source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(vec_a, vec_b):
if len(vec_a) != len(vec_b):
raise ValueError('len(vec_a) must equal len(vec_b)')
return sum(map(lambda a, b: abs(a - b), vec_a, vec_b))
|
manhattan_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vec_a, vec_b):\n if len(vec_a) != len(vec_b):\n raise ValueError('len(vec_a) must equal len(vec_b)')\n return sum(map(lambda a, b: abs(a - b), vec_a, vec_b))\n",
"role": "user"
},
{
"content": "manhattan_distance",
"role": "assistant"
}
] |
def x(fitnesses):
min_fitness = min(fitnesses)
if min_fitness < 0.0:
fitnesses = map(lambda f: f - min_fitness, fitnesses)
fitness_sum = sum(fitnesses)
prob_sum = 0.0
probabilities = []
for fitness in fitnesses:
if fitness < 0:
raise ValueError('Fitness cannot be negative, fitness = {}.'.
format(fitness))
prob_sum += fitness / fitness_sum
probabilities.append(prob_sum)
probabilities[-1] += 0.0001
return probabilities
|
fitnesses_to_probabilities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fitnesses):\n min_fitness = min(fitnesses)\n if min_fitness < 0.0:\n fitnesses = map(lambda f: f - min_fitness, fitnesses)\n fitness_sum = sum(fitnesses)\n prob_sum = 0.0\n probabilities = []\n for fitness in fitnesses:\n if fitness < 0:\n raise ValueError('Fitness cannot be negative, fitness = {}.'.\n format(fitness))\n prob_sum += fitness / fitness_sum\n probabilities.append(prob_sum)\n probabilities[-1] += 0.0001\n return probabilities\n",
"role": "user"
},
{
"content": "fitnesses_to_probabilities",
"role": "assistant"
}
] |
def x(parents):
crossover_point = random.randint(1, len(parents[0]) - 1)
return _one_parent_crossover(parents[0], parents[1], crossover_point
), _one_parent_crossover(parents[1], parents[0], crossover_point)
|
one_point_crossover
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parents):\n crossover_point = random.randint(1, len(parents[0]) - 1)\n return _one_parent_crossover(parents[0], parents[1], crossover_point\n ), _one_parent_crossover(parents[1], parents[0], crossover_point)\n",
"role": "user"
},
{
"content": "one_point_crossover",
"role": "assistant"
}
] |
def x(parents):
chromosome_length = len(parents[0])
children = [[], []]
for i in range(chromosome_length):
selected_parent = random.randint(0, 1)
children[0].append(parents[selected_parent][i])
children[1].append(parents[1 - selected_parent][i])
return children
|
uniform_crossover
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parents):\n chromosome_length = len(parents[0])\n children = [[], []]\n for i in range(chromosome_length):\n selected_parent = random.randint(0, 1)\n children[0].append(parents[selected_parent][i])\n children[1].append(parents[1 - selected_parent][i])\n return children\n",
"role": "user"
},
{
"content": "uniform_crossover",
"role": "assistant"
}
] |
def x(population, mutation_chance):
for chromosome in population:
for i in range(len(chromosome)):
if random.uniform(0.0, 1.0) <= mutation_chance:
chromosome[i] = 1 - chromosome[i]
|
random_flip_mutate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(population, mutation_chance):\n for chromosome in population:\n for i in range(len(chromosome)):\n if random.uniform(0.0, 1.0) <= mutation_chance:\n chromosome[i] = 1 - chromosome[i]\n",
"role": "user"
},
{
"content": "random_flip_mutate",
"role": "assistant"
}
] |
def x(list_):
item_indices = {}
for i, item in enumerate(list_):
try:
item_indices[item].append(i)
except KeyError:
item_indices[item] = [i]
return item_indices
|
duplicates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(list_):\n item_indices = {}\n for i, item in enumerate(list_):\n try:\n item_indices[item].append(i)\n except KeyError:\n item_indices[item] = [i]\n return item_indices\n",
"role": "user"
},
{
"content": "duplicates",
"role": "assistant"
}
] |
def x(optimizer, meta_parameters, parameter_locks):
locked_values = {}
if parameter_locks:
for name in parameter_locks:
locked_values[name] = getattr(optimizer, name)
meta_parameters.pop(name)
return locked_values
|
parse_parameter_locks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(optimizer, meta_parameters, parameter_locks):\n locked_values = {}\n if parameter_locks:\n for name in parameter_locks:\n locked_values[name] = getattr(optimizer, name)\n meta_parameters.pop(name)\n return locked_values\n",
"role": "user"
},
{
"content": "parse_parameter_locks",
"role": "assistant"
}
] |
def x(meta_parameters):
solution_size = 0
for _, parameters in meta_parameters.iteritems():
if parameters['type'] == 'discrete':
num_values = len(parameters['values'])
binary_size = helpers.binary_size(num_values)
elif parameters['type'] == 'int':
int_range = parameters['max'] - parameters['min'] + 1
binary_size = helpers.binary_size(int_range)
elif parameters['type'] == 'float':
float_range = parameters['max'] - parameters['min']
binary_size = helpers.binary_size(float_range * 1000)
else:
raise ValueError('Parameter type "{}" does not match known values'
.format(parameters['type']))
parameters['binary_size'] = binary_size
solution_size += binary_size
return solution_size
|
get_hyperparameter_solution_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meta_parameters):\n solution_size = 0\n for _, parameters in meta_parameters.iteritems():\n if parameters['type'] == 'discrete':\n num_values = len(parameters['values'])\n binary_size = helpers.binary_size(num_values)\n elif parameters['type'] == 'int':\n int_range = parameters['max'] - parameters['min'] + 1\n binary_size = helpers.binary_size(int_range)\n elif parameters['type'] == 'float':\n float_range = parameters['max'] - parameters['min']\n binary_size = helpers.binary_size(float_range * 1000)\n else:\n raise ValueError('Parameter type \"{}\" does not match known values'\n .format(parameters['type']))\n parameters['binary_size'] = binary_size\n solution_size += binary_size\n return solution_size\n",
"role": "user"
},
{
"content": "get_hyperparameter_solution_size",
"role": "assistant"
}
] |
def x(locked_values, meta_parameters):
def x(solution):
hyperparameters = copy.deepcopy(locked_values)
index = 0
for name, parameters in meta_parameters.iteritems():
binary_size = parameters['binary_size']
binary = solution[index:index + binary_size]
index += binary_size
if parameters['type'] == 'discrete':
i = helpers.binary_to_int(binary, upper_bound=len(
parameters['values']) - 1)
value = parameters['values'][i]
elif parameters['type'] == 'int':
value = helpers.binary_to_int(binary, lower_bound=
parameters['min'], upper_bound=parameters['max'])
elif parameters['type'] == 'float':
value = helpers.binary_to_float(binary, lower_bound=
parameters['min'], upper_bound=parameters['max'])
else:
raise ValueError(
'Parameter type "{}" does not match known values'.
format(parameters['type']))
hyperparameters[name] = value
return hyperparameters
return decode
|
make_hyperparameter_decode_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(locked_values, meta_parameters):\n\n def x(solution):\n hyperparameters = copy.deepcopy(locked_values)\n index = 0\n for name, parameters in meta_parameters.iteritems():\n binary_size = parameters['binary_size']\n binary = solution[index:index + binary_size]\n index += binary_size\n if parameters['type'] == 'discrete':\n i = helpers.binary_to_int(binary, upper_bound=len(\n parameters['values']) - 1)\n value = parameters['values'][i]\n elif parameters['type'] == 'int':\n value = helpers.binary_to_int(binary, lower_bound=\n parameters['min'], upper_bound=parameters['max'])\n elif parameters['type'] == 'float':\n value = helpers.binary_to_float(binary, lower_bound=\n parameters['min'], upper_bound=parameters['max'])\n else:\n raise ValueError(\n 'Parameter type \"{}\" does not match known values'.\n format(parameters['type']))\n hyperparameters[name] = value\n return hyperparameters\n return decode\n",
"role": "user"
},
{
"content": "make_hyperparameter_decode_func",
"role": "assistant"
}
] |
def x(parameters, _optimizer, _problems, _master_fitness_dict, _runs=20):
optimizer = copy.deepcopy(_optimizer)
optimizer._set_hyperparameters(parameters)
optimizer.logging = False
if _master_fitness_dict != None:
optimizer.clear_cache = False
optimizer._Optimizer__encoded_cache = _master_fitness_dict
all_evaluation_runs = []
solutions_found = []
for _ in range(_runs):
for problem in _problems:
optimizer.optimize(problem)
all_evaluation_runs.append(optimizer.fitness_runs)
if optimizer.solution_found:
solutions_found.append(1.0)
else:
solutions_found.append(0.0)
fitness = 1.0 / helpers.avg(all_evaluation_runs)
fitness = fitness * helpers.avg(solutions_found) ** 2 + 1e-19
return fitness
|
meta_fitness_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parameters, _optimizer, _problems, _master_fitness_dict, _runs=20):\n optimizer = copy.deepcopy(_optimizer)\n optimizer._set_hyperparameters(parameters)\n optimizer.logging = False\n if _master_fitness_dict != None:\n optimizer.clear_cache = False\n optimizer._Optimizer__encoded_cache = _master_fitness_dict\n all_evaluation_runs = []\n solutions_found = []\n for _ in range(_runs):\n for problem in _problems:\n optimizer.optimize(problem)\n all_evaluation_runs.append(optimizer.fitness_runs)\n if optimizer.solution_found:\n solutions_found.append(1.0)\n else:\n solutions_found.append(0.0)\n fitness = 1.0 / helpers.avg(all_evaluation_runs)\n fitness = fitness * helpers.avg(solutions_found) ** 2 + 1e-19\n return fitness\n",
"role": "user"
},
{
"content": "meta_fitness_func",
"role": "assistant"
}
] |
def x(self, fitness_function=None, decode_function=None, fitness_args=None,
decode_args=None, fitness_kwargs=None, decode_kwargs=None):
if fitness_function is None:
fitness_function = self._fitness_function
if decode_function is None:
decode_function = self._decode_function
if fitness_args is None:
fitness_args = self._fitness_args
if decode_args is None:
decode_args = self._decode_args
if fitness_kwargs is None:
fitness_kwargs = self._fitness_kwargs
if decode_kwargs is None:
decode_kwargs = self._decode_kwargs
return Problem(fitness_function, decode_function=decode_function,
fitness_args=fitness_args, decode_args=decode_args, fitness_kwargs=
fitness_kwargs, decode_kwargs=decode_kwargs)
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fitness_function=None, decode_function=None, fitness_args=None,\n decode_args=None, fitness_kwargs=None, decode_kwargs=None):\n if fitness_function is None:\n fitness_function = self._fitness_function\n if decode_function is None:\n decode_function = self._decode_function\n if fitness_args is None:\n fitness_args = self._fitness_args\n if decode_args is None:\n decode_args = self._decode_args\n if fitness_kwargs is None:\n fitness_kwargs = self._fitness_kwargs\n if decode_kwargs is None:\n decode_kwargs = self._decode_kwargs\n return Problem(fitness_function, decode_function=decode_function,\n fitness_args=fitness_args, decode_args=decode_args, fitness_kwargs=\n fitness_kwargs, decode_kwargs=decode_kwargs)\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, solution):
return self._fitness_function(solution, *self._fitness_args, **self.
_fitness_kwargs)
|
get_fitness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, solution):\n return self._fitness_function(solution, *self._fitness_args, **self.\n _fitness_kwargs)\n",
"role": "user"
},
{
"content": "get_fitness",
"role": "assistant"
}
] |
def x(self, encoded_solution):
return self._decode_function(encoded_solution, *self._decode_args, **
self._decode_kwargs)
|
decode_solution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, encoded_solution):\n return self._decode_function(encoded_solution, *self._decode_args, **\n self._decode_kwargs)\n",
"role": "user"
},
{
"content": "decode_solution",
"role": "assistant"
}
] |
def x(self, problem, max_iterations=100, max_seconds=float('inf'),
cache_encoded=True, cache_solution=False, clear_cache=True,
logging_func=_print_fitnesses, n_processes=0):
if not isinstance(problem, Problem):
raise TypeError('problem must be an instance of Problem class')
if n_processes > 0:
try:
pool = multiprocessing.Pool(processes=n_processes)
except NameError:
raise ImportError(
'pickle, dill, or multiprocessing library is not available.')
else:
pool = None
self.__max_iterations = max_iterations
self._reset()
best_solution = {'solution': None, 'fitness': None}
population = self.initial_population()
try:
start = time.clock()
for self.iteration in itertools.count(1):
solutions, fitnesses, finished = self._get_fitnesses(problem,
population, cache_encoded=cache_encoded, cache_solution=
cache_solution, pool=pool)
best_index, best_fitness = max(enumerate(fitnesses), key=
operator.itemgetter(1))
if best_fitness > best_solution['fitness']:
best_solution['fitness'] = best_fitness
best_solution['solution'] = solutions[best_index]
if logging_func:
logging_func(self.iteration, population, solutions,
fitnesses, best_solution['solution'], best_solution[
'fitness'])
if finished:
self.solution_found = True
break
if time.clock() - start >= max_seconds:
break
if self.iteration >= max_iterations:
break
population = self.next_population(population, fitnesses)
self.best_solution = best_solution['solution']
self.best_fitness = best_solution['fitness']
finally:
if clear_cache:
self.__encoded_cache = {}
self.__solution_cache = {}
self._get_encoded_key = self._get_encoded_key_type
self._get_solution_key = self._get_solution_key_type
try:
pool.terminate()
pool.close()
except AttributeError:
assert pool is None
return self.best_solution
|
optimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, problem, max_iterations=100, max_seconds=float('inf'),\n cache_encoded=True, cache_solution=False, clear_cache=True,\n logging_func=_print_fitnesses, n_processes=0):\n if not isinstance(problem, Problem):\n raise TypeError('problem must be an instance of Problem class')\n if n_processes > 0:\n try:\n pool = multiprocessing.Pool(processes=n_processes)\n except NameError:\n raise ImportError(\n 'pickle, dill, or multiprocessing library is not available.')\n else:\n pool = None\n self.__max_iterations = max_iterations\n self._reset()\n best_solution = {'solution': None, 'fitness': None}\n population = self.initial_population()\n try:\n start = time.clock()\n for self.iteration in itertools.count(1):\n solutions, fitnesses, finished = self._get_fitnesses(problem,\n population, cache_encoded=cache_encoded, cache_solution=\n cache_solution, pool=pool)\n best_index, best_fitness = max(enumerate(fitnesses), key=\n operator.itemgetter(1))\n if best_fitness > best_solution['fitness']:\n best_solution['fitness'] = best_fitness\n best_solution['solution'] = solutions[best_index]\n if logging_func:\n logging_func(self.iteration, population, solutions,\n fitnesses, best_solution['solution'], best_solution[\n 'fitness'])\n if finished:\n self.solution_found = True\n break\n if time.clock() - start >= max_seconds:\n break\n if self.iteration >= max_iterations:\n break\n population = self.next_population(population, fitnesses)\n self.best_solution = best_solution['solution']\n self.best_fitness = best_solution['fitness']\n finally:\n if clear_cache:\n self.__encoded_cache = {}\n self.__solution_cache = {}\n self._get_encoded_key = self._get_encoded_key_type\n self._get_solution_key = self._get_solution_key_type\n try:\n pool.terminate()\n pool.close()\n except AttributeError:\n assert pool is None\n return self.best_solution\n",
"role": "user"
},
{
"content": "optimize",
"role": "assistant"
}
] |
def x(self):
self.iteration = 0
self.fitness_runs = 0
self.best_solution = None
self.best_fitness = None
self.solution_found = False
|
reset_bookkeeping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.iteration = 0\n self.fitness_runs = 0\n self.best_solution = None\n self.best_fitness = None\n self.solution_found = False\n",
"role": "user"
},
{
"content": "reset_bookkeeping",
"role": "assistant"
}
] |
def x(self, problem, population, cache_encoded=True, cache_solution=False,
pool=None):
fitnesses = [None] * len(population)
if cache_encoded:
try:
encoded_keys = map(self._get_encoded_key, population)
to_decode_indices = []
for i, encoded_key in enumerate(encoded_keys):
try:
fitnesses[i] = self.__encoded_cache[encoded_key]
except KeyError:
to_decode_indices.append(i)
except UnhashableError:
encoded_keys = None
to_decode_indices = range(len(population))
else:
encoded_keys = None
to_decode_indices = range(len(population))
if encoded_keys is None:
to_decode_keys = None
else:
to_decode_keys = [encoded_keys[i] for i in to_decode_indices]
solutions = [None] * len(population)
for i, solution in zip(to_decode_indices, self._pmap(problem.
decode_solution, [population[i] for i in to_decode_indices],
to_decode_keys, pool)):
solutions[i] = solution
if cache_solution:
try:
if problem.hash_solution:
hash_solution_func = problem.hash_solution
else:
hash_solution_func = self._get_solution_key
solution_keys = [(hash_solution_func(solution) if solution is not
None else None) for solution in solutions]
to_eval_indices = []
for i, solution_key in enumerate(solution_keys):
if solution_key is not None:
try:
fitnesses[i] = self.__solution_cache[solution_key]
except KeyError:
to_eval_indices.append(i)
except UnhashableError:
solution_keys = None
to_eval_indices = to_decode_indices[:]
else:
solution_keys = None
to_eval_indices = to_decode_indices[:]
if solution_keys is None:
if encoded_keys is None:
to_eval_keys = None
else:
to_eval_keys = [encoded_keys[i] for i in to_eval_indices]
else:
to_eval_keys = [solution_keys[i] for i in to_eval_indices]
finished = False
eval_bookkeeping = {}
for i, fitness_finished in zip(to_eval_indices, self._pmap(problem.
get_fitness, [solutions[i] for i in to_eval_indices], to_eval_keys,
pool, bookkeeping_dict=eval_bookkeeping)):
try:
fitness, maybe_finished = fitness_finished
if maybe_finished:
finished = True
except TypeError:
fitness = fitness_finished
fitnesses[i] = fitness
self.fitness_runs += len(eval_bookkeeping['key_indices'])
if cache_encoded and encoded_keys is not None:
for i in to_decode_indices:
self.__encoded_cache[encoded_keys[i]] = fitnesses[i]
if cache_solution and solution_keys is not None:
for i in to_eval_indices:
self.__solution_cache[solution_keys[i]] = fitnesses[i]
return solutions, fitnesses, finished
|
get_fitnesses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, problem, population, cache_encoded=True, cache_solution=False,\n pool=None):\n fitnesses = [None] * len(population)\n if cache_encoded:\n try:\n encoded_keys = map(self._get_encoded_key, population)\n to_decode_indices = []\n for i, encoded_key in enumerate(encoded_keys):\n try:\n fitnesses[i] = self.__encoded_cache[encoded_key]\n except KeyError:\n to_decode_indices.append(i)\n except UnhashableError:\n encoded_keys = None\n to_decode_indices = range(len(population))\n else:\n encoded_keys = None\n to_decode_indices = range(len(population))\n if encoded_keys is None:\n to_decode_keys = None\n else:\n to_decode_keys = [encoded_keys[i] for i in to_decode_indices]\n solutions = [None] * len(population)\n for i, solution in zip(to_decode_indices, self._pmap(problem.\n decode_solution, [population[i] for i in to_decode_indices],\n to_decode_keys, pool)):\n solutions[i] = solution\n if cache_solution:\n try:\n if problem.hash_solution:\n hash_solution_func = problem.hash_solution\n else:\n hash_solution_func = self._get_solution_key\n solution_keys = [(hash_solution_func(solution) if solution is not\n None else None) for solution in solutions]\n to_eval_indices = []\n for i, solution_key in enumerate(solution_keys):\n if solution_key is not None:\n try:\n fitnesses[i] = self.__solution_cache[solution_key]\n except KeyError:\n to_eval_indices.append(i)\n except UnhashableError:\n solution_keys = None\n to_eval_indices = to_decode_indices[:]\n else:\n solution_keys = None\n to_eval_indices = to_decode_indices[:]\n if solution_keys is None:\n if encoded_keys is None:\n to_eval_keys = None\n else:\n to_eval_keys = [encoded_keys[i] for i in to_eval_indices]\n else:\n to_eval_keys = [solution_keys[i] for i in to_eval_indices]\n finished = False\n eval_bookkeeping = {}\n for i, fitness_finished in zip(to_eval_indices, self._pmap(problem.\n get_fitness, [solutions[i] for i in to_eval_indices], to_eval_keys,\n pool, bookkeeping_dict=eval_bookkeeping)):\n try:\n fitness, maybe_finished = fitness_finished\n if maybe_finished:\n finished = True\n except TypeError:\n fitness = fitness_finished\n fitnesses[i] = fitness\n self.fitness_runs += len(eval_bookkeeping['key_indices'])\n if cache_encoded and encoded_keys is not None:\n for i in to_decode_indices:\n self.__encoded_cache[encoded_keys[i]] = fitnesses[i]\n if cache_solution and solution_keys is not None:\n for i in to_eval_indices:\n self.__solution_cache[solution_keys[i]] = fitnesses[i]\n return solutions, fitnesses, finished\n",
"role": "user"
},
{
"content": "get_fitnesses",
"role": "assistant"
}
] |
def x(self, func, items, keys, pool, bookkeeping_dict=None):
if keys is not None:
key_indices = _duplicates(keys).values()
else:
key_indices = [[i] for i in range(len(items))]
if pool is not None:
results = pool.map(functools.partial(_unpickle_run, pickle.dumps(
func)), [items[i[0]] for i in key_indices])
else:
results = map(func, [items[i[0]] for i in key_indices])
if bookkeeping_dict is not None:
bookkeeping_dict['key_indices'] = key_indices
all_results = [None] * len(items)
for indices, result in zip(key_indices, results):
for j, i in enumerate(indices):
if j > 0:
result = copy.deepcopy(result)
all_results[i] = result
return all_results
|
pmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, items, keys, pool, bookkeeping_dict=None):\n if keys is not None:\n key_indices = _duplicates(keys).values()\n else:\n key_indices = [[i] for i in range(len(items))]\n if pool is not None:\n results = pool.map(functools.partial(_unpickle_run, pickle.dumps(\n func)), [items[i[0]] for i in key_indices])\n else:\n results = map(func, [items[i[0]] for i in key_indices])\n if bookkeeping_dict is not None:\n bookkeeping_dict['key_indices'] = key_indices\n all_results = [None] * len(items)\n for indices, result in zip(key_indices, results):\n for j, i in enumerate(indices):\n if j > 0:\n result = copy.deepcopy(result)\n all_results[i] = result\n return all_results\n",
"role": "user"
},
{
"content": "pmap",
"role": "assistant"
}
] |
def x(self, parameters):
for name, value in parameters.iteritems():
try:
getattr(self, name)
except AttributeError:
raise ValueError(
'Each parameter in parameters must be an attribute. {} is not.'
.format(name))
setattr(self, name, value)
|
set_hyperparameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters):\n for name, value in parameters.iteritems():\n try:\n getattr(self, name)\n except AttributeError:\n raise ValueError(\n 'Each parameter in parameters must be an attribute. {} is not.'\n .format(name))\n setattr(self, name, value)\n",
"role": "user"
},
{
"content": "set_hyperparameters",
"role": "assistant"
}
] |
def x(self):
hyperparameters = {}
for key in self._hyperparameters:
hyperparameters[key] = getattr(self, key)
return hyperparameters
|
get_hyperparameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n hyperparameters = {}\n for key in self._hyperparameters:\n hyperparameters[key] = getattr(self, key)\n return hyperparameters\n",
"role": "user"
},
{
"content": "get_hyperparameters",
"role": "assistant"
}
] |
def x(self, problems, parameter_locks=None, smoothing=20, max_iterations=
100, _meta_optimizer=None, _low_memory=True):
if smoothing <= 0:
raise ValueError('smoothing must be > 0')
if isinstance(problems, collections.Iterable):
for problem in problems:
if not isinstance(problem, Problem):
raise TypeError(
'problem must be Problem instance or list of Problem instances'
)
elif isinstance(problems, Problem):
problems = [problems]
else:
raise TypeError(
'problem must be Problem instance or list of Problem instances')
meta_parameters = copy.deepcopy(self._hyperparameters)
locked_values = _parse_parameter_locks(self, meta_parameters,
parameter_locks)
solution_size = _get_hyperparameter_solution_size(meta_parameters)
decode = _make_hyperparameter_decode_func(locked_values, meta_parameters)
if _low_memory:
master_fitness_dict = None
else:
master_fitness_dict = {}
additional_parameters = {'_optimizer': self, '_problems': problems,
'_runs': smoothing, '_master_fitness_dict': master_fitness_dict}
META_FITNESS = Problem(_meta_fitness_func, decode_function=decode,
fitness_kwargs=additional_parameters)
if _meta_optimizer is None:
from optimal import GenAlg
_meta_optimizer = GenAlg(solution_size)
else:
_meta_optimizer._solution_size = solution_size
best_parameters = _meta_optimizer.optimize(META_FITNESS, max_iterations
=max_iterations)
self._set_hyperparameters(best_parameters)
return best_parameters
|
optimize_hyperparameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, problems, parameter_locks=None, smoothing=20, max_iterations=\n 100, _meta_optimizer=None, _low_memory=True):\n if smoothing <= 0:\n raise ValueError('smoothing must be > 0')\n if isinstance(problems, collections.Iterable):\n for problem in problems:\n if not isinstance(problem, Problem):\n raise TypeError(\n 'problem must be Problem instance or list of Problem instances'\n )\n elif isinstance(problems, Problem):\n problems = [problems]\n else:\n raise TypeError(\n 'problem must be Problem instance or list of Problem instances')\n meta_parameters = copy.deepcopy(self._hyperparameters)\n locked_values = _parse_parameter_locks(self, meta_parameters,\n parameter_locks)\n solution_size = _get_hyperparameter_solution_size(meta_parameters)\n decode = _make_hyperparameter_decode_func(locked_values, meta_parameters)\n if _low_memory:\n master_fitness_dict = None\n else:\n master_fitness_dict = {}\n additional_parameters = {'_optimizer': self, '_problems': problems,\n '_runs': smoothing, '_master_fitness_dict': master_fitness_dict}\n META_FITNESS = Problem(_meta_fitness_func, decode_function=decode,\n fitness_kwargs=additional_parameters)\n if _meta_optimizer is None:\n from optimal import GenAlg\n _meta_optimizer = GenAlg(solution_size)\n else:\n _meta_optimizer._solution_size = solution_size\n best_parameters = _meta_optimizer.optimize(META_FITNESS, max_iterations\n =max_iterations)\n self._set_hyperparameters(best_parameters)\n return best_parameters\n",
"role": "user"
},
{
"content": "optimize_hyperparameters",
"role": "assistant"
}
] |
def x(all_stats):
aggregate_stats = {'means': [], 'standard_deviations': []}
for optimizer_key in all_stats:
mean_stats = copy.deepcopy(all_stats[optimizer_key]['mean'])
mean_stats['name'] = optimizer_key
aggregate_stats['means'].append(mean_stats)
sd_stats = copy.deepcopy(all_stats[optimizer_key]['standard_deviation']
)
sd_stats['name'] = optimizer_key
aggregate_stats['standard_deviations'].append(sd_stats)
_add_mean_sd_to_stats(aggregate_stats, 'means')
return aggregate_stats
|
aggregate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_stats):\n aggregate_stats = {'means': [], 'standard_deviations': []}\n for optimizer_key in all_stats:\n mean_stats = copy.deepcopy(all_stats[optimizer_key]['mean'])\n mean_stats['name'] = optimizer_key\n aggregate_stats['means'].append(mean_stats)\n sd_stats = copy.deepcopy(all_stats[optimizer_key]['standard_deviation']\n )\n sd_stats['name'] = optimizer_key\n aggregate_stats['standard_deviations'].append(sd_stats)\n _add_mean_sd_to_stats(aggregate_stats, 'means')\n return aggregate_stats\n",
"role": "user"
},
{
"content": "aggregate",
"role": "assistant"
}
] |
def x(stats, key='runs'):
num_runs = len(stats[key])
first = stats[key][0]
mean = {}
for stat_key in first:
if isinstance(first[stat_key], numbers.Number):
mean[stat_key] = sum(run[stat_key] for run in stats[key]) / float(
num_runs)
return mean
|
mean_of_runs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, key='runs'):\n num_runs = len(stats[key])\n first = stats[key][0]\n mean = {}\n for stat_key in first:\n if isinstance(first[stat_key], numbers.Number):\n mean[stat_key] = sum(run[stat_key] for run in stats[key]) / float(\n num_runs)\n return mean\n",
"role": "user"
},
{
"content": "mean_of_runs",
"role": "assistant"
}
] |
def x(stats, mean, key='runs'):
num_runs = len(stats[key])
first = stats[key][0]
standard_deviation = {}
for stat_key in first:
if isinstance(first[stat_key], numbers.Number):
standard_deviation[stat_key] = math.sqrt(sum((run[stat_key] -
mean[stat_key]) ** 2 for run in stats[key]) / float(num_runs))
return standard_deviation
|
sd_of_runs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, mean, key='runs'):\n num_runs = len(stats[key])\n first = stats[key][0]\n standard_deviation = {}\n for stat_key in first:\n if isinstance(first[stat_key], numbers.Number):\n standard_deviation[stat_key] = math.sqrt(sum((run[stat_key] -\n mean[stat_key]) ** 2 for run in stats[key]) / float(num_runs))\n return standard_deviation\n",
"role": "user"
},
{
"content": "sd_of_runs",
"role": "assistant"
}
] |
def x(probability_vec):
return map(int, numpy.random.random(probability_vec.size) <=
probability_vec)
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(probability_vec):\n return map(int, numpy.random.random(probability_vec.size) <=\n probability_vec)\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(population, fitnesses, probability_vec, adjust_rate):
best_solution = max(zip(fitnesses, population))[1]
return _adjust(probability_vec, best_solution, adjust_rate)
|
adjust_probability_vec_best
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(population, fitnesses, probability_vec, adjust_rate):\n best_solution = max(zip(fitnesses, population))[1]\n return _adjust(probability_vec, best_solution, adjust_rate)\n",
"role": "user"
},
{
"content": "adjust_probability_vec_best",
"role": "assistant"
}
] |
def x(probability_vec, mutation_chance, mutation_adjust_rate):
bits_to_mutate = numpy.random.random(probability_vec.size
) <= mutation_chance
probability_vec[bits_to_mutate] = _adjust(probability_vec[
bits_to_mutate], numpy.random.random(numpy.sum(bits_to_mutate)),
mutation_adjust_rate)
|
mutate_probability_vec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(probability_vec, mutation_chance, mutation_adjust_rate):\n bits_to_mutate = numpy.random.random(probability_vec.size\n ) <= mutation_chance\n probability_vec[bits_to_mutate] = _adjust(probability_vec[\n bits_to_mutate], numpy.random.random(numpy.sum(bits_to_mutate)),\n mutation_adjust_rate)\n",
"role": "user"
},
{
"content": "mutate_probability_vec",
"role": "assistant"
}
] |
def x(self, population, fitnesses):
self._probability_vec = _adjust_probability_vec_best(population,
fitnesses, self._probability_vec, self._adjust_rate)
_mutate_probability_vec(self._probability_vec, self._mutation_chance,
self._mutation_adjust_rate)
return [_sample(self._probability_vec) for _ in range(self.
_population_size)]
|
next_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, population, fitnesses):\n self._probability_vec = _adjust_probability_vec_best(population,\n fitnesses, self._probability_vec, self._adjust_rate)\n _mutate_probability_vec(self._probability_vec, self._mutation_chance,\n self._mutation_adjust_rate)\n return [_sample(self._probability_vec) for _ in range(self.\n _population_size)]\n",
"role": "user"
},
{
"content": "next_population",
"role": "assistant"
}
] |
def x(optimizer):
all_stats = benchmark.compare(optimizer, PROBLEMS, runs=100)
return benchmark.aggregate(all_stats)
|
benchmark_multi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(optimizer):\n all_stats = benchmark.compare(optimizer, PROBLEMS, runs=100)\n return benchmark.aggregate(all_stats)\n",
"role": "user"
},
{
"content": "benchmark_multi",
"role": "assistant"
}
] |
def x(probabilities, population_size):
population = []
for _ in range(population_size):
solution = []
for probability in probabilities:
if random.uniform(0.0, 1.0) < probability:
solution.append(1)
else:
solution.append(0)
population.append(solution)
return population
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(probabilities, population_size):\n population = []\n for _ in range(population_size):\n solution = []\n for probability in probabilities:\n if random.uniform(0.0, 1.0) < probability:\n solution.append(1)\n else:\n solution.append(0)\n population.append(solution)\n return population\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(solution, pdf):
return _prod([(1.0 - abs(bit - p)) for bit, p in zip(solution, pdf)])
|
chance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(solution, pdf):\n return _prod([(1.0 - abs(bit - p)) for bit, p in zip(solution, pdf)])\n",
"role": "user"
},
{
"content": "chance",
"role": "assistant"
}
] |
def x(pdf, population, fitnesses, fitness_threshold):
value = 0.0
for solution, fitness in zip(population, fitnesses):
if fitness >= fitness_threshold:
value += math.log(1.0 + _chance(solution, pdf))
return value
|
pdf_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pdf, population, fitnesses, fitness_threshold):\n value = 0.0\n for solution, fitness in zip(population, fitnesses):\n if fitness >= fitness_threshold:\n value += math.log(1.0 + _chance(solution, pdf))\n return value\n",
"role": "user"
},
{
"content": "pdf_value",
"role": "assistant"
}
] |
def x(population, fitnesses, pdfs, quantile):
fitness_threshold = _get_quantile_cutoff(fitnesses, quantile)
return _best_pdf(pdfs, population, fitnesses, fitness_threshold)
|
update_pdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(population, fitnesses, pdfs, quantile):\n fitness_threshold = _get_quantile_cutoff(fitnesses, quantile)\n return _best_pdf(pdfs, population, fitnesses, fitness_threshold)\n",
"role": "user"
},
{
"content": "update_pdf",
"role": "assistant"
}
] |
def x(binary_list, lower_bound, upper_bound):
if binary_list == []:
return lower_bound
return float(upper_bound - lower_bound) / (2 ** len(binary_list) - 1
) * binary_to_int(binary_list) + lower_bound
|
binary_to_float
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(binary_list, lower_bound, upper_bound):\n if binary_list == []:\n return lower_bound\n return float(upper_bound - lower_bound) / (2 ** len(binary_list) - 1\n ) * binary_to_int(binary_list) + lower_bound\n",
"role": "user"
},
{
"content": "binary_to_float",
"role": "assistant"
}
] |
def x(binary_list, lower_bound=0, upper_bound=None):
if binary_list == []:
return lower_bound
else:
integer = int(''.join([str(bit) for bit in binary_list]), 2)
if upper_bound is not None and integer + lower_bound > upper_bound:
return upper_bound - integer % (upper_bound - lower_bound + 1)
else:
return integer + lower_bound
|
binary_to_int
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(binary_list, lower_bound=0, upper_bound=None):\n if binary_list == []:\n return lower_bound\n else:\n integer = int(''.join([str(bit) for bit in binary_list]), 2)\n if upper_bound is not None and integer + lower_bound > upper_bound:\n return upper_bound - integer % (upper_bound - lower_bound + 1)\n else:\n return integer + lower_bound\n",
"role": "user"
},
{
"content": "binary_to_int",
"role": "assistant"
}
] |
def x(integer, size=None):
binary_list = map(int, format(integer, 'b'))
if size is None:
return binary_list
elif len(binary_list) > size:
return binary_list[len(binary_list) - size:]
elif size > len(binary_list):
return [0] * (size - len(binary_list)) + binary_list
else:
return binary_list
|
int_to_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(integer, size=None):\n binary_list = map(int, format(integer, 'b'))\n if size is None:\n return binary_list\n elif len(binary_list) > size:\n return binary_list[len(binary_list) - size:]\n elif size > len(binary_list):\n return [0] * (size - len(binary_list)) + binary_list\n else:\n return binary_list\n",
"role": "user"
},
{
"content": "int_to_binary",
"role": "assistant"
}
] |
def x(self, population, fitnesses):
return common.make_population(self._population_size, self.
_generate_solution)
|
next_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, population, fitnesses):\n return common.make_population(self._population_size, self.\n _generate_solution)\n",
"role": "user"
},
{
"content": "next_population",
"role": "assistant"
}
] |
def x(self):
return common.random_real_solution(self._solution_size, self.
_lower_bounds, self._upper_bounds)
|
generate_solution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return common.random_real_solution(self._solution_size, self.\n _lower_bounds, self._upper_bounds)\n",
"role": "user"
},
{
"content": "generate_solution",
"role": "assistant"
}
] |
def x(self, population, fitnesses):
return [self._next_solution() for _ in range(self._population_size)]
|
next_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, population, fitnesses):\n return [self._next_solution() for _ in range(self._population_size)]\n",
"role": "user"
},
{
"content": "next_population",
"role": "assistant"
}
] |
def x(self):
groups = self._groups or self.get_children_paths(self.root_path)
for group in groups:
node = Node(name=group, parent=self.root)
self.root.children.append(node)
self._init_sub_groups(node)
|
build_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n groups = self._groups or self.get_children_paths(self.root_path)\n for group in groups:\n node = Node(name=group, parent=self.root)\n self.root.children.append(node)\n self._init_sub_groups(node)\n",
"role": "user"
},
{
"content": "build_tree",
"role": "assistant"
}
] |
def x(self, parent):
if self._sub_groups:
for sub_group in self._sub_groups:
for component in split_path_components(sub_group):
fp = os.path.join(parent.full_path, component)
if os.path.exists(fp):
node = Node(name=component, parent=parent)
parent.children.append(node)
else:
node = parent.create_cgroup(component)
parent = node
self._init_children(node)
else:
self._init_children(parent)
|
init_sub_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent):\n if self._sub_groups:\n for sub_group in self._sub_groups:\n for component in split_path_components(sub_group):\n fp = os.path.join(parent.full_path, component)\n if os.path.exists(fp):\n node = Node(name=component, parent=parent)\n parent.children.append(node)\n else:\n node = parent.create_cgroup(component)\n parent = node\n self._init_children(node)\n else:\n self._init_children(parent)\n",
"role": "user"
},
{
"content": "init_sub_groups",
"role": "assistant"
}
] |
def x(self, parent):
for dir_name in self.get_children_paths(parent.full_path):
child = Node(name=dir_name, parent=parent)
parent.children.append(child)
self._init_children(child)
|
init_children
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent):\n for dir_name in self.get_children_paths(parent.full_path):\n child = Node(name=dir_name, parent=parent)\n parent.children.append(child)\n self._init_children(child)\n",
"role": "user"
},
{
"content": "init_children",
"role": "assistant"
}
] |
def x(self):
if self.parent:
return os.path.join(self.parent.full_path, self.name)
return self.name
|
full_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.parent:\n return os.path.join(self.parent.full_path, self.name)\n return self.name\n",
"role": "user"
},
{
"content": "full_path",
"role": "assistant"
}
] |
def x(self):
if self.parent:
try:
parent_path = self.parent.path.encode()
except AttributeError:
parent_path = self.parent.path
return os.path.join(parent_path, self.name)
return b'/'
|
path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.parent:\n try:\n parent_path = self.parent.path.encode()\n except AttributeError:\n parent_path = self.parent.path\n return os.path.join(parent_path, self.name)\n return b'/'\n",
"role": "user"
},
{
"content": "path",
"role": "assistant"
}
] |
def x(self):
if self.parent is None:
return self.NODE_ROOT
elif self.parent.node_type == self.NODE_ROOT:
return self.NODE_CONTROLLER_ROOT
elif b'.slice' in self.name or b'.partition' in self.name:
return self.NODE_SLICE
elif b'.scope' in self.name:
return self.NODE_SCOPE
else:
return self.NODE_CGROUP
|
get_node_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.parent is None:\n return self.NODE_ROOT\n elif self.parent.node_type == self.NODE_ROOT:\n return self.NODE_CONTROLLER_ROOT\n elif b'.slice' in self.name or b'.partition' in self.name:\n return self.NODE_SLICE\n elif b'.scope' in self.name:\n return self.NODE_SCOPE\n else:\n return self.NODE_CGROUP\n",
"role": "user"
},
{
"content": "get_node_type",
"role": "assistant"
}
] |
def x(self):
if (self.node_type == self.NODE_CONTROLLER_ROOT and self.name in self.
CONTROLLERS):
return self.name
elif self.parent:
return self.parent.controller_type
else:
return None
|
get_controller_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if (self.node_type == self.NODE_CONTROLLER_ROOT and self.name in self.\n CONTROLLERS):\n return self.name\n elif self.parent:\n return self.parent.controller_type\n else:\n return None\n",
"role": "user"
},
{
"content": "get_controller_type",
"role": "assistant"
}
] |
def x(self, name):
node = Node(name, parent=self)
if node in self.children:
raise RuntimeError('Node {} already exists under {}'.format(name,
self.path))
name = name.encode()
fp = os.path.join(self.full_path, name)
os.mkdir(fp)
self.children.append(node)
return node
|
create_cgroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n node = Node(name, parent=self)\n if node in self.children:\n raise RuntimeError('Node {} already exists under {}'.format(name,\n self.path))\n name = name.encode()\n fp = os.path.join(self.full_path, name)\n os.mkdir(fp)\n self.children.append(node)\n return node\n",
"role": "user"
},
{
"content": "create_cgroup",
"role": "assistant"
}
] |
def x(self, name):
name = name.encode()
fp = os.path.join(self.full_path, name)
if os.path.exists(fp):
os.rmdir(fp)
node = Node(name, parent=self)
try:
self.children.remove(node)
except ValueError:
return
|
delete_cgroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n name = name.encode()\n fp = os.path.join(self.full_path, name)\n if os.path.exists(fp):\n os.rmdir(fp)\n node = Node(name, parent=self)\n try:\n self.children.remove(node)\n except ValueError:\n return\n",
"role": "user"
},
{
"content": "delete_cgroup",
"role": "assistant"
}
] |
def x(self):
for child in self.children:
child.delete_empty_children()
try:
if os.path.exists(child.full_path):
os.rmdir(child.full_path)
except OSError:
pass
else:
self.children.remove(child)
|
delete_empty_children
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for child in self.children:\n child.delete_empty_children()\n try:\n if os.path.exists(child.full_path):\n os.rmdir(child.full_path)\n except OSError:\n pass\n else:\n self.children.remove(child)\n",
"role": "user"
},
{
"content": "delete_empty_children",
"role": "assistant"
}
] |
def x(self, node):
if self.controllers.get(node.controller_type, None):
raise RuntimeError(
'Cannot add node {} to the node group. A node for {} group is already assigned'
.format(node, node.controller_type))
self.nodes.append(node)
if node.controller:
self.controllers[node.controller_type] = node.controller
setattr(self, node.controller_type, node.controller)
|
add_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node):\n if self.controllers.get(node.controller_type, None):\n raise RuntimeError(\n 'Cannot add node {} to the node group. A node for {} group is already assigned'\n .format(node, node.controller_type))\n self.nodes.append(node)\n if node.controller:\n self.controllers[node.controller_type] = node.controller\n setattr(self, node.controller_type, node.controller)\n",
"role": "user"
},
{
"content": "add_node",
"role": "assistant"
}
] |
def x(self):
tasks = set()
for node in walk_tree(self):
for ctrl in node.controllers.values():
tasks.update(ctrl.tasks)
return tasks
|
group_tasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tasks = set()\n for node in walk_tree(self):\n for ctrl in node.controllers.values():\n tasks.update(ctrl.tasks)\n return tasks\n",
"role": "user"
},
{
"content": "group_tasks",
"role": "assistant"
}
] |
def x(self):
tasks = set()
for ctrl in self.controllers.values():
tasks.update(ctrl.tasks)
return tasks
|
tasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tasks = set()\n for ctrl in self.controllers.values():\n tasks.update(ctrl.tasks)\n return tasks\n",
"role": "user"
},
{
"content": "tasks",
"role": "assistant"
}
] |
def x(self, filename):
return os.path.join(self.node.full_path, filename)
|
filepath
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n return os.path.join(self.node.full_path, filename)\n",
"role": "user"
},
{
"content": "filepath",
"role": "assistant"
}
] |
def x(self, filename):
with open(self.filepath(filename)) as f:
return f.read().strip()
|
get_property
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n with open(self.filepath(filename)) as f:\n return f.read().strip()\n",
"role": "user"
},
{
"content": "get_property",
"role": "assistant"
}
] |
def x(self, filename, value):
with open(self.filepath(filename), 'w') as f:
return f.write(str(value))
|
set_property
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, value):\n with open(self.filepath(filename), 'w') as f:\n return f.write(str(value))\n",
"role": "user"
},
{
"content": "set_property",
"role": "assistant"
}
] |
def x(root):
yield root
for child in root.children:
for el in walk_tree(child):
yield el
|
walk_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root):\n yield root\n for child in root.children:\n for el in walk_tree(child):\n yield el\n",
"role": "user"
},
{
"content": "walk_tree",
"role": "assistant"
}
] |
def x(root):
for child in root.children:
for el in walk_up_tree(child):
yield el
yield root
|
walk_up_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root):\n for child in root.children:\n for el in walk_up_tree(child):\n yield el\n yield root\n",
"role": "user"
},
{
"content": "walk_up_tree",
"role": "assistant"
}
] |
def x(dev_path):
stat = os.lstat(dev_path)
return os.major(stat.st_rdev), os.minor(stat.st_rdev)
|
get_device_major_minor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dev_path):\n stat = os.lstat(dev_path)\n return os.major(stat.st_rdev), os.minor(stat.st_rdev)\n",
"role": "user"
},
{
"content": "get_device_major_minor",
"role": "assistant"
}
] |
def x(self):
schema = Schema(self.__class__.SCHEMA)
resolver = RefResolver.from_schema(schema, store=REGISTRY)
validate(self, schema, resolver=resolver)
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n schema = Schema(self.__class__.SCHEMA)\n resolver = RefResolver.from_schema(schema, store=REGISTRY)\n validate(self, schema, resolver=resolver)\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self):
with closing(StringIO()) as fileobj:
self.dump(fileobj)
return fileobj.getvalue()
|
dumps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with closing(StringIO()) as fileobj:\n self.dump(fileobj)\n return fileobj.getvalue()\n",
"role": "user"
},
{
"content": "dumps",
"role": "assistant"
}
] |
def x(cls, s):
with closing(StringIO(s)) as fileobj:
return cls.load(fileobj)
|
loads
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n with closing(StringIO(s)) as fileobj:\n return cls.load(fileobj)\n",
"role": "user"
},
{
"content": "loads",
"role": "assistant"
}
] |
def x(self, key):
schema = self.__class__.SCHEMA
plain_schema = schema.get('properties', {}).get(key)
if plain_schema is not None:
return plain_schema
pattern_properties = schema.get('patternProperties', {})
for pattern, pattern_schema in pattern_properties.items():
if match(pattern, key):
return pattern_schema
return schema.get('additionalProperties', True)
|
property_schema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n schema = self.__class__.SCHEMA\n plain_schema = schema.get('properties', {}).get(key)\n if plain_schema is not None:\n return plain_schema\n pattern_properties = schema.get('patternProperties', {})\n for pattern, pattern_schema in pattern_properties.items():\n if match(pattern, key):\n return pattern_schema\n return schema.get('additionalProperties', True)\n",
"role": "user"
},
{
"content": "property_schema",
"role": "assistant"
}
] |
def x(class_name, base, schema):
return type(class_name, (base,), dict(SCHEMA=schema))
|
make
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(class_name, base, schema):\n return type(class_name, (base,), dict(SCHEMA=schema))\n",
"role": "user"
},
{
"content": "make",
"role": "assistant"
}
] |
def x(name, base, schema):
class_name = make_class_name(name)
cls = register(make(class_name, base, schema))
globals()[class_name] = cls
|
make_definition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, base, schema):\n class_name = make_class_name(name)\n cls = register(make(class_name, base, schema))\n globals()[class_name] = cls\n",
"role": "user"
},
{
"content": "make_definition",
"role": "assistant"
}
] |
def x(cls):
definition_name = make_definition_name(cls.__name__)
REGISTRY[definition_name] = cls
return cls
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n definition_name = make_definition_name(cls.__name__)\n REGISTRY[definition_name] = cls\n return cls\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(schema):
if not isinstance(schema, dict) or '$ref' not in schema:
return None
ref = schema['$ref']
return REGISTRY.get(ref)
|
lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n if not isinstance(schema, dict) or '$ref' not in schema:\n return None\n ref = schema['$ref']\n return REGISTRY.get(ref)\n",
"role": "user"
},
{
"content": "lookup",
"role": "assistant"
}
] |
def x(self):
if self._connected or self.is_alive():
raise ConnectionExistsError('Already connected')
self.start()
with self._lock:
self._connect_cond.wait_for(lambda : self._connected)
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._connected or self.is_alive():\n raise ConnectionExistsError('Already connected')\n self.start()\n with self._lock:\n self._connect_cond.wait_for(lambda : self._connected)\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self, cmd):
_LOGGER.debug('Sending: %s' % cmd)
try:
self._telnet.write(cmd.encode('ascii') + b'\r\n')
except BrokenPipeError:
self._disconnect_locked()
|
send_locked
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmd):\n _LOGGER.debug('Sending: %s' % cmd)\n try:\n self._telnet.write(cmd.encode('ascii') + b'\\r\\n')\n except BrokenPipeError:\n self._disconnect_locked()\n",
"role": "user"
},
{
"content": "send_locked",
"role": "assistant"
}
] |
def x(self):
self._telnet = telnetlib.Telnet(self._host)
self._telnet.read_until(LutronConnection.USER_PROMPT)
self._telnet.write(self._user + b'\r\n')
self._telnet.read_until(LutronConnection.PW_PROMPT)
self._telnet.write(self._password + b'\r\n')
self._telnet.read_until(LutronConnection.PROMPT)
self._send_locked('#MONITORING,12,2')
self._send_locked('#MONITORING,255,2')
self._send_locked('#MONITORING,3,1')
self._send_locked('#MONITORING,4,1')
self._send_locked('#MONITORING,5,1')
self._send_locked('#MONITORING,6,1')
self._send_locked('#MONITORING,8,1')
|
do_login_locked
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._telnet = telnetlib.Telnet(self._host)\n self._telnet.read_until(LutronConnection.USER_PROMPT)\n self._telnet.write(self._user + b'\\r\\n')\n self._telnet.read_until(LutronConnection.PW_PROMPT)\n self._telnet.write(self._password + b'\\r\\n')\n self._telnet.read_until(LutronConnection.PROMPT)\n self._send_locked('#MONITORING,12,2')\n self._send_locked('#MONITORING,255,2')\n self._send_locked('#MONITORING,3,1')\n self._send_locked('#MONITORING,4,1')\n self._send_locked('#MONITORING,5,1')\n self._send_locked('#MONITORING,6,1')\n self._send_locked('#MONITORING,8,1')\n",
"role": "user"
},
{
"content": "do_login_locked",
"role": "assistant"
}
] |
def x(self):
self._connected = False
self._connect_cond.notify_all()
self._telnet = None
_LOGGER.warning('Disconnected')
|
disconnect_locked
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._connected = False\n self._connect_cond.notify_all()\n self._telnet = None\n _LOGGER.warning('Disconnected')\n",
"role": "user"
},
{
"content": "disconnect_locked",
"role": "assistant"
}
] |
def x(self):
with self._lock:
if not self._connected:
_LOGGER.info('Connecting')
self._do_login_locked()
self._connected = True
self._connect_cond.notify_all()
_LOGGER.info('Connected')
|
maybe_reconnect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with self._lock:\n if not self._connected:\n _LOGGER.info('Connecting')\n self._do_login_locked()\n self._connected = True\n self._connect_cond.notify_all()\n _LOGGER.info('Connected')\n",
"role": "user"
},
{
"content": "maybe_reconnect",
"role": "assistant"
}
] |
def x(self):
_LOGGER.info('Started')
while True:
self._maybe_reconnect()
line = ''
try:
t = self._telnet
if t is not None:
line = t.read_until(b'\n')
except EOFError:
try:
self._lock.acquire()
self._disconnect_locked()
continue
finally:
self._lock.release()
self._recv_cb(line.decode('ascii').rstrip())
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n _LOGGER.info('Started')\n while True:\n self._maybe_reconnect()\n line = ''\n try:\n t = self._telnet\n if t is not None:\n line = t.read_until(b'\\n')\n except EOFError:\n try:\n self._lock.acquire()\n self._disconnect_locked()\n continue\n finally:\n self._lock.release()\n self._recv_cb(line.decode('ascii').rstrip())\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
import xml.etree.ElementTree as ET
root = ET.fromstring(self._xml_db_str)
top_area = root.find('Areas').find('Area')
self.project_name = top_area.get('Name')
areas = top_area.find('Areas')
for area_xml in areas.getiterator('Area'):
area = self._parse_area(area_xml)
self.areas.append(area)
return True
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n import xml.etree.ElementTree as ET\n root = ET.fromstring(self._xml_db_str)\n top_area = root.find('Areas').find('Area')\n self.project_name = top_area.get('Name')\n areas = top_area.find('Areas')\n for area_xml in areas.getiterator('Area'):\n area = self._parse_area(area_xml)\n self.areas.append(area)\n return True\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, area_xml):
area = Area(self._lutron, name=area_xml.get('Name'), integration_id=int
(area_xml.get('IntegrationID')), occupancy_group_id=area_xml.get(
'OccupancyGroupAssignedToID'))
for output_xml in area_xml.find('Outputs'):
output = self._parse_output(output_xml)
area.add_output(output)
for device_group in area_xml.find('DeviceGroups'):
if device_group.tag == 'DeviceGroup':
devs = device_group.find('Devices')
elif device_group.tag == 'Device':
devs = [device_group]
else:
_LOGGER.info('Unknown tag in DeviceGroups child %s' % devs)
devs = []
for device_xml in devs:
if device_xml.tag != 'Device':
continue
if device_xml.get('DeviceType') in ('SEETOUCH_KEYPAD',
'SEETOUCH_TABLETOP_KEYPAD', 'PICO_KEYPAD',
'HYBRID_SEETOUCH_KEYPAD', 'MAIN_REPEATER'):
keypad = self._parse_keypad(device_xml)
area.add_keypad(keypad)
elif device_xml.get('DeviceType') == 'MOTION_SENSOR':
motion_sensor = self._parse_motion_sensor(device_xml)
area.add_sensor(motion_sensor)
return area
|
parse_area
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area_xml):\n area = Area(self._lutron, name=area_xml.get('Name'), integration_id=int\n (area_xml.get('IntegrationID')), occupancy_group_id=area_xml.get(\n 'OccupancyGroupAssignedToID'))\n for output_xml in area_xml.find('Outputs'):\n output = self._parse_output(output_xml)\n area.add_output(output)\n for device_group in area_xml.find('DeviceGroups'):\n if device_group.tag == 'DeviceGroup':\n devs = device_group.find('Devices')\n elif device_group.tag == 'Device':\n devs = [device_group]\n else:\n _LOGGER.info('Unknown tag in DeviceGroups child %s' % devs)\n devs = []\n for device_xml in devs:\n if device_xml.tag != 'Device':\n continue\n if device_xml.get('DeviceType') in ('SEETOUCH_KEYPAD',\n 'SEETOUCH_TABLETOP_KEYPAD', 'PICO_KEYPAD',\n 'HYBRID_SEETOUCH_KEYPAD', 'MAIN_REPEATER'):\n keypad = self._parse_keypad(device_xml)\n area.add_keypad(keypad)\n elif device_xml.get('DeviceType') == 'MOTION_SENSOR':\n motion_sensor = self._parse_motion_sensor(device_xml)\n area.add_sensor(motion_sensor)\n return area\n",
"role": "user"
},
{
"content": "parse_area",
"role": "assistant"
}
] |
def x(self, output_xml):
output = Output(self._lutron, name=output_xml.get('Name'), watts=int(
output_xml.get('Wattage')), output_type=output_xml.get('OutputType'
), integration_id=int(output_xml.get('IntegrationID')))
return output
|
parse_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output_xml):\n output = Output(self._lutron, name=output_xml.get('Name'), watts=int(\n output_xml.get('Wattage')), output_type=output_xml.get('OutputType'\n ), integration_id=int(output_xml.get('IntegrationID')))\n return output\n",
"role": "user"
},
{
"content": "parse_output",
"role": "assistant"
}
] |
def x(self, keypad_xml):
keypad = Keypad(self._lutron, name=keypad_xml.get('Name'),
integration_id=int(keypad_xml.get('IntegrationID')))
components = keypad_xml.find('Components')
if not components:
return keypad
for comp in components:
if comp.tag != 'Component':
continue
comp_type = comp.get('ComponentType')
if comp_type == 'BUTTON':
button = self._parse_button(keypad, comp)
keypad.add_button(button)
elif comp_type == 'LED':
led = self._parse_led(keypad, comp)
keypad.add_led(led)
return keypad
|
parse_keypad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keypad_xml):\n keypad = Keypad(self._lutron, name=keypad_xml.get('Name'),\n integration_id=int(keypad_xml.get('IntegrationID')))\n components = keypad_xml.find('Components')\n if not components:\n return keypad\n for comp in components:\n if comp.tag != 'Component':\n continue\n comp_type = comp.get('ComponentType')\n if comp_type == 'BUTTON':\n button = self._parse_button(keypad, comp)\n keypad.add_button(button)\n elif comp_type == 'LED':\n led = self._parse_led(keypad, comp)\n keypad.add_led(led)\n return keypad\n",
"role": "user"
},
{
"content": "parse_keypad",
"role": "assistant"
}
] |
def x(self, keypad, component_xml):
button_xml = component_xml.find('Button')
name = button_xml.get('Engraving')
button_type = button_xml.get('ButtonType')
direction = button_xml.get('Direction')
if button_type == 'SingleSceneRaiseLower':
name = 'Dimmer ' + direction
if not name:
name = 'Unknown Button'
button = Button(self._lutron, keypad, name=name, num=int(component_xml.
get('ComponentNumber')), button_type=button_type, direction=direction)
return button
|
parse_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keypad, component_xml):\n button_xml = component_xml.find('Button')\n name = button_xml.get('Engraving')\n button_type = button_xml.get('ButtonType')\n direction = button_xml.get('Direction')\n if button_type == 'SingleSceneRaiseLower':\n name = 'Dimmer ' + direction\n if not name:\n name = 'Unknown Button'\n button = Button(self._lutron, keypad, name=name, num=int(component_xml.\n get('ComponentNumber')), button_type=button_type, direction=direction)\n return button\n",
"role": "user"
},
{
"content": "parse_button",
"role": "assistant"
}
] |
def x(self, keypad, component_xml):
component_num = int(component_xml.get('ComponentNumber'))
led_num = component_num - 80
led = Led(self._lutron, keypad, name='LED %d' % led_num, led_num=
led_num, component_num=component_num)
return led
|
parse_led
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keypad, component_xml):\n component_num = int(component_xml.get('ComponentNumber'))\n led_num = component_num - 80\n led = Led(self._lutron, keypad, name='LED %d' % led_num, led_num=\n led_num, component_num=component_num)\n return led\n",
"role": "user"
},
{
"content": "parse_led",
"role": "assistant"
}
] |
def x(self, sensor_xml):
return MotionSensor(self._lutron, name=sensor_xml.get('Name'),
integration_id=int(sensor_xml.get('IntegrationID')))
|
parse_motion_sensor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sensor_xml):\n return MotionSensor(self._lutron, name=sensor_xml.get('Name'),\n integration_id=int(sensor_xml.get('IntegrationID')))\n",
"role": "user"
},
{
"content": "parse_motion_sensor",
"role": "assistant"
}
] |
def x(self, obj, handler):
if not isinstance(obj, LutronEntity):
raise InvalidSubscription('Subscription target not a LutronEntity')
_LOGGER.warning(
'DEPRECATED: Subscribing via Lutron.subscribe is obsolete. Please use LutronEntity.subscribe'
)
if obj not in self._legacy_subscribers:
self._legacy_subscribers[obj] = handler
obj.subscribe(self._dispatch_legacy_subscriber, None)
|
subscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, handler):\n if not isinstance(obj, LutronEntity):\n raise InvalidSubscription('Subscription target not a LutronEntity')\n _LOGGER.warning(\n 'DEPRECATED: Subscribing via Lutron.subscribe is obsolete. Please use LutronEntity.subscribe'\n )\n if obj not in self._legacy_subscribers:\n self._legacy_subscribers[obj] = handler\n obj.subscribe(self._dispatch_legacy_subscriber, None)\n",
"role": "user"
},
{
"content": "subscribe",
"role": "assistant"
}
] |
def x(self, cmd_type, obj):
ids = self._ids.setdefault(cmd_type, {})
if obj.id in ids:
raise IntegrationIdExistsError
self._ids[cmd_type][obj.id] = obj
|
register_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmd_type, obj):\n ids = self._ids.setdefault(cmd_type, {})\n if obj.id in ids:\n raise IntegrationIdExistsError\n self._ids[cmd_type][obj.id] = obj\n",
"role": "user"
},
{
"content": "register_id",
"role": "assistant"
}
] |
def x(self, obj, *args, **kwargs):
if obj in self._legacy_subscribers:
self._legacy_subscribers[obj](obj)
|
dispatch_legacy_subscriber
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, *args, **kwargs):\n if obj in self._legacy_subscribers:\n self._legacy_subscribers[obj](obj)\n",
"role": "user"
},
{
"content": "dispatch_legacy_subscriber",
"role": "assistant"
}
] |
def x(self, line):
if line == '':
return
if line[0] != Lutron.OP_RESPONSE:
_LOGGER.debug('ignoring %s' % line)
return
parts = line[1:].split(',')
cmd_type = parts[0]
integration_id = int(parts[1])
args = parts[2:]
if cmd_type not in self._ids:
_LOGGER.info('Unknown cmd %s (%s)' % (cmd_type, line))
return
ids = self._ids[cmd_type]
if integration_id not in ids:
_LOGGER.warning('Unknown id %d (%s)' % (integration_id, line))
return
obj = ids[integration_id]
handled = obj.handle_update(args)
|
recv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n if line == '':\n return\n if line[0] != Lutron.OP_RESPONSE:\n _LOGGER.debug('ignoring %s' % line)\n return\n parts = line[1:].split(',')\n cmd_type = parts[0]\n integration_id = int(parts[1])\n args = parts[2:]\n if cmd_type not in self._ids:\n _LOGGER.info('Unknown cmd %s (%s)' % (cmd_type, line))\n return\n ids = self._ids[cmd_type]\n if integration_id not in ids:\n _LOGGER.warning('Unknown id %d (%s)' % (integration_id, line))\n return\n obj = ids[integration_id]\n handled = obj.handle_update(args)\n",
"role": "user"
},
{
"content": "recv",
"role": "assistant"
}
] |
def x(self, op, cmd, integration_id, *args):
out_cmd = ','.join((cmd, str(integration_id)) + tuple(str(x) for x in args)
)
self._conn.send(op + out_cmd)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op, cmd, integration_id, *args):\n out_cmd = ','.join((cmd, str(integration_id)) + tuple(str(x) for x in args)\n )\n self._conn.send(op + out_cmd)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(self):
import urllib.request
xmlfile = urllib.request.urlopen('http://' + self._host + '/DbXmlInfo.xml')
xml_db = xmlfile.read()
xmlfile.close()
_LOGGER.info('Loaded xml db')
parser = LutronXmlDbParser(lutron=self, xml_db_str=xml_db)
assert parser.parse()
self._areas = parser.areas
self._name = parser.project_name
_LOGGER.info('Found Lutron project: %s, %d areas' % (self._name, len(
self.areas)))
return True
|
load_xml_db
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n import urllib.request\n xmlfile = urllib.request.urlopen('http://' + self._host + '/DbXmlInfo.xml')\n xml_db = xmlfile.read()\n xmlfile.close()\n _LOGGER.info('Loaded xml db')\n parser = LutronXmlDbParser(lutron=self, xml_db_str=xml_db)\n assert parser.parse()\n self._areas = parser.areas\n self._name = parser.project_name\n _LOGGER.info('Found Lutron project: %s, %d areas' % (self._name, len(\n self.areas)))\n return True\n",
"role": "user"
},
{
"content": "load_xml_db",
"role": "assistant"
}
] |
def x(self, action):
ev = threading.Event()
first = False
with self.__lock:
if len(self.__events) == 0:
first = True
self.__events.append(ev)
if first:
action()
return ev
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n ev = threading.Event()\n first = False\n with self.__lock:\n if len(self.__events) == 0:\n first = True\n self.__events.append(ev)\n if first:\n action()\n return ev\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self, event: LutronEvent, params: Dict):
for handler, context in self._subscribers:
handler(self, context, event, params)
|
dispatch_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event: LutronEvent, params: Dict):\n for handler, context in self._subscribers:\n handler(self, context, event, params)\n",
"role": "user"
},
{
"content": "dispatch_event",
"role": "assistant"
}
] |
def x(self, handler: LutronEventHandler, context):
self._subscribers.append((handler, context))
|
subscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, handler: LutronEventHandler, context):\n self._subscribers.append((handler, context))\n",
"role": "user"
},
{
"content": "subscribe",
"role": "assistant"
}
] |
def x(self, args):
_LOGGER.debug('handle_update %d -- %s' % (self._integration_id, args))
state = int(args[0])
if state != Output._ACTION_ZONE_LEVEL:
return False
level = float(args[1])
_LOGGER.debug('Updating %d(%s): s=%d l=%f' % (self._integration_id,
self._name, state, level))
self._level = level
self._query_waiters.notify()
self._dispatch_event(Output.Event.LEVEL_CHANGED, {'level': self._level})
return True
|
handle_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, args):\n _LOGGER.debug('handle_update %d -- %s' % (self._integration_id, args))\n state = int(args[0])\n if state != Output._ACTION_ZONE_LEVEL:\n return False\n level = float(args[1])\n _LOGGER.debug('Updating %d(%s): s=%d l=%f' % (self._integration_id,\n self._name, state, level))\n self._level = level\n self._query_waiters.notify()\n self._dispatch_event(Output.Event.LEVEL_CHANGED, {'level': self._level})\n return True\n",
"role": "user"
},
{
"content": "handle_update",
"role": "assistant"
}
] |
def x(self):
self._lutron.send(Lutron.OP_QUERY, Output._CMD_TYPE, self.
_integration_id, Output._ACTION_ZONE_LEVEL)
|
do_query_level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._lutron.send(Lutron.OP_QUERY, Output._CMD_TYPE, self.\n _integration_id, Output._ACTION_ZONE_LEVEL)\n",
"role": "user"
},
{
"content": "do_query_level",
"role": "assistant"
}
] |
def x(self):
ev = self._query_waiters.request(self.__do_query_level)
ev.wait(1.0)
return self._level
|
level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ev = self._query_waiters.request(self.__do_query_level)\n ev.wait(1.0)\n return self._level\n",
"role": "user"
},
{
"content": "level",
"role": "assistant"
}
] |
def x(self, new_level):
if self._level == new_level:
return
self._lutron.send(Lutron.OP_EXECUTE, Output._CMD_TYPE, self.
_integration_id, Output._ACTION_ZONE_LEVEL, '%.2f' % new_level)
self._level = new_level
|
level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_level):\n if self._level == new_level:\n return\n self._lutron.send(Lutron.OP_EXECUTE, Output._CMD_TYPE, self.\n _integration_id, Output._ACTION_ZONE_LEVEL, '%.2f' % new_level)\n self._level = new_level\n",
"role": "user"
},
{
"content": "level",
"role": "assistant"
}
] |
def x(self, action, params):
_LOGGER.debug('Keypad: "%s" Handling "%s" Action: %s Params: %s"' % (
self._keypad.name, self.name, action, params))
return False
|
handle_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" Handling \"%s\" Action: %s Params: %s\"' % (\n self._keypad.name, self.name, action, params))\n return False\n",
"role": "user"
},
{
"content": "handle_update",
"role": "assistant"
}
] |
def x(self):
self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,
self.component_number, Button._ACTION_PRESS)
|
press
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Button._ACTION_PRESS)\n",
"role": "user"
},
{
"content": "press",
"role": "assistant"
}
] |
def x(self, action, params):
_LOGGER.debug('Keypad: "%s" %s Action: %s Params: %s"' % (self._keypad.
name, self, action, params))
ev_map = {Button._ACTION_PRESS: Button.Event.PRESSED, Button.
_ACTION_RELEASE: Button.Event.RELEASED}
if action not in ev_map:
_LOGGER.debug('Unknown action %d for button %d in keypad %d' % (
action, self.number, self.keypad.name))
return False
self._dispatch_event(ev_map[action], {})
return True
|
handle_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" %s Action: %s Params: %s\"' % (self._keypad.\n name, self, action, params))\n ev_map = {Button._ACTION_PRESS: Button.Event.PRESSED, Button.\n _ACTION_RELEASE: Button.Event.RELEASED}\n if action not in ev_map:\n _LOGGER.debug('Unknown action %d for button %d in keypad %d' % (\n action, self.number, self.keypad.name))\n return False\n self._dispatch_event(ev_map[action], {})\n return True\n",
"role": "user"
},
{
"content": "handle_update",
"role": "assistant"
}
] |
def x(self):
self._lutron.send(Lutron.OP_QUERY, Keypad._CMD_TYPE, self._keypad.id,
self.component_number, Led._ACTION_LED_STATE)
|
do_query_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._lutron.send(Lutron.OP_QUERY, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Led._ACTION_LED_STATE)\n",
"role": "user"
},
{
"content": "do_query_state",
"role": "assistant"
}
] |
def x(self):
ev = self._query_waiters.request(self.__do_query_state)
ev.wait(1.0)
return self._state
|
state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ev = self._query_waiters.request(self.__do_query_state)\n ev.wait(1.0)\n return self._state\n",
"role": "user"
},
{
"content": "state",
"role": "assistant"
}
] |
def x(self, new_state: bool):
self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,
self.component_number, Led._ACTION_LED_STATE, int(new_state))
self._state = new_state
|
state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_state: bool):\n self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Led._ACTION_LED_STATE, int(new_state))\n self._state = new_state\n",
"role": "user"
},
{
"content": "state",
"role": "assistant"
}
] |
def x(self, action, params):
_LOGGER.debug('Keypad: "%s" %s Action: %s Params: %s"' % (self._keypad.
name, self, action, params))
if action != Led._ACTION_LED_STATE:
_LOGGER.debug('Unknown action %d for led %d in keypad %d' % (action,
self.number, self.keypad.name))
return False
elif len(params) < 1:
_LOGGER.debug(
'Unknown params %s (action %d on led %d in keypad %d)' % (
params, action, self.number, self.keypad.name))
return False
self._state = bool(params[0])
self._query_waiters.notify()
self._dispatch_event(Led.Event.STATE_CHANGED, {'state': self._state})
return True
|
handle_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" %s Action: %s Params: %s\"' % (self._keypad.\n name, self, action, params))\n if action != Led._ACTION_LED_STATE:\n _LOGGER.debug('Unknown action %d for led %d in keypad %d' % (action,\n self.number, self.keypad.name))\n return False\n elif len(params) < 1:\n _LOGGER.debug(\n 'Unknown params %s (action %d on led %d in keypad %d)' % (\n params, action, self.number, self.keypad.name))\n return False\n self._state = bool(params[0])\n self._query_waiters.notify()\n self._dispatch_event(Led.Event.STATE_CHANGED, {'state': self._state})\n return True\n",
"role": "user"
},
{
"content": "handle_update",
"role": "assistant"
}
] |
def x(self, button):
self._buttons.append(button)
self._components[button.component_number] = button
|
add_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, button):\n self._buttons.append(button)\n self._components[button.component_number] = button\n",
"role": "user"
},
{
"content": "add_button",
"role": "assistant"
}
] |
def x(self, led):
self._leds.append(led)
self._components[led.component_number] = led
|
add_led
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, led):\n self._leds.append(led)\n self._components[led.component_number] = led\n",
"role": "user"
},
{
"content": "add_led",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.