source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(vec_a, vec_b): if len(vec_a) != len(vec_b): raise ValueError('len(vec_a) must equal len(vec_b)') return sum(map(lambda a, b: abs(a - b), vec_a, vec_b))
manhattan_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vec_a, vec_b):\n if len(vec_a) != len(vec_b):\n raise ValueError('len(vec_a) must equal len(vec_b)')\n return sum(map(lambda a, b: abs(a - b), vec_a, vec_b))\n", "role": "user" }, { "content": "manhattan_distance", "role": "assistant" } ]
def x(fitnesses): min_fitness = min(fitnesses) if min_fitness < 0.0: fitnesses = map(lambda f: f - min_fitness, fitnesses) fitness_sum = sum(fitnesses) prob_sum = 0.0 probabilities = [] for fitness in fitnesses: if fitness < 0: raise ValueError('Fitness cannot be negative, fitness = {}.'. format(fitness)) prob_sum += fitness / fitness_sum probabilities.append(prob_sum) probabilities[-1] += 0.0001 return probabilities
fitnesses_to_probabilities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fitnesses):\n min_fitness = min(fitnesses)\n if min_fitness < 0.0:\n fitnesses = map(lambda f: f - min_fitness, fitnesses)\n fitness_sum = sum(fitnesses)\n prob_sum = 0.0\n probabilities = []\n for fitness in fitnesses:\n if fitness < 0:\n raise ValueError('Fitness cannot be negative, fitness = {}.'.\n format(fitness))\n prob_sum += fitness / fitness_sum\n probabilities.append(prob_sum)\n probabilities[-1] += 0.0001\n return probabilities\n", "role": "user" }, { "content": "fitnesses_to_probabilities", "role": "assistant" } ]
def x(parents): crossover_point = random.randint(1, len(parents[0]) - 1) return _one_parent_crossover(parents[0], parents[1], crossover_point ), _one_parent_crossover(parents[1], parents[0], crossover_point)
one_point_crossover
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parents):\n crossover_point = random.randint(1, len(parents[0]) - 1)\n return _one_parent_crossover(parents[0], parents[1], crossover_point\n ), _one_parent_crossover(parents[1], parents[0], crossover_point)\n", "role": "user" }, { "content": "one_point_crossover", "role": "assistant" } ]
def x(parents): chromosome_length = len(parents[0]) children = [[], []] for i in range(chromosome_length): selected_parent = random.randint(0, 1) children[0].append(parents[selected_parent][i]) children[1].append(parents[1 - selected_parent][i]) return children
uniform_crossover
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parents):\n chromosome_length = len(parents[0])\n children = [[], []]\n for i in range(chromosome_length):\n selected_parent = random.randint(0, 1)\n children[0].append(parents[selected_parent][i])\n children[1].append(parents[1 - selected_parent][i])\n return children\n", "role": "user" }, { "content": "uniform_crossover", "role": "assistant" } ]
def x(population, mutation_chance): for chromosome in population: for i in range(len(chromosome)): if random.uniform(0.0, 1.0) <= mutation_chance: chromosome[i] = 1 - chromosome[i]
random_flip_mutate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(population, mutation_chance):\n for chromosome in population:\n for i in range(len(chromosome)):\n if random.uniform(0.0, 1.0) <= mutation_chance:\n chromosome[i] = 1 - chromosome[i]\n", "role": "user" }, { "content": "random_flip_mutate", "role": "assistant" } ]
def x(list_): item_indices = {} for i, item in enumerate(list_): try: item_indices[item].append(i) except KeyError: item_indices[item] = [i] return item_indices
duplicates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(list_):\n item_indices = {}\n for i, item in enumerate(list_):\n try:\n item_indices[item].append(i)\n except KeyError:\n item_indices[item] = [i]\n return item_indices\n", "role": "user" }, { "content": "duplicates", "role": "assistant" } ]
def x(optimizer, meta_parameters, parameter_locks): locked_values = {} if parameter_locks: for name in parameter_locks: locked_values[name] = getattr(optimizer, name) meta_parameters.pop(name) return locked_values
parse_parameter_locks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(optimizer, meta_parameters, parameter_locks):\n locked_values = {}\n if parameter_locks:\n for name in parameter_locks:\n locked_values[name] = getattr(optimizer, name)\n meta_parameters.pop(name)\n return locked_values\n", "role": "user" }, { "content": "parse_parameter_locks", "role": "assistant" } ]
def x(meta_parameters): solution_size = 0 for _, parameters in meta_parameters.iteritems(): if parameters['type'] == 'discrete': num_values = len(parameters['values']) binary_size = helpers.binary_size(num_values) elif parameters['type'] == 'int': int_range = parameters['max'] - parameters['min'] + 1 binary_size = helpers.binary_size(int_range) elif parameters['type'] == 'float': float_range = parameters['max'] - parameters['min'] binary_size = helpers.binary_size(float_range * 1000) else: raise ValueError('Parameter type "{}" does not match known values' .format(parameters['type'])) parameters['binary_size'] = binary_size solution_size += binary_size return solution_size
get_hyperparameter_solution_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta_parameters):\n solution_size = 0\n for _, parameters in meta_parameters.iteritems():\n if parameters['type'] == 'discrete':\n num_values = len(parameters['values'])\n binary_size = helpers.binary_size(num_values)\n elif parameters['type'] == 'int':\n int_range = parameters['max'] - parameters['min'] + 1\n binary_size = helpers.binary_size(int_range)\n elif parameters['type'] == 'float':\n float_range = parameters['max'] - parameters['min']\n binary_size = helpers.binary_size(float_range * 1000)\n else:\n raise ValueError('Parameter type \"{}\" does not match known values'\n .format(parameters['type']))\n parameters['binary_size'] = binary_size\n solution_size += binary_size\n return solution_size\n", "role": "user" }, { "content": "get_hyperparameter_solution_size", "role": "assistant" } ]
def x(locked_values, meta_parameters): def x(solution): hyperparameters = copy.deepcopy(locked_values) index = 0 for name, parameters in meta_parameters.iteritems(): binary_size = parameters['binary_size'] binary = solution[index:index + binary_size] index += binary_size if parameters['type'] == 'discrete': i = helpers.binary_to_int(binary, upper_bound=len( parameters['values']) - 1) value = parameters['values'][i] elif parameters['type'] == 'int': value = helpers.binary_to_int(binary, lower_bound= parameters['min'], upper_bound=parameters['max']) elif parameters['type'] == 'float': value = helpers.binary_to_float(binary, lower_bound= parameters['min'], upper_bound=parameters['max']) else: raise ValueError( 'Parameter type "{}" does not match known values'. format(parameters['type'])) hyperparameters[name] = value return hyperparameters return decode
make_hyperparameter_decode_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(locked_values, meta_parameters):\n\n def x(solution):\n hyperparameters = copy.deepcopy(locked_values)\n index = 0\n for name, parameters in meta_parameters.iteritems():\n binary_size = parameters['binary_size']\n binary = solution[index:index + binary_size]\n index += binary_size\n if parameters['type'] == 'discrete':\n i = helpers.binary_to_int(binary, upper_bound=len(\n parameters['values']) - 1)\n value = parameters['values'][i]\n elif parameters['type'] == 'int':\n value = helpers.binary_to_int(binary, lower_bound=\n parameters['min'], upper_bound=parameters['max'])\n elif parameters['type'] == 'float':\n value = helpers.binary_to_float(binary, lower_bound=\n parameters['min'], upper_bound=parameters['max'])\n else:\n raise ValueError(\n 'Parameter type \"{}\" does not match known values'.\n format(parameters['type']))\n hyperparameters[name] = value\n return hyperparameters\n return decode\n", "role": "user" }, { "content": "make_hyperparameter_decode_func", "role": "assistant" } ]
def x(parameters, _optimizer, _problems, _master_fitness_dict, _runs=20): optimizer = copy.deepcopy(_optimizer) optimizer._set_hyperparameters(parameters) optimizer.logging = False if _master_fitness_dict != None: optimizer.clear_cache = False optimizer._Optimizer__encoded_cache = _master_fitness_dict all_evaluation_runs = [] solutions_found = [] for _ in range(_runs): for problem in _problems: optimizer.optimize(problem) all_evaluation_runs.append(optimizer.fitness_runs) if optimizer.solution_found: solutions_found.append(1.0) else: solutions_found.append(0.0) fitness = 1.0 / helpers.avg(all_evaluation_runs) fitness = fitness * helpers.avg(solutions_found) ** 2 + 1e-19 return fitness
meta_fitness_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parameters, _optimizer, _problems, _master_fitness_dict, _runs=20):\n optimizer = copy.deepcopy(_optimizer)\n optimizer._set_hyperparameters(parameters)\n optimizer.logging = False\n if _master_fitness_dict != None:\n optimizer.clear_cache = False\n optimizer._Optimizer__encoded_cache = _master_fitness_dict\n all_evaluation_runs = []\n solutions_found = []\n for _ in range(_runs):\n for problem in _problems:\n optimizer.optimize(problem)\n all_evaluation_runs.append(optimizer.fitness_runs)\n if optimizer.solution_found:\n solutions_found.append(1.0)\n else:\n solutions_found.append(0.0)\n fitness = 1.0 / helpers.avg(all_evaluation_runs)\n fitness = fitness * helpers.avg(solutions_found) ** 2 + 1e-19\n return fitness\n", "role": "user" }, { "content": "meta_fitness_func", "role": "assistant" } ]
def x(self, fitness_function=None, decode_function=None, fitness_args=None, decode_args=None, fitness_kwargs=None, decode_kwargs=None): if fitness_function is None: fitness_function = self._fitness_function if decode_function is None: decode_function = self._decode_function if fitness_args is None: fitness_args = self._fitness_args if decode_args is None: decode_args = self._decode_args if fitness_kwargs is None: fitness_kwargs = self._fitness_kwargs if decode_kwargs is None: decode_kwargs = self._decode_kwargs return Problem(fitness_function, decode_function=decode_function, fitness_args=fitness_args, decode_args=decode_args, fitness_kwargs= fitness_kwargs, decode_kwargs=decode_kwargs)
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fitness_function=None, decode_function=None, fitness_args=None,\n decode_args=None, fitness_kwargs=None, decode_kwargs=None):\n if fitness_function is None:\n fitness_function = self._fitness_function\n if decode_function is None:\n decode_function = self._decode_function\n if fitness_args is None:\n fitness_args = self._fitness_args\n if decode_args is None:\n decode_args = self._decode_args\n if fitness_kwargs is None:\n fitness_kwargs = self._fitness_kwargs\n if decode_kwargs is None:\n decode_kwargs = self._decode_kwargs\n return Problem(fitness_function, decode_function=decode_function,\n fitness_args=fitness_args, decode_args=decode_args, fitness_kwargs=\n fitness_kwargs, decode_kwargs=decode_kwargs)\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self, solution): return self._fitness_function(solution, *self._fitness_args, **self. _fitness_kwargs)
get_fitness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, solution):\n return self._fitness_function(solution, *self._fitness_args, **self.\n _fitness_kwargs)\n", "role": "user" }, { "content": "get_fitness", "role": "assistant" } ]
def x(self, encoded_solution): return self._decode_function(encoded_solution, *self._decode_args, ** self._decode_kwargs)
decode_solution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded_solution):\n return self._decode_function(encoded_solution, *self._decode_args, **\n self._decode_kwargs)\n", "role": "user" }, { "content": "decode_solution", "role": "assistant" } ]
def x(self, problem, max_iterations=100, max_seconds=float('inf'), cache_encoded=True, cache_solution=False, clear_cache=True, logging_func=_print_fitnesses, n_processes=0): if not isinstance(problem, Problem): raise TypeError('problem must be an instance of Problem class') if n_processes > 0: try: pool = multiprocessing.Pool(processes=n_processes) except NameError: raise ImportError( 'pickle, dill, or multiprocessing library is not available.') else: pool = None self.__max_iterations = max_iterations self._reset() best_solution = {'solution': None, 'fitness': None} population = self.initial_population() try: start = time.clock() for self.iteration in itertools.count(1): solutions, fitnesses, finished = self._get_fitnesses(problem, population, cache_encoded=cache_encoded, cache_solution= cache_solution, pool=pool) best_index, best_fitness = max(enumerate(fitnesses), key= operator.itemgetter(1)) if best_fitness > best_solution['fitness']: best_solution['fitness'] = best_fitness best_solution['solution'] = solutions[best_index] if logging_func: logging_func(self.iteration, population, solutions, fitnesses, best_solution['solution'], best_solution[ 'fitness']) if finished: self.solution_found = True break if time.clock() - start >= max_seconds: break if self.iteration >= max_iterations: break population = self.next_population(population, fitnesses) self.best_solution = best_solution['solution'] self.best_fitness = best_solution['fitness'] finally: if clear_cache: self.__encoded_cache = {} self.__solution_cache = {} self._get_encoded_key = self._get_encoded_key_type self._get_solution_key = self._get_solution_key_type try: pool.terminate() pool.close() except AttributeError: assert pool is None return self.best_solution
optimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, problem, max_iterations=100, max_seconds=float('inf'),\n cache_encoded=True, cache_solution=False, clear_cache=True,\n logging_func=_print_fitnesses, n_processes=0):\n if not isinstance(problem, Problem):\n raise TypeError('problem must be an instance of Problem class')\n if n_processes > 0:\n try:\n pool = multiprocessing.Pool(processes=n_processes)\n except NameError:\n raise ImportError(\n 'pickle, dill, or multiprocessing library is not available.')\n else:\n pool = None\n self.__max_iterations = max_iterations\n self._reset()\n best_solution = {'solution': None, 'fitness': None}\n population = self.initial_population()\n try:\n start = time.clock()\n for self.iteration in itertools.count(1):\n solutions, fitnesses, finished = self._get_fitnesses(problem,\n population, cache_encoded=cache_encoded, cache_solution=\n cache_solution, pool=pool)\n best_index, best_fitness = max(enumerate(fitnesses), key=\n operator.itemgetter(1))\n if best_fitness > best_solution['fitness']:\n best_solution['fitness'] = best_fitness\n best_solution['solution'] = solutions[best_index]\n if logging_func:\n logging_func(self.iteration, population, solutions,\n fitnesses, best_solution['solution'], best_solution[\n 'fitness'])\n if finished:\n self.solution_found = True\n break\n if time.clock() - start >= max_seconds:\n break\n if self.iteration >= max_iterations:\n break\n population = self.next_population(population, fitnesses)\n self.best_solution = best_solution['solution']\n self.best_fitness = best_solution['fitness']\n finally:\n if clear_cache:\n self.__encoded_cache = {}\n self.__solution_cache = {}\n self._get_encoded_key = self._get_encoded_key_type\n self._get_solution_key = self._get_solution_key_type\n try:\n pool.terminate()\n pool.close()\n except AttributeError:\n assert pool is None\n return self.best_solution\n", "role": "user" }, { "content": "optimize", "role": "assistant" } ]
def x(self): self.iteration = 0 self.fitness_runs = 0 self.best_solution = None self.best_fitness = None self.solution_found = False
reset_bookkeeping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.iteration = 0\n self.fitness_runs = 0\n self.best_solution = None\n self.best_fitness = None\n self.solution_found = False\n", "role": "user" }, { "content": "reset_bookkeeping", "role": "assistant" } ]
def x(self, problem, population, cache_encoded=True, cache_solution=False, pool=None): fitnesses = [None] * len(population) if cache_encoded: try: encoded_keys = map(self._get_encoded_key, population) to_decode_indices = [] for i, encoded_key in enumerate(encoded_keys): try: fitnesses[i] = self.__encoded_cache[encoded_key] except KeyError: to_decode_indices.append(i) except UnhashableError: encoded_keys = None to_decode_indices = range(len(population)) else: encoded_keys = None to_decode_indices = range(len(population)) if encoded_keys is None: to_decode_keys = None else: to_decode_keys = [encoded_keys[i] for i in to_decode_indices] solutions = [None] * len(population) for i, solution in zip(to_decode_indices, self._pmap(problem. decode_solution, [population[i] for i in to_decode_indices], to_decode_keys, pool)): solutions[i] = solution if cache_solution: try: if problem.hash_solution: hash_solution_func = problem.hash_solution else: hash_solution_func = self._get_solution_key solution_keys = [(hash_solution_func(solution) if solution is not None else None) for solution in solutions] to_eval_indices = [] for i, solution_key in enumerate(solution_keys): if solution_key is not None: try: fitnesses[i] = self.__solution_cache[solution_key] except KeyError: to_eval_indices.append(i) except UnhashableError: solution_keys = None to_eval_indices = to_decode_indices[:] else: solution_keys = None to_eval_indices = to_decode_indices[:] if solution_keys is None: if encoded_keys is None: to_eval_keys = None else: to_eval_keys = [encoded_keys[i] for i in to_eval_indices] else: to_eval_keys = [solution_keys[i] for i in to_eval_indices] finished = False eval_bookkeeping = {} for i, fitness_finished in zip(to_eval_indices, self._pmap(problem. get_fitness, [solutions[i] for i in to_eval_indices], to_eval_keys, pool, bookkeeping_dict=eval_bookkeeping)): try: fitness, maybe_finished = fitness_finished if maybe_finished: finished = True except TypeError: fitness = fitness_finished fitnesses[i] = fitness self.fitness_runs += len(eval_bookkeeping['key_indices']) if cache_encoded and encoded_keys is not None: for i in to_decode_indices: self.__encoded_cache[encoded_keys[i]] = fitnesses[i] if cache_solution and solution_keys is not None: for i in to_eval_indices: self.__solution_cache[solution_keys[i]] = fitnesses[i] return solutions, fitnesses, finished
get_fitnesses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, problem, population, cache_encoded=True, cache_solution=False,\n pool=None):\n fitnesses = [None] * len(population)\n if cache_encoded:\n try:\n encoded_keys = map(self._get_encoded_key, population)\n to_decode_indices = []\n for i, encoded_key in enumerate(encoded_keys):\n try:\n fitnesses[i] = self.__encoded_cache[encoded_key]\n except KeyError:\n to_decode_indices.append(i)\n except UnhashableError:\n encoded_keys = None\n to_decode_indices = range(len(population))\n else:\n encoded_keys = None\n to_decode_indices = range(len(population))\n if encoded_keys is None:\n to_decode_keys = None\n else:\n to_decode_keys = [encoded_keys[i] for i in to_decode_indices]\n solutions = [None] * len(population)\n for i, solution in zip(to_decode_indices, self._pmap(problem.\n decode_solution, [population[i] for i in to_decode_indices],\n to_decode_keys, pool)):\n solutions[i] = solution\n if cache_solution:\n try:\n if problem.hash_solution:\n hash_solution_func = problem.hash_solution\n else:\n hash_solution_func = self._get_solution_key\n solution_keys = [(hash_solution_func(solution) if solution is not\n None else None) for solution in solutions]\n to_eval_indices = []\n for i, solution_key in enumerate(solution_keys):\n if solution_key is not None:\n try:\n fitnesses[i] = self.__solution_cache[solution_key]\n except KeyError:\n to_eval_indices.append(i)\n except UnhashableError:\n solution_keys = None\n to_eval_indices = to_decode_indices[:]\n else:\n solution_keys = None\n to_eval_indices = to_decode_indices[:]\n if solution_keys is None:\n if encoded_keys is None:\n to_eval_keys = None\n else:\n to_eval_keys = [encoded_keys[i] for i in to_eval_indices]\n else:\n to_eval_keys = [solution_keys[i] for i in to_eval_indices]\n finished = False\n eval_bookkeeping = {}\n for i, fitness_finished in zip(to_eval_indices, self._pmap(problem.\n get_fitness, [solutions[i] for i in to_eval_indices], to_eval_keys,\n pool, bookkeeping_dict=eval_bookkeeping)):\n try:\n fitness, maybe_finished = fitness_finished\n if maybe_finished:\n finished = True\n except TypeError:\n fitness = fitness_finished\n fitnesses[i] = fitness\n self.fitness_runs += len(eval_bookkeeping['key_indices'])\n if cache_encoded and encoded_keys is not None:\n for i in to_decode_indices:\n self.__encoded_cache[encoded_keys[i]] = fitnesses[i]\n if cache_solution and solution_keys is not None:\n for i in to_eval_indices:\n self.__solution_cache[solution_keys[i]] = fitnesses[i]\n return solutions, fitnesses, finished\n", "role": "user" }, { "content": "get_fitnesses", "role": "assistant" } ]
def x(self, func, items, keys, pool, bookkeeping_dict=None): if keys is not None: key_indices = _duplicates(keys).values() else: key_indices = [[i] for i in range(len(items))] if pool is not None: results = pool.map(functools.partial(_unpickle_run, pickle.dumps( func)), [items[i[0]] for i in key_indices]) else: results = map(func, [items[i[0]] for i in key_indices]) if bookkeeping_dict is not None: bookkeeping_dict['key_indices'] = key_indices all_results = [None] * len(items) for indices, result in zip(key_indices, results): for j, i in enumerate(indices): if j > 0: result = copy.deepcopy(result) all_results[i] = result return all_results
pmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, items, keys, pool, bookkeeping_dict=None):\n if keys is not None:\n key_indices = _duplicates(keys).values()\n else:\n key_indices = [[i] for i in range(len(items))]\n if pool is not None:\n results = pool.map(functools.partial(_unpickle_run, pickle.dumps(\n func)), [items[i[0]] for i in key_indices])\n else:\n results = map(func, [items[i[0]] for i in key_indices])\n if bookkeeping_dict is not None:\n bookkeeping_dict['key_indices'] = key_indices\n all_results = [None] * len(items)\n for indices, result in zip(key_indices, results):\n for j, i in enumerate(indices):\n if j > 0:\n result = copy.deepcopy(result)\n all_results[i] = result\n return all_results\n", "role": "user" }, { "content": "pmap", "role": "assistant" } ]
def x(self, parameters): for name, value in parameters.iteritems(): try: getattr(self, name) except AttributeError: raise ValueError( 'Each parameter in parameters must be an attribute. {} is not.' .format(name)) setattr(self, name, value)
set_hyperparameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters):\n for name, value in parameters.iteritems():\n try:\n getattr(self, name)\n except AttributeError:\n raise ValueError(\n 'Each parameter in parameters must be an attribute. {} is not.'\n .format(name))\n setattr(self, name, value)\n", "role": "user" }, { "content": "set_hyperparameters", "role": "assistant" } ]
def x(self): hyperparameters = {} for key in self._hyperparameters: hyperparameters[key] = getattr(self, key) return hyperparameters
get_hyperparameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n hyperparameters = {}\n for key in self._hyperparameters:\n hyperparameters[key] = getattr(self, key)\n return hyperparameters\n", "role": "user" }, { "content": "get_hyperparameters", "role": "assistant" } ]
def x(self, problems, parameter_locks=None, smoothing=20, max_iterations= 100, _meta_optimizer=None, _low_memory=True): if smoothing <= 0: raise ValueError('smoothing must be > 0') if isinstance(problems, collections.Iterable): for problem in problems: if not isinstance(problem, Problem): raise TypeError( 'problem must be Problem instance or list of Problem instances' ) elif isinstance(problems, Problem): problems = [problems] else: raise TypeError( 'problem must be Problem instance or list of Problem instances') meta_parameters = copy.deepcopy(self._hyperparameters) locked_values = _parse_parameter_locks(self, meta_parameters, parameter_locks) solution_size = _get_hyperparameter_solution_size(meta_parameters) decode = _make_hyperparameter_decode_func(locked_values, meta_parameters) if _low_memory: master_fitness_dict = None else: master_fitness_dict = {} additional_parameters = {'_optimizer': self, '_problems': problems, '_runs': smoothing, '_master_fitness_dict': master_fitness_dict} META_FITNESS = Problem(_meta_fitness_func, decode_function=decode, fitness_kwargs=additional_parameters) if _meta_optimizer is None: from optimal import GenAlg _meta_optimizer = GenAlg(solution_size) else: _meta_optimizer._solution_size = solution_size best_parameters = _meta_optimizer.optimize(META_FITNESS, max_iterations =max_iterations) self._set_hyperparameters(best_parameters) return best_parameters
optimize_hyperparameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, problems, parameter_locks=None, smoothing=20, max_iterations=\n 100, _meta_optimizer=None, _low_memory=True):\n if smoothing <= 0:\n raise ValueError('smoothing must be > 0')\n if isinstance(problems, collections.Iterable):\n for problem in problems:\n if not isinstance(problem, Problem):\n raise TypeError(\n 'problem must be Problem instance or list of Problem instances'\n )\n elif isinstance(problems, Problem):\n problems = [problems]\n else:\n raise TypeError(\n 'problem must be Problem instance or list of Problem instances')\n meta_parameters = copy.deepcopy(self._hyperparameters)\n locked_values = _parse_parameter_locks(self, meta_parameters,\n parameter_locks)\n solution_size = _get_hyperparameter_solution_size(meta_parameters)\n decode = _make_hyperparameter_decode_func(locked_values, meta_parameters)\n if _low_memory:\n master_fitness_dict = None\n else:\n master_fitness_dict = {}\n additional_parameters = {'_optimizer': self, '_problems': problems,\n '_runs': smoothing, '_master_fitness_dict': master_fitness_dict}\n META_FITNESS = Problem(_meta_fitness_func, decode_function=decode,\n fitness_kwargs=additional_parameters)\n if _meta_optimizer is None:\n from optimal import GenAlg\n _meta_optimizer = GenAlg(solution_size)\n else:\n _meta_optimizer._solution_size = solution_size\n best_parameters = _meta_optimizer.optimize(META_FITNESS, max_iterations\n =max_iterations)\n self._set_hyperparameters(best_parameters)\n return best_parameters\n", "role": "user" }, { "content": "optimize_hyperparameters", "role": "assistant" } ]
def x(all_stats): aggregate_stats = {'means': [], 'standard_deviations': []} for optimizer_key in all_stats: mean_stats = copy.deepcopy(all_stats[optimizer_key]['mean']) mean_stats['name'] = optimizer_key aggregate_stats['means'].append(mean_stats) sd_stats = copy.deepcopy(all_stats[optimizer_key]['standard_deviation'] ) sd_stats['name'] = optimizer_key aggregate_stats['standard_deviations'].append(sd_stats) _add_mean_sd_to_stats(aggregate_stats, 'means') return aggregate_stats
aggregate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_stats):\n aggregate_stats = {'means': [], 'standard_deviations': []}\n for optimizer_key in all_stats:\n mean_stats = copy.deepcopy(all_stats[optimizer_key]['mean'])\n mean_stats['name'] = optimizer_key\n aggregate_stats['means'].append(mean_stats)\n sd_stats = copy.deepcopy(all_stats[optimizer_key]['standard_deviation']\n )\n sd_stats['name'] = optimizer_key\n aggregate_stats['standard_deviations'].append(sd_stats)\n _add_mean_sd_to_stats(aggregate_stats, 'means')\n return aggregate_stats\n", "role": "user" }, { "content": "aggregate", "role": "assistant" } ]
def x(stats, key='runs'): num_runs = len(stats[key]) first = stats[key][0] mean = {} for stat_key in first: if isinstance(first[stat_key], numbers.Number): mean[stat_key] = sum(run[stat_key] for run in stats[key]) / float( num_runs) return mean
mean_of_runs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, key='runs'):\n num_runs = len(stats[key])\n first = stats[key][0]\n mean = {}\n for stat_key in first:\n if isinstance(first[stat_key], numbers.Number):\n mean[stat_key] = sum(run[stat_key] for run in stats[key]) / float(\n num_runs)\n return mean\n", "role": "user" }, { "content": "mean_of_runs", "role": "assistant" } ]
def x(stats, mean, key='runs'): num_runs = len(stats[key]) first = stats[key][0] standard_deviation = {} for stat_key in first: if isinstance(first[stat_key], numbers.Number): standard_deviation[stat_key] = math.sqrt(sum((run[stat_key] - mean[stat_key]) ** 2 for run in stats[key]) / float(num_runs)) return standard_deviation
sd_of_runs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, mean, key='runs'):\n num_runs = len(stats[key])\n first = stats[key][0]\n standard_deviation = {}\n for stat_key in first:\n if isinstance(first[stat_key], numbers.Number):\n standard_deviation[stat_key] = math.sqrt(sum((run[stat_key] -\n mean[stat_key]) ** 2 for run in stats[key]) / float(num_runs))\n return standard_deviation\n", "role": "user" }, { "content": "sd_of_runs", "role": "assistant" } ]
def x(probability_vec): return map(int, numpy.random.random(probability_vec.size) <= probability_vec)
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(probability_vec):\n return map(int, numpy.random.random(probability_vec.size) <=\n probability_vec)\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(population, fitnesses, probability_vec, adjust_rate): best_solution = max(zip(fitnesses, population))[1] return _adjust(probability_vec, best_solution, adjust_rate)
adjust_probability_vec_best
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(population, fitnesses, probability_vec, adjust_rate):\n best_solution = max(zip(fitnesses, population))[1]\n return _adjust(probability_vec, best_solution, adjust_rate)\n", "role": "user" }, { "content": "adjust_probability_vec_best", "role": "assistant" } ]
def x(probability_vec, mutation_chance, mutation_adjust_rate): bits_to_mutate = numpy.random.random(probability_vec.size ) <= mutation_chance probability_vec[bits_to_mutate] = _adjust(probability_vec[ bits_to_mutate], numpy.random.random(numpy.sum(bits_to_mutate)), mutation_adjust_rate)
mutate_probability_vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(probability_vec, mutation_chance, mutation_adjust_rate):\n bits_to_mutate = numpy.random.random(probability_vec.size\n ) <= mutation_chance\n probability_vec[bits_to_mutate] = _adjust(probability_vec[\n bits_to_mutate], numpy.random.random(numpy.sum(bits_to_mutate)),\n mutation_adjust_rate)\n", "role": "user" }, { "content": "mutate_probability_vec", "role": "assistant" } ]
def x(self, population, fitnesses): self._probability_vec = _adjust_probability_vec_best(population, fitnesses, self._probability_vec, self._adjust_rate) _mutate_probability_vec(self._probability_vec, self._mutation_chance, self._mutation_adjust_rate) return [_sample(self._probability_vec) for _ in range(self. _population_size)]
next_population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, population, fitnesses):\n self._probability_vec = _adjust_probability_vec_best(population,\n fitnesses, self._probability_vec, self._adjust_rate)\n _mutate_probability_vec(self._probability_vec, self._mutation_chance,\n self._mutation_adjust_rate)\n return [_sample(self._probability_vec) for _ in range(self.\n _population_size)]\n", "role": "user" }, { "content": "next_population", "role": "assistant" } ]
def x(optimizer): all_stats = benchmark.compare(optimizer, PROBLEMS, runs=100) return benchmark.aggregate(all_stats)
benchmark_multi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(optimizer):\n all_stats = benchmark.compare(optimizer, PROBLEMS, runs=100)\n return benchmark.aggregate(all_stats)\n", "role": "user" }, { "content": "benchmark_multi", "role": "assistant" } ]
def x(probabilities, population_size): population = [] for _ in range(population_size): solution = [] for probability in probabilities: if random.uniform(0.0, 1.0) < probability: solution.append(1) else: solution.append(0) population.append(solution) return population
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(probabilities, population_size):\n population = []\n for _ in range(population_size):\n solution = []\n for probability in probabilities:\n if random.uniform(0.0, 1.0) < probability:\n solution.append(1)\n else:\n solution.append(0)\n population.append(solution)\n return population\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(solution, pdf): return _prod([(1.0 - abs(bit - p)) for bit, p in zip(solution, pdf)])
chance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(solution, pdf):\n return _prod([(1.0 - abs(bit - p)) for bit, p in zip(solution, pdf)])\n", "role": "user" }, { "content": "chance", "role": "assistant" } ]
def x(pdf, population, fitnesses, fitness_threshold): value = 0.0 for solution, fitness in zip(population, fitnesses): if fitness >= fitness_threshold: value += math.log(1.0 + _chance(solution, pdf)) return value
pdf_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pdf, population, fitnesses, fitness_threshold):\n value = 0.0\n for solution, fitness in zip(population, fitnesses):\n if fitness >= fitness_threshold:\n value += math.log(1.0 + _chance(solution, pdf))\n return value\n", "role": "user" }, { "content": "pdf_value", "role": "assistant" } ]
def x(population, fitnesses, pdfs, quantile): fitness_threshold = _get_quantile_cutoff(fitnesses, quantile) return _best_pdf(pdfs, population, fitnesses, fitness_threshold)
update_pdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(population, fitnesses, pdfs, quantile):\n fitness_threshold = _get_quantile_cutoff(fitnesses, quantile)\n return _best_pdf(pdfs, population, fitnesses, fitness_threshold)\n", "role": "user" }, { "content": "update_pdf", "role": "assistant" } ]
def x(binary_list, lower_bound, upper_bound): if binary_list == []: return lower_bound return float(upper_bound - lower_bound) / (2 ** len(binary_list) - 1 ) * binary_to_int(binary_list) + lower_bound
binary_to_float
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(binary_list, lower_bound, upper_bound):\n if binary_list == []:\n return lower_bound\n return float(upper_bound - lower_bound) / (2 ** len(binary_list) - 1\n ) * binary_to_int(binary_list) + lower_bound\n", "role": "user" }, { "content": "binary_to_float", "role": "assistant" } ]
def x(binary_list, lower_bound=0, upper_bound=None): if binary_list == []: return lower_bound else: integer = int(''.join([str(bit) for bit in binary_list]), 2) if upper_bound is not None and integer + lower_bound > upper_bound: return upper_bound - integer % (upper_bound - lower_bound + 1) else: return integer + lower_bound
binary_to_int
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(binary_list, lower_bound=0, upper_bound=None):\n if binary_list == []:\n return lower_bound\n else:\n integer = int(''.join([str(bit) for bit in binary_list]), 2)\n if upper_bound is not None and integer + lower_bound > upper_bound:\n return upper_bound - integer % (upper_bound - lower_bound + 1)\n else:\n return integer + lower_bound\n", "role": "user" }, { "content": "binary_to_int", "role": "assistant" } ]
def x(integer, size=None): binary_list = map(int, format(integer, 'b')) if size is None: return binary_list elif len(binary_list) > size: return binary_list[len(binary_list) - size:] elif size > len(binary_list): return [0] * (size - len(binary_list)) + binary_list else: return binary_list
int_to_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(integer, size=None):\n binary_list = map(int, format(integer, 'b'))\n if size is None:\n return binary_list\n elif len(binary_list) > size:\n return binary_list[len(binary_list) - size:]\n elif size > len(binary_list):\n return [0] * (size - len(binary_list)) + binary_list\n else:\n return binary_list\n", "role": "user" }, { "content": "int_to_binary", "role": "assistant" } ]
def x(self, population, fitnesses): return common.make_population(self._population_size, self. _generate_solution)
next_population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, population, fitnesses):\n return common.make_population(self._population_size, self.\n _generate_solution)\n", "role": "user" }, { "content": "next_population", "role": "assistant" } ]
def x(self): return common.random_real_solution(self._solution_size, self. _lower_bounds, self._upper_bounds)
generate_solution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return common.random_real_solution(self._solution_size, self.\n _lower_bounds, self._upper_bounds)\n", "role": "user" }, { "content": "generate_solution", "role": "assistant" } ]
def x(self, population, fitnesses): return [self._next_solution() for _ in range(self._population_size)]
next_population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, population, fitnesses):\n return [self._next_solution() for _ in range(self._population_size)]\n", "role": "user" }, { "content": "next_population", "role": "assistant" } ]
def x(self): groups = self._groups or self.get_children_paths(self.root_path) for group in groups: node = Node(name=group, parent=self.root) self.root.children.append(node) self._init_sub_groups(node)
build_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n groups = self._groups or self.get_children_paths(self.root_path)\n for group in groups:\n node = Node(name=group, parent=self.root)\n self.root.children.append(node)\n self._init_sub_groups(node)\n", "role": "user" }, { "content": "build_tree", "role": "assistant" } ]
def x(self, parent): if self._sub_groups: for sub_group in self._sub_groups: for component in split_path_components(sub_group): fp = os.path.join(parent.full_path, component) if os.path.exists(fp): node = Node(name=component, parent=parent) parent.children.append(node) else: node = parent.create_cgroup(component) parent = node self._init_children(node) else: self._init_children(parent)
init_sub_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent):\n if self._sub_groups:\n for sub_group in self._sub_groups:\n for component in split_path_components(sub_group):\n fp = os.path.join(parent.full_path, component)\n if os.path.exists(fp):\n node = Node(name=component, parent=parent)\n parent.children.append(node)\n else:\n node = parent.create_cgroup(component)\n parent = node\n self._init_children(node)\n else:\n self._init_children(parent)\n", "role": "user" }, { "content": "init_sub_groups", "role": "assistant" } ]
def x(self, parent): for dir_name in self.get_children_paths(parent.full_path): child = Node(name=dir_name, parent=parent) parent.children.append(child) self._init_children(child)
init_children
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent):\n for dir_name in self.get_children_paths(parent.full_path):\n child = Node(name=dir_name, parent=parent)\n parent.children.append(child)\n self._init_children(child)\n", "role": "user" }, { "content": "init_children", "role": "assistant" } ]
def x(self): if self.parent: return os.path.join(self.parent.full_path, self.name) return self.name
full_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.parent:\n return os.path.join(self.parent.full_path, self.name)\n return self.name\n", "role": "user" }, { "content": "full_path", "role": "assistant" } ]
def x(self): if self.parent: try: parent_path = self.parent.path.encode() except AttributeError: parent_path = self.parent.path return os.path.join(parent_path, self.name) return b'/'
path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.parent:\n try:\n parent_path = self.parent.path.encode()\n except AttributeError:\n parent_path = self.parent.path\n return os.path.join(parent_path, self.name)\n return b'/'\n", "role": "user" }, { "content": "path", "role": "assistant" } ]
def x(self): if self.parent is None: return self.NODE_ROOT elif self.parent.node_type == self.NODE_ROOT: return self.NODE_CONTROLLER_ROOT elif b'.slice' in self.name or b'.partition' in self.name: return self.NODE_SLICE elif b'.scope' in self.name: return self.NODE_SCOPE else: return self.NODE_CGROUP
get_node_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.parent is None:\n return self.NODE_ROOT\n elif self.parent.node_type == self.NODE_ROOT:\n return self.NODE_CONTROLLER_ROOT\n elif b'.slice' in self.name or b'.partition' in self.name:\n return self.NODE_SLICE\n elif b'.scope' in self.name:\n return self.NODE_SCOPE\n else:\n return self.NODE_CGROUP\n", "role": "user" }, { "content": "get_node_type", "role": "assistant" } ]
def x(self): if (self.node_type == self.NODE_CONTROLLER_ROOT and self.name in self. CONTROLLERS): return self.name elif self.parent: return self.parent.controller_type else: return None
get_controller_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if (self.node_type == self.NODE_CONTROLLER_ROOT and self.name in self.\n CONTROLLERS):\n return self.name\n elif self.parent:\n return self.parent.controller_type\n else:\n return None\n", "role": "user" }, { "content": "get_controller_type", "role": "assistant" } ]
def x(self, name): node = Node(name, parent=self) if node in self.children: raise RuntimeError('Node {} already exists under {}'.format(name, self.path)) name = name.encode() fp = os.path.join(self.full_path, name) os.mkdir(fp) self.children.append(node) return node
create_cgroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n node = Node(name, parent=self)\n if node in self.children:\n raise RuntimeError('Node {} already exists under {}'.format(name,\n self.path))\n name = name.encode()\n fp = os.path.join(self.full_path, name)\n os.mkdir(fp)\n self.children.append(node)\n return node\n", "role": "user" }, { "content": "create_cgroup", "role": "assistant" } ]
def x(self, name): name = name.encode() fp = os.path.join(self.full_path, name) if os.path.exists(fp): os.rmdir(fp) node = Node(name, parent=self) try: self.children.remove(node) except ValueError: return
delete_cgroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n name = name.encode()\n fp = os.path.join(self.full_path, name)\n if os.path.exists(fp):\n os.rmdir(fp)\n node = Node(name, parent=self)\n try:\n self.children.remove(node)\n except ValueError:\n return\n", "role": "user" }, { "content": "delete_cgroup", "role": "assistant" } ]
def x(self): for child in self.children: child.delete_empty_children() try: if os.path.exists(child.full_path): os.rmdir(child.full_path) except OSError: pass else: self.children.remove(child)
delete_empty_children
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for child in self.children:\n child.delete_empty_children()\n try:\n if os.path.exists(child.full_path):\n os.rmdir(child.full_path)\n except OSError:\n pass\n else:\n self.children.remove(child)\n", "role": "user" }, { "content": "delete_empty_children", "role": "assistant" } ]
def x(self, node): if self.controllers.get(node.controller_type, None): raise RuntimeError( 'Cannot add node {} to the node group. A node for {} group is already assigned' .format(node, node.controller_type)) self.nodes.append(node) if node.controller: self.controllers[node.controller_type] = node.controller setattr(self, node.controller_type, node.controller)
add_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node):\n if self.controllers.get(node.controller_type, None):\n raise RuntimeError(\n 'Cannot add node {} to the node group. A node for {} group is already assigned'\n .format(node, node.controller_type))\n self.nodes.append(node)\n if node.controller:\n self.controllers[node.controller_type] = node.controller\n setattr(self, node.controller_type, node.controller)\n", "role": "user" }, { "content": "add_node", "role": "assistant" } ]
def x(self): tasks = set() for node in walk_tree(self): for ctrl in node.controllers.values(): tasks.update(ctrl.tasks) return tasks
group_tasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tasks = set()\n for node in walk_tree(self):\n for ctrl in node.controllers.values():\n tasks.update(ctrl.tasks)\n return tasks\n", "role": "user" }, { "content": "group_tasks", "role": "assistant" } ]
def x(self): tasks = set() for ctrl in self.controllers.values(): tasks.update(ctrl.tasks) return tasks
tasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tasks = set()\n for ctrl in self.controllers.values():\n tasks.update(ctrl.tasks)\n return tasks\n", "role": "user" }, { "content": "tasks", "role": "assistant" } ]
def x(self, filename): return os.path.join(self.node.full_path, filename)
filepath
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n return os.path.join(self.node.full_path, filename)\n", "role": "user" }, { "content": "filepath", "role": "assistant" } ]
def x(self, filename): with open(self.filepath(filename)) as f: return f.read().strip()
get_property
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n with open(self.filepath(filename)) as f:\n return f.read().strip()\n", "role": "user" }, { "content": "get_property", "role": "assistant" } ]
def x(self, filename, value): with open(self.filepath(filename), 'w') as f: return f.write(str(value))
set_property
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, value):\n with open(self.filepath(filename), 'w') as f:\n return f.write(str(value))\n", "role": "user" }, { "content": "set_property", "role": "assistant" } ]
def x(root): yield root for child in root.children: for el in walk_tree(child): yield el
walk_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root):\n yield root\n for child in root.children:\n for el in walk_tree(child):\n yield el\n", "role": "user" }, { "content": "walk_tree", "role": "assistant" } ]
def x(root): for child in root.children: for el in walk_up_tree(child): yield el yield root
walk_up_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root):\n for child in root.children:\n for el in walk_up_tree(child):\n yield el\n yield root\n", "role": "user" }, { "content": "walk_up_tree", "role": "assistant" } ]
def x(dev_path): stat = os.lstat(dev_path) return os.major(stat.st_rdev), os.minor(stat.st_rdev)
get_device_major_minor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dev_path):\n stat = os.lstat(dev_path)\n return os.major(stat.st_rdev), os.minor(stat.st_rdev)\n", "role": "user" }, { "content": "get_device_major_minor", "role": "assistant" } ]
def x(self): schema = Schema(self.__class__.SCHEMA) resolver = RefResolver.from_schema(schema, store=REGISTRY) validate(self, schema, resolver=resolver)
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n schema = Schema(self.__class__.SCHEMA)\n resolver = RefResolver.from_schema(schema, store=REGISTRY)\n validate(self, schema, resolver=resolver)\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self): with closing(StringIO()) as fileobj: self.dump(fileobj) return fileobj.getvalue()
dumps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with closing(StringIO()) as fileobj:\n self.dump(fileobj)\n return fileobj.getvalue()\n", "role": "user" }, { "content": "dumps", "role": "assistant" } ]
def x(cls, s): with closing(StringIO(s)) as fileobj: return cls.load(fileobj)
loads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n with closing(StringIO(s)) as fileobj:\n return cls.load(fileobj)\n", "role": "user" }, { "content": "loads", "role": "assistant" } ]
def x(self, key): schema = self.__class__.SCHEMA plain_schema = schema.get('properties', {}).get(key) if plain_schema is not None: return plain_schema pattern_properties = schema.get('patternProperties', {}) for pattern, pattern_schema in pattern_properties.items(): if match(pattern, key): return pattern_schema return schema.get('additionalProperties', True)
property_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n schema = self.__class__.SCHEMA\n plain_schema = schema.get('properties', {}).get(key)\n if plain_schema is not None:\n return plain_schema\n pattern_properties = schema.get('patternProperties', {})\n for pattern, pattern_schema in pattern_properties.items():\n if match(pattern, key):\n return pattern_schema\n return schema.get('additionalProperties', True)\n", "role": "user" }, { "content": "property_schema", "role": "assistant" } ]
def x(class_name, base, schema): return type(class_name, (base,), dict(SCHEMA=schema))
make
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(class_name, base, schema):\n return type(class_name, (base,), dict(SCHEMA=schema))\n", "role": "user" }, { "content": "make", "role": "assistant" } ]
def x(name, base, schema): class_name = make_class_name(name) cls = register(make(class_name, base, schema)) globals()[class_name] = cls
make_definition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, base, schema):\n class_name = make_class_name(name)\n cls = register(make(class_name, base, schema))\n globals()[class_name] = cls\n", "role": "user" }, { "content": "make_definition", "role": "assistant" } ]
def x(cls): definition_name = make_definition_name(cls.__name__) REGISTRY[definition_name] = cls return cls
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n definition_name = make_definition_name(cls.__name__)\n REGISTRY[definition_name] = cls\n return cls\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(schema): if not isinstance(schema, dict) or '$ref' not in schema: return None ref = schema['$ref'] return REGISTRY.get(ref)
lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n if not isinstance(schema, dict) or '$ref' not in schema:\n return None\n ref = schema['$ref']\n return REGISTRY.get(ref)\n", "role": "user" }, { "content": "lookup", "role": "assistant" } ]
def x(self): if self._connected or self.is_alive(): raise ConnectionExistsError('Already connected') self.start() with self._lock: self._connect_cond.wait_for(lambda : self._connected)
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._connected or self.is_alive():\n raise ConnectionExistsError('Already connected')\n self.start()\n with self._lock:\n self._connect_cond.wait_for(lambda : self._connected)\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self, cmd): _LOGGER.debug('Sending: %s' % cmd) try: self._telnet.write(cmd.encode('ascii') + b'\r\n') except BrokenPipeError: self._disconnect_locked()
send_locked
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmd):\n _LOGGER.debug('Sending: %s' % cmd)\n try:\n self._telnet.write(cmd.encode('ascii') + b'\\r\\n')\n except BrokenPipeError:\n self._disconnect_locked()\n", "role": "user" }, { "content": "send_locked", "role": "assistant" } ]
def x(self): self._telnet = telnetlib.Telnet(self._host) self._telnet.read_until(LutronConnection.USER_PROMPT) self._telnet.write(self._user + b'\r\n') self._telnet.read_until(LutronConnection.PW_PROMPT) self._telnet.write(self._password + b'\r\n') self._telnet.read_until(LutronConnection.PROMPT) self._send_locked('#MONITORING,12,2') self._send_locked('#MONITORING,255,2') self._send_locked('#MONITORING,3,1') self._send_locked('#MONITORING,4,1') self._send_locked('#MONITORING,5,1') self._send_locked('#MONITORING,6,1') self._send_locked('#MONITORING,8,1')
do_login_locked
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._telnet = telnetlib.Telnet(self._host)\n self._telnet.read_until(LutronConnection.USER_PROMPT)\n self._telnet.write(self._user + b'\\r\\n')\n self._telnet.read_until(LutronConnection.PW_PROMPT)\n self._telnet.write(self._password + b'\\r\\n')\n self._telnet.read_until(LutronConnection.PROMPT)\n self._send_locked('#MONITORING,12,2')\n self._send_locked('#MONITORING,255,2')\n self._send_locked('#MONITORING,3,1')\n self._send_locked('#MONITORING,4,1')\n self._send_locked('#MONITORING,5,1')\n self._send_locked('#MONITORING,6,1')\n self._send_locked('#MONITORING,8,1')\n", "role": "user" }, { "content": "do_login_locked", "role": "assistant" } ]
def x(self): self._connected = False self._connect_cond.notify_all() self._telnet = None _LOGGER.warning('Disconnected')
disconnect_locked
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._connected = False\n self._connect_cond.notify_all()\n self._telnet = None\n _LOGGER.warning('Disconnected')\n", "role": "user" }, { "content": "disconnect_locked", "role": "assistant" } ]
def x(self): with self._lock: if not self._connected: _LOGGER.info('Connecting') self._do_login_locked() self._connected = True self._connect_cond.notify_all() _LOGGER.info('Connected')
maybe_reconnect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with self._lock:\n if not self._connected:\n _LOGGER.info('Connecting')\n self._do_login_locked()\n self._connected = True\n self._connect_cond.notify_all()\n _LOGGER.info('Connected')\n", "role": "user" }, { "content": "maybe_reconnect", "role": "assistant" } ]
def x(self): _LOGGER.info('Started') while True: self._maybe_reconnect() line = '' try: t = self._telnet if t is not None: line = t.read_until(b'\n') except EOFError: try: self._lock.acquire() self._disconnect_locked() continue finally: self._lock.release() self._recv_cb(line.decode('ascii').rstrip())
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n _LOGGER.info('Started')\n while True:\n self._maybe_reconnect()\n line = ''\n try:\n t = self._telnet\n if t is not None:\n line = t.read_until(b'\\n')\n except EOFError:\n try:\n self._lock.acquire()\n self._disconnect_locked()\n continue\n finally:\n self._lock.release()\n self._recv_cb(line.decode('ascii').rstrip())\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): import xml.etree.ElementTree as ET root = ET.fromstring(self._xml_db_str) top_area = root.find('Areas').find('Area') self.project_name = top_area.get('Name') areas = top_area.find('Areas') for area_xml in areas.getiterator('Area'): area = self._parse_area(area_xml) self.areas.append(area) return True
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n import xml.etree.ElementTree as ET\n root = ET.fromstring(self._xml_db_str)\n top_area = root.find('Areas').find('Area')\n self.project_name = top_area.get('Name')\n areas = top_area.find('Areas')\n for area_xml in areas.getiterator('Area'):\n area = self._parse_area(area_xml)\n self.areas.append(area)\n return True\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, area_xml): area = Area(self._lutron, name=area_xml.get('Name'), integration_id=int (area_xml.get('IntegrationID')), occupancy_group_id=area_xml.get( 'OccupancyGroupAssignedToID')) for output_xml in area_xml.find('Outputs'): output = self._parse_output(output_xml) area.add_output(output) for device_group in area_xml.find('DeviceGroups'): if device_group.tag == 'DeviceGroup': devs = device_group.find('Devices') elif device_group.tag == 'Device': devs = [device_group] else: _LOGGER.info('Unknown tag in DeviceGroups child %s' % devs) devs = [] for device_xml in devs: if device_xml.tag != 'Device': continue if device_xml.get('DeviceType') in ('SEETOUCH_KEYPAD', 'SEETOUCH_TABLETOP_KEYPAD', 'PICO_KEYPAD', 'HYBRID_SEETOUCH_KEYPAD', 'MAIN_REPEATER'): keypad = self._parse_keypad(device_xml) area.add_keypad(keypad) elif device_xml.get('DeviceType') == 'MOTION_SENSOR': motion_sensor = self._parse_motion_sensor(device_xml) area.add_sensor(motion_sensor) return area
parse_area
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, area_xml):\n area = Area(self._lutron, name=area_xml.get('Name'), integration_id=int\n (area_xml.get('IntegrationID')), occupancy_group_id=area_xml.get(\n 'OccupancyGroupAssignedToID'))\n for output_xml in area_xml.find('Outputs'):\n output = self._parse_output(output_xml)\n area.add_output(output)\n for device_group in area_xml.find('DeviceGroups'):\n if device_group.tag == 'DeviceGroup':\n devs = device_group.find('Devices')\n elif device_group.tag == 'Device':\n devs = [device_group]\n else:\n _LOGGER.info('Unknown tag in DeviceGroups child %s' % devs)\n devs = []\n for device_xml in devs:\n if device_xml.tag != 'Device':\n continue\n if device_xml.get('DeviceType') in ('SEETOUCH_KEYPAD',\n 'SEETOUCH_TABLETOP_KEYPAD', 'PICO_KEYPAD',\n 'HYBRID_SEETOUCH_KEYPAD', 'MAIN_REPEATER'):\n keypad = self._parse_keypad(device_xml)\n area.add_keypad(keypad)\n elif device_xml.get('DeviceType') == 'MOTION_SENSOR':\n motion_sensor = self._parse_motion_sensor(device_xml)\n area.add_sensor(motion_sensor)\n return area\n", "role": "user" }, { "content": "parse_area", "role": "assistant" } ]
def x(self, output_xml): output = Output(self._lutron, name=output_xml.get('Name'), watts=int( output_xml.get('Wattage')), output_type=output_xml.get('OutputType' ), integration_id=int(output_xml.get('IntegrationID'))) return output
parse_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_xml):\n output = Output(self._lutron, name=output_xml.get('Name'), watts=int(\n output_xml.get('Wattage')), output_type=output_xml.get('OutputType'\n ), integration_id=int(output_xml.get('IntegrationID')))\n return output\n", "role": "user" }, { "content": "parse_output", "role": "assistant" } ]
def x(self, keypad_xml): keypad = Keypad(self._lutron, name=keypad_xml.get('Name'), integration_id=int(keypad_xml.get('IntegrationID'))) components = keypad_xml.find('Components') if not components: return keypad for comp in components: if comp.tag != 'Component': continue comp_type = comp.get('ComponentType') if comp_type == 'BUTTON': button = self._parse_button(keypad, comp) keypad.add_button(button) elif comp_type == 'LED': led = self._parse_led(keypad, comp) keypad.add_led(led) return keypad
parse_keypad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keypad_xml):\n keypad = Keypad(self._lutron, name=keypad_xml.get('Name'),\n integration_id=int(keypad_xml.get('IntegrationID')))\n components = keypad_xml.find('Components')\n if not components:\n return keypad\n for comp in components:\n if comp.tag != 'Component':\n continue\n comp_type = comp.get('ComponentType')\n if comp_type == 'BUTTON':\n button = self._parse_button(keypad, comp)\n keypad.add_button(button)\n elif comp_type == 'LED':\n led = self._parse_led(keypad, comp)\n keypad.add_led(led)\n return keypad\n", "role": "user" }, { "content": "parse_keypad", "role": "assistant" } ]
def x(self, keypad, component_xml): button_xml = component_xml.find('Button') name = button_xml.get('Engraving') button_type = button_xml.get('ButtonType') direction = button_xml.get('Direction') if button_type == 'SingleSceneRaiseLower': name = 'Dimmer ' + direction if not name: name = 'Unknown Button' button = Button(self._lutron, keypad, name=name, num=int(component_xml. get('ComponentNumber')), button_type=button_type, direction=direction) return button
parse_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keypad, component_xml):\n button_xml = component_xml.find('Button')\n name = button_xml.get('Engraving')\n button_type = button_xml.get('ButtonType')\n direction = button_xml.get('Direction')\n if button_type == 'SingleSceneRaiseLower':\n name = 'Dimmer ' + direction\n if not name:\n name = 'Unknown Button'\n button = Button(self._lutron, keypad, name=name, num=int(component_xml.\n get('ComponentNumber')), button_type=button_type, direction=direction)\n return button\n", "role": "user" }, { "content": "parse_button", "role": "assistant" } ]
def x(self, keypad, component_xml): component_num = int(component_xml.get('ComponentNumber')) led_num = component_num - 80 led = Led(self._lutron, keypad, name='LED %d' % led_num, led_num= led_num, component_num=component_num) return led
parse_led
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keypad, component_xml):\n component_num = int(component_xml.get('ComponentNumber'))\n led_num = component_num - 80\n led = Led(self._lutron, keypad, name='LED %d' % led_num, led_num=\n led_num, component_num=component_num)\n return led\n", "role": "user" }, { "content": "parse_led", "role": "assistant" } ]
def x(self, sensor_xml): return MotionSensor(self._lutron, name=sensor_xml.get('Name'), integration_id=int(sensor_xml.get('IntegrationID')))
parse_motion_sensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sensor_xml):\n return MotionSensor(self._lutron, name=sensor_xml.get('Name'),\n integration_id=int(sensor_xml.get('IntegrationID')))\n", "role": "user" }, { "content": "parse_motion_sensor", "role": "assistant" } ]
def x(self, obj, handler): if not isinstance(obj, LutronEntity): raise InvalidSubscription('Subscription target not a LutronEntity') _LOGGER.warning( 'DEPRECATED: Subscribing via Lutron.subscribe is obsolete. Please use LutronEntity.subscribe' ) if obj not in self._legacy_subscribers: self._legacy_subscribers[obj] = handler obj.subscribe(self._dispatch_legacy_subscriber, None)
subscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj, handler):\n if not isinstance(obj, LutronEntity):\n raise InvalidSubscription('Subscription target not a LutronEntity')\n _LOGGER.warning(\n 'DEPRECATED: Subscribing via Lutron.subscribe is obsolete. Please use LutronEntity.subscribe'\n )\n if obj not in self._legacy_subscribers:\n self._legacy_subscribers[obj] = handler\n obj.subscribe(self._dispatch_legacy_subscriber, None)\n", "role": "user" }, { "content": "subscribe", "role": "assistant" } ]
def x(self, cmd_type, obj): ids = self._ids.setdefault(cmd_type, {}) if obj.id in ids: raise IntegrationIdExistsError self._ids[cmd_type][obj.id] = obj
register_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmd_type, obj):\n ids = self._ids.setdefault(cmd_type, {})\n if obj.id in ids:\n raise IntegrationIdExistsError\n self._ids[cmd_type][obj.id] = obj\n", "role": "user" }, { "content": "register_id", "role": "assistant" } ]
def x(self, obj, *args, **kwargs): if obj in self._legacy_subscribers: self._legacy_subscribers[obj](obj)
dispatch_legacy_subscriber
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj, *args, **kwargs):\n if obj in self._legacy_subscribers:\n self._legacy_subscribers[obj](obj)\n", "role": "user" }, { "content": "dispatch_legacy_subscriber", "role": "assistant" } ]
def x(self, line): if line == '': return if line[0] != Lutron.OP_RESPONSE: _LOGGER.debug('ignoring %s' % line) return parts = line[1:].split(',') cmd_type = parts[0] integration_id = int(parts[1]) args = parts[2:] if cmd_type not in self._ids: _LOGGER.info('Unknown cmd %s (%s)' % (cmd_type, line)) return ids = self._ids[cmd_type] if integration_id not in ids: _LOGGER.warning('Unknown id %d (%s)' % (integration_id, line)) return obj = ids[integration_id] handled = obj.handle_update(args)
recv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n if line == '':\n return\n if line[0] != Lutron.OP_RESPONSE:\n _LOGGER.debug('ignoring %s' % line)\n return\n parts = line[1:].split(',')\n cmd_type = parts[0]\n integration_id = int(parts[1])\n args = parts[2:]\n if cmd_type not in self._ids:\n _LOGGER.info('Unknown cmd %s (%s)' % (cmd_type, line))\n return\n ids = self._ids[cmd_type]\n if integration_id not in ids:\n _LOGGER.warning('Unknown id %d (%s)' % (integration_id, line))\n return\n obj = ids[integration_id]\n handled = obj.handle_update(args)\n", "role": "user" }, { "content": "recv", "role": "assistant" } ]
def x(self, op, cmd, integration_id, *args): out_cmd = ','.join((cmd, str(integration_id)) + tuple(str(x) for x in args) ) self._conn.send(op + out_cmd)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op, cmd, integration_id, *args):\n out_cmd = ','.join((cmd, str(integration_id)) + tuple(str(x) for x in args)\n )\n self._conn.send(op + out_cmd)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(self): import urllib.request xmlfile = urllib.request.urlopen('http://' + self._host + '/DbXmlInfo.xml') xml_db = xmlfile.read() xmlfile.close() _LOGGER.info('Loaded xml db') parser = LutronXmlDbParser(lutron=self, xml_db_str=xml_db) assert parser.parse() self._areas = parser.areas self._name = parser.project_name _LOGGER.info('Found Lutron project: %s, %d areas' % (self._name, len( self.areas))) return True
load_xml_db
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n import urllib.request\n xmlfile = urllib.request.urlopen('http://' + self._host + '/DbXmlInfo.xml')\n xml_db = xmlfile.read()\n xmlfile.close()\n _LOGGER.info('Loaded xml db')\n parser = LutronXmlDbParser(lutron=self, xml_db_str=xml_db)\n assert parser.parse()\n self._areas = parser.areas\n self._name = parser.project_name\n _LOGGER.info('Found Lutron project: %s, %d areas' % (self._name, len(\n self.areas)))\n return True\n", "role": "user" }, { "content": "load_xml_db", "role": "assistant" } ]
def x(self, action): ev = threading.Event() first = False with self.__lock: if len(self.__events) == 0: first = True self.__events.append(ev) if first: action() return ev
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n ev = threading.Event()\n first = False\n with self.__lock:\n if len(self.__events) == 0:\n first = True\n self.__events.append(ev)\n if first:\n action()\n return ev\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, event: LutronEvent, params: Dict): for handler, context in self._subscribers: handler(self, context, event, params)
dispatch_event
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event: LutronEvent, params: Dict):\n for handler, context in self._subscribers:\n handler(self, context, event, params)\n", "role": "user" }, { "content": "dispatch_event", "role": "assistant" } ]
def x(self, handler: LutronEventHandler, context): self._subscribers.append((handler, context))
subscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, handler: LutronEventHandler, context):\n self._subscribers.append((handler, context))\n", "role": "user" }, { "content": "subscribe", "role": "assistant" } ]
def x(self, args): _LOGGER.debug('handle_update %d -- %s' % (self._integration_id, args)) state = int(args[0]) if state != Output._ACTION_ZONE_LEVEL: return False level = float(args[1]) _LOGGER.debug('Updating %d(%s): s=%d l=%f' % (self._integration_id, self._name, state, level)) self._level = level self._query_waiters.notify() self._dispatch_event(Output.Event.LEVEL_CHANGED, {'level': self._level}) return True
handle_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n _LOGGER.debug('handle_update %d -- %s' % (self._integration_id, args))\n state = int(args[0])\n if state != Output._ACTION_ZONE_LEVEL:\n return False\n level = float(args[1])\n _LOGGER.debug('Updating %d(%s): s=%d l=%f' % (self._integration_id,\n self._name, state, level))\n self._level = level\n self._query_waiters.notify()\n self._dispatch_event(Output.Event.LEVEL_CHANGED, {'level': self._level})\n return True\n", "role": "user" }, { "content": "handle_update", "role": "assistant" } ]
def x(self): self._lutron.send(Lutron.OP_QUERY, Output._CMD_TYPE, self. _integration_id, Output._ACTION_ZONE_LEVEL)
do_query_level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._lutron.send(Lutron.OP_QUERY, Output._CMD_TYPE, self.\n _integration_id, Output._ACTION_ZONE_LEVEL)\n", "role": "user" }, { "content": "do_query_level", "role": "assistant" } ]
def x(self): ev = self._query_waiters.request(self.__do_query_level) ev.wait(1.0) return self._level
level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ev = self._query_waiters.request(self.__do_query_level)\n ev.wait(1.0)\n return self._level\n", "role": "user" }, { "content": "level", "role": "assistant" } ]
def x(self, new_level): if self._level == new_level: return self._lutron.send(Lutron.OP_EXECUTE, Output._CMD_TYPE, self. _integration_id, Output._ACTION_ZONE_LEVEL, '%.2f' % new_level) self._level = new_level
level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_level):\n if self._level == new_level:\n return\n self._lutron.send(Lutron.OP_EXECUTE, Output._CMD_TYPE, self.\n _integration_id, Output._ACTION_ZONE_LEVEL, '%.2f' % new_level)\n self._level = new_level\n", "role": "user" }, { "content": "level", "role": "assistant" } ]
def x(self, action, params): _LOGGER.debug('Keypad: "%s" Handling "%s" Action: %s Params: %s"' % ( self._keypad.name, self.name, action, params)) return False
handle_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" Handling \"%s\" Action: %s Params: %s\"' % (\n self._keypad.name, self.name, action, params))\n return False\n", "role": "user" }, { "content": "handle_update", "role": "assistant" } ]
def x(self): self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id, self.component_number, Button._ACTION_PRESS)
press
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Button._ACTION_PRESS)\n", "role": "user" }, { "content": "press", "role": "assistant" } ]
def x(self, action, params): _LOGGER.debug('Keypad: "%s" %s Action: %s Params: %s"' % (self._keypad. name, self, action, params)) ev_map = {Button._ACTION_PRESS: Button.Event.PRESSED, Button. _ACTION_RELEASE: Button.Event.RELEASED} if action not in ev_map: _LOGGER.debug('Unknown action %d for button %d in keypad %d' % ( action, self.number, self.keypad.name)) return False self._dispatch_event(ev_map[action], {}) return True
handle_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" %s Action: %s Params: %s\"' % (self._keypad.\n name, self, action, params))\n ev_map = {Button._ACTION_PRESS: Button.Event.PRESSED, Button.\n _ACTION_RELEASE: Button.Event.RELEASED}\n if action not in ev_map:\n _LOGGER.debug('Unknown action %d for button %d in keypad %d' % (\n action, self.number, self.keypad.name))\n return False\n self._dispatch_event(ev_map[action], {})\n return True\n", "role": "user" }, { "content": "handle_update", "role": "assistant" } ]
def x(self): self._lutron.send(Lutron.OP_QUERY, Keypad._CMD_TYPE, self._keypad.id, self.component_number, Led._ACTION_LED_STATE)
do_query_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._lutron.send(Lutron.OP_QUERY, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Led._ACTION_LED_STATE)\n", "role": "user" }, { "content": "do_query_state", "role": "assistant" } ]
def x(self): ev = self._query_waiters.request(self.__do_query_state) ev.wait(1.0) return self._state
state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ev = self._query_waiters.request(self.__do_query_state)\n ev.wait(1.0)\n return self._state\n", "role": "user" }, { "content": "state", "role": "assistant" } ]
def x(self, new_state: bool): self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id, self.component_number, Led._ACTION_LED_STATE, int(new_state)) self._state = new_state
state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_state: bool):\n self._lutron.send(Lutron.OP_EXECUTE, Keypad._CMD_TYPE, self._keypad.id,\n self.component_number, Led._ACTION_LED_STATE, int(new_state))\n self._state = new_state\n", "role": "user" }, { "content": "state", "role": "assistant" } ]
def x(self, action, params): _LOGGER.debug('Keypad: "%s" %s Action: %s Params: %s"' % (self._keypad. name, self, action, params)) if action != Led._ACTION_LED_STATE: _LOGGER.debug('Unknown action %d for led %d in keypad %d' % (action, self.number, self.keypad.name)) return False elif len(params) < 1: _LOGGER.debug( 'Unknown params %s (action %d on led %d in keypad %d)' % ( params, action, self.number, self.keypad.name)) return False self._state = bool(params[0]) self._query_waiters.notify() self._dispatch_event(Led.Event.STATE_CHANGED, {'state': self._state}) return True
handle_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action, params):\n _LOGGER.debug('Keypad: \"%s\" %s Action: %s Params: %s\"' % (self._keypad.\n name, self, action, params))\n if action != Led._ACTION_LED_STATE:\n _LOGGER.debug('Unknown action %d for led %d in keypad %d' % (action,\n self.number, self.keypad.name))\n return False\n elif len(params) < 1:\n _LOGGER.debug(\n 'Unknown params %s (action %d on led %d in keypad %d)' % (\n params, action, self.number, self.keypad.name))\n return False\n self._state = bool(params[0])\n self._query_waiters.notify()\n self._dispatch_event(Led.Event.STATE_CHANGED, {'state': self._state})\n return True\n", "role": "user" }, { "content": "handle_update", "role": "assistant" } ]
def x(self, button): self._buttons.append(button) self._components[button.component_number] = button
add_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, button):\n self._buttons.append(button)\n self._components[button.component_number] = button\n", "role": "user" }, { "content": "add_button", "role": "assistant" } ]
def x(self, led): self._leds.append(led) self._components[led.component_number] = led
add_led
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, led):\n self._leds.append(led)\n self._components[led.component_number] = led\n", "role": "user" }, { "content": "add_led", "role": "assistant" } ]