source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(psr, formbats=False): if formbats: psr.formbats() res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[ psr.deleted == 0] res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2) return numpy.sum(res * res / (1e-12 * err * err))
chisq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, formbats=False):\n if formbats:\n psr.formbats()\n res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[\n psr.deleted == 0]\n res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)\n return numpy.sum(res * res / (1e-12 * err * err))\n", "role": "user" }, { "content": "chisq", "role": "assistant" } ]
def x(psr, formbats=False, renormalize=True): if formbats: psr.formbats() res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[ psr.deleted == 0] res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2) M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[ psr.deleted == 0, 1:] if renormalize: norm = numpy.sqrt(numpy.sum(M ** 2, axis=0)) M /= norm else: norm = 1.0 dr = -2 * numpy.dot(M.T, res / (1e-12 * err ** 2)) * norm return dr
dchisq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, formbats=False, renormalize=True):\n if formbats:\n psr.formbats()\n res, err = psr.residuals(removemean=False)[psr.deleted == 0], psr.toaerrs[\n psr.deleted == 0]\n res -= numpy.sum(res / err ** 2) / numpy.sum(1 / err ** 2)\n M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[\n psr.deleted == 0, 1:]\n if renormalize:\n norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))\n M /= norm\n else:\n norm = 1.0\n dr = -2 * numpy.dot(M.T, res / (1e-12 * err ** 2)) * norm\n return dr\n", "role": "user" }, { "content": "dchisq", "role": "assistant" } ]
def x(psr, method='Nelder-Mead', history=False, formbats=False, renormalize =True, bounds={}, **kwargs): ctr, err = psr.vals(), psr.errs() if numpy.any(err == 0.0): print( "Warning: one or more fit parameters have zero a priori error, and won't be searched." ) hloc, hval = [], [] def x(xs): psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)]) ret = chisq(psr, formbats=formbats) if numpy.isnan(ret): print('Warning: chisq is nan at {0}.'.format(psr.vals())) if history: hloc.append(psr.vals()) hval.append(ret) return ret def x(xs): psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)]) dc = dchisq(psr, formbats=formbats, renormalize=renormalize) ret = numpy.array([(d * e) for d, e in zip(dc, err)], 'd') return ret opts = kwargs.copy() if method not in ['Nelder-Mead', 'Powell']: opts['jac'] = dfunc if method in ['L-BFGS-B']: opts['bounds'] = [((float((bounds[par][0] - ctr[i]) / err[i]), float((bounds[par][1] - ctr[i]) / err[i])) if par in bounds else (None, None)) for i, par in enumerate(psr.pars())] res = scipy.optimize.minimize(func, [0.0] * len(ctr), method=method, **opts ) if hasattr(res, 'message'): print(res.message) minchisq = func(res.x) if history: return minchisq, numpy.array(hval), numpy.array(hloc) else: return minchisq
findmin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, method='Nelder-Mead', history=False, formbats=False, renormalize\n =True, bounds={}, **kwargs):\n ctr, err = psr.vals(), psr.errs()\n if numpy.any(err == 0.0):\n print(\n \"Warning: one or more fit parameters have zero a priori error, and won't be searched.\"\n )\n hloc, hval = [], []\n\n def x(xs):\n psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])\n ret = chisq(psr, formbats=formbats)\n if numpy.isnan(ret):\n print('Warning: chisq is nan at {0}.'.format(psr.vals()))\n if history:\n hloc.append(psr.vals())\n hval.append(ret)\n return ret\n\n def x(xs):\n psr.vals([(c + x * e) for x, c, e in zip(xs, ctr, err)])\n dc = dchisq(psr, formbats=formbats, renormalize=renormalize)\n ret = numpy.array([(d * e) for d, e in zip(dc, err)], 'd')\n return ret\n opts = kwargs.copy()\n if method not in ['Nelder-Mead', 'Powell']:\n opts['jac'] = dfunc\n if method in ['L-BFGS-B']:\n opts['bounds'] = [((float((bounds[par][0] - ctr[i]) / err[i]),\n float((bounds[par][1] - ctr[i]) / err[i])) if par in bounds else\n (None, None)) for i, par in enumerate(psr.pars())]\n res = scipy.optimize.minimize(func, [0.0] * len(ctr), method=method, **opts\n )\n if hasattr(res, 'message'):\n print(res.message)\n minchisq = func(res.x)\n if history:\n return minchisq, numpy.array(hval), numpy.array(hloc)\n else:\n return minchisq\n", "role": "user" }, { "content": "findmin", "role": "assistant" } ]
def x(psr, renormalize=True): mask = psr.deleted == 0 res, err = psr.residuals(removemean=False)[mask], psr.toaerrs[mask] M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[ mask, :] C = numpy.diag((err * 1e-06) ** 2) if renormalize: norm = numpy.sqrt(numpy.sum(M ** 2, axis=0)) M /= norm else: norm = np.ones_like(M[0, :]) mtcm = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), M)) mtcy = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), res)) xvar = numpy.linalg.inv(mtcm) c = scipy.linalg.cho_factor(mtcm) xhat = scipy.linalg.cho_solve(c, mtcy) sol = psr.vals() psr.vals(sol + xhat[1:] / norm[1:]) psr.errs(numpy.sqrt(numpy.diag(xvar)[1:]) / norm[1:]) return chisq(psr)
glsfit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, renormalize=True):\n mask = psr.deleted == 0\n res, err = psr.residuals(removemean=False)[mask], psr.toaerrs[mask]\n M = psr.designmatrix(updatebats=False, fixunits=True, fixsigns=True)[\n mask, :]\n C = numpy.diag((err * 1e-06) ** 2)\n if renormalize:\n norm = numpy.sqrt(numpy.sum(M ** 2, axis=0))\n M /= norm\n else:\n norm = np.ones_like(M[0, :])\n mtcm = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), M))\n mtcy = numpy.dot(M.T, numpy.dot(numpy.linalg.inv(C), res))\n xvar = numpy.linalg.inv(mtcm)\n c = scipy.linalg.cho_factor(mtcm)\n xhat = scipy.linalg.cho_solve(c, mtcy)\n sol = psr.vals()\n psr.vals(sol + xhat[1:] / norm[1:])\n psr.errs(numpy.sqrt(numpy.diag(xvar)[1:]) / norm[1:])\n return chisq(psr)\n", "role": "user" }, { "content": "glsfit", "role": "assistant" } ]
def x(t, nmodes, freq=False, Tspan=None, logf=False, fmin=None, fmax=None): N = len(t) F = np.zeros((N, 2 * nmodes)) if Tspan is not None: T = Tspan else: T = t.max() - t.min() if fmin is not None and fmax is not None: f = np.linspace(fmin, fmax, nmodes) else: f = np.linspace(1 / T, nmodes / T, nmodes) if logf: f = np.logspace(np.log10(1 / T), np.log10(nmodes / T), nmodes) Ffreqs = np.zeros(2 * nmodes) Ffreqs[0::2] = f Ffreqs[1::2] = f F[:, ::2] = np.sin(2 * np.pi * t[:, None] * f[None, :]) F[:, 1::2] = np.cos(2 * np.pi * t[:, None] * f[None, :]) if freq: return F, Ffreqs else: return F
create_fourier_design_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t, nmodes, freq=False, Tspan=None, logf=False, fmin=None, fmax=None):\n N = len(t)\n F = np.zeros((N, 2 * nmodes))\n if Tspan is not None:\n T = Tspan\n else:\n T = t.max() - t.min()\n if fmin is not None and fmax is not None:\n f = np.linspace(fmin, fmax, nmodes)\n else:\n f = np.linspace(1 / T, nmodes / T, nmodes)\n if logf:\n f = np.logspace(np.log10(1 / T), np.log10(nmodes / T), nmodes)\n Ffreqs = np.zeros(2 * nmodes)\n Ffreqs[0::2] = f\n Ffreqs[1::2] = f\n F[:, ::2] = np.sin(2 * np.pi * t[:, None] * f[None, :])\n F[:, 1::2] = np.cos(2 * np.pi * t[:, None] * f[None, :])\n if freq:\n return F, Ffreqs\n else:\n return F\n", "role": "user" }, { "content": "create_fourier_design_matrix", "role": "assistant" } ]
def x(f, log10_A=-16, gamma=5): fyr = 1 / 31600000.0 return (10 ** log10_A) ** 2 / 12.0 / np.pi ** 2 * fyr ** (gamma - 3 ) * f ** -gamma
powerlaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, log10_A=-16, gamma=5):\n fyr = 1 / 31600000.0\n return (10 ** log10_A) ** 2 / 12.0 / np.pi ** 2 * fyr ** (gamma - 3\n ) * f ** -gamma\n", "role": "user" }, { "content": "powerlaw", "role": "assistant" } ]
def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp= 1e-20, alpha=-0.66, logspacing=True): gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing) gwb.add_gwb(psr, dist) return gwb
add_gwb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=\n 1e-20, alpha=-0.66, logspacing=True):\n gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing)\n gwb.add_gwb(psr, dist)\n return gwb\n", "role": "user" }, { "content": "add_gwb", "role": "assistant" } ]
def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp= 1e-20, alpha=-0.66, logspacing=True, dipoleamps=None, dipoledir=None, dipolemag=None): gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing, dipoleamps, dipoledir, dipolemag) gwb.add_gwb(psr, dist) return gwb
add_dipole_gwb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, dist=1, ngw=1000, seed=None, flow=1e-08, fhigh=1e-05, gwAmp=\n 1e-20, alpha=-0.66, logspacing=True, dipoleamps=None, dipoledir=None,\n dipolemag=None):\n gwb = GWB(ngw, seed, flow, fhigh, gwAmp, alpha, logspacing, dipoleamps,\n dipoledir, dipolemag)\n gwb.add_gwb(psr, dist)\n return gwb\n", "role": "user" }, { "content": "add_dipole_gwb", "role": "assistant" } ]
def x(parfile, obstimes, toaerr, freq=1440.0, observatory='AXIS', flags='', iters=3): import tempfile outfile = tempfile.NamedTemporaryFile(delete=False) outfile.write(b'FORMAT 1\n') outfile.write(b'MODE 1\n') obsname = 'fake_' + os.path.basename(parfile) if obsname[-4:] == '.par': obsname = obsname[:-4] for i, t in enumerate(obstimes): outfile.write('{0} {1} {2} {3} {4} {5}\n'.format(obsname, _geti( freq, i), t, _geti(toaerr, i), _geti(observatory, i), _geti( flags, i)).encode('ascii')) timfile = outfile.name outfile.close() pulsar = libstempo.tempopulsar(parfile, timfile, dofit=False) for i in range(iters): pulsar.stoas[:] -= pulsar.residuals() / 86400.0 pulsar.formbats() os.remove(timfile) return pulsar
fakepulsar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parfile, obstimes, toaerr, freq=1440.0, observatory='AXIS', flags='',\n iters=3):\n import tempfile\n outfile = tempfile.NamedTemporaryFile(delete=False)\n outfile.write(b'FORMAT 1\\n')\n outfile.write(b'MODE 1\\n')\n obsname = 'fake_' + os.path.basename(parfile)\n if obsname[-4:] == '.par':\n obsname = obsname[:-4]\n for i, t in enumerate(obstimes):\n outfile.write('{0} {1} {2} {3} {4} {5}\\n'.format(obsname, _geti(\n freq, i), t, _geti(toaerr, i), _geti(observatory, i), _geti(\n flags, i)).encode('ascii'))\n timfile = outfile.name\n outfile.close()\n pulsar = libstempo.tempopulsar(parfile, timfile, dofit=False)\n for i in range(iters):\n pulsar.stoas[:] -= pulsar.residuals() / 86400.0\n pulsar.formbats()\n os.remove(timfile)\n return pulsar\n", "role": "user" }, { "content": "fakepulsar", "role": "assistant" } ]
def x(psr, efac=1.0, flagid=None, flags=None, seed=None): if seed is not None: N.random.seed(seed) efacvec = N.ones(psr.nobs) if flags is None: if not N.isscalar(efac): raise ValueError('ERROR: If flags is None, efac must be a scalar') else: efacvec = N.ones(psr.nobs) * efac if flags is not None and flagid is not None and not N.isscalar(efac): if len(efac) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(psr.flagvals(flagid)) efacvec[ind] = efac[ct] psr.stoas[:] += efacvec * psr.toaerrs * (1e-06 / day) * N.random.randn(psr .nobs)
add_efac
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, efac=1.0, flagid=None, flags=None, seed=None):\n if seed is not None:\n N.random.seed(seed)\n efacvec = N.ones(psr.nobs)\n if flags is None:\n if not N.isscalar(efac):\n raise ValueError('ERROR: If flags is None, efac must be a scalar')\n else:\n efacvec = N.ones(psr.nobs) * efac\n if flags is not None and flagid is not None and not N.isscalar(efac):\n if len(efac) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(psr.flagvals(flagid))\n efacvec[ind] = efac[ct]\n psr.stoas[:] += efacvec * psr.toaerrs * (1e-06 / day) * N.random.randn(psr\n .nobs)\n", "role": "user" }, { "content": "add_efac", "role": "assistant" } ]
def x(psr, equad, flagid=None, flags=None, seed=None): if seed is not None: N.random.seed(seed) equadvec = N.zeros(psr.nobs) if flags is None: if not N.isscalar(equad): raise ValueError('ERROR: If flags is None, equad must be a scalar') else: equadvec = N.ones(psr.nobs) * equad if flags is not None and flagid is not None and not N.isscalar(equad): if len(equad) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(psr.flagvals(flagid)) equadvec[ind] = equad[ct] psr.stoas[:] += equadvec / day * N.random.randn(psr.nobs)
add_equad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, equad, flagid=None, flags=None, seed=None):\n if seed is not None:\n N.random.seed(seed)\n equadvec = N.zeros(psr.nobs)\n if flags is None:\n if not N.isscalar(equad):\n raise ValueError('ERROR: If flags is None, equad must be a scalar')\n else:\n equadvec = N.ones(psr.nobs) * equad\n if flags is not None and flagid is not None and not N.isscalar(equad):\n if len(equad) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(psr.flagvals(flagid))\n equadvec[ind] = equad[ct]\n psr.stoas[:] += equadvec / day * N.random.randn(psr.nobs)\n", "role": "user" }, { "content": "add_equad", "role": "assistant" } ]
def x(psr, ecorr, flagid=None, flags=None, coarsegrain=0.1, seed=None): if seed is not None: N.random.seed(seed) if flags is None: t, U = quantize_fast(N.array(psr.toas(), 'd'), dt=coarsegrain) elif flags is not None and flagid is not None: t, f, U = quantize_fast(N.array(psr.toas(), 'd'), N.array(psr. flagvals(flagid)), dt=coarsegrain) ecorrvec = N.zeros(len(t)) if flags is None: if not N.isscalar(ecorr): raise ValueError('ERROR: If flags is None, jitter must be a scalar' ) else: ecorrvec = N.ones(len(t)) * ecorr if flags is not None and flagid is not None and not N.isscalar(ecorr): if len(ecorr) == len(flags): for ct, flag in enumerate(flags): ind = flag == N.array(f) ecorrvec[ind] = ecorr[ct] psr.stoas[:] += 1 / day * N.dot(U * ecorrvec, N.random.randn(U.shape[1]))
add_jitter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, ecorr, flagid=None, flags=None, coarsegrain=0.1, seed=None):\n if seed is not None:\n N.random.seed(seed)\n if flags is None:\n t, U = quantize_fast(N.array(psr.toas(), 'd'), dt=coarsegrain)\n elif flags is not None and flagid is not None:\n t, f, U = quantize_fast(N.array(psr.toas(), 'd'), N.array(psr.\n flagvals(flagid)), dt=coarsegrain)\n ecorrvec = N.zeros(len(t))\n if flags is None:\n if not N.isscalar(ecorr):\n raise ValueError('ERROR: If flags is None, jitter must be a scalar'\n )\n else:\n ecorrvec = N.ones(len(t)) * ecorr\n if flags is not None and flagid is not None and not N.isscalar(ecorr):\n if len(ecorr) == len(flags):\n for ct, flag in enumerate(flags):\n ind = flag == N.array(f)\n ecorrvec[ind] = ecorr[ct]\n psr.stoas[:] += 1 / day * N.dot(U * ecorrvec, N.random.randn(U.shape[1]))\n", "role": "user" }, { "content": "add_jitter", "role": "assistant" } ]
def x(psr, A, gamma, components=10, seed=None): if seed is not None: N.random.seed(seed) t = psr.toas() minx, maxx = N.min(t), N.max(t) x = (t - minx) / (maxx - minx) T = day / year * (maxx - minx) size = 2 * components F = N.zeros((psr.nobs, size), 'd') f = N.zeros(size, 'd') for i in range(components): F[:, 2 * i] = N.cos(2 * math.pi * (i + 1) * x) F[:, 2 * i + 1] = N.sin(2 * math.pi * (i + 1) * x) f[2 * i] = f[2 * i + 1] = (i + 1) / T norm = A ** 2 * year ** 2 / (12 * math.pi ** 2 * T) prior = norm * f ** -gamma y = N.sqrt(prior) * N.random.randn(size) psr.stoas[:] += 1.0 / day * N.dot(F, y)
add_rednoise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, A, gamma, components=10, seed=None):\n if seed is not None:\n N.random.seed(seed)\n t = psr.toas()\n minx, maxx = N.min(t), N.max(t)\n x = (t - minx) / (maxx - minx)\n T = day / year * (maxx - minx)\n size = 2 * components\n F = N.zeros((psr.nobs, size), 'd')\n f = N.zeros(size, 'd')\n for i in range(components):\n F[:, 2 * i] = N.cos(2 * math.pi * (i + 1) * x)\n F[:, 2 * i + 1] = N.sin(2 * math.pi * (i + 1) * x)\n f[2 * i] = f[2 * i + 1] = (i + 1) / T\n norm = A ** 2 * year ** 2 / (12 * math.pi ** 2 * T)\n prior = norm * f ** -gamma\n y = N.sqrt(prior) * N.random.randn(size)\n psr.stoas[:] += 1.0 / day * N.dot(F, y)\n", "role": "user" }, { "content": "add_rednoise", "role": "assistant" } ]
def x(psr, f, A, offset=0.5): t = psr.toas() t0 = offset * (N.max(t) - N.min(t)) sine = A * N.cos(2 * math.pi * f * day * (t - t0)) psr.stoas[:] += sine / day
add_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, f, A, offset=0.5):\n t = psr.toas()\n t0 = offset * (N.max(t) - N.min(t))\n sine = A * N.cos(2 * math.pi * f * day * (t - t0))\n psr.stoas[:] += sine / day\n", "role": "user" }, { "content": "add_line", "role": "assistant" } ]
def x(psr, epoch, amp): heaviside = lambda x: 0.5 * (N.sign(x) + 1) psr.stoas[:] -= amp * heaviside(psr.toas() - epoch) * (psr.toas() - epoch ) * 86400.0
add_glitch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, epoch, amp):\n heaviside = lambda x: 0.5 * (N.sign(x) + 1)\n psr.stoas[:] -= amp * heaviside(psr.toas() - epoch) * (psr.toas() - epoch\n ) * 86400.0\n", "role": "user" }, { "content": "add_glitch", "role": "assistant" } ]
def x(psr, gwtheta, gwphi, mc, dist, fgw, phase0, psi, inc, pdist=1.0, pphase=None, psrTerm=True, evolve=True, phase_approx=False, tref=0): mc *= eu.SOLAR2S dist *= eu.MPC2S w0 = N.pi * fgw phase0 /= 2 w053 = w0 ** (-5 / 3) cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi) singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi) sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi) incfac1, incfac2 = 0.5 * (3 + N.cos(2 * inc)), 2 * N.cos(inc) m = N.array([singwphi, -cosgwphi, 0.0]) n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta]) omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, - cosgwtheta]) fac1 = 256 / 5 * mc ** (5 / 3) * w0 ** (8 / 3) fac2 = 1 / 32 / mc ** (5 / 3) fac3 = mc ** (5 / 3) / dist if 'RAJ' and 'DECJ' in psr.pars(): ptheta = N.pi / 2 - psr['DECJ'].val pphi = psr['RAJ'].val elif 'ELONG' and 'ELAT' in psr.pars(): fac = 180.0 / N.pi coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac ), str(psr['ELAT'].val * fac))) ptheta = N.pi / 2 - float(repr(coords.dec)) pphi = float(repr(coords.ra)) phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi ), N.cos(ptheta)]) fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot( omhat, phat)) fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat)) cosMu = -N.dot(omhat, phat) toas = psr.toas() * 86400 - tref if pphase is not None: pd = pphase / (2 * N.pi * fgw * (1 - cosMu)) / eu.KPC2S else: pd = pdist pd *= eu.KPC2S tp = toas - pd * (1 - cosMu) if evolve: omega = w0 * (1 - fac1 * toas) ** (-3 / 8) omega_p = w0 * (1 - fac1 * tp) ** (-3 / 8) phase = phase0 + fac2 * (w053 - omega ** (-5 / 3)) phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3)) elif phase_approx: omega = w0 omega_p = w0 * (1 + fac1 * pd * (1 - cosMu)) ** (-3 / 8) phase = phase0 + omega * toas phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3)) + omega_p * toas else: omega = w0 omega_p = omega phase = phase0 + omega * toas phase_p = phase0 + omega * tp At = N.sin(2 * phase) * incfac1 Bt = N.cos(2 * phase) * incfac2 At_p = N.sin(2 * phase_p) * incfac1 Bt_p = N.cos(2 * phase_p) * incfac2 alpha = fac3 / omega ** (1 / 3) alpha_p = fac3 / omega_p ** (1 / 3) rplus = alpha * (At * cos2psi + Bt * sin2psi) rcross = alpha * (-At * sin2psi + Bt * cos2psi) rplus_p = alpha_p * (At_p * cos2psi + Bt_p * sin2psi) rcross_p = alpha_p * (-At_p * sin2psi + Bt_p * cos2psi) if psrTerm: res = fplus * (rplus_p - rplus) + fcross * (rcross_p - rcross) else: res = -fplus * rplus - fcross * rcross psr.stoas[:] += res / 86400
add_cgw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, gwtheta, gwphi, mc, dist, fgw, phase0, psi, inc, pdist=1.0,\n pphase=None, psrTerm=True, evolve=True, phase_approx=False, tref=0):\n mc *= eu.SOLAR2S\n dist *= eu.MPC2S\n w0 = N.pi * fgw\n phase0 /= 2\n w053 = w0 ** (-5 / 3)\n cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)\n singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)\n sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)\n incfac1, incfac2 = 0.5 * (3 + N.cos(2 * inc)), 2 * N.cos(inc)\n m = N.array([singwphi, -cosgwphi, 0.0])\n n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])\n omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -\n cosgwtheta])\n fac1 = 256 / 5 * mc ** (5 / 3) * w0 ** (8 / 3)\n fac2 = 1 / 32 / mc ** (5 / 3)\n fac3 = mc ** (5 / 3) / dist\n if 'RAJ' and 'DECJ' in psr.pars():\n ptheta = N.pi / 2 - psr['DECJ'].val\n pphi = psr['RAJ'].val\n elif 'ELONG' and 'ELAT' in psr.pars():\n fac = 180.0 / N.pi\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac\n ), str(psr['ELAT'].val * fac)))\n ptheta = N.pi / 2 - float(repr(coords.dec))\n pphi = float(repr(coords.ra))\n phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi\n ), N.cos(ptheta)])\n fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(\n omhat, phat))\n fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))\n cosMu = -N.dot(omhat, phat)\n toas = psr.toas() * 86400 - tref\n if pphase is not None:\n pd = pphase / (2 * N.pi * fgw * (1 - cosMu)) / eu.KPC2S\n else:\n pd = pdist\n pd *= eu.KPC2S\n tp = toas - pd * (1 - cosMu)\n if evolve:\n omega = w0 * (1 - fac1 * toas) ** (-3 / 8)\n omega_p = w0 * (1 - fac1 * tp) ** (-3 / 8)\n phase = phase0 + fac2 * (w053 - omega ** (-5 / 3))\n phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3))\n elif phase_approx:\n omega = w0\n omega_p = w0 * (1 + fac1 * pd * (1 - cosMu)) ** (-3 / 8)\n phase = phase0 + omega * toas\n phase_p = phase0 + fac2 * (w053 - omega_p ** (-5 / 3)) + omega_p * toas\n else:\n omega = w0\n omega_p = omega\n phase = phase0 + omega * toas\n phase_p = phase0 + omega * tp\n At = N.sin(2 * phase) * incfac1\n Bt = N.cos(2 * phase) * incfac2\n At_p = N.sin(2 * phase_p) * incfac1\n Bt_p = N.cos(2 * phase_p) * incfac2\n alpha = fac3 / omega ** (1 / 3)\n alpha_p = fac3 / omega_p ** (1 / 3)\n rplus = alpha * (At * cos2psi + Bt * sin2psi)\n rcross = alpha * (-At * sin2psi + Bt * cos2psi)\n rplus_p = alpha_p * (At_p * cos2psi + Bt_p * sin2psi)\n rcross_p = alpha_p * (-At_p * sin2psi + Bt_p * cos2psi)\n if psrTerm:\n res = fplus * (rplus_p - rplus) + fcross * (rcross_p - rcross)\n else:\n res = -fplus * rplus - fcross * rcross\n psr.stoas[:] += res / 86400\n", "role": "user" }, { "content": "add_cgw", "role": "assistant" } ]
def x(psr, gwtheta, gwphi, mc, dist, F, inc, psi, gamma0, e0, l0, q, nmax= 100, nset=None, pd=None, periEv=True, psrTerm=True, tref=0, check=True, useFile=True): cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi) singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi) sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi) m = N.array([singwphi, -cosgwphi, 0.0]) n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta]) omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, - cosgwtheta]) if 'RAJ' and 'DECJ' in psr.pars(): ptheta = N.pi / 2 - psr['DECJ'].val pphi = psr['RAJ'].val elif 'ELONG' and 'ELAT' in psr.pars(): fac = 180.0 / N.pi coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac ), str(psr['ELAT'].val * fac))) ptheta = N.pi / 2 - float(repr(coords.dec)) pphi = float(repr(coords.ra)) phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi ), N.cos(ptheta)]) fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot( omhat, phat)) fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat)) cosMu = -N.dot(omhat, phat) toas = N.double(psr.toas()) * 86400 - tref if check: y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array ([0.0, toas.max()])) Fc0, ec0, gc0, phic0 = y[0, :] Fc1, ec1, gc1, phic1 = y[-1, :] Tobs = 1 / (toas.max() - toas.min()) if N.abs(Fc0 - Fc1) > 1 / Tobs: print( 'WARNING: Frequency is evolving over more than one frequency bin.' ) print('F0 = {0}, F1 = {1}, delta f = {2}'.format(Fc0, Fc1, 1 / Tobs)) if periEv == False: gammadot = 0.0 else: gammadot = eu.get_gammadot(F, mc, q, e0) if nset is not None: nharm = nset elif useFile: if e0 > 0.001 and e0 < 0.999: nharm = min(int(ecc_interp(e0)), nmax) + 1 elif e0 < 0.001: nharm = 3 else: nharm = nmax else: nharm = nmax splus, scross = eu.calculate_splus_scross(nharm, mc, dist, F, e0, toas, l0, gamma0, gammadot, inc) if psrTerm: pd *= eu.KPC2S tp = toas - pd * (1 - cosMu) y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array ([0.0, tp.min()])) if N.any(y): Fp, ep, gp, lp = y[-1, :] gammadotp = eu.get_gammadot(Fp, mc, q, ep) if useFile: if ep > 0.001 and ep < 0.999: nharm = min(int(ecc_interp(ep)), nmax) elif ep < 0.001: nharm = 3 else: nharm = nmax else: nharm = nmax splusp, scrossp = eu.calculate_splus_scross(nharm, mc, dist, Fp, ep, toas, lp, gp, gammadotp, inc) rr = (fplus * cos2psi - fcross * sin2psi) * (splusp - splus) + ( fplus * sin2psi + fcross * cos2psi) * (scrossp - scross) else: rr = N.zeros(len(p.toas)) else: rr = -(fplus * cos2psi - fcross * sin2psi) * splus - (fplus * sin2psi + fcross * cos2psi) * scross psr.stoas[:] += rr / 86400
add_ecc_cgw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, gwtheta, gwphi, mc, dist, F, inc, psi, gamma0, e0, l0, q, nmax=\n 100, nset=None, pd=None, periEv=True, psrTerm=True, tref=0, check=True,\n useFile=True):\n cosgwtheta, cosgwphi = N.cos(gwtheta), N.cos(gwphi)\n singwtheta, singwphi = N.sin(gwtheta), N.sin(gwphi)\n sin2psi, cos2psi = N.sin(2 * psi), N.cos(2 * psi)\n m = N.array([singwphi, -cosgwphi, 0.0])\n n = N.array([-cosgwtheta * cosgwphi, -cosgwtheta * singwphi, singwtheta])\n omhat = N.array([-singwtheta * cosgwphi, -singwtheta * singwphi, -\n cosgwtheta])\n if 'RAJ' and 'DECJ' in psr.pars():\n ptheta = N.pi / 2 - psr['DECJ'].val\n pphi = psr['RAJ'].val\n elif 'ELONG' and 'ELAT' in psr.pars():\n fac = 180.0 / N.pi\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr['ELONG'].val * fac\n ), str(psr['ELAT'].val * fac)))\n ptheta = N.pi / 2 - float(repr(coords.dec))\n pphi = float(repr(coords.ra))\n phat = N.array([N.sin(ptheta) * N.cos(pphi), N.sin(ptheta) * N.sin(pphi\n ), N.cos(ptheta)])\n fplus = 0.5 * (N.dot(m, phat) ** 2 - N.dot(n, phat) ** 2) / (1 + N.dot(\n omhat, phat))\n fcross = N.dot(m, phat) * N.dot(n, phat) / (1 + N.dot(omhat, phat))\n cosMu = -N.dot(omhat, phat)\n toas = N.double(psr.toas()) * 86400 - tref\n if check:\n y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array\n ([0.0, toas.max()]))\n Fc0, ec0, gc0, phic0 = y[0, :]\n Fc1, ec1, gc1, phic1 = y[-1, :]\n Tobs = 1 / (toas.max() - toas.min())\n if N.abs(Fc0 - Fc1) > 1 / Tobs:\n print(\n 'WARNING: Frequency is evolving over more than one frequency bin.'\n )\n print('F0 = {0}, F1 = {1}, delta f = {2}'.format(Fc0, Fc1, 1 /\n Tobs))\n if periEv == False:\n gammadot = 0.0\n else:\n gammadot = eu.get_gammadot(F, mc, q, e0)\n if nset is not None:\n nharm = nset\n elif useFile:\n if e0 > 0.001 and e0 < 0.999:\n nharm = min(int(ecc_interp(e0)), nmax) + 1\n elif e0 < 0.001:\n nharm = 3\n else:\n nharm = nmax\n else:\n nharm = nmax\n splus, scross = eu.calculate_splus_scross(nharm, mc, dist, F, e0, toas,\n l0, gamma0, gammadot, inc)\n if psrTerm:\n pd *= eu.KPC2S\n tp = toas - pd * (1 - cosMu)\n y = eu.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, N.array\n ([0.0, tp.min()]))\n if N.any(y):\n Fp, ep, gp, lp = y[-1, :]\n gammadotp = eu.get_gammadot(Fp, mc, q, ep)\n if useFile:\n if ep > 0.001 and ep < 0.999:\n nharm = min(int(ecc_interp(ep)), nmax)\n elif ep < 0.001:\n nharm = 3\n else:\n nharm = nmax\n else:\n nharm = nmax\n splusp, scrossp = eu.calculate_splus_scross(nharm, mc, dist, Fp,\n ep, toas, lp, gp, gammadotp, inc)\n rr = (fplus * cos2psi - fcross * sin2psi) * (splusp - splus) + (\n fplus * sin2psi + fcross * cos2psi) * (scrossp - scross)\n else:\n rr = N.zeros(len(p.toas))\n else:\n rr = -(fplus * cos2psi - fcross * sin2psi) * splus - (fplus *\n sin2psi + fcross * cos2psi) * scross\n psr.stoas[:] += rr / 86400\n", "role": "user" }, { "content": "add_ecc_cgw", "role": "assistant" } ]
def x(interpolator): xs = interpolator.x ys = interpolator.y def x(x): if x < xs[0]: return ys[0] elif x > xs[-1]: return ys[-1] else: return interpolator(x) def x(xs): return N.array(map(pointwise, N.array(xs))) return ufunclike
extrap1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(interpolator):\n xs = interpolator.x\n ys = interpolator.y\n\n def x(x):\n if x < xs[0]:\n return ys[0]\n elif x > xs[-1]:\n return ys[-1]\n else:\n return interpolator(x)\n\n def x(xs):\n return N.array(map(pointwise, N.array(xs)))\n return ufunclike\n", "role": "user" }, { "content": "extrap1d", "role": "assistant" } ]
def x(psr, Amp, gam, noCorr=False, seed=None, turnover=False, clm=[N.sqrt( 4.0 * N.pi)], lmax=0, f0=1e-09, beta=1, power=1, userSpec=None, npts= 600, howml=10): if seed is not None: N.random.seed(seed) Npulsars = len(psr) start = N.min([(p.toas().min() * 86400) for p in psr]) - 86400 stop = N.max([(p.toas().max() * 86400) for p in psr]) + 86400 dur = stop - start if npts is None: npts = dur / (86400 * 14) ut = N.linspace(start, stop, npts) dt = dur / npts if noCorr: ORF = N.diag(N.ones(Npulsars) * 2) else: psrlocs = N.zeros((Npulsars, 2)) for ii in range(Npulsars): if 'RAJ' and 'DECJ' in psr[ii].pars(): psrlocs[ii] = N.double(psr[ii]['RAJ'].val), N.double(psr[ii ]['DECJ'].val) elif 'ELONG' and 'ELAT' in psr[ii].pars(): fac = 180.0 / N.pi if 'B' in psr[ii].name: epoch = '1950' else: epoch = '2000' coords = ephem.Equatorial(ephem.Ecliptic(str(psr[ii][ 'ELONG'].val * fac), str(psr[ii]['ELAT'].val * fac)), epoch=epoch) psrlocs[ii] = float(repr(coords.ra)), float(repr(coords.dec)) psrlocs[:, 1] = N.pi / 2.0 - psrlocs[:, 1] anisbasis = N.array(anis.CorrBasis(psrlocs, lmax)) ORF = sum(clm[kk] * anisbasis[kk] for kk in range(len(anisbasis))) ORF *= 2.0 f = N.arange(0, 1 / (2 * dt), 1 / (dur * howml)) f[0] = f[1] Nf = len(f) M = N.linalg.cholesky(ORF) w = N.zeros((Npulsars, Nf), complex) for ll in range(Npulsars): w[ll, :] = N.random.randn(Nf) + 1.0j * N.random.randn(Nf) if userSpec is None: f1yr = 1 / 31600000.0 alpha = -0.5 * (gam - 3) hcf = Amp * (f / f1yr) ** alpha if turnover: si = alpha - beta hcf /= (1 + (f / f0) ** (power * si)) ** (1 / power) elif userSpec is not None: freqs = userSpec[:, 0] if len(userSpec[:, 0]) != len(freqs): raise ValueError( 'Number of supplied spectral points does not match number of frequencies!' ) else: fspec_in = interp.interp1d(N.log10(freqs), N.log10(userSpec[:, 1]), kind='linear') fspec_ex = extrap1d(fspec_in) hcf = 10.0 ** fspec_ex(N.log10(f)) C = 1 / 96 / N.pi ** 2 * hcf ** 2 / f ** 3 * dur * howml Res_f = N.dot(M, w) for ll in range(Npulsars): Res_f[ll] = Res_f[ll] * C ** 0.5 Res_f[ll, 0] = 0 Res_f[ll, -1] = 0 Res_f2 = N.zeros((Npulsars, 2 * Nf - 2), complex) Res_t = N.zeros((Npulsars, 2 * Nf - 2)) Res_f2[:, 0:Nf] = Res_f[:, 0:Nf] Res_f2[:, Nf:2 * Nf - 2] = N.conj(Res_f[:, Nf - 2:0:-1]) Res_t = N.real(N.fft.ifft(Res_f2) / dt) Res = N.zeros((Npulsars, npts)) res_gw = [] for ll in range(Npulsars): Res[ll, :] = Res_t[ll, 10:npts + 10] f = interp.interp1d(ut, Res[ll, :], kind='linear') res_gw.append(f(psr[ll].toas() * 86400)) ct = 0 for p in psr: p.stoas[:] += res_gw[ct] / 86400.0 ct += 1
createGWB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, Amp, gam, noCorr=False, seed=None, turnover=False, clm=[N.sqrt(\n 4.0 * N.pi)], lmax=0, f0=1e-09, beta=1, power=1, userSpec=None, npts=\n 600, howml=10):\n if seed is not None:\n N.random.seed(seed)\n Npulsars = len(psr)\n start = N.min([(p.toas().min() * 86400) for p in psr]) - 86400\n stop = N.max([(p.toas().max() * 86400) for p in psr]) + 86400\n dur = stop - start\n if npts is None:\n npts = dur / (86400 * 14)\n ut = N.linspace(start, stop, npts)\n dt = dur / npts\n if noCorr:\n ORF = N.diag(N.ones(Npulsars) * 2)\n else:\n psrlocs = N.zeros((Npulsars, 2))\n for ii in range(Npulsars):\n if 'RAJ' and 'DECJ' in psr[ii].pars():\n psrlocs[ii] = N.double(psr[ii]['RAJ'].val), N.double(psr[ii\n ]['DECJ'].val)\n elif 'ELONG' and 'ELAT' in psr[ii].pars():\n fac = 180.0 / N.pi\n if 'B' in psr[ii].name:\n epoch = '1950'\n else:\n epoch = '2000'\n coords = ephem.Equatorial(ephem.Ecliptic(str(psr[ii][\n 'ELONG'].val * fac), str(psr[ii]['ELAT'].val * fac)),\n epoch=epoch)\n psrlocs[ii] = float(repr(coords.ra)), float(repr(coords.dec))\n psrlocs[:, 1] = N.pi / 2.0 - psrlocs[:, 1]\n anisbasis = N.array(anis.CorrBasis(psrlocs, lmax))\n ORF = sum(clm[kk] * anisbasis[kk] for kk in range(len(anisbasis)))\n ORF *= 2.0\n f = N.arange(0, 1 / (2 * dt), 1 / (dur * howml))\n f[0] = f[1]\n Nf = len(f)\n M = N.linalg.cholesky(ORF)\n w = N.zeros((Npulsars, Nf), complex)\n for ll in range(Npulsars):\n w[ll, :] = N.random.randn(Nf) + 1.0j * N.random.randn(Nf)\n if userSpec is None:\n f1yr = 1 / 31600000.0\n alpha = -0.5 * (gam - 3)\n hcf = Amp * (f / f1yr) ** alpha\n if turnover:\n si = alpha - beta\n hcf /= (1 + (f / f0) ** (power * si)) ** (1 / power)\n elif userSpec is not None:\n freqs = userSpec[:, 0]\n if len(userSpec[:, 0]) != len(freqs):\n raise ValueError(\n 'Number of supplied spectral points does not match number of frequencies!'\n )\n else:\n fspec_in = interp.interp1d(N.log10(freqs), N.log10(userSpec[:, \n 1]), kind='linear')\n fspec_ex = extrap1d(fspec_in)\n hcf = 10.0 ** fspec_ex(N.log10(f))\n C = 1 / 96 / N.pi ** 2 * hcf ** 2 / f ** 3 * dur * howml\n Res_f = N.dot(M, w)\n for ll in range(Npulsars):\n Res_f[ll] = Res_f[ll] * C ** 0.5\n Res_f[ll, 0] = 0\n Res_f[ll, -1] = 0\n Res_f2 = N.zeros((Npulsars, 2 * Nf - 2), complex)\n Res_t = N.zeros((Npulsars, 2 * Nf - 2))\n Res_f2[:, 0:Nf] = Res_f[:, 0:Nf]\n Res_f2[:, Nf:2 * Nf - 2] = N.conj(Res_f[:, Nf - 2:0:-1])\n Res_t = N.real(N.fft.ifft(Res_f2) / dt)\n Res = N.zeros((Npulsars, npts))\n res_gw = []\n for ll in range(Npulsars):\n Res[ll, :] = Res_t[ll, 10:npts + 10]\n f = interp.interp1d(ut, Res[ll, :], kind='linear')\n res_gw.append(f(psr[ll].toas() * 86400))\n ct = 0\n for p in psr:\n p.stoas[:] += res_gw[ct] / 86400.0\n ct += 1\n", "role": "user" }, { "content": "createGWB", "role": "assistant" } ]
def x(psr): npsr = len(psr) ORF = N.zeros((npsr, npsr)) phati = N.zeros(3) phatj = N.zeros(3) ptheta = [(N.pi / 2 - p['DECJ'].val) for p in psr] pphi = [p['RAJ'].val for p in psr] for ll in range(0, npsr): phati[0] = N.cos(pphi[ll]) * N.sin(ptheta[ll]) phati[1] = N.sin(pphi[ll]) * N.sin(ptheta[ll]) phati[2] = N.cos(ptheta[ll]) for kk in range(0, npsr): phatj[0] = N.cos(pphi[kk]) * N.sin(ptheta[kk]) phatj[1] = N.sin(pphi[kk]) * N.sin(ptheta[kk]) phatj[2] = N.cos(ptheta[kk]) if ll != kk: xip = (1.0 - N.sum(phati * phatj)) / 2.0 ORF[ll, kk] = 3.0 * (1.0 / 3.0 + xip * (N.log(xip) - 1.0 / 6.0) ) else: ORF[ll, kk] = 2.0 return ORF
computeORFMatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr):\n npsr = len(psr)\n ORF = N.zeros((npsr, npsr))\n phati = N.zeros(3)\n phatj = N.zeros(3)\n ptheta = [(N.pi / 2 - p['DECJ'].val) for p in psr]\n pphi = [p['RAJ'].val for p in psr]\n for ll in range(0, npsr):\n phati[0] = N.cos(pphi[ll]) * N.sin(ptheta[ll])\n phati[1] = N.sin(pphi[ll]) * N.sin(ptheta[ll])\n phati[2] = N.cos(ptheta[ll])\n for kk in range(0, npsr):\n phatj[0] = N.cos(pphi[kk]) * N.sin(ptheta[kk])\n phatj[1] = N.sin(pphi[kk]) * N.sin(ptheta[kk])\n phatj[2] = N.cos(ptheta[kk])\n if ll != kk:\n xip = (1.0 - N.sum(phati * phatj)) / 2.0\n ORF[ll, kk] = 3.0 * (1.0 / 3.0 + xip * (N.log(xip) - 1.0 / 6.0)\n )\n else:\n ORF[ll, kk] = 2.0\n return ORF\n", "role": "user" }, { "content": "computeORFMatrix", "role": "assistant" } ]
def x(psr, deleted=False, group=None, **kwargs): res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs if not deleted and N.any(psr.deleted != 0): res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr .deleted == 0] print('Plotting {0}/{1} nondeleted points.'.format(len(res), psr.nobs)) meanres = math.sqrt(N.mean(res ** 2)) / 1e-06 if group is None: i = N.argsort(t) P.errorbar(t[i], res[i] / 1e-06, yerr=errs[i], fmt='x', **kwargs) else: if not deleted and N.any(psr.deleted): flagmask = psr.flagvals(group)[~psr.deleted] else: flagmask = psr.flagvals(group) unique = list(set(flagmask)) for flagval in unique: f = flagmask == flagval flagres, flagt, flagerrs = res[f], t[f], errs[f] i = N.argsort(flagt) P.errorbar(flagt[i], flagres[i] / 1e-06, yerr=flagerrs[i], fmt= 'x', **kwargs) P.legend(unique, numpoints=1, bbox_to_anchor=(1.1, 1.1)) P.xlabel('MJD') P.ylabel('res [us]') P.title('{0} - rms res = {1:.2f} us'.format(psr.name, meanres))
plotres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psr, deleted=False, group=None, **kwargs):\n res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs\n if not deleted and N.any(psr.deleted != 0):\n res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr\n .deleted == 0]\n print('Plotting {0}/{1} nondeleted points.'.format(len(res), psr.nobs))\n meanres = math.sqrt(N.mean(res ** 2)) / 1e-06\n if group is None:\n i = N.argsort(t)\n P.errorbar(t[i], res[i] / 1e-06, yerr=errs[i], fmt='x', **kwargs)\n else:\n if not deleted and N.any(psr.deleted):\n flagmask = psr.flagvals(group)[~psr.deleted]\n else:\n flagmask = psr.flagvals(group)\n unique = list(set(flagmask))\n for flagval in unique:\n f = flagmask == flagval\n flagres, flagt, flagerrs = res[f], t[f], errs[f]\n i = N.argsort(flagt)\n P.errorbar(flagt[i], flagres[i] / 1e-06, yerr=flagerrs[i], fmt=\n 'x', **kwargs)\n P.legend(unique, numpoints=1, bbox_to_anchor=(1.1, 1.1))\n P.xlabel('MJD')\n P.ylabel('res [us]')\n P.title('{0} - rms res = {1:.2f} us'.format(psr.name, meanres))\n", "role": "user" }, { "content": "plotres", "role": "assistant" } ]
def x(gwb): theta, phi, omega, polarization = gwb.gw_dist() rho = phi - N.pi eta = 0.5 * N.pi - theta P.title('GWB source population') ax = P.axes(projection='mollweide') foo = P.scatter(rho, eta, marker='.', s=1) return foo
plotgwsrc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gwb):\n theta, phi, omega, polarization = gwb.gw_dist()\n rho = phi - N.pi\n eta = 0.5 * N.pi - theta\n P.title('GWB source population')\n ax = P.axes(projection='mollweide')\n foo = P.scatter(rho, eta, marker='.', s=1)\n return foo\n", "role": "user" }, { "content": "plotgwsrc", "role": "assistant" } ]
def x(pulsar, efac=1.0, equad=None, jitter=None, Ared=None, gammared=None, marginalize=True, normalize=True, redcomponents=10, usedeleted=True): mask = Mask(pulsar, usedeleted) err = 1e-06 * mask(pulsar.toaerrs) Cdiag = (efac * err) ** 2 if equad: Cdiag = Cdiag + (1e-06 * equad) ** 2 * N.ones(len(err)) if Ared: redf, F = _setuprednoise(pulsar, redcomponents) F = mask(F) phi = Ared ** 2 * redf ** -gammared if jitter: t, U = _quantize(86400.0 * mask(pulsar.toas()), 1.0) phi_j = (1e-06 * jitter) ** 2 * N.ones(U.shape[1]) phi = N.hstack((phi, phi_j)) if Ared else phi_j F = N.hstack((F, U)) if Ared else U if Ared or jitter: invphi = N.diag(1 / phi) Ninv = N.diag(1 / Cdiag) NinvF = dot(Ninv, F) X = invphi + dot(F.T, NinvF) Cinv = Ninv - dot(NinvF, N.linalg.inv(X), NinvF.T) logCdet = N.sum(N.log(Cdiag)) + N.sum(N.log(phi)) + N.linalg.slogdet(X )[1] else: Cinv = N.diag(1 / Cdiag) logCdet = N.sum(N.log(Cdiag)) if marginalize: M = mask(pulsar.designmatrix()) res = mask(N.array(pulsar.residuals(updatebats=False), 'd')) CinvM = N.dot(Cinv, M) A = dot(M.T, CinvM) invA = N.linalg.inv(A) CinvMres = dot(res, CinvM) ret = -0.5 * dot(res, Cinv, res) + 0.5 * dot(CinvMres, invA, CinvMres.T ) if normalize: ret = ret - 0.5 * logCdet - 0.5 * N.linalg.slogdet(A)[1] - 0.5 * (M .shape[0] - M.shape[1]) * math.log(2.0 * math.pi) else: res = mask(N.array(pulsar.residuals(), 'd')) ret = -0.5 * dot(res, Cinv, res) if normalize: ret = ret - 0.5 * logCdet - 0.5 * len(res) * math.log(2.0 * math.pi ) return ret
loglike
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pulsar, efac=1.0, equad=None, jitter=None, Ared=None, gammared=None,\n marginalize=True, normalize=True, redcomponents=10, usedeleted=True):\n mask = Mask(pulsar, usedeleted)\n err = 1e-06 * mask(pulsar.toaerrs)\n Cdiag = (efac * err) ** 2\n if equad:\n Cdiag = Cdiag + (1e-06 * equad) ** 2 * N.ones(len(err))\n if Ared:\n redf, F = _setuprednoise(pulsar, redcomponents)\n F = mask(F)\n phi = Ared ** 2 * redf ** -gammared\n if jitter:\n t, U = _quantize(86400.0 * mask(pulsar.toas()), 1.0)\n phi_j = (1e-06 * jitter) ** 2 * N.ones(U.shape[1])\n phi = N.hstack((phi, phi_j)) if Ared else phi_j\n F = N.hstack((F, U)) if Ared else U\n if Ared or jitter:\n invphi = N.diag(1 / phi)\n Ninv = N.diag(1 / Cdiag)\n NinvF = dot(Ninv, F)\n X = invphi + dot(F.T, NinvF)\n Cinv = Ninv - dot(NinvF, N.linalg.inv(X), NinvF.T)\n logCdet = N.sum(N.log(Cdiag)) + N.sum(N.log(phi)) + N.linalg.slogdet(X\n )[1]\n else:\n Cinv = N.diag(1 / Cdiag)\n logCdet = N.sum(N.log(Cdiag))\n if marginalize:\n M = mask(pulsar.designmatrix())\n res = mask(N.array(pulsar.residuals(updatebats=False), 'd'))\n CinvM = N.dot(Cinv, M)\n A = dot(M.T, CinvM)\n invA = N.linalg.inv(A)\n CinvMres = dot(res, CinvM)\n ret = -0.5 * dot(res, Cinv, res) + 0.5 * dot(CinvMres, invA, CinvMres.T\n )\n if normalize:\n ret = ret - 0.5 * logCdet - 0.5 * N.linalg.slogdet(A)[1] - 0.5 * (M\n .shape[0] - M.shape[1]) * math.log(2.0 * math.pi)\n else:\n res = mask(N.array(pulsar.residuals(), 'd'))\n ret = -0.5 * dot(res, Cinv, res)\n if normalize:\n ret = ret - 0.5 * logCdet - 0.5 * len(res) * math.log(2.0 * math.pi\n )\n return ret\n", "role": "user" }, { "content": "loglike", "role": "assistant" } ]
def x(parlist): ret = [] for par in parlist: m = re.match('(.*)\\{([0-9]+)\\-([0-9]+)\\}', par) if m is None: ret.append(par) else: root, number1, number2 = m.group(1), m.group(2), m.group(3) fmt = '{{0}}{{1:0{0}d}}'.format(len(number1)) if number1[0 ] == '0' else '{0}{1:d}' ret = ret + [fmt.format(root, i) for i in range(int(m.group(2)), int(m.group(3)) + 1)] return ret
expandranges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parlist):\n ret = []\n for par in parlist:\n m = re.match('(.*)\\\\{([0-9]+)\\\\-([0-9]+)\\\\}', par)\n if m is None:\n ret.append(par)\n else:\n root, number1, number2 = m.group(1), m.group(2), m.group(3)\n fmt = '{{0}}{{1:0{0}d}}'.format(len(number1)) if number1[0\n ] == '0' else '{0}{1:d}'\n ret = ret + [fmt.format(root, i) for i in range(int(m.group(2)),\n int(m.group(3)) + 1)]\n return ret\n", "role": "user" }, { "content": "expandranges", "role": "assistant" } ]
def x(parlist, roots=['JUMP', 'DMXR1_', 'DMXR2_', 'DMX_', 'efac', 'log10_efac'] ): rootdict = {root: [] for root in roots} res = [] for par in parlist: found = False for root in roots: if len(par) > len(root) and par[:len(root)] == root: rootdict[root].append(int(par[len(root):])) found = True if not found: res.append(par) for root in roots: if rootdict[root]: if len(rootdict[root]) > 1: rmin, rmax = min(rootdict[root]), max(rootdict[root]) res.append('{0}{{{1}-{2}}}{3}'.format(root, rmin, rmax, '(incomplete)' if rmax - rmin != len(rootdict[root]) - 1 else '')) else: res.append('{0}{1}'.format(root, rootdict[root][0])) return res
findrange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parlist, roots=['JUMP', 'DMXR1_', 'DMXR2_', 'DMX_', 'efac', 'log10_efac']\n ):\n rootdict = {root: [] for root in roots}\n res = []\n for par in parlist:\n found = False\n for root in roots:\n if len(par) > len(root) and par[:len(root)] == root:\n rootdict[root].append(int(par[len(root):]))\n found = True\n if not found:\n res.append(par)\n for root in roots:\n if rootdict[root]:\n if len(rootdict[root]) > 1:\n rmin, rmax = min(rootdict[root]), max(rootdict[root])\n res.append('{0}{{{1}-{2}}}{3}'.format(root, rmin, rmax, \n '(incomplete)' if rmax - rmin != len(rootdict[root]) - \n 1 else ''))\n else:\n res.append('{0}{1}'.format(root, rootdict[root][0]))\n return res\n", "role": "user" }, { "content": "findrange", "role": "assistant" } ]
def x(data, skip=50, fraction=1.0): w, s, d = data.chains.shape start = int((1.0 - fraction) * s) total = int((s - start) / skip) return data.chains[:, start::skip, :].reshape((w * total, d))
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, skip=50, fraction=1.0):\n w, s, d = data.chains.shape\n start = int((1.0 - fraction) * s)\n total = int((s - start) / skip)\n return data.chains[:, start::skip, :].reshape((w * total, d))\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(data, index, min=None, max=None): ret = data if min is not None: ret = ret[ret[:, index] > min, :] if max is not None: ret = ret[ret[:, index] < max, :] return ret
cull
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, index, min=None, max=None):\n ret = data\n if min is not None:\n ret = ret[ret[:, index] > min, :]\n if max is not None:\n ret = ret[ret[:, index] < max, :]\n return ret\n", "role": "user" }, { "content": "cull", "role": "assistant" } ]
def x(): pth = resource_filename(Requirement.parse('libstempo'), 'libstempo/ecc_vs_nharm.txt') fil = np.loadtxt(pth) return interp1d(fil[:, 0], fil[:, 1])
make_ecc_interpolant
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n pth = resource_filename(Requirement.parse('libstempo'),\n 'libstempo/ecc_vs_nharm.txt')\n fil = np.loadtxt(pth)\n return interp1d(fil[:, 0], fil[:, 1])\n", "role": "user" }, { "content": "make_ecc_interpolant", "role": "assistant" } ]
def x(F, mc, e): mc *= SOLAR2S dedt = -304 / (15 * mc) * (2 * np.pi * mc * F) ** (8 / 3) * e * (1 + 121 / 304 * e ** 2) / (1 - e ** 2) ** (5 / 2) return dedt
get_edot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(F, mc, e):\n mc *= SOLAR2S\n dedt = -304 / (15 * mc) * (2 * np.pi * mc * F) ** (8 / 3) * e * (1 + \n 121 / 304 * e ** 2) / (1 - e ** 2) ** (5 / 2)\n return dedt\n", "role": "user" }, { "content": "get_edot", "role": "assistant" } ]
def x(F, mc, e): mc *= SOLAR2S dFdt = 48 / (5 * np.pi * mc ** 2) * (2 * np.pi * mc * F) ** (11 / 3) * ( 1 + 73 / 24 * e ** 2 + 37 / 96 * e ** 4) / (1 - e ** 2) ** (7 / 2) return dFdt
get_Fdot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(F, mc, e):\n mc *= SOLAR2S\n dFdt = 48 / (5 * np.pi * mc ** 2) * (2 * np.pi * mc * F) ** (11 / 3) * (\n 1 + 73 / 24 * e ** 2 + 37 / 96 * e ** 4) / (1 - e ** 2) ** (7 / 2)\n return dFdt\n", "role": "user" }, { "content": "get_Fdot", "role": "assistant" } ]
def x(F, mc, q, e): mc *= SOLAR2S m = ((1 + q) ** 2 / q) ** (3 / 5) * mc dgdt = 6 * np.pi * F * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * ( 1 + 0.25 * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (26 - 15 * e ** 2)) return dgdt
get_gammadot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(F, mc, q, e):\n mc *= SOLAR2S\n m = ((1 + q) ** 2 / q) ** (3 / 5) * mc\n dgdt = 6 * np.pi * F * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (\n 1 + 0.25 * (2 * np.pi * F * m) ** (2 / 3) / (1 - e ** 2) * (26 - 15 *\n e ** 2))\n return dgdt\n", "role": "user" }, { "content": "get_gammadot", "role": "assistant" } ]
def x(y, t, mc, q): F = y[0] e = y[1] gamma = y[2] phase = y[3] m = ((1 + q) ** 2 / q) ** (3 / 5) * mc dFdt = get_Fdot(F, mc, e) dedt = get_edot(F, mc, e) dgdt = get_gammadot(F, mc, q, e) dphasedt = 2 * np.pi * F return np.array([dFdt, dedt, dgdt, dphasedt])
get_coupled_ecc_eqns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, t, mc, q):\n F = y[0]\n e = y[1]\n gamma = y[2]\n phase = y[3]\n m = ((1 + q) ** 2 / q) ** (3 / 5) * mc\n dFdt = get_Fdot(F, mc, e)\n dedt = get_edot(F, mc, e)\n dgdt = get_gammadot(F, mc, q, e)\n dphasedt = 2 * np.pi * F\n return np.array([dFdt, dedt, dgdt, dphasedt])\n", "role": "user" }, { "content": "get_coupled_ecc_eqns", "role": "assistant" } ]
def x(F0, e0, gamma0, phase0, mc, q, t): y0 = np.array([F0, e0, gamma0, phase0]) y, infodict = odeint(get_coupled_ecc_eqns, y0, t, args=(mc, q), full_output=True) if infodict['message'] == 'Integration successful.': ret = y else: ret = 0 return ret
solve_coupled_ecc_solution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(F0, e0, gamma0, phase0, mc, q, t):\n y0 = np.array([F0, e0, gamma0, phase0])\n y, infodict = odeint(get_coupled_ecc_eqns, y0, t, args=(mc, q),\n full_output=True)\n if infodict['message'] == 'Integration successful.':\n ret = y\n else:\n ret = 0\n return ret\n", "role": "user" }, { "content": "solve_coupled_ecc_solution", "role": "assistant" } ]
def x(n, mc, dl, F, e): mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl ret = -amp * (ss.jn(n - 2, n * e) - 2 * e * ss.jn(n - 1, n * e) + 2 / n * ss.jn(n, n * e) + 2 * e * ss.jn(n + 1, n * e) - ss.jn(n + 2, n * e)) return ret
get_an
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = -amp * (ss.jn(n - 2, n * e) - 2 * e * ss.jn(n - 1, n * e) + 2 / n *\n ss.jn(n, n * e) + 2 * e * ss.jn(n + 1, n * e) - ss.jn(n + 2, n * e))\n return ret\n", "role": "user" }, { "content": "get_an", "role": "assistant" } ]
def x(n, mc, dl, F, e): mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl ret = -amp * np.sqrt(1 - e ** 2) * (ss.jn(n - 2, n * e) - 2 * ss.jn(n, n * e) + ss.jn(n + 2, n * e)) return ret
get_bn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = n * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = -amp * np.sqrt(1 - e ** 2) * (ss.jn(n - 2, n * e) - 2 * ss.jn(n, \n n * e) + ss.jn(n + 2, n * e))\n return ret\n", "role": "user" }, { "content": "get_bn", "role": "assistant" } ]
def x(n, mc, dl, F, e): mc *= SOLAR2S dl *= MPC2S omega = 2 * np.pi * F amp = 2 * mc ** (5 / 3) * omega ** (2 / 3) / dl ret = amp * ss.jn(n, n * e) / (n * omega) return ret
get_cn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, mc, dl, F, e):\n mc *= SOLAR2S\n dl *= MPC2S\n omega = 2 * np.pi * F\n amp = 2 * mc ** (5 / 3) * omega ** (2 / 3) / dl\n ret = amp * ss.jn(n, n * e) / (n * omega)\n return ret\n", "role": "user" }, { "content": "get_cn", "role": "assistant" } ]
def x(nmax, mc, dl, F, e, t, l0, gamma, gammadot, inc): n = np.arange(1, nmax) an = get_an(n, mc, dl, F, e) bn = get_bn(n, mc, dl, F, e) cn = get_cn(n, mc, dl, F, e) omega = 2 * np.pi * F gt = gamma + gammadot * t lt = l0 + omega * t phase1 = n * np.tile(lt, (nmax - 1, 1)).T phase2 = np.tile(gt, (nmax - 1, 1)).T phasep = phase1 + 2 * phase2 phasem = phase1 - 2 * phase2 sp = np.sin(phasem) / (n * omega - 2 * gammadot) + np.sin(phasep) / (n * omega + 2 * gammadot) sm = np.sin(phasem) / (n * omega - 2 * gammadot) - np.sin(phasep) / (n * omega + 2 * gammadot) cp = np.cos(phasem) / (n * omega - 2 * gammadot) + np.cos(phasep) / (n * omega + 2 * gammadot) cm = np.cos(phasem) / (n * omega - 2 * gammadot) - np.cos(phasep) / (n * omega + 2 * gammadot) splus_n = -0.5 * (1 + np.cos(inc) ** 2) * (an * sp - bn * sm) + (1 - np .cos(inc) ** 2) * cn * np.sin(phase1) scross_n = np.cos(inc) * (an * cm - bn * cp) return np.sum(splus_n, axis=1), np.sum(scross_n, axis=1)
calculate_splus_scross
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmax, mc, dl, F, e, t, l0, gamma, gammadot, inc):\n n = np.arange(1, nmax)\n an = get_an(n, mc, dl, F, e)\n bn = get_bn(n, mc, dl, F, e)\n cn = get_cn(n, mc, dl, F, e)\n omega = 2 * np.pi * F\n gt = gamma + gammadot * t\n lt = l0 + omega * t\n phase1 = n * np.tile(lt, (nmax - 1, 1)).T\n phase2 = np.tile(gt, (nmax - 1, 1)).T\n phasep = phase1 + 2 * phase2\n phasem = phase1 - 2 * phase2\n sp = np.sin(phasem) / (n * omega - 2 * gammadot) + np.sin(phasep) / (n *\n omega + 2 * gammadot)\n sm = np.sin(phasem) / (n * omega - 2 * gammadot) - np.sin(phasep) / (n *\n omega + 2 * gammadot)\n cp = np.cos(phasem) / (n * omega - 2 * gammadot) + np.cos(phasep) / (n *\n omega + 2 * gammadot)\n cm = np.cos(phasem) / (n * omega - 2 * gammadot) - np.cos(phasep) / (n *\n omega + 2 * gammadot)\n splus_n = -0.5 * (1 + np.cos(inc) ** 2) * (an * sp - bn * sm) + (1 - np\n .cos(inc) ** 2) * cn * np.sin(phase1)\n scross_n = np.cos(inc) * (an * cm - bn * cp)\n return np.sum(splus_n, axis=1), np.sum(scross_n, axis=1)\n", "role": "user" }, { "content": "calculate_splus_scross", "role": "assistant" } ]
def x(LogLikelihood, Prior, n_dims, n_params=None, n_clustering_params=None, wrapped_params=None, importance_nested_sampling=True, multimodal=True, const_efficiency_mode=False, n_live_points=400, evidence_tolerance=0.5, sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=- 1e+90, max_modes=100, mode_tolerance=-1e+90, outputfiles_basename= './multinest-', seed=-1, verbose=False, resume=True, context=None, write_output=True, log_zero=-1e+100, max_iter=0, init_MPI=True, dump_callback=None): if n_params == None: n_params = n_dims if n_clustering_params == None: n_clustering_params = n_dims if wrapped_params == None: wrapped_params = [0] * n_dims WrappedType = c_int * len(wrapped_params) wraps = WrappedType(*wrapped_params) if sampling_efficiency == 'parameter': sampling_efficiency = 0.8 if sampling_efficiency == 'model': sampling_efficiency = 0.3 loglike_type = CFUNCTYPE(c_double, POINTER(c_double), c_int, c_int, c_void_p) dumper_type = CFUNCTYPE(c_void_p, c_int, c_int, c_int, POINTER(c_double ), POINTER(c_double), POINTER(c_double), c_double, c_double, c_double, c_void_p) if hasattr(LogLikelihood, 'loglike') and hasattr(Prior, 'remap' ) and hasattr(Prior, 'prior'): def x(cube, ndim, nparams, nullcontext): pprior = Prior.premap(cube) try: pars = Prior.remap(cube) except ValueError: return -N.inf prior = pprior * Prior.prior(pars) return -N.inf if not prior else math.log(prior ) + LogLikelihood.loglike(pars) else: def x(cube, ndim, nparams, nullcontext): args = [cube, ndim, nparams] + ([] if context is None else context) if Prior: Prior(*args) return LogLikelihood(*args) def x(nSamples, nlive, nPar, physLive, posterior, paramConstr, maxLogLike, logZ, logZerr, nullcontext): if dump_callback: pc = as_array(paramConstr, shape=(nPar, 4)) dump_callback(nSamples, nlive, nPar, as_array(physLive, shape=( nPar + 1, nlive)).T, as_array(posterior, shape=(nPar + 2, nSamples)).T, (pc[0, :], pc[1, :], pc[2, :], pc[3, :]), maxLogLike, logZ, logZerr) lib.run(c_bool(importance_nested_sampling), c_bool(multimodal), c_bool( const_efficiency_mode), c_int(n_live_points), c_double( evidence_tolerance), c_double(sampling_efficiency), c_int(n_dims), c_int(n_params), c_int(n_clustering_params), c_int(max_modes), c_int(n_iter_before_update), c_double(mode_tolerance), create_string_buffer(outputfiles_basename.encode()), c_int(seed), wraps, c_bool(verbose), c_bool(resume), c_bool(write_output), c_bool(init_MPI), c_double(log_zero), c_int(max_iter), loglike_type (loglike), dumper_type(dumper), c_void_p(0))
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(LogLikelihood, Prior, n_dims, n_params=None, n_clustering_params=None,\n wrapped_params=None, importance_nested_sampling=True, multimodal=True,\n const_efficiency_mode=False, n_live_points=400, evidence_tolerance=0.5,\n sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-\n 1e+90, max_modes=100, mode_tolerance=-1e+90, outputfiles_basename=\n './multinest-', seed=-1, verbose=False, resume=True, context=None,\n write_output=True, log_zero=-1e+100, max_iter=0, init_MPI=True,\n dump_callback=None):\n if n_params == None:\n n_params = n_dims\n if n_clustering_params == None:\n n_clustering_params = n_dims\n if wrapped_params == None:\n wrapped_params = [0] * n_dims\n WrappedType = c_int * len(wrapped_params)\n wraps = WrappedType(*wrapped_params)\n if sampling_efficiency == 'parameter':\n sampling_efficiency = 0.8\n if sampling_efficiency == 'model':\n sampling_efficiency = 0.3\n loglike_type = CFUNCTYPE(c_double, POINTER(c_double), c_int, c_int,\n c_void_p)\n dumper_type = CFUNCTYPE(c_void_p, c_int, c_int, c_int, POINTER(c_double\n ), POINTER(c_double), POINTER(c_double), c_double, c_double,\n c_double, c_void_p)\n if hasattr(LogLikelihood, 'loglike') and hasattr(Prior, 'remap'\n ) and hasattr(Prior, 'prior'):\n\n def x(cube, ndim, nparams, nullcontext):\n pprior = Prior.premap(cube)\n try:\n pars = Prior.remap(cube)\n except ValueError:\n return -N.inf\n prior = pprior * Prior.prior(pars)\n return -N.inf if not prior else math.log(prior\n ) + LogLikelihood.loglike(pars)\n else:\n\n def x(cube, ndim, nparams, nullcontext):\n args = [cube, ndim, nparams] + ([] if context is None else context)\n if Prior:\n Prior(*args)\n return LogLikelihood(*args)\n\n def x(nSamples, nlive, nPar, physLive, posterior, paramConstr,\n maxLogLike, logZ, logZerr, nullcontext):\n if dump_callback:\n pc = as_array(paramConstr, shape=(nPar, 4))\n dump_callback(nSamples, nlive, nPar, as_array(physLive, shape=(\n nPar + 1, nlive)).T, as_array(posterior, shape=(nPar + 2,\n nSamples)).T, (pc[0, :], pc[1, :], pc[2, :], pc[3, :]),\n maxLogLike, logZ, logZerr)\n lib.run(c_bool(importance_nested_sampling), c_bool(multimodal), c_bool(\n const_efficiency_mode), c_int(n_live_points), c_double(\n evidence_tolerance), c_double(sampling_efficiency), c_int(n_dims),\n c_int(n_params), c_int(n_clustering_params), c_int(max_modes),\n c_int(n_iter_before_update), c_double(mode_tolerance),\n create_string_buffer(outputfiles_basename.encode()), c_int(seed),\n wraps, c_bool(verbose), c_bool(resume), c_bool(write_output),\n c_bool(init_MPI), c_double(log_zero), c_int(max_iter), loglike_type\n (loglike), dumper_type(dumper), c_void_p(0))\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(dt, response, sequence, k=6, consider_shift=True, n_cores=1, seq_align='start', trim_seq_len=None): y = dt[response] seq = dt[sequence] if trim_seq_len is not None: seq = pad_sequences(seq, align=seq_align, maxlen=trim_seq_len) seq = [s.replace('N', '') for s in seq] dt_kmer = kmer_count(seq, k) Xsp = csc_matrix(dt_kmer) en = ElasticNet(alpha=1, standardize=False, n_splits=3) en.fit(Xsp, y) nonzero_kmers = dt_kmer.columns.values[en.coef_ != 0].tolist() def x(dt_kmer, y, selected_kmers, to_be_selected_kmers, consider_shift=True ): F, pval = f_regression(dt_kmer[to_be_selected_kmers], y) kmer = to_be_selected_kmers.pop(pval.argmin()) selected_kmers.append(kmer) def x(s1, s2, consider_shift=True): if hamming_distance(s1, s2) <= 1: return False if consider_shift and hamming_distance(s1[1:], s2[:-1]) == 0: return False if consider_shift and hamming_distance(s1[:-1], s2[1:]) == 0: return False return True to_be_selected_kmers = [ckmer for ckmer in to_be_selected_kmers if select_criterion(ckmer, kmer, consider_shift)] if len(to_be_selected_kmers) == 0: return selected_kmers else: lm = LinearRegression() lm.fit(dt_kmer[selected_kmers], y) y_new = y - lm.predict(dt_kmer[selected_kmers]) return find_next_best(dt_kmer, y_new, selected_kmers, to_be_selected_kmers, consider_shift) selected_kmers = find_next_best(dt_kmer, y, [], nonzero_kmers, consider_shift) return selected_kmers
best_kmers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dt, response, sequence, k=6, consider_shift=True, n_cores=1,\n seq_align='start', trim_seq_len=None):\n y = dt[response]\n seq = dt[sequence]\n if trim_seq_len is not None:\n seq = pad_sequences(seq, align=seq_align, maxlen=trim_seq_len)\n seq = [s.replace('N', '') for s in seq]\n dt_kmer = kmer_count(seq, k)\n Xsp = csc_matrix(dt_kmer)\n en = ElasticNet(alpha=1, standardize=False, n_splits=3)\n en.fit(Xsp, y)\n nonzero_kmers = dt_kmer.columns.values[en.coef_ != 0].tolist()\n\n def x(dt_kmer, y, selected_kmers, to_be_selected_kmers, consider_shift=True\n ):\n F, pval = f_regression(dt_kmer[to_be_selected_kmers], y)\n kmer = to_be_selected_kmers.pop(pval.argmin())\n selected_kmers.append(kmer)\n\n def x(s1, s2, consider_shift=True):\n if hamming_distance(s1, s2) <= 1:\n return False\n if consider_shift and hamming_distance(s1[1:], s2[:-1]) == 0:\n return False\n if consider_shift and hamming_distance(s1[:-1], s2[1:]) == 0:\n return False\n return True\n to_be_selected_kmers = [ckmer for ckmer in to_be_selected_kmers if\n select_criterion(ckmer, kmer, consider_shift)]\n if len(to_be_selected_kmers) == 0:\n return selected_kmers\n else:\n lm = LinearRegression()\n lm.fit(dt_kmer[selected_kmers], y)\n y_new = y - lm.predict(dt_kmer[selected_kmers])\n return find_next_best(dt_kmer, y_new, selected_kmers,\n to_be_selected_kmers, consider_shift)\n selected_kmers = find_next_best(dt_kmer, y, [], nonzero_kmers,\n consider_shift)\n return selected_kmers\n", "role": "user" }, { "content": "best_kmers", "role": "assistant" } ]
def x(seq_list, k): all_kmers = generate_all_kmers(k) kmer_count_list = [] for seq in seq_list: kmer_count_list.append([seq.count(kmer) for kmer in all_kmers]) return pd.DataFrame(kmer_count_list, columns=all_kmers)
kmer_count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_list, k):\n all_kmers = generate_all_kmers(k)\n kmer_count_list = []\n for seq in seq_list:\n kmer_count_list.append([seq.count(kmer) for kmer in all_kmers])\n return pd.DataFrame(kmer_count_list, columns=all_kmers)\n", "role": "user" }, { "content": "kmer_count", "role": "assistant" } ]
def x(k): bases = ['A', 'C', 'G', 'T'] return [''.join(p) for p in itertools.product(bases, repeat=k)]
generate_all_kmers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k):\n bases = ['A', 'C', 'G', 'T']\n return [''.join(p) for p in itertools.product(bases, repeat=k)]\n", "role": "user" }, { "content": "generate_all_kmers", "role": "assistant" } ]
def x(obj_dict): return {key: (np.asarray(value) if value is not None else None) for key, value in obj_dict.items()}
dict_to_numpy_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj_dict):\n return {key: (np.asarray(value) if value is not None else None) for key,\n value in obj_dict.items()}\n", "role": "user" }, { "content": "dict_to_numpy_dict", "role": "assistant" } ]
def x(obj_dict): if type(obj_dict) == dict: return {key: (rec_dict_to_numpy_dict(value) if value is not None else None) for key, value in obj_dict.items()} elif obj_dict is None: return None else: return np.asarray(obj_dict)
rec_dict_to_numpy_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj_dict):\n if type(obj_dict) == dict:\n return {key: (rec_dict_to_numpy_dict(value) if value is not None else\n None) for key, value in obj_dict.items()}\n elif obj_dict is None:\n return None\n else:\n return np.asarray(obj_dict)\n", "role": "user" }, { "content": "rec_dict_to_numpy_dict", "role": "assistant" } ]
def x(a, b, exact=True): if type(a) != type(b) and type(a) != np.ndarray and type(b) != np.ndarray: return False if type(a) == dict and type(b) == dict: if not a.keys() == b.keys(): return False for key in a.keys(): res = compare_numpy_dict(a[key], b[key], exact) if res == False: print('false for key = ', key) return False return True if type(a) == np.ndarray or type(b) == np.ndarray: if exact: return (a == b).all() else: return np.testing.assert_almost_equal(a, b) if a is None and b is None: return True raise NotImplementedError
compare_numpy_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, exact=True):\n if type(a) != type(b) and type(a) != np.ndarray and type(b) != np.ndarray:\n return False\n if type(a) == dict and type(b) == dict:\n if not a.keys() == b.keys():\n return False\n for key in a.keys():\n res = compare_numpy_dict(a[key], b[key], exact)\n if res == False:\n print('false for key = ', key)\n return False\n return True\n if type(a) == np.ndarray or type(b) == np.ndarray:\n if exact:\n return (a == b).all()\n else:\n return np.testing.assert_almost_equal(a, b)\n if a is None and b is None:\n return True\n raise NotImplementedError\n", "role": "user" }, { "content": "compare_numpy_dict", "role": "assistant" } ]
def x(start=0, end=100, n_bases=10, spline_order=3, add_intercept=True): assert type(n_bases) == int x = np.arange(start, end + 1) knots = get_knots(start, end, n_bases, spline_order) X_splines = get_X_spline(x, knots, n_bases, spline_order, add_intercept) S = get_S(n_bases, spline_order, add_intercept) return X_splines, S, knots
get_gam_splines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start=0, end=100, n_bases=10, spline_order=3, add_intercept=True):\n assert type(n_bases) == int\n x = np.arange(start, end + 1)\n knots = get_knots(start, end, n_bases, spline_order)\n X_splines = get_X_spline(x, knots, n_bases, spline_order, add_intercept)\n S = get_S(n_bases, spline_order, add_intercept)\n return X_splines, S, knots\n", "role": "user" }, { "content": "get_gam_splines", "role": "assistant" } ]
def x(start, end, n_bases=10, spline_order=3): x_range = end - start start = start - x_range * 0.001 end = end + x_range * 0.001 m = spline_order - 1 nk = n_bases - m dknots = (end - start) / (nk - 1) knots = np.linspace(start=start - dknots * (m + 1), stop=end + dknots * (m + 1), num=nk + 2 * m + 2) return knots.astype(np.float32)
get_knots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end, n_bases=10, spline_order=3):\n x_range = end - start\n start = start - x_range * 0.001\n end = end + x_range * 0.001\n m = spline_order - 1\n nk = n_bases - m\n dknots = (end - start) / (nk - 1)\n knots = np.linspace(start=start - dknots * (m + 1), stop=end + dknots *\n (m + 1), num=nk + 2 * m + 2)\n return knots.astype(np.float32)\n", "role": "user" }, { "content": "get_knots", "role": "assistant" } ]
def x(x, knots, n_bases=10, spline_order=3, add_intercept=True): if len(x.shape) is not 1: raise ValueError('x has to be 1 dimentional') tck = [knots, np.zeros(n_bases), spline_order] X = np.zeros([len(x), n_bases]) for i in range(n_bases): vec = np.zeros(n_bases) vec[i] = 1.0 tck[1] = vec X[:, i] = si.splev(x, tck, der=0) if add_intercept is True: ones = np.ones_like(X[:, :1]) X = np.hstack([ones, X]) return X.astype(np.float32)
get_X_spline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, knots, n_bases=10, spline_order=3, add_intercept=True):\n if len(x.shape) is not 1:\n raise ValueError('x has to be 1 dimentional')\n tck = [knots, np.zeros(n_bases), spline_order]\n X = np.zeros([len(x), n_bases])\n for i in range(n_bases):\n vec = np.zeros(n_bases)\n vec[i] = 1.0\n tck[1] = vec\n X[:, i] = si.splev(x, tck, der=0)\n if add_intercept is True:\n ones = np.ones_like(X[:, :1])\n X = np.hstack([ones, X])\n return X.astype(np.float32)\n", "role": "user" }, { "content": "get_X_spline", "role": "assistant" } ]
def x(self, add_intercept=False): S = self.S if add_intercept is True: zeros = np.zeros_like(S[:1, :]) S = np.vstack([zeros, S]) zeros = np.zeros_like(S[:, :1]) S = np.hstack([zeros, S]) return S
getS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, add_intercept=False):\n S = self.S\n if add_intercept is True:\n zeros = np.zeros_like(S[:1, :])\n S = np.vstack([zeros, S])\n zeros = np.zeros_like(S[:, :1])\n S = np.hstack([zeros, S])\n return S\n", "role": "user" }, { "content": "getS", "role": "assistant" } ]
def x(self, x, add_intercept=False): if x.min() < self.start: raise Warning('x.min() < self.start') if x.max() > self.end: raise Warning('x.max() > self.end') return get_X_spline(x=x, knots=self.knots, n_bases=self.n_bases, spline_order=self.spline_order, add_intercept=add_intercept)
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, add_intercept=False):\n if x.min() < self.start:\n raise Warning('x.min() < self.start')\n if x.max() > self.end:\n raise Warning('x.max() > self.end')\n return get_X_spline(x=x, knots=self.knots, n_bases=self.n_bases,\n spline_order=self.spline_order, add_intercept=add_intercept)\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(): motifs = _load_motifs() motif_names = sorted(list(motifs.keys())) df = pd.Series(motif_names).str.split(expand=True) df.rename(columns={(0): 'PWM_id', (1): 'info1', (2): 'info2'}, inplace=True ) consensus = pd.Series([PWM(motifs[m]).get_consensus() for m in motif_names] ) df['consensus'] = consensus return df
get_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n motifs = _load_motifs()\n motif_names = sorted(list(motifs.keys()))\n df = pd.Series(motif_names).str.split(expand=True)\n df.rename(columns={(0): 'PWM_id', (1): 'info1', (2): 'info2'}, inplace=True\n )\n consensus = pd.Series([PWM(motifs[m]).get_consensus() for m in motif_names]\n )\n df['consensus'] = consensus\n return df\n", "role": "user" }, { "content": "get_metadata", "role": "assistant" } ]
def x(motif_name_list, pseudocountProb=0.0001): l = _load_motifs() l = {k.split()[0]: v for k, v in l.items()} pwm_list = [PWM(l[m] + pseudocountProb, name=m) for m in motif_name_list] return pwm_list
get_pwm_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motif_name_list, pseudocountProb=0.0001):\n l = _load_motifs()\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(l[m] + pseudocountProb, name=m) for m in motif_name_list]\n return pwm_list\n", "role": "user" }, { "content": "get_pwm_list", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = y_true.round() if len(y_true) == 0 or len(np.unique(y_true)) < 2: return np.nan return skm.roc_auc_score(y_true, y_pred)
auc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = y_true.round()\n if len(y_true) == 0 or len(np.unique(y_true)) < 2:\n return np.nan\n return skm.roc_auc_score(y_true, y_pred)\n", "role": "user" }, { "content": "auc", "role": "assistant" } ]
def x(y_true, y_pred): y_true, y_pred = _mask_value_nan(y_true, y_pred) precision, recall, _ = skm.precision_recall_curve(y_true, y_pred) return skm.auc(recall, precision)
auprc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)\n return skm.auc(recall, precision)\n", "role": "user" }, { "content": "auprc", "role": "assistant" } ]
def x(y_true, y_pred, precision): y_true, y_pred = _mask_value_nan(y_true, y_pred) precision, recall, _ = skm.precision_recall_curve(y_true, y_pred) return recall[np.searchsorted(precision - precision, 0)]
recall_at_precision
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, precision):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n precision, recall, _ = skm.precision_recall_curve(y_true, y_pred)\n return recall[np.searchsorted(precision - precision, 0)]\n", "role": "user" }, { "content": "recall_at_precision", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.accuracy_score(y_true, y_pred)
accuracy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.accuracy_score(y_true, y_pred)\n", "role": "user" }, { "content": "accuracy", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.recall_score(y_true, y_pred)
tpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.recall_score(y_true, y_pred)\n", "role": "user" }, { "content": "tpr", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) c = skm.confusion_matrix(y_true, y_pred) return c[0, 0] / c[0].sum()
tnr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n c = skm.confusion_matrix(y_true, y_pred)\n return c[0, 0] / c[0].sum()\n", "role": "user" }, { "content": "tnr", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.matthews_corrcoef(y_true, y_pred)
mcc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.matthews_corrcoef(y_true, y_pred)\n", "role": "user" }, { "content": "mcc", "role": "assistant" } ]
def x(y_true, y_pred, round=True): y_true, y_pred = _mask_value_nan(y_true, y_pred) if round: y_true = np.round(y_true) y_pred = np.round(y_pred) return skm.f1_score(y_true, y_pred)
f1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, round=True):\n y_true, y_pred = _mask_value_nan(y_true, y_pred)\n if round:\n y_true = np.round(y_true)\n y_pred = np.round(y_pred)\n return skm.f1_score(y_true, y_pred)\n", "role": "user" }, { "content": "f1", "role": "assistant" } ]
def x(y_true, y_pred): return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))
cat_acc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n return np.mean(y_true.argmax(axis=1) == y_pred.argmax(axis=1))\n", "role": "user" }, { "content": "cat_acc", "role": "assistant" } ]
def x(y_true, y_pred): y_true, y_pred = _mask_nan(y_true, y_pred) return np.corrcoef(y_true, y_pred)[0, 1]
cor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return np.corrcoef(y_true, y_pred)[0, 1]\n", "role": "user" }, { "content": "cor", "role": "assistant" } ]
def x(y_true, y_pred, nb_sample=100000): y_true, y_pred = _mask_nan(y_true, y_pred) if len(y_true) > nb_sample: idx = np.arange(len(y_true)) np.random.shuffle(idx) idx = idx[:nb_sample] y_true = y_true[idx] y_pred = y_pred[idx] return kendalltau(y_true, y_pred)[0]
kendall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, nb_sample=100000):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n if len(y_true) > nb_sample:\n idx = np.arange(len(y_true))\n np.random.shuffle(idx)\n idx = idx[:nb_sample]\n y_true = y_true[idx]\n y_pred = y_pred[idx]\n return kendalltau(y_true, y_pred)[0]\n", "role": "user" }, { "content": "kendall", "role": "assistant" } ]
def x(y_true, y_pred): y_true, y_pred = _mask_nan(y_true, y_pred) return np.mean(np.abs(y_true - y_pred))
mad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return np.mean(np.abs(y_true - y_pred))\n", "role": "user" }, { "content": "mad", "role": "assistant" } ]
def x(y_true, y_pred): y_true, y_pred = _mask_nan(y_true, y_pred) return ((y_true - y_pred) ** 2).mean(axis=None)
mse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n return ((y_true - y_pred) ** 2).mean(axis=None)\n", "role": "user" }, { "content": "mse", "role": "assistant" } ]
def x(y_true, y_pred): y_true, y_pred = _mask_nan(y_true, y_pred) var_resid = np.var(y_true - y_pred) var_y_true = np.var(y_true) return 1 - var_resid / var_y_true
var_explained
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true, y_pred = _mask_nan(y_true, y_pred)\n var_resid = np.var(y_true - y_pred)\n var_y_true = np.var(y_true)\n return 1 - var_resid / var_y_true\n", "role": "user" }, { "content": "var_explained", "role": "assistant" } ]
def x(params): def x(myrange): x = np.random.uniform(np.log10(myrange[0]), np.log10(myrange[1])) return 10 ** x def x(myrange): x = np.random.uniform(myrange[0], myrange[1]) return x def x(myset): x = random.sample(myset, 1) return x[0] def x(myrange): if type(myrange) is list: return sample_log(myrange) if type(myrange) is tuple: return sample_unif(myrange) if type(myrange) is set: return sample_set(myrange) return myrange return {k: type_dep_sample(v) for k, v in params.items()}
sample_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n\n def x(myrange):\n x = np.random.uniform(np.log10(myrange[0]), np.log10(myrange[1]))\n return 10 ** x\n\n def x(myrange):\n x = np.random.uniform(myrange[0], myrange[1])\n return x\n\n def x(myset):\n x = random.sample(myset, 1)\n return x[0]\n\n def x(myrange):\n if type(myrange) is list:\n return sample_log(myrange)\n if type(myrange) is tuple:\n return sample_unif(myrange)\n if type(myrange) is set:\n return sample_set(myrange)\n return myrange\n return {k: type_dep_sample(v) for k, v in params.items()}\n", "role": "user" }, { "content": "sample_params", "role": "assistant" } ]
def x(y, z): y = K.cast(K.round(y), K.floatx()) z = K.cast(K.round(z), K.floatx()) def x(y, z): return K.sum(K.cast(y, K.floatx()) * K.cast(z, K.floatx())) ones = K.ones_like(y) zeros = K.zeros_like(y) y_ones = K.equal(y, ones) y_zeros = K.equal(y, zeros) z_ones = K.equal(z, ones) z_zeros = K.equal(z, zeros) tp = count_matches(y_ones, z_ones) tn = count_matches(y_zeros, z_zeros) fp = count_matches(y_zeros, z_ones) fn = count_matches(y_ones, z_zeros) return tp, tn, fp, fn
contingency_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n y = K.cast(K.round(y), K.floatx())\n z = K.cast(K.round(z), K.floatx())\n\n def x(y, z):\n return K.sum(K.cast(y, K.floatx()) * K.cast(z, K.floatx()))\n ones = K.ones_like(y)\n zeros = K.zeros_like(y)\n y_ones = K.equal(y, ones)\n y_zeros = K.equal(y, zeros)\n z_ones = K.equal(z, ones)\n z_zeros = K.equal(z, zeros)\n tp = count_matches(y_ones, z_ones)\n tn = count_matches(y_zeros, z_zeros)\n fp = count_matches(y_zeros, z_ones)\n fn = count_matches(y_ones, z_zeros)\n return tp, tn, fp, fn\n", "role": "user" }, { "content": "contingency_table", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return tp / (tp + fn)
tpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tp / (tp + fn)\n", "role": "user" }, { "content": "tpr", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return tn / (tn + fp)
tnr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tn / (tn + fp)\n", "role": "user" }, { "content": "tnr", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return fp / (fp + tn)
fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fp / (fp + tn)\n", "role": "user" }, { "content": "fpr", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return fn / (fn + tp)
fnr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fn / (fn + tp)\n", "role": "user" }, { "content": "fnr", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return tp / (tp + fp)
precision
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return tp / (tp + fp)\n", "role": "user" }, { "content": "precision", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return fp / (tp + fp)
fdr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return fp / (tp + fp)\n", "role": "user" }, { "content": "fdr", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return (tp + tn) / (tp + tn + fp + fn)
accuracy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return (tp + tn) / (tp + tn + fp + fn)\n", "role": "user" }, { "content": "accuracy", "role": "assistant" } ]
def x(y, z): _recall = recall(y, z) _prec = precision(y, z) return 2 * (_prec * _recall) / (_prec + _recall)
f1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n _recall = recall(y, z)\n _prec = precision(y, z)\n return 2 * (_prec * _recall) / (_prec + _recall)\n", "role": "user" }, { "content": "f1", "role": "assistant" } ]
def x(y, z): tp, tn, fp, fn = contingency_table(y, z) return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
mcc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n tp, tn, fp, fn = contingency_table(y, z)\n return (tp * tn - fp * fn) / K.sqrt((tp + fp) * (tp + fn) * (tn + fp) *\n (tn + fn))\n", "role": "user" }, { "content": "mcc", "role": "assistant" } ]
def x(y, z): weights = _cat_sample_weights(y) _acc = K.cast(K.equal(K.argmax(y, axis=-1), K.argmax(z, axis=-1)), K. floatx()) _acc = K.sum(_acc * weights) / K.sum(weights) return _acc
cat_acc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, z):\n weights = _cat_sample_weights(y)\n _acc = K.cast(K.equal(K.argmax(y, axis=-1), K.argmax(z, axis=-1)), K.\n floatx())\n _acc = K.sum(_acc * weights) / K.sum(weights)\n return _acc\n", "role": "user" }, { "content": "cat_acc", "role": "assistant" } ]
def x(y_true, y_pred): var_resid = K.var(y_true - y_pred) var_y_true = K.var(y_true) return 1 - var_resid / var_y_true
var_explained
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n var_resid = K.var(y_true - y_pred)\n var_y_true = K.var(y_true)\n return 1 - var_resid / var_y_true\n", "role": "user" }, { "content": "var_explained", "role": "assistant" } ]
def x(train, cv_n_folds=5, stratified=False, random_state=None): test_len(train) y = train[1] n_rows = y.shape[0] if stratified: if len(y.shape) > 1: if y.shape[1] > 1: raise ValueError( "Can't use stratified K-fold with multi-column response variable" ) else: y = y[:, 0] return model_selection.StratifiedKFold(n_splits=cv_n_folds, shuffle =True, random_state=random_state).split(X=np.zeros((n_rows, 1)), y=y) else: return model_selection.KFold(n_splits=cv_n_folds, shuffle=True, random_state=random_state).split(X=np.zeros((n_rows, 1)))
split_KFold_idx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(train, cv_n_folds=5, stratified=False, random_state=None):\n test_len(train)\n y = train[1]\n n_rows = y.shape[0]\n if stratified:\n if len(y.shape) > 1:\n if y.shape[1] > 1:\n raise ValueError(\n \"Can't use stratified K-fold with multi-column response variable\"\n )\n else:\n y = y[:, 0]\n return model_selection.StratifiedKFold(n_splits=cv_n_folds, shuffle\n =True, random_state=random_state).split(X=np.zeros((n_rows, 1)),\n y=y)\n else:\n return model_selection.KFold(n_splits=cv_n_folds, shuffle=True,\n random_state=random_state).split(X=np.zeros((n_rows, 1)))\n", "role": "user" }, { "content": "split_KFold_idx", "role": "assistant" } ]
def x(train, idx, keep_other=True): test_len(train) y = train[1][idx] if isinstance(train[0], (list, tuple)): x = [x[idx] for x in train[0]] elif isinstance(train[0], dict): x = {k: v[idx] for k, v in train[0].items()} elif isinstance(train[0], np.ndarray): x = train[0][idx] else: raise ValueError('Input can only be of type: list, dict or np.ndarray') if keep_other: return (x, y) + train[2:] else: return x, y
subset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(train, idx, keep_other=True):\n test_len(train)\n y = train[1][idx]\n if isinstance(train[0], (list, tuple)):\n x = [x[idx] for x in train[0]]\n elif isinstance(train[0], dict):\n x = {k: v[idx] for k, v in train[0].items()}\n elif isinstance(train[0], np.ndarray):\n x = train[0][idx]\n else:\n raise ValueError('Input can only be of type: list, dict or np.ndarray')\n if keep_other:\n return (x, y) + train[2:]\n else:\n return x, y\n", "role": "user" }, { "content": "subset", "role": "assistant" } ]
def x(dt, features, response, sequence, id_column=None, seq_align='end', trim_seq_len=None): if type(response) is str: response = [response] X_feat = np.array(dt[features], dtype='float32') y = np.array(dt[response], dtype='float32') X_seq = encodeDNA(seq_vec=dt[sequence], maxlen=trim_seq_len, seq_align= seq_align) X_seq = np.array(X_seq, dtype='float32') id_vec = np.array(dt[id_column]) return X_feat, X_seq, y, id_vec
prepare_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dt, features, response, sequence, id_column=None, seq_align='end',\n trim_seq_len=None):\n if type(response) is str:\n response = [response]\n X_feat = np.array(dt[features], dtype='float32')\n y = np.array(dt[response], dtype='float32')\n X_seq = encodeDNA(seq_vec=dt[sequence], maxlen=trim_seq_len, seq_align=\n seq_align)\n X_seq = np.array(X_seq, dtype='float32')\n id_vec = np.array(dt[id_column])\n return X_feat, X_seq, y, id_vec\n", "role": "user" }, { "content": "prepare_data", "role": "assistant" } ]
def x(x, minval=None, maxval=None): x = np.copy(x) if minval is not None: x[x < minval] = minval if maxval is not None: x[x > maxval] = maxval return x
trunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, minval=None, maxval=None):\n x = np.copy(x)\n if minval is not None:\n x[x < minval] = minval\n if maxval is not None:\n x[x > maxval] = maxval\n return x\n", "role": "user" }, { "content": "trunc", "role": "assistant" } ]
def x(x, n_bases=10, spline_order=3, start=None, end=None, warn=True): if len(x.shape) == 1: x = x.reshape((-1, 1)) if start is None: start = np.nanmin(x) elif x.min() < start: if warn: print( 'WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start' ) x = _trunc(x, minval=start) if end is None: end = np.nanmax(x) elif x.max() > end: if warn: print( 'WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end' ) x = _trunc(x, maxval=end) bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order) assert len(x.shape) == 2 n_rows = x.shape[0] n_cols = x.shape[1] x_long = x.reshape((-1,)) x_feat = bs.predict(x_long, add_intercept=False) x_final = x_feat.reshape((n_rows, n_cols, n_bases)) return x_final
encodeSplines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, n_bases=10, spline_order=3, start=None, end=None, warn=True):\n if len(x.shape) == 1:\n x = x.reshape((-1, 1))\n if start is None:\n start = np.nanmin(x)\n elif x.min() < start:\n if warn:\n print(\n 'WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start'\n )\n x = _trunc(x, minval=start)\n if end is None:\n end = np.nanmax(x)\n elif x.max() > end:\n if warn:\n print(\n 'WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end'\n )\n x = _trunc(x, maxval=end)\n bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order)\n assert len(x.shape) == 2\n n_rows = x.shape[0]\n n_cols = x.shape[1]\n x_long = x.reshape((-1,))\n x_feat = bs.predict(x_long, add_intercept=False)\n x_final = x_feat.reshape((n_rows, n_cols, n_bases))\n return x_final\n", "role": "user" }, { "content": "encodeSplines", "role": "assistant" } ]
def x(self, x): assert x.ndim > 1 self.data_min_ = np.min(x, axis=tuple(range(x.ndim - 1))) self.data_max_ = np.max(x, axis=tuple(range(x.ndim - 1))) if self.share_knots: self.data_min_[:] = np.min(self.data_min_) self.data_max_[:] = np.max(self.data_max_)
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n assert x.ndim > 1\n self.data_min_ = np.min(x, axis=tuple(range(x.ndim - 1)))\n self.data_max_ = np.max(x, axis=tuple(range(x.ndim - 1)))\n if self.share_knots:\n self.data_min_[:] = np.min(self.data_min_)\n self.data_max_[:] = np.max(self.data_max_)\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, x, warn=True): array_list = [encodeSplines(x[..., i].reshape((-1, 1)), n_bases=self. n_bases, spline_order=self.degree, warn=warn, start=self.data_min_[ i], end=self.data_max_[i]).reshape(x[..., i].shape + (self.n_bases, )) for i in range(x.shape[-1])] return np.stack(array_list, axis=-2)
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, warn=True):\n array_list = [encodeSplines(x[..., i].reshape((-1, 1)), n_bases=self.\n n_bases, spline_order=self.degree, warn=warn, start=self.data_min_[\n i], end=self.data_max_[i]).reshape(x[..., i].shape + (self.n_bases,\n )) for i in range(x.shape[-1])]\n return np.stack(array_list, axis=-2)\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(seq_length, ignore_stop_codons=True, name=None, **kwargs): if ignore_stop_codons: vocab = CODONS else: vocab = CODONS + STOP_CODONS assert seq_length % 3 == 0 return Input((seq_length / 3, len(vocab)), name=name, **kwargs)
InputCodon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, ignore_stop_codons=True, name=None, **kwargs):\n if ignore_stop_codons:\n vocab = CODONS\n else:\n vocab = CODONS + STOP_CODONS\n assert seq_length % 3 == 0\n return Input((seq_length / 3, len(vocab)), name=name, **kwargs)\n", "role": "user" }, { "content": "InputCodon", "role": "assistant" } ]
def x(seq_length, name=None, **kwargs): return Input((seq_length, len(AMINO_ACIDS)), name=name, **kwargs)
InputAA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, name=None, **kwargs):\n return Input((seq_length, len(AMINO_ACIDS)), name=name, **kwargs)\n", "role": "user" }, { "content": "InputAA", "role": "assistant" } ]
def x(seq_length, name=None, **kwargs): return Input((seq_length, len(RNAplfold_PROFILES)), name=name, **kwargs)
InputRNAStructure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, name=None, **kwargs):\n return Input((seq_length, len(RNAplfold_PROFILES)), name=name, **kwargs)\n", "role": "user" }, { "content": "InputRNAStructure", "role": "assistant" } ]
def x(seq_length, n_bases=10, name=None, **kwargs): return Input((seq_length, n_bases), name=name, **kwargs)
InputSplines1D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, n_bases=10, name=None, **kwargs):\n return Input((seq_length, n_bases), name=name, **kwargs)\n", "role": "user" }, { "content": "InputSplines1D", "role": "assistant" } ]
def x(seq_length, n_features=1, name=None, **kwargs): return Input((seq_length, n_features), name=name, **kwargs)
InputDNAQuantity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, n_features=1, name=None, **kwargs):\n return Input((seq_length, n_features), name=name, **kwargs)\n", "role": "user" }, { "content": "InputDNAQuantity", "role": "assistant" } ]
def x(seq_length, n_bases=10, name='DNASmoothPosition', **kwargs): return Input((seq_length, n_bases), name=name, **kwargs)
InputDNAQuantitySplines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_length, n_bases=10, name='DNASmoothPosition', **kwargs):\n return Input((seq_length, n_bases), name=name, **kwargs)\n", "role": "user" }, { "content": "InputDNAQuantitySplines", "role": "assistant" } ]
def x(self, index=None, figsize=None, **kwargs): W = self.get_weights()[0] if index is None: index = np.arange(W.shape[2]) fig = heatmap(np.swapaxes(W[:, :, index], 0, 1), plot_name='filter: ', vocab=self.VOCAB, figsize=figsize, **kwargs) return fig
plot_weights_heatmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index=None, figsize=None, **kwargs):\n W = self.get_weights()[0]\n if index is None:\n index = np.arange(W.shape[2])\n fig = heatmap(np.swapaxes(W[:, :, index], 0, 1), plot_name='filter: ',\n vocab=self.VOCAB, figsize=figsize, **kwargs)\n return fig\n", "role": "user" }, { "content": "plot_weights_heatmap", "role": "assistant" } ]
def x(self, index, plot_type='motif_raw', background_probs= DEFAULT_BASE_BACKGROUND, ncol=1, figsize=None): w_all = self.get_weights() if len(w_all) == 0: raise Exception('Layer needs to be initialized first') W = w_all[0] if index is None: index = np.arange(W.shape[2]) if isinstance(index, int): index = [index] fig = plt.figure(figsize=figsize) if plot_type == 'motif_pwm' and plot_type in self.AVAILABLE_PLOTS: arr = pssm_array2pwm_array(W, background_probs) elif plot_type == 'motif_raw' and plot_type in self.AVAILABLE_PLOTS: arr = W elif plot_type == 'motif_pwm_info' and plot_type in self.AVAILABLE_PLOTS: quasi_pwm = pssm_array2pwm_array(W, background_probs) arr = _pwm2pwm_info(quasi_pwm) else: raise ValueError('plot_type needs to be from {0}'.format(self. AVAILABLE_PLOTS)) fig = seqlogo_fig(arr, vocab=self.VOCAB_name, figsize=figsize, ncol= ncol, plot_name='filter: ') return fig
plot_weights_motif
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index, plot_type='motif_raw', background_probs=\n DEFAULT_BASE_BACKGROUND, ncol=1, figsize=None):\n w_all = self.get_weights()\n if len(w_all) == 0:\n raise Exception('Layer needs to be initialized first')\n W = w_all[0]\n if index is None:\n index = np.arange(W.shape[2])\n if isinstance(index, int):\n index = [index]\n fig = plt.figure(figsize=figsize)\n if plot_type == 'motif_pwm' and plot_type in self.AVAILABLE_PLOTS:\n arr = pssm_array2pwm_array(W, background_probs)\n elif plot_type == 'motif_raw' and plot_type in self.AVAILABLE_PLOTS:\n arr = W\n elif plot_type == 'motif_pwm_info' and plot_type in self.AVAILABLE_PLOTS:\n quasi_pwm = pssm_array2pwm_array(W, background_probs)\n arr = _pwm2pwm_info(quasi_pwm)\n else:\n raise ValueError('plot_type needs to be from {0}'.format(self.\n AVAILABLE_PLOTS))\n fig = seqlogo_fig(arr, vocab=self.VOCAB_name, figsize=figsize, ncol=\n ncol, plot_name='filter: ')\n return fig\n", "role": "user" }, { "content": "plot_weights_motif", "role": "assistant" } ]
def x(self, index=None, plot_type='motif_raw', figsize=None, ncol=1, **kwargs): if 'heatmap' in self.AVAILABLE_PLOTS and plot_type == 'heatmap': return self._plot_weights_heatmap(index=index, figsize=figsize, ncol=ncol, **kwargs) elif plot_type[:5] == 'motif': return self._plot_weights_motif(index=index, plot_type=plot_type, figsize=figsize, ncol=ncol, **kwargs) else: raise ValueError('plot_type needs to be from {0}'.format(self. AVAILABLE_PLOTS))
plot_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index=None, plot_type='motif_raw', figsize=None, ncol=1, **kwargs):\n if 'heatmap' in self.AVAILABLE_PLOTS and plot_type == 'heatmap':\n return self._plot_weights_heatmap(index=index, figsize=figsize,\n ncol=ncol, **kwargs)\n elif plot_type[:5] == 'motif':\n return self._plot_weights_motif(index=index, plot_type=plot_type,\n figsize=figsize, ncol=ncol, **kwargs)\n else:\n raise ValueError('plot_type needs to be from {0}'.format(self.\n AVAILABLE_PLOTS))\n", "role": "user" }, { "content": "plot_weights", "role": "assistant" } ]
def x(pwm_list): for pwm in pwm_list: if not isinstance(pwm, PWM): raise TypeError('element {0} of pwm_list is not of type PWM'. format(pwm)) return True
check_pwm_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pwm_list):\n for pwm in pwm_list:\n if not isinstance(pwm, PWM):\n raise TypeError('element {0} of pwm_list is not of type PWM'.\n format(pwm))\n return True\n", "role": "user" }, { "content": "check_pwm_list", "role": "assistant" } ]
def x(mean, stddev, seed=None, normalize=True, alpha=0.01): if seed is not None: np.random.seed(seed) if stddev == 0: X = mean else: gen_X = truncnorm((alpha - mean) / stddev, (1 - alpha - mean) / stddev, loc=mean, scale=stddev) X = gen_X.rvs() + mean if normalize: col_sums = X.sum(1) X = X / col_sums[:, np.newaxis] return X
truncated_normal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mean, stddev, seed=None, normalize=True, alpha=0.01):\n if seed is not None:\n np.random.seed(seed)\n if stddev == 0:\n X = mean\n else:\n gen_X = truncnorm((alpha - mean) / stddev, (1 - alpha - mean) /\n stddev, loc=mean, scale=stddev)\n X = gen_X.rvs() + mean\n if normalize:\n col_sums = X.sum(1)\n X = X / col_sums[:, np.newaxis]\n return X\n", "role": "user" }, { "content": "truncated_normal", "role": "assistant" } ]
def x(w, vmin=None, vmax=None, diverge_color=False, ncol=1, plot_name=None, vocab=['A', 'C', 'G', 'T'], figsize=(6, 2)): assert len(vocab) == w.shape[0] plt_y = np.arange(w.shape[0] + 1) + 0.5 plt_x = np.arange(w.shape[1] + 1) - 0.5 z_min = w.min() z_max = w.max() if vmin is None: vmin = z_min if vmax is None: vmax = z_max if diverge_color: color_map = plt.cm.RdBu else: color_map = plt.cm.Blues fig = plt.figure(figsize=figsize) if len(w.shape) == 3: n_plots = w.shape[2] nrow = math.ceil(n_plots / ncol) else: n_plots = 1 nrow = 1 ncol = 1 for i in range(n_plots): if len(w.shape) == 3: w_cur = w[:, :, i] else: w_cur = w ax = plt.subplot(nrow, ncol, i + 1) plt.tight_layout() im = ax.pcolormesh(plt_x, plt_y, w_cur, cmap=color_map, vmin=vmin, vmax=vmax, edgecolors='white') ax.grid(False) ax.set_yticklabels([''] + vocab, minor=False) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.set_xticks(np.arange(w_cur.shape[1] + 1)) ax.set_xlim(plt_x.min(), plt_x.max()) ax.set_ylim(plt_y.min(), plt_y.max()) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, cax=cax) if plot_name is not None: if n_plots > 0: pln = plot_name + ' {0}'.format(i) else: pln = plot_name ax.set_title(pln) ax.set_aspect('equal') return fig
heatmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(w, vmin=None, vmax=None, diverge_color=False, ncol=1, plot_name=None,\n vocab=['A', 'C', 'G', 'T'], figsize=(6, 2)):\n assert len(vocab) == w.shape[0]\n plt_y = np.arange(w.shape[0] + 1) + 0.5\n plt_x = np.arange(w.shape[1] + 1) - 0.5\n z_min = w.min()\n z_max = w.max()\n if vmin is None:\n vmin = z_min\n if vmax is None:\n vmax = z_max\n if diverge_color:\n color_map = plt.cm.RdBu\n else:\n color_map = plt.cm.Blues\n fig = plt.figure(figsize=figsize)\n if len(w.shape) == 3:\n n_plots = w.shape[2]\n nrow = math.ceil(n_plots / ncol)\n else:\n n_plots = 1\n nrow = 1\n ncol = 1\n for i in range(n_plots):\n if len(w.shape) == 3:\n w_cur = w[:, :, i]\n else:\n w_cur = w\n ax = plt.subplot(nrow, ncol, i + 1)\n plt.tight_layout()\n im = ax.pcolormesh(plt_x, plt_y, w_cur, cmap=color_map, vmin=vmin,\n vmax=vmax, edgecolors='white')\n ax.grid(False)\n ax.set_yticklabels([''] + vocab, minor=False)\n ax.yaxis.set_major_locator(MaxNLocator(integer=True))\n ax.set_xticks(np.arange(w_cur.shape[1] + 1))\n ax.set_xlim(plt_x.min(), plt_x.max())\n ax.set_ylim(plt_y.min(), plt_y.max())\n divider = make_axes_locatable(ax)\n cax = divider.append_axes('right', size='5%', pad=0.05)\n fig.colorbar(im, cax=cax)\n if plot_name is not None:\n if n_plots > 0:\n pln = plot_name + ' {0}'.format(i)\n else:\n pln = plot_name\n ax.set_title(pln)\n ax.set_aspect('equal')\n return fig\n", "role": "user" }, { "content": "heatmap", "role": "assistant" } ]
def x(data_str): path_strs = re.findall('\\(\\(([^\\)]+?)\\)\\)', data_str.strip()) polygons_data = [] for path_str in path_strs: data = np.array([tuple(map(float, x.split())) for x in path_str. strip().split(',')]) polygons_data.append(data) min_coords = np.vstack(data.min(0) for data in polygons_data).min(0) max_coords = np.vstack(data.max(0) for data in polygons_data).max(0) for data in polygons_data: data[:,] -= min_coords data[:,] /= max_coords - min_coords polygons = [] for data in polygons_data: polygons.append(load_wkt('POLYGON((%s))' % ','.join(' '.join(map( str, x)) for x in data))) return tuple(polygons)
standardize_polygons_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_str):\n path_strs = re.findall('\\\\(\\\\(([^\\\\)]+?)\\\\)\\\\)', data_str.strip())\n polygons_data = []\n for path_str in path_strs:\n data = np.array([tuple(map(float, x.split())) for x in path_str.\n strip().split(',')])\n polygons_data.append(data)\n min_coords = np.vstack(data.min(0) for data in polygons_data).min(0)\n max_coords = np.vstack(data.max(0) for data in polygons_data).max(0)\n for data in polygons_data:\n data[:,] -= min_coords\n data[:,] /= max_coords - min_coords\n polygons = []\n for data in polygons_data:\n polygons.append(load_wkt('POLYGON((%s))' % ','.join(' '.join(map(\n str, x)) for x in data)))\n return tuple(polygons)\n", "role": "user" }, { "content": "standardize_polygons_str", "role": "assistant" } ]
def x(ax, let, col, x, y, height): if len(let) == 2: colors = [col, 'white'] elif len(let) == 1: colors = [col] else: raise ValueError('3 or more Polygons are not supported') for polygon, color in zip(let, colors): new_polygon = affinity.scale(polygon, yfact=height, origin=(0, 0, 0)) new_polygon = affinity.translate(new_polygon, xoff=x, yoff=y) patch = PolygonPatch(new_polygon, edgecolor=color, facecolor=color) ax.add_patch(patch) return
add_letter_to_axis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, let, col, x, y, height):\n if len(let) == 2:\n colors = [col, 'white']\n elif len(let) == 1:\n colors = [col]\n else:\n raise ValueError('3 or more Polygons are not supported')\n for polygon, color in zip(let, colors):\n new_polygon = affinity.scale(polygon, yfact=height, origin=(0, 0, 0))\n new_polygon = affinity.translate(new_polygon, xoff=x, yoff=y)\n patch = PolygonPatch(new_polygon, edgecolor=color, facecolor=color)\n ax.add_patch(patch)\n return\n", "role": "user" }, { "content": "add_letter_to_axis", "role": "assistant" } ]
def x(letter_heights, vocab='DNA', ax=None): ax = ax or plt.gca() assert letter_heights.shape[1] == len(VOCABS[vocab]) x_range = [1, letter_heights.shape[0]] pos_heights = np.copy(letter_heights) pos_heights[letter_heights < 0] = 0 neg_heights = np.copy(letter_heights) neg_heights[letter_heights > 0] = 0 for x_pos, heights in enumerate(letter_heights): letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys()))) y_pos_pos = 0.0 y_neg_pos = 0.0 for height, letter in letters_and_heights: color = VOCABS[vocab][letter] polygons = letter_polygons[letter] if height > 0: add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_pos_pos, height) y_pos_pos += height else: add_letter_to_axis(ax, polygons, color, 0.5 + x_pos, y_neg_pos, height) y_neg_pos += height ax.set_xlim(x_range[0] - 1, x_range[1] + 1) ax.grid(False) ax.set_xticks(list(range(*x_range)) + [x_range[-1]]) ax.set_aspect(aspect='auto', adjustable='box') ax.autoscale_view()
seqlogo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(letter_heights, vocab='DNA', ax=None):\n ax = ax or plt.gca()\n assert letter_heights.shape[1] == len(VOCABS[vocab])\n x_range = [1, letter_heights.shape[0]]\n pos_heights = np.copy(letter_heights)\n pos_heights[letter_heights < 0] = 0\n neg_heights = np.copy(letter_heights)\n neg_heights[letter_heights > 0] = 0\n for x_pos, heights in enumerate(letter_heights):\n letters_and_heights = sorted(zip(heights, list(VOCABS[vocab].keys())))\n y_pos_pos = 0.0\n y_neg_pos = 0.0\n for height, letter in letters_and_heights:\n color = VOCABS[vocab][letter]\n polygons = letter_polygons[letter]\n if height > 0:\n add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,\n y_pos_pos, height)\n y_pos_pos += height\n else:\n add_letter_to_axis(ax, polygons, color, 0.5 + x_pos,\n y_neg_pos, height)\n y_neg_pos += height\n ax.set_xlim(x_range[0] - 1, x_range[1] + 1)\n ax.grid(False)\n ax.set_xticks(list(range(*x_range)) + [x_range[-1]])\n ax.set_aspect(aspect='auto', adjustable='box')\n ax.autoscale_view()\n", "role": "user" }, { "content": "seqlogo", "role": "assistant" } ]