0]
n_cols = x.shape[1]
x_long = x.reshape((-1,))
x_feat = bs.predict(x_long, add_intercept=False)
x_final = x_feat.reshape((n_rows, n_cols, n_bases))
return x_final
|
encodeSplines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, n_bases=10, spline_order=3, start=None, end=None, warn=True):\n if len(x.shape) == 1:\n x = x.reshape((-1, 1))\n if start is None:\n start = np.nanmin(x)\n elif x.min() < start:\n if warn:\n print(\n 'WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start'\n )\n x = _trunc(x, minval=start)\n if end is None:\n end = np.nanmax(x)\n elif x.max() > end:\n if warn:\n print(\n 'WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end'\n )\n x = _trunc(x, maxval=end)\n bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order)\n assert len(x.shape) == 2\n n_rows = x.shape[0]\n n_cols = x.shape[1]\n x_long = x.reshape((-1,))\n x_feat = bs.predict(x_long, add_intercept=False)\n x_final = x_feat.reshape((n_rows, n_cols, n_bases))\n return x_final\n",
"role": "user"
},
{
"content": "encodeSplines",
"role": "assistant"
}
] |
def x(self, x):
assert x.ndim > 1
self.data_min_ = np.min(x, axis=tuple(range(x.ndim - 1)))
self.data_max_ = np.max(x, axis=tuple(range(x.ndim - 1)))
if self.share_knots:
self.data_min_[:] = np.min(self.data_min_)
self.data_max_[:] = np.max(self.data_max_)
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n assert x.ndim > 1\n self.data_min_ = np.min(x, axis=tuple(range(x.ndim - 1)))\n self.data_max_ = np.max(x, axis=tuple(range(x.ndim - 1)))\n if self.share_knots:\n self.data_min_[:] = np.min(self.data_min_)\n self.data_max_[:] = np.max(self.data_max_)\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, x, warn=True):
array_list = [encodeSplines(x[..., i].reshape((-1, 1)), n_bases=self.
n_bases, spline_order=self.degree, warn=warn, start=self.data_min_[
i], end=self.data_max_[i]).reshape(x[..., i].shape + (self.n_bases,
)) for i in range(x.shape[-1])]
return np.stack(array_list, axis=-2)
|
transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, warn=True):\n array_list = [encodeSplines(x[..., i].reshape((-1, 1)), n_bases=self.\n n_bases, spline_order=self.degree, warn=warn, start=self.data_min_[\n i], end=self.data_max_[i]).reshape(x[..., i].shape + (self.n_bases,\n )) for i in range(x.shape[-1])]\n return np.stack(array_list, axis=-2)\n",
"role": "user"
},
{
"content": "transform",
"role": "assistant"
}
] |
def x(seq_length, ignore_stop_codons=True, name=None, **kwargs):
if ignore_stop_codons:
vocab = CODONS
else:
vocab = CODONS + STOP_CODONS
assert seq_length % 3 == 0
return Input((seq_length / 3, len(vocab)), name=name, **kwargs)
|
InputCodon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, ignore_stop_codons=True, name=None, **kwargs):\n if ignore_stop_codons:\n vocab = CODONS\n else:\n vocab = CODONS + STOP_CODONS\n assert seq_length % 3 == 0\n return Input((seq_length / 3, len(vocab)), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputCodon",
"role": "assistant"
}
] |
def x(seq_length, name=None, **kwargs):
return Input((seq_length, len(AMINO_ACIDS)), name=name, **kwargs)
|
InputAA
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, name=None, **kwargs):\n return Input((seq_length, len(AMINO_ACIDS)), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputAA",
"role": "assistant"
}
] |
def x(seq_length, name=None, **kwargs):
return Input((seq_length, len(RNAplfold_PROFILES)), name=name, **kwargs)
|
InputRNAStructure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, name=None, **kwargs):\n return Input((seq_length, len(RNAplfold_PROFILES)), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputRNAStructure",
"role": "assistant"
}
] |
def x(seq_length, n_bases=10, name=None, **kwargs):
return Input((seq_length, n_bases), name=name, **kwargs)
|
InputSplines1D
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, n_bases=10, name=None, **kwargs):\n return Input((seq_length, n_bases), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputSplines1D",
"role": "assistant"
}
] |
def x(seq_length, n_features=1, name=None, **kwargs):
return Input((seq_length, n_features), name=name, **kwargs)
|
InputDNAQuantity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, n_features=1, name=None, **kwargs):\n return Input((seq_length, n_features), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputDNAQuantity",
"role": "assistant"
}
] |
def x(seq_length, n_bases=10, name='DNASmoothPosition', **kwargs):
return Input((seq_length, n_bases), name=name, **kwargs)
|
InputDNAQuantitySplines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_length, n_bases=10, name='DNASmoothPosition', **kwargs):\n return Input((seq_length, n_bases), name=name, **kwargs)\n",
"role": "user"
},
{
"content": "InputDNAQuantitySplines",
"role": "assistant"
}
] |
def x(self, index=None, figsize=None, **kwargs):
W = self.get_weights()[0]
if index is None:
index = np.arange(W.shape[2])
fig = heatmap(np.swapaxes(W[:, :, index], 0, 1), plot_name='filter: ',
vocab=self.VOCAB, figsize=figsize, **kwargs)
return fig
|
plot_weights_heatmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index=None, figsize=None, **kwargs):\n W = self.get_weights()[0]\n if index is None:\n index = np.arange(W.shape[2])\n fig = heatmap(np.swapaxes(W[:, :, index], 0, 1), plot_name='filter: ',\n vocab=self.VOCAB, figsize=figsize, **kwargs)\n return fig\n",
"role": "user"
},
{
"content": "plot_weights_heatmap",
"role": "assistant"
}
] |
def x(self, index, plot_type='motif_raw', background_probs=
DEFAULT_BASE_BACKGROUND, ncol=1, figsize=None):
w_all = self.get_weights()
if len(w_all) == 0:
raise Exception('Layer needs to be initialized first')
W = w_all[0]
if index is None:
index = np.arange(W.shape[2])
if isinstance(index, int):
index = [index]
fig = plt.figure(figsize=figsize)
if plot_type == 'motif_pwm' and plot_type in self.AVAILABLE_PLOTS:
arr = pssm_array2pwm_array(W, background_probs)
elif plot_type == 'motif_raw' and plot_type in self.AVAILABLE_PLOTS:
arr = W
elif plot_type == 'motif_pwm_info' and plot_type in self.AVAILABLE_PLOTS:
quasi_pwm = pssm_array2pwm_array(W, background_probs)
arr = _pwm2pwm_info(quasi_pwm)
else:
raise ValueError('plot_type needs to be from {0}'.format(self.
AVAILABLE_PLOTS))
fig = seqlogo_fig(arr, vocab=self.VOCAB_name, figsize=figsize, ncol=
ncol, plot_name='filter: ')
return fig
|
plot_weights_motif
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, plot_type='motif_raw', background_probs=\n DEFAULT_BASE_BACKGROUND, ncol=1, figsize=None):\n w_all = self.get_weights()\n if len(w_all) == 0:\n raise Exception('Layer needs to be initialized first')\n W = w_all[0]\n if index is None:\n index = np.arange(W.shape[2])\n if isinstance(index, int):\n index = [index]\n fig = plt.figure(figsize=figsize)\n if plot_type == 'motif_pwm' and plot_type in self.AVAILABLE_PLOTS:\n arr = pssm_array2pwm_array(W, background_probs)\n elif plot_type == 'motif_raw' and plot_type in self.AVAILABLE_PLOTS:\n arr = W\n elif plot_type == 'motif_pwm_info' and plot_type in self.AVAILABLE_PLOTS:\n quasi_pwm = pssm_array2pwm_array(W, background_probs)\n arr = _pwm2pwm_info(quasi_pwm)\n else:\n raise ValueError('plot_type needs to be from {0}'.format(self.\n AVAILABLE_PLOTS))\n fig = seqlogo_fig(arr, vocab=self.VOCAB_name, figsize=figsize, ncol=\n ncol, plot_name='filter: ')\n return fig\n",
"role": "user"
},
{
"content": "plot_weights_motif",
"role": "assistant"
}
] |
def x(self, index=None, plot_type='motif_raw', figsize=None, ncol=1, **kwargs):
if 'heatmap' in self.AVAILABLE_PLOTS and plot_type == 'heatmap':
return self._plot_weights_heatmap(index=index, figsize=figsize,
ncol=ncol, **kwargs)
elif plot_type[:5] == 'motif':
return self._plot_weights_motif(index=index, plot_type=plot_type,
figsize=figsize, ncol=ncol, **kwargs)
else:
raise ValueError('plot_type needs to be from {0}'.format(self.
AVAILABLE_PLOTS))
|
plot_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index=None, plot_type='motif_raw', figsize=None, ncol=1, **kwargs):\n if 'heatmap' in self.AVAILABLE_PLOTS and plot_type == 'heatmap':\n return self._plot_weights_heatmap(index=index, figsize=figsize,\n ncol=ncol, **kwargs)\n elif plot_type[:5] == 'motif':\n return self._plot_weights_motif(index=index, plot_type=plot_type,\n figsize=figsize, ncol=ncol, **kwargs)\n else:\n raise ValueError('plot_type needs to be from {0}'.format(self.\n AVAILABLE_PLOTS))\n",
"role": "user"
},
{
"content": "plot_weights",
"role": "assistant"
}
] |
def x(pwm_list):
for pwm in pwm_list:
if not isinstance(pwm, PWM):
raise TypeError('element {0} of pwm_list is not of type PWM'.
format(pwm))
return True
|
check_pwm_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pwm_list):\n for pwm in pwm_list:\n if not isinstance(pwm, PWM):\n raise TypeError('element {0} of pwm_list is not of type PWM'.\n format(pwm))\n return True\n",
"role": "user"
},
{
"content": "check_pwm_list",
"role": "assistant"
}
] |
def x(mean, stddev, seed=None, normalize=True, alpha=0.01):
if seed is not None:
np.random.seed(seed)
if stddev == 0:
X = mean
else:
gen_X = truncnorm((alpha - mean) / stddev, (1 - alpha - mean) /
stddev, loc=mean, scale=stddev)
X = gen_X.rvs() + mean
if normalize:
col_sums = X.sum(1)
X = X / col_sums[:, np.newaxis]
return X
|
truncated_normal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mean, stddev, seed=None, normalize=True, alpha=0.01):\n if seed is not None:\n np.random.seed(seed)\n if stddev == 0:\n X = mean\n else:\n gen_X = truncnorm((alpha - mean) / stddev, (1 - alpha - mean) /\n stddev, loc=mean, scale=stddev)\n X = gen_X.rvs() + mean\n if normalize:\n col_sums = X.sum(1)\n X = X / col_sums[:, np.newaxis]\n return X\n",
"role": "user"
},
{
"content": "truncated_normal",
"role": "assistant"
}
] |
def x(w, vmin=None, vmax=None, diverge_color=False, ncol=1, plot_name=None,
vocab=['A', 'C', 'G', 'T'], figsize=(6, 2)):
assert len(vocab) == w.shape[0]
plt_y = np.arange(w.shape[0] + 1) + 0.5
plt_x = np.arange(w.shape[1] + 1) - 0.5
z_min = w.min()
z_max = w.max()
if vmin is None:
vmin = z_min
if vmax is None:
vmax = z_max
if diverge_color:
color_map = plt.cm.RdBu
else:
color_map = plt.cm.Blues
fig = plt.figure(figsize=figsize)
if len(w.shape) == 3:
n_plots = w.shape[2]
nrow = math.ceil(n_plots / ncol)
else:
n_plots = 1
nrow = 1
ncol = 1
for i in range(n_plots):
if len(w.shape) == 3:
w_cur = w[:, :, i]
else:
w_cur = w
ax = plt.subplot(nrow, ncol, i + 1)
plt.tight_layout()
im = ax.pcolormesh(plt_x, plt_y, w_cur, cmap=color_map, vmin=vmin,
vmax=vmax, edgecolors='white')
ax.grid(False)
ax.set_yticklabels([''] + vocab, minor=False)
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xticks(np.arange(w_cur.shape[1] + 1))
ax.set_xlim(plt_x.min(), plt_x.max())
ax.set_ylim(plt_y.min(), plt_y.max())
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax)
if plot_name is not None:
if n_plots > 0:
pln = plot_name + ' {0}'.format(i)
else:
pln = plot_name
ax.set_title(pln)
ax.set_aspect('equal')
return fig
|
heatmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(w, vmin=None, vmax=None, diverge_color=False, ncol=1, plot_name=None,\n vocab=['A', 'C', 'G', 'T'], figsize=(6, 2)):\n assert len(vocab) == w.shape[0]\n plt_y = np.arange(w.shape[0] + 1) + 0.5\n plt_x = np.arange(w.shape[1] + 1) - 0.5\n z_min = w.min()\n z_max = w.max()\n if vmin is None:\n vmin = z_min\n if vmax is None:\n vmax = z_max\n if diverge_color:\n color_map = plt.cm.RdBu\n else:\n color_map = plt.cm.Blues\n fig = plt.figure(figsize=figsize)\n if len(w.shape) == 3:\n n_plots = w.shape[2]\n nrow = math.ceil(n_plots / ncol)\n else:\n n_plots = 1\n nrow = 1\n ncol = 1\n for i in range(n_plots):\n if len(w.shape) == 3:\n w_cur = w[:, :, i]\n else:\n w_cur = w\n ax = plt.subplot(nrow, ncol, i + 1)\n plt.tight_layout()\n im = ax.pcolormesh(plt_x, plt_y, w_cur, cmap=color_map, vmin=vmin,\n vmax=vmax, edgecolors='white')\n ax.grid(False)\n ax.set_yticklabels([''] + vocab, minor=False)\n ax.yaxis.set_major_locator(MaxNLocator(integer=True))\n ax.set_xticks(np.arange(w_cur.shape[1] + 1))\n ax.set_xlim(plt_x.min(), plt_x.max())\n ax.set_ylim(plt_y.min(), plt_y.max())\n divider = make_axes_locatable(ax)\n cax = divider.append_axes('right', size='5%', pad=0.05)\n fig.colorbar(im, cax=cax)\n if plot_name is not None:\n if n_plots > 0:\n pln = plot_name + ' {0}'.format(i)\n else:\n pln = plot_name\n ax.set_title(pln)\n ax.set_aspect('equal')\n return fig\n",
"role": "user"
},
{
"content": "heatmap",
"role": "assistant"
}
] |
def x(data_str):
path_strs = re.findall('\\(\\(([^\\)]+?)\\)\\)', data_str.strip())
polygons_data = []
for path_str in path_strs:
data = np.array([tuple(map(float, x.split())) for x in path_str.
strip().split(',')])
polygons_data.append(data)
min_coords = np.vstack(data.min(0) for data in polygons_data).min(0)
max_coords = np.vstack(data.max(0) for data in polygons_data).max(0)
for data in polygons_data:
data[:,] -= min_coords
data[:,] /= max_coords - min_coords
polygons = []
for data in polygons_data:
polygons.append(load_wkt('POLYGON((%s))' % ','.join(' '.join(map(
str, x)) for x in data)))
return tuple(polygons)
|
standardize_polygons_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_str):\n path_strs = re.findall('\\\\(\\\\(([^\\\\)]+?)\\\\)\\\\)', data_str.strip())\n polygons_data = []\n for path_str in path_strs:\n data = np.array([tuple(map(float, x.split())) for x in path_str.\n strip().split(',')])\n polygons_data.append(data)\n min_coords = np.vstack(data.min(0) for data in polygons_data).min(0)\n max_coords = np.vstack(data.max(0) for data in polygons_data).max(0)\n for data in polygons_data:\n data[:,] -= min_coords\n data[:,] /= max_coords - min_coords\n polygons = []\n for data in polygons_data:\n polygons.append(load_wkt('POLYGON((%s))' % ','.join(' '.join(map(\n str, x)) for x in data)))\n return tuple(polygons)\n",
"role": "user"
},
{
"content": "standardize_polygons_str",
"role": "assistant"
}
] |
def x(ax, let, col, x, y, height):
if len(let) == 2:
colors = [col, 'white']
elif len(let) == 1:
colors = [col]
else:
raise ValueError('3 or more Polygons are not supported')
for polygon, color in zip(let, colors):
new_polygon = affinity.scale(polygon, yfact=height, origin=(0, 0, 0))
new_polygon = affinity.translate(new_polygon, xoff=x, yoff=y)
patch = PolygonPatch(new_polygon, edgecolor=color, facecolor=color)
ax.add_patch(patch)
return
|
add_letter_to_axis
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, let, col, x, y, height):\n if len(let) == 2:\n colors = [col, 'white']\n elif len(let) == 1:\n colors = [col]\n else:\n raise ValueError('3 or more Polygons are not supported')\n for polygon, color in zip(let, colors):\n new_polygon = affinity.scale(polygon, yfact=height, origin=(0, 0, 0))\n new_polygon = affinity.translate(new_polygon, xoff=x, yoff=y)\n patch = PolygonPatch(new_polygon, edgecolor=color, facecolor=color)\n ax.add_patch(patch)\n return\n",
"role": "user"
},
{
"content": "add_letter_to_axis",
"role": "assistant"
}
] |
def x(letter_heights, vocab='DNA', ax=None):
ax = ax or plt.gca()
assert letter_heights.shape[1] == len(VOCABS[vocab])
x_range = [1, letter_heights.shape[0]]
pos_heights = np.copy(letter_heights)
pos_heights[letter_heights < 0] = 0
neg_heights = np.copy(letter_heights)
neg_heights[letter_heights > 0] = 0
for x_pos, heights in enumerate(letter_heights):
letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys())))
y_pos_pos = 0.0
y_neg_pos = 0.0
for height, letter in letters_and_heights:
color = VOCABS[vocab][letter]
polygons = letter_polygons[letter]
if height > 0:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,
y_pos_pos, height)
y_pos_pos += height
else:
add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,
y_neg_pos, height)
y_neg_pos += height
ax.set_xlim(x_range[0] - 1, x_range[1] + 1)
ax.grid(False)
ax.set_xticks(list(range(*x_range)) + [x_range[-1]])
ax.set_aspect(aspect='auto', adjustable='box')
ax.autoscale_view()
|
seqlogo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(letter_heights, vocab='DNA', ax=None):\n ax = ax or plt.gca()\n assert letter_heights.shape[1] == len(VOCABS[vocab])\n x_range = [1, letter_heights.shape[0]]\n pos_heights = np.copy(letter_heights)\n pos_heights[letter_heights < 0] = 0\n neg_heights = np.copy(letter_heights)\n neg_heights[letter_heights > 0] = 0\n for x_pos, heights in enumerate(letter_heights):\n letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys())))\n y_pos_pos = 0.0\n y_neg_pos = 0.0\n for height, letter in letters_and_heights:\n color = VOCABS[vocab][letter]\n polygons = letter_polygons[letter]\n if height > 0:\n add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,\n y_pos_pos, height)\n y_pos_pos += height\n else:\n add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,\n y_neg_pos, height)\n y_neg_pos += height\n ax.set_xlim(x_range[0] - 1, x_range[1] + 1)\n ax.grid(False)\n ax.set_xticks(list(range(*x_range)) + [x_range[-1]])\n ax.set_aspect(aspect='auto', adjustable='box')\n ax.autoscale_view()\n",
"role": "user"
},
{
"content": "seqlogo",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.