source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(res): ac_list = [(accuracy['train_acc_final'], accuracy['test_acc_final']) for accuracy, weights in res] ac = np.array(ac_list) perf = {'mean_train_acc': np.mean(ac[:, 0]), 'std_train_acc': np.std(ac [:, 0]), 'mean_test_acc': np.mean(ac[:, 1]), 'std_test_acc': np.std (ac[:, 1])} return perf
get_cv_accuracy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(res):\n ac_list = [(accuracy['train_acc_final'], accuracy['test_acc_final']) for\n accuracy, weights in res]\n ac = np.array(ac_list)\n perf = {'mean_train_acc': np.mean(ac[:, 0]), 'std_train_acc': np.std(ac\n [:, 0]), 'mean_test_acc': np.mean(ac[:, 1]), 'std_test_acc': np.std\n (ac[:, 1])}\n return perf\n", "role": "user" }, { "content": "get_cv_accuracy", "role": "assistant" } ]
def x(arr, vocab): tokens = one_hot2token(arr) indexToLetter = _get_index_dict(vocab) return [''.join([indexToLetter[x] for x in row]) for row in tokens]
one_hot2string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, vocab):\n tokens = one_hot2token(arr)\n indexToLetter = _get_index_dict(vocab)\n return [''.join([indexToLetter[x] for x in row]) for row in tokens]\n", "role": "user" }, { "content": "one_hot2string", "role": "assistant" } ]
def x(seq, vocab, neutral_vocab=[]): if isinstance(neutral_vocab, str): neutral_vocab = [neutral_vocab] nchar = len(vocab[0]) for l in (vocab + neutral_vocab): assert len(l) == nchar assert len(seq) % nchar == 0 vocab_dict = _get_vocab_dict(vocab) for l in neutral_vocab: vocab_dict[l] = -1 return [vocab_dict[seq[i * nchar:(i + 1) * nchar]] for i in range(len( seq) // nchar)]
tokenize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, vocab, neutral_vocab=[]):\n if isinstance(neutral_vocab, str):\n neutral_vocab = [neutral_vocab]\n nchar = len(vocab[0])\n for l in (vocab + neutral_vocab):\n assert len(l) == nchar\n assert len(seq) % nchar == 0\n vocab_dict = _get_vocab_dict(vocab)\n for l in neutral_vocab:\n vocab_dict[l] = -1\n return [vocab_dict[seq[i * nchar:(i + 1) * nchar]] for i in range(len(\n seq) // nchar)]\n", "role": "user" }, { "content": "tokenize", "role": "assistant" } ]
def x(tvec, vocab_size): arr = np.zeros((len(tvec), vocab_size)) tvec_range = np.arange(len(tvec)) tvec = np.asarray(tvec) arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1 return arr
token2one_hot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tvec, vocab_size):\n arr = np.zeros((len(tvec), vocab_size))\n tvec_range = np.arange(len(tvec))\n tvec = np.asarray(tvec)\n arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1\n return arr\n", "role": "user" }, { "content": "token2one_hot", "role": "assistant" } ]
def x(seq_vec, vocab, neutral_vocab, maxlen=None, seq_align='start', pad_value='N', encode_type='one_hot'): if isinstance(neutral_vocab, str): neutral_vocab = [neutral_vocab] if isinstance(seq_vec, str): raise ValueError('seq_vec should be an iterable returning ' + 'strings not a string itself') assert len(vocab[0]) == len(pad_value) assert pad_value in neutral_vocab assert encode_type in ['one_hot', 'token'] seq_vec = pad_sequences(seq_vec, maxlen=maxlen, align=seq_align, value= pad_value) if encode_type == 'one_hot': arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len( vocab)) for i, seq in enumerate(seq_vec)] elif encode_type == 'token': arr_list = [(1 + np.array(tokenize(seq, vocab, neutral_vocab))) for seq in seq_vec] return np.stack(arr_list)
encodeSequence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, vocab, neutral_vocab, maxlen=None, seq_align='start',\n pad_value='N', encode_type='one_hot'):\n if isinstance(neutral_vocab, str):\n neutral_vocab = [neutral_vocab]\n if isinstance(seq_vec, str):\n raise ValueError('seq_vec should be an iterable returning ' +\n 'strings not a string itself')\n assert len(vocab[0]) == len(pad_value)\n assert pad_value in neutral_vocab\n assert encode_type in ['one_hot', 'token']\n seq_vec = pad_sequences(seq_vec, maxlen=maxlen, align=seq_align, value=\n pad_value)\n if encode_type == 'one_hot':\n arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len(\n vocab)) for i, seq in enumerate(seq_vec)]\n elif encode_type == 'token':\n arr_list = [(1 + np.array(tokenize(seq, vocab, neutral_vocab))) for\n seq in seq_vec]\n return np.stack(arr_list)\n", "role": "user" }, { "content": "encodeSequence", "role": "assistant" } ]
def x(seq_vec, maxlen=None, seq_align='start'): return encodeSequence(seq_vec, vocab=DNA, neutral_vocab='N', maxlen= maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')
encodeDNA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, maxlen=None, seq_align='start'):\n return encodeSequence(seq_vec, vocab=DNA, neutral_vocab='N', maxlen=\n maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')\n", "role": "user" }, { "content": "encodeDNA", "role": "assistant" } ]
def x(seq_vec, maxlen=None, seq_align='start'): return encodeSequence(seq_vec, vocab=RNA, neutral_vocab='N', maxlen= maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')
encodeRNA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, maxlen=None, seq_align='start'):\n return encodeSequence(seq_vec, vocab=RNA, neutral_vocab='N', maxlen=\n maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')\n", "role": "user" }, { "content": "encodeRNA", "role": "assistant" } ]
def x(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align='start', encode_type='one_hot'): if ignore_stop_codons: vocab = CODONS neutral_vocab = STOP_CODONS + ['NNN'] else: vocab = CODONS + STOP_CODONS neutral_vocab = ['NNN'] seq_vec = [str(seq).replace('U', 'T') for seq in seq_vec] return encodeSequence(seq_vec, vocab=vocab, neutral_vocab=neutral_vocab, maxlen=maxlen, seq_align=seq_align, pad_value='NNN', encode_type= encode_type)
encodeCodon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align='start',\n encode_type='one_hot'):\n if ignore_stop_codons:\n vocab = CODONS\n neutral_vocab = STOP_CODONS + ['NNN']\n else:\n vocab = CODONS + STOP_CODONS\n neutral_vocab = ['NNN']\n seq_vec = [str(seq).replace('U', 'T') for seq in seq_vec]\n return encodeSequence(seq_vec, vocab=vocab, neutral_vocab=neutral_vocab,\n maxlen=maxlen, seq_align=seq_align, pad_value='NNN', encode_type=\n encode_type)\n", "role": "user" }, { "content": "encodeCodon", "role": "assistant" } ]
def x(seq_vec, maxlen=None, seq_align='start', encode_type='one_hot'): return encodeSequence(seq_vec, vocab=AMINO_ACIDS, neutral_vocab='_', maxlen=maxlen, seq_align=seq_align, pad_value='_', encode_type= encode_type)
encodeAA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, maxlen=None, seq_align='start', encode_type='one_hot'):\n return encodeSequence(seq_vec, vocab=AMINO_ACIDS, neutral_vocab='_',\n maxlen=maxlen, seq_align=seq_align, pad_value='_', encode_type=\n encode_type)\n", "role": "user" }, { "content": "encodeAA", "role": "assistant" } ]
def x(sequence_vec, maxlen=None, align='end', value='N'): assert isinstance(value, list) or isinstance(value, str) assert isinstance(value, type(sequence_vec[0])) assert not isinstance(sequence_vec, str) assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str ) max_seq_len = max([len(seq) for seq in sequence_vec]) if maxlen is None: maxlen = max_seq_len else: maxlen = int(maxlen) if max_seq_len < maxlen: print( 'WARNING: Maximum sequence length (%s) is less than maxlen (%s)' % (max_seq_len, maxlen)) max_seq_len = maxlen for seq in sequence_vec: if not len(seq) % len(value) == 0: raise ValueError('All sequences need to be dividable by len(value)' ) if not maxlen % len(value) == 0: raise ValueError('maxlen needs to be dividable by len(value)') def x(seq, max_seq_len, value='N', align='end'): seq_len = len(seq) assert max_seq_len >= seq_len if align is 'end': n_left = max_seq_len - seq_len n_right = 0 elif align is 'start': n_right = max_seq_len - seq_len n_left = 0 elif align is 'center': n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2 n_right = (max_seq_len - seq_len) // 2 else: raise ValueError('align can be of: end, start or center') n_left = n_left // len(value) n_right = n_right // len(value) return value * n_left + seq + value * n_right def x(seq, maxlen, align='end'): seq_len = len(seq) assert maxlen <= seq_len if align is 'end': return seq[-maxlen:] elif align is 'start': return seq[0:maxlen] elif align is 'center': dl = seq_len - maxlen n_left = dl // 2 + dl % 2 n_right = seq_len - dl // 2 return seq[n_left:n_right] else: raise ValueError('align can be of: end, start or center') padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen), value=value, align=align) for seq in sequence_vec] padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in padded_sequence_vec] return padded_sequence_vec
pad_sequences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sequence_vec, maxlen=None, align='end', value='N'):\n assert isinstance(value, list) or isinstance(value, str)\n assert isinstance(value, type(sequence_vec[0]))\n assert not isinstance(sequence_vec, str)\n assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str\n )\n max_seq_len = max([len(seq) for seq in sequence_vec])\n if maxlen is None:\n maxlen = max_seq_len\n else:\n maxlen = int(maxlen)\n if max_seq_len < maxlen:\n print(\n 'WARNING: Maximum sequence length (%s) is less than maxlen (%s)' %\n (max_seq_len, maxlen))\n max_seq_len = maxlen\n for seq in sequence_vec:\n if not len(seq) % len(value) == 0:\n raise ValueError('All sequences need to be dividable by len(value)'\n )\n if not maxlen % len(value) == 0:\n raise ValueError('maxlen needs to be dividable by len(value)')\n\n def x(seq, max_seq_len, value='N', align='end'):\n seq_len = len(seq)\n assert max_seq_len >= seq_len\n if align is 'end':\n n_left = max_seq_len - seq_len\n n_right = 0\n elif align is 'start':\n n_right = max_seq_len - seq_len\n n_left = 0\n elif align is 'center':\n n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2\n n_right = (max_seq_len - seq_len) // 2\n else:\n raise ValueError('align can be of: end, start or center')\n n_left = n_left // len(value)\n n_right = n_right // len(value)\n return value * n_left + seq + value * n_right\n\n def x(seq, maxlen, align='end'):\n seq_len = len(seq)\n assert maxlen <= seq_len\n if align is 'end':\n return seq[-maxlen:]\n elif align is 'start':\n return seq[0:maxlen]\n elif align is 'center':\n dl = seq_len - maxlen\n n_left = dl // 2 + dl % 2\n n_right = seq_len - dl // 2\n return seq[n_left:n_right]\n else:\n raise ValueError('align can be of: end, start or center')\n padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen), value=value,\n align=align) for seq in sequence_vec]\n padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in\n padded_sequence_vec]\n return padded_sequence_vec\n", "role": "user" }, { "content": "pad_sequences", "role": "assistant" } ]
def x(gtf, landmarks=ALL_LANDMARKS): if isinstance(gtf, str): _logger.info('Reading gtf file..') gtf = read_gtf(gtf) _logger.info('Done') _logger.info('Running landmark extractors..') assert isinstance(landmarks, (list, tuple, set, dict)) if isinstance(landmarks, dict): landmarks = {k: _get_fun(v) for k, v in landmarks.items()} else: landmarks = {_to_string(fn_str): _get_fun(fn_str) for fn_str in landmarks} r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()} _logger.info('Done!') return r
extract_landmarks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gtf, landmarks=ALL_LANDMARKS):\n if isinstance(gtf, str):\n _logger.info('Reading gtf file..')\n gtf = read_gtf(gtf)\n _logger.info('Done')\n _logger.info('Running landmark extractors..')\n assert isinstance(landmarks, (list, tuple, set, dict))\n if isinstance(landmarks, dict):\n landmarks = {k: _get_fun(v) for k, v in landmarks.items()}\n else:\n landmarks = {_to_string(fn_str): _get_fun(fn_str) for fn_str in\n landmarks}\n r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()}\n _logger.info('Done!')\n return r\n", "role": "user" }, { "content": "extract_landmarks", "role": "assistant" } ]
def x(df): assert isinstance(df, pd.DataFrame) assert ['seqname', 'position', 'strand'] == df.columns.tolist() assert df.position.dtype == np.dtype('int64') assert df.strand.dtype == np.dtype('O') assert df.seqname.dtype == np.dtype('O') return df
validate_pos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n assert isinstance(df, pd.DataFrame)\n assert ['seqname', 'position', 'strand'] == df.columns.tolist()\n assert df.position.dtype == np.dtype('int64')\n assert df.strand.dtype == np.dtype('O')\n assert df.seqname.dtype == np.dtype('O')\n return df\n", "role": "user" }, { "content": "validate_pos", "role": "assistant" } ]
def x(tensor, k=1, scope=None): with tf.name_scope(scope, 'L1Loss', [tensor]): loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k, 0.5 * tf.square (tensor), k * tf.abs(tensor) - 0.5 * k ^ 2)) return loss
huber_loss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tensor, k=1, scope=None):\n with tf.name_scope(scope, 'L1Loss', [tensor]):\n loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k, 0.5 * tf.square\n (tensor), k * tf.abs(tensor) - 0.5 * k ^ 2))\n return loss\n", "role": "user" }, { "content": "huber_loss", "role": "assistant" } ]
def x(): dt = pd.read_table(ATTRACT_METADTA) dt.rename(columns={'Matrix_id': 'PWM_id'}, inplace=True) cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id'] return dt[cols]
get_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dt = pd.read_table(ATTRACT_METADTA)\n dt.rename(columns={'Matrix_id': 'PWM_id'}, inplace=True)\n cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id']\n return dt[cols]\n", "role": "user" }, { "content": "get_metadata", "role": "assistant" } ]
def x(pwm_id_list, pseudocountProb=0.0001): l = load_motif_db(ATTRACT_PWM) l = {k.split()[0]: v for k, v in l.items()} pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list] return pwm_list
get_pwm_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pwm_id_list, pseudocountProb=0.0001):\n l = load_motif_db(ATTRACT_PWM)\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list]\n return pwm_list\n", "role": "user" }, { "content": "get_pwm_list", "role": "assistant" } ]
def x(loss, mask_value=MASK_VALUE): loss_fn = kloss.deserialize(loss) def x(y_true, y_pred): mask = K.cast(K.not_equal(y_true, mask_value), K.floatx()) return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask) masked_loss_fn.__name__ = loss + '_masked' return masked_loss_fn
mask_loss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loss, mask_value=MASK_VALUE):\n loss_fn = kloss.deserialize(loss)\n\n def x(y_true, y_pred):\n mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())\n return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask)\n masked_loss_fn.__name__ = loss + '_masked'\n return masked_loss_fn\n", "role": "user" }, { "content": "mask_loss", "role": "assistant" } ]
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs, output_filter_mask=None, out_annotation=None): seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc} for k in seqs: if not isinstance(seqs[k], (list, tuple, np.ndarray)): raise Exception( 'At the moment only models with list, tuple or np.ndarray inputs are supported.' ) assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs [k]))) for k in seqs.keys() if k != 'ref']) assert get_seq_len(ref)[0] == mutation_positions.shape[0] assert len(mutation_positions.shape) == 1 if output_filter_mask is None: if out_annotation is None: output_filter_mask = np.arange(out_annotation_all_outputs.shape[0]) else: output_filter_mask = np.where(np.in1d( out_annotation_all_outputs, out_annotation))[0] out_annotation = out_annotation_all_outputs[output_filter_mask] sal_funcs = __generate_direct_saliency_functions__(model, out_annotation_all_outputs, out_annotation) preds = {} for k in seqs: preds[k] = {} if '_rc' in k: mutated_positions_here = get_seq_len(ref)[1 ] - 1 - mutation_positions else: mutated_positions_here = mutation_positions for l in out_annotation: preds[k][l] = predict_vals(input_data=seqs[k], apply_function= __get_direct_saliencies__, score_func=sal_funcs[l], mutated_positions=mutated_positions_here, model=model) diff_ret_dGrad = {} pred_out = {'ref': {}, 'alt': {}} for k in preds['ref']: diff_fwd = general_diff(preds['alt'][k]['dGrad'], preds['ref'][k][ 'dGrad']) diff_rc = general_diff(preds['alt_rc'][k]['dGrad'], preds['ref_rc'] [k]['dGrad']) sel = general_sel(diff_fwd, diff_rc) replace_by_sel(diff_fwd, diff_rc, sel) diff_ret_dGrad[k] = diff_fwd replace_by_sel(preds['ref'][k]['dGrad'], preds['ref_rc'][k]['dGrad' ], sel) replace_by_sel(preds['alt'][k]['dGrad'], preds['alt_rc'][k]['dGrad' ], sel) pred_out['ref'][k] = preds['ref'][k]['dGrad'] pred_out['alt'][k] = preds['alt'][k]['dGrad'] return {'diff': pd.DataFrame(diff_ret_dGrad), 'ref': pd.DataFrame( pred_out['ref']), 'alt': pd.DataFrame(pred_out['alt'])}
gradient_pred
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=None):\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n for k in seqs:\n if not isinstance(seqs[k], (list, tuple, np.ndarray)):\n raise Exception(\n 'At the moment only models with list, tuple or np.ndarray inputs are supported.'\n )\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n sal_funcs = __generate_direct_saliency_functions__(model,\n out_annotation_all_outputs, out_annotation)\n preds = {}\n for k in seqs:\n preds[k] = {}\n if '_rc' in k:\n mutated_positions_here = get_seq_len(ref)[1\n ] - 1 - mutation_positions\n else:\n mutated_positions_here = mutation_positions\n for l in out_annotation:\n preds[k][l] = predict_vals(input_data=seqs[k], apply_function=\n __get_direct_saliencies__, score_func=sal_funcs[l],\n mutated_positions=mutated_positions_here, model=model)\n diff_ret_dGrad = {}\n pred_out = {'ref': {}, 'alt': {}}\n for k in preds['ref']:\n diff_fwd = general_diff(preds['alt'][k]['dGrad'], preds['ref'][k][\n 'dGrad'])\n diff_rc = general_diff(preds['alt_rc'][k]['dGrad'], preds['ref_rc']\n [k]['dGrad'])\n sel = general_sel(diff_fwd, diff_rc)\n replace_by_sel(diff_fwd, diff_rc, sel)\n diff_ret_dGrad[k] = diff_fwd\n replace_by_sel(preds['ref'][k]['dGrad'], preds['ref_rc'][k]['dGrad'\n ], sel)\n replace_by_sel(preds['alt'][k]['dGrad'], preds['alt_rc'][k]['dGrad'\n ], sel)\n pred_out['ref'][k] = preds['ref'][k]['dGrad']\n pred_out['alt'][k] = preds['alt'][k]['dGrad']\n return {'diff': pd.DataFrame(diff_ret_dGrad), 'ref': pd.DataFrame(\n pred_out['ref']), 'alt': pd.DataFrame(pred_out['alt'])}\n", "role": "user" }, { "content": "gradient_pred", "role": "assistant" } ]
def x(pwm_id_list, pseudocountProb=0.0001): l = load_motif_db(HOCOMOCO_PWM) l = {k.split()[0]: v for k, v in l.items()} pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in pwm_id_list] return pwm_list
get_pwm_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pwm_id_list, pseudocountProb=0.0001):\n l = load_motif_db(HOCOMOCO_PWM)\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in\n pwm_id_list]\n return pwm_list\n", "role": "user" }, { "content": "get_pwm_list", "role": "assistant" } ]
def x(self): if self.is_trained() is False: return None var_res = self._var_res weights = self._var_res_to_weights(var_res) weights['final_bias_fit'] = weights['final_bias'] weights['feature_weights_fit'] = weights['feature_weights'] return weights
get_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.is_trained() is False:\n return None\n var_res = self._var_res\n weights = self._var_res_to_weights(var_res)\n weights['final_bias_fit'] = weights['final_bias']\n weights['feature_weights_fit'] = weights['feature_weights']\n return weights\n", "role": "user" }, { "content": "get_weights", "role": "assistant" } ]
def x(self, var_res): motif_base_weights_raw = var_res['motif_base_weights'][0] motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2) motif_weights = var_res['motif_weights'] motif_bias = var_res['motif_bias'] final_bias = var_res['final_bias'] feature_weights = var_res['feature_weights'] spline_pred = None spline_weights = None if self._param['n_splines'] is not None: spline_pred = self._splines['X_spline'].dot(var_res['spline_weights']) if self._param['spline_exp'] is True: spline_pred = np.exp(spline_pred) else: spline_pred = spline_pred + 1 spline_pred.reshape([-1]) spline_weights = var_res['spline_weights'] weights = {'motif_base_weights': motif_base_weights, 'motif_weights': motif_weights, 'motif_bias': motif_bias, 'final_bias': final_bias, 'feature_weights': feature_weights, 'spline_pred': spline_pred, 'spline_weights': spline_weights} return weights
var_res_to_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, var_res):\n motif_base_weights_raw = var_res['motif_base_weights'][0]\n motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2)\n motif_weights = var_res['motif_weights']\n motif_bias = var_res['motif_bias']\n final_bias = var_res['final_bias']\n feature_weights = var_res['feature_weights']\n spline_pred = None\n spline_weights = None\n if self._param['n_splines'] is not None:\n spline_pred = self._splines['X_spline'].dot(var_res['spline_weights'])\n if self._param['spline_exp'] is True:\n spline_pred = np.exp(spline_pred)\n else:\n spline_pred = spline_pred + 1\n spline_pred.reshape([-1])\n spline_weights = var_res['spline_weights']\n weights = {'motif_base_weights': motif_base_weights, 'motif_weights':\n motif_weights, 'motif_bias': motif_bias, 'final_bias': final_bias,\n 'feature_weights': feature_weights, 'spline_pred': spline_pred,\n 'spline_weights': spline_weights}\n return weights\n", "role": "user" }, { "content": "var_res_to_weights", "role": "assistant" } ]
def x(self, graph, var, other_var): with tf.Session(graph=graph) as sess: sess.run(other_var['init']) var_res = self._get_var_res_sess(sess, var) return var_res
get_var_res
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graph, var, other_var):\n with tf.Session(graph=graph) as sess:\n sess.run(other_var['init'])\n var_res = self._get_var_res_sess(sess, var)\n return var_res\n", "role": "user" }, { "content": "get_var_res", "role": "assistant" } ]
def x(self, graph, var_res): with graph.as_default(): var = {} for key, value in var_res.items(): if value is not None: var[key] = tf.Variable(value, name='tf_%s' % key) else: var[key] = None return var
convert_to_var
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graph, var_res):\n with graph.as_default():\n var = {}\n for key, value in var_res.items():\n if value is not None:\n var[key] = tf.Variable(value, name='tf_%s' % key)\n else:\n var[key] = None\n return var\n", "role": "user" }, { "content": "convert_to_var", "role": "assistant" } ]
def x(self, X_feat, X_seq, y, X_feat_valid=None, X_seq_valid=None, y_valid= None, n_cores=3): if X_feat_valid is None and X_seq_valid is None and y_valid is None: X_feat_valid = X_feat X_seq_valid = X_seq y_valid = y print('Using training samples also for validation ') X_seq = np.expand_dims(X_seq, axis=1) X_seq_valid = np.expand_dims(X_seq_valid, axis=1) if self.is_trained() is True: print('Model already fitted. Re-training feature not implemented yet') return assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0] assert y.shape == (X_feat.shape[0], self._num_tasks) self._param['seq_length'] = X_seq.shape[2] self._param['n_add_features'] = X_feat.shape[1] if not self._param['seq_length'] == X_seq_valid.shape[2]: raise Exception("sequence lengths don't match") if self._param['n_splines'] is not None: padd_loss = self._param['motif_length'] - 1 X_spline, S, _ = splines.get_gam_splines(start=0, end=self._param[ 'seq_length'] - padd_loss - 1, n_bases=self._param['n_splines'], spline_order=3, add_intercept=False) self._splines = {'X_spline': X_spline, 'S': S} self._graph = tf.Graph() self._var = self._get_var_initialization(self._graph, X_feat_train= X_feat, y_train=y) self._other_var = self._build_graph(self._graph, self._var) var_res_init = self._get_var_res(self._graph, self._var, self._other_var) self.init_weights = self._var_res_to_weights(var_res=var_res_init) if self._param['optimizer'] == 'adam': _train = self._train_adam elif self._param['optimizer'] == 'lbfgs': _train = self._train_lbfgs else: raise Exception('Optimizer {} not implemented'.format(self._param[ 'optimizer'])) self._var_res = _train(X_feat, X_seq, y, X_feat_valid, X_seq_valid, y_valid, graph=self._graph, var=self._var, other_var=self. _other_var, early_stop_patience=self._param['early_stop_patience'], n_cores=n_cores) self._model_fitted = True return True
train
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X_feat, X_seq, y, X_feat_valid=None, X_seq_valid=None, y_valid=\n None, n_cores=3):\n if X_feat_valid is None and X_seq_valid is None and y_valid is None:\n X_feat_valid = X_feat\n X_seq_valid = X_seq\n y_valid = y\n print('Using training samples also for validation ')\n X_seq = np.expand_dims(X_seq, axis=1)\n X_seq_valid = np.expand_dims(X_seq_valid, axis=1)\n if self.is_trained() is True:\n print('Model already fitted. Re-training feature not implemented yet')\n return\n assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0]\n assert y.shape == (X_feat.shape[0], self._num_tasks)\n self._param['seq_length'] = X_seq.shape[2]\n self._param['n_add_features'] = X_feat.shape[1]\n if not self._param['seq_length'] == X_seq_valid.shape[2]:\n raise Exception(\"sequence lengths don't match\")\n if self._param['n_splines'] is not None:\n padd_loss = self._param['motif_length'] - 1\n X_spline, S, _ = splines.get_gam_splines(start=0, end=self._param[\n 'seq_length'] - padd_loss - 1, n_bases=self._param['n_splines'],\n spline_order=3, add_intercept=False)\n self._splines = {'X_spline': X_spline, 'S': S}\n self._graph = tf.Graph()\n self._var = self._get_var_initialization(self._graph, X_feat_train=\n X_feat, y_train=y)\n self._other_var = self._build_graph(self._graph, self._var)\n var_res_init = self._get_var_res(self._graph, self._var, self._other_var)\n self.init_weights = self._var_res_to_weights(var_res=var_res_init)\n if self._param['optimizer'] == 'adam':\n _train = self._train_adam\n elif self._param['optimizer'] == 'lbfgs':\n _train = self._train_lbfgs\n else:\n raise Exception('Optimizer {} not implemented'.format(self._param[\n 'optimizer']))\n self._var_res = _train(X_feat, X_seq, y, X_feat_valid, X_seq_valid,\n y_valid, graph=self._graph, var=self._var, other_var=self.\n _other_var, early_stop_patience=self._param['early_stop_patience'],\n n_cores=n_cores)\n self._model_fitted = True\n return True\n", "role": "user" }, { "content": "train", "role": "assistant" } ]
def x(self, sess, other_var, X_feat, X_seq, variable='y_pred'): feed_dict = {other_var['tf_X_feat']: X_feat, other_var['tf_X_seq']: X_seq} y_pred = sess.run(other_var[variable], feed_dict=feed_dict) return y_pred
predict_in_session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sess, other_var, X_feat, X_seq, variable='y_pred'):\n feed_dict = {other_var['tf_X_feat']: X_feat, other_var['tf_X_seq']: X_seq}\n y_pred = sess.run(other_var[variable], feed_dict=feed_dict)\n return y_pred\n", "role": "user" }, { "content": "predict_in_session", "role": "assistant" } ]
def x(self, sess, other_var, X_feat, X_seq, y): y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq) return ce.mse(y_pred, y)
accuracy_in_session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sess, other_var, X_feat, X_seq, y):\n y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq)\n return ce.mse(y_pred, y)\n", "role": "user" }, { "content": "accuracy_in_session", "role": "assistant" } ]
def x(self, X_feat_train, X_seq_train, y_train, X_feat_valid, X_seq_valid, y_valid, graph, var, other_var, early_stop_patience=None, n_cores=3): tic = time.time() n_epochs = self._param['n_epochs'] print_every = self._param['print_every'] step_size = self._param['step_size'] num_steps = n_epochs print('Number of epochs:', n_epochs) loss_history = [] train_acc_vec = [] valid_acc_vec = [] step_history = [] with tf.Session(graph=graph, config=tf.ConfigProto( use_per_session_threads=True, inter_op_parallelism_threads=n_cores, intra_op_parallelism_threads=n_cores)) as sess: sess.run(other_var['init']) best_performance = None best_performance_epoch = 0 for step in range(n_epochs): feed_dict = {other_var['tf_X_seq']: X_seq_train, other_var[ 'tf_y']: y_train, other_var['tf_X_feat']: X_feat_train, other_var['tf_step_size']: step_size} other_var['optimizer'].minimize(sess, feed_dict=feed_dict) l = sess.run(other_var['loss'], feed_dict=feed_dict) loss_history.append(l) if step % print_every == 0: train_accuracy = self._accuracy_in_session(sess, other_var, X_feat_train, X_seq_train, y_train) valid_accuracy = self._accuracy_in_session(sess, other_var, X_feat_valid, X_seq_valid, y_valid) train_acc_vec.append(train_accuracy) valid_acc_vec.append(valid_accuracy) step_history.append(step / num_steps) print( 'Step %4d: loss %f, train mse: %f, validation mse: %f' % (step, l, train_accuracy, valid_accuracy)) if (best_performance is None or valid_accuracy <= best_performance): best_performance = valid_accuracy best_performance_epoch = step if (early_stop_patience is not None and step > best_performance_epoch + early_stop_patience): print( 'Early stopping. best_performance_epoch: %d, best_performance: %f' % (best_performance_epoch, best_performance)) break train_accuracy_final = self._accuracy_in_session(sess, other_var, X_feat_train, X_seq_train, y_train) valid_accuracy_final = self._accuracy_in_session(sess, other_var, X_feat_valid, X_seq_valid, y_valid) print('Validation accuracy final: %f' % valid_accuracy_final) var_res = self._get_var_res_sess(sess, var) if self._param['n_splines'] is not None: self._splines['quasi_X'] = [self._predict_in_session(sess, other_var, X_feat_train[i:i + 1], X_seq_train[i:i + 1], variable='spline_quasi_X') for i in range(X_feat_train. shape[0])] self._splines['quasi_X'] = np.concatenate([x[0][np.newaxis] for x in self._splines['quasi_X']]) accuracy = {'loss_history': np.array(loss_history), 'step_history': np.array(step_history), 'train_acc_history': np.array( train_acc_vec), 'val_acc_history': np.array(valid_acc_vec), 'train_acc_final': train_accuracy_final, 'val_acc_final': valid_accuracy_final, 'best_val_acc': best_performance, 'best_val_acc_epoch': best_performance_epoch, 'test_acc_final': None, 'y_test': None, 'y_test_prediction': None, 'id_vec_test': None} self._accuracy = accuracy toc = time.time() exec_time = toc - tic self._exec_time = exec_time print('That took %fs' % exec_time) return var_res
train_lbfgs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X_feat_train, X_seq_train, y_train, X_feat_valid, X_seq_valid,\n y_valid, graph, var, other_var, early_stop_patience=None, n_cores=3):\n tic = time.time()\n n_epochs = self._param['n_epochs']\n print_every = self._param['print_every']\n step_size = self._param['step_size']\n num_steps = n_epochs\n print('Number of epochs:', n_epochs)\n loss_history = []\n train_acc_vec = []\n valid_acc_vec = []\n step_history = []\n with tf.Session(graph=graph, config=tf.ConfigProto(\n use_per_session_threads=True, inter_op_parallelism_threads=n_cores,\n intra_op_parallelism_threads=n_cores)) as sess:\n sess.run(other_var['init'])\n best_performance = None\n best_performance_epoch = 0\n for step in range(n_epochs):\n feed_dict = {other_var['tf_X_seq']: X_seq_train, other_var[\n 'tf_y']: y_train, other_var['tf_X_feat']: X_feat_train,\n other_var['tf_step_size']: step_size}\n other_var['optimizer'].minimize(sess, feed_dict=feed_dict)\n l = sess.run(other_var['loss'], feed_dict=feed_dict)\n loss_history.append(l)\n if step % print_every == 0:\n train_accuracy = self._accuracy_in_session(sess, other_var,\n X_feat_train, X_seq_train, y_train)\n valid_accuracy = self._accuracy_in_session(sess, other_var,\n X_feat_valid, X_seq_valid, y_valid)\n train_acc_vec.append(train_accuracy)\n valid_acc_vec.append(valid_accuracy)\n step_history.append(step / num_steps)\n print(\n 'Step %4d: loss %f, train mse: %f, validation mse: %f' %\n (step, l, train_accuracy, valid_accuracy))\n if (best_performance is None or valid_accuracy <=\n best_performance):\n best_performance = valid_accuracy\n best_performance_epoch = step\n if (early_stop_patience is not None and step > \n best_performance_epoch + early_stop_patience):\n print(\n 'Early stopping. best_performance_epoch: %d, best_performance: %f'\n % (best_performance_epoch, best_performance))\n break\n train_accuracy_final = self._accuracy_in_session(sess, other_var,\n X_feat_train, X_seq_train, y_train)\n valid_accuracy_final = self._accuracy_in_session(sess, other_var,\n X_feat_valid, X_seq_valid, y_valid)\n print('Validation accuracy final: %f' % valid_accuracy_final)\n var_res = self._get_var_res_sess(sess, var)\n if self._param['n_splines'] is not None:\n self._splines['quasi_X'] = [self._predict_in_session(sess,\n other_var, X_feat_train[i:i + 1], X_seq_train[i:i + 1],\n variable='spline_quasi_X') for i in range(X_feat_train.\n shape[0])]\n self._splines['quasi_X'] = np.concatenate([x[0][np.newaxis] for\n x in self._splines['quasi_X']])\n accuracy = {'loss_history': np.array(loss_history), 'step_history':\n np.array(step_history), 'train_acc_history': np.array(\n train_acc_vec), 'val_acc_history': np.array(valid_acc_vec),\n 'train_acc_final': train_accuracy_final, 'val_acc_final':\n valid_accuracy_final, 'best_val_acc': best_performance,\n 'best_val_acc_epoch': best_performance_epoch, 'test_acc_final':\n None, 'y_test': None, 'y_test_prediction': None, 'id_vec_test':\n None}\n self._accuracy = accuracy\n toc = time.time()\n exec_time = toc - tic\n self._exec_time = exec_time\n print('That took %fs' % exec_time)\n return var_res\n", "role": "user" }, { "content": "train_lbfgs", "role": "assistant" } ]
def x(self, X_feat, X_seq): X_seq = np.expand_dims(X_seq, axis=1) return self._get_other_var(X_feat, X_seq, variable='y_pred')
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X_feat, X_seq):\n X_seq = np.expand_dims(X_seq, axis=1)\n return self._get_other_var(X_feat, X_seq, variable='y_pred')\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, X_feat, X_seq, variable='y_pred'): if self.is_trained() is False: print('Model not fitted yet. Use object.fit() to fit the model.') return assert X_seq.shape[0] == X_feat.shape[0] assert self._param['n_add_features'] == X_feat.shape[1] graph = tf.Graph() var = self._convert_to_var(graph, self._var_res) other_var = self._build_graph(graph, var) with tf.Session(graph=graph) as sess: sess.run(other_var['init']) y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable) return y
get_other_var
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X_feat, X_seq, variable='y_pred'):\n if self.is_trained() is False:\n print('Model not fitted yet. Use object.fit() to fit the model.')\n return\n assert X_seq.shape[0] == X_feat.shape[0]\n assert self._param['n_add_features'] == X_feat.shape[1]\n graph = tf.Graph()\n var = self._convert_to_var(graph, self._var_res)\n other_var = self._build_graph(graph, var)\n with tf.Session(graph=graph) as sess:\n sess.run(other_var['init'])\n y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable)\n return y\n", "role": "user" }, { "content": "get_other_var", "role": "assistant" } ]
def x(self): final_res = {'param': self._param, 'unused_param': self.unused_param, 'execution_time': self._exec_time, 'output': {'accuracy': self. get_accuracy(), 'weights': self.get_weights(), 'splines': self. _splines}} return final_res
to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n final_res = {'param': self._param, 'unused_param': self.unused_param,\n 'execution_time': self._exec_time, 'output': {'accuracy': self.\n get_accuracy(), 'weights': self.get_weights(), 'splines': self.\n _splines}}\n return final_res\n", "role": "user" }, { "content": "to_dict", "role": "assistant" } ]
def x(self, weights): if weights is None: return motif_base_weights_raw = np.swapaxes(weights['motif_base_weights'], 2, 0) motif_base_weights = motif_base_weights_raw[np.newaxis] motif_bias = weights['motif_bias'] feature_weights = weights['feature_weights'] spline_weights = weights['spline_weights'] motif_weights = weights['motif_weights'] final_bias = weights['final_bias'] var_res = {'motif_base_weights': motif_base_weights, 'motif_bias': motif_bias, 'spline_weights': spline_weights, 'feature_weights': feature_weights, 'motif_weights': motif_weights, 'final_bias': final_bias} var_res = {key: (value.astype(np.float32) if value is not None else None) for key, value in var_res.items()} self._var_res = var_res
set_var_res
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, weights):\n if weights is None:\n return\n motif_base_weights_raw = np.swapaxes(weights['motif_base_weights'], 2, 0)\n motif_base_weights = motif_base_weights_raw[np.newaxis]\n motif_bias = weights['motif_bias']\n feature_weights = weights['feature_weights']\n spline_weights = weights['spline_weights']\n motif_weights = weights['motif_weights']\n final_bias = weights['final_bias']\n var_res = {'motif_base_weights': motif_base_weights, 'motif_bias':\n motif_bias, 'spline_weights': spline_weights, 'feature_weights':\n feature_weights, 'motif_weights': motif_weights, 'final_bias':\n final_bias}\n var_res = {key: (value.astype(np.float32) if value is not None else\n None) for key, value in var_res.items()}\n self._var_res = var_res\n", "role": "user" }, { "content": "set_var_res", "role": "assistant" } ]
def x(cls, obj_dict): obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict['output']) helper.dict_to_numpy_dict(obj_dict['output']) if 'trained_global_model' in obj_dict.keys(): raise Exception( 'Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.' ) dc = Concise(**obj_dict['param']) dc._param = obj_dict['param'] if obj_dict['output']['weights'] is None: dc._model_fitted = False else: dc._model_fitted = True dc._exec_time = obj_dict['execution_time'] dc.unused_param = obj_dict['unused_param'] dc._accuracy = obj_dict['output']['accuracy'] dc._splines = obj_dict['output']['splines'] weights = obj_dict['output']['weights'] if weights is not None: if weights['feature_weights'].shape == (0,): weights['feature_weights'].shape = 0, obj_dict['param']['num_tasks' ] dc._set_var_res(weights) return dc
from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, obj_dict):\n obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict['output'])\n helper.dict_to_numpy_dict(obj_dict['output'])\n if 'trained_global_model' in obj_dict.keys():\n raise Exception(\n 'Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.'\n )\n dc = Concise(**obj_dict['param'])\n dc._param = obj_dict['param']\n if obj_dict['output']['weights'] is None:\n dc._model_fitted = False\n else:\n dc._model_fitted = True\n dc._exec_time = obj_dict['execution_time']\n dc.unused_param = obj_dict['unused_param']\n dc._accuracy = obj_dict['output']['accuracy']\n dc._splines = obj_dict['output']['splines']\n weights = obj_dict['output']['weights']\n if weights is not None:\n if weights['feature_weights'].shape == (0,):\n weights['feature_weights'].shape = 0, obj_dict['param']['num_tasks'\n ]\n dc._set_var_res(weights)\n return dc\n", "role": "user" }, { "content": "from_dict", "role": "assistant" } ]
def x(cls, file_path): data = helper.read_json(file_path) return Concise.from_dict(data)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, file_path):\n data = helper.read_json(file_path)\n return Concise.from_dict(data)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(n_rows, n_folds, use_stored): if use_stored is not None: with open(os.path.expanduser(use_stored)) as json_file: json_data = json.load(json_file) if json_data['N_rows'] != n_rows: raise Exception( 'N_rows from folds doesnt match the number of rows of X_seq, X_feat, y' ) if json_data['N_folds'] != n_folds: raise Exception('n_folds dont match', json_data['N_folds'], n_folds ) kf = [(np.array(train), np.array(test)) for train, test in json_data['folds']] else: kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1))) i = 1 folds = [] for train, test in kf: fold = 'fold_' + str(i) folds.append((fold, train, test)) i = i + 1 return folds
get_folds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n_rows, n_folds, use_stored):\n if use_stored is not None:\n with open(os.path.expanduser(use_stored)) as json_file:\n json_data = json.load(json_file)\n if json_data['N_rows'] != n_rows:\n raise Exception(\n 'N_rows from folds doesnt match the number of rows of X_seq, X_feat, y'\n )\n if json_data['N_folds'] != n_folds:\n raise Exception('n_folds dont match', json_data['N_folds'], n_folds\n )\n kf = [(np.array(train), np.array(test)) for train, test in\n json_data['folds']]\n else:\n kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1)))\n i = 1\n folds = []\n for train, test in kf:\n fold = 'fold_' + str(i)\n folds.append((fold, train, test))\n i = i + 1\n return folds\n", "role": "user" }, { "content": "get_folds", "role": "assistant" } ]
def x(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds= None, n_cores=1, train_global_model=False): self._use_stored_folds = use_stored_folds self._n_folds = n_folds self._n_rows = X_feat.shape[0] self._kf = self._get_folds(self._n_rows, self._n_folds, self. _use_stored_folds) cv_obj = {} if id_vec is None: id_vec = np.arange(1, self._n_rows + 1) best_val_acc_epoch_l = [] for fold, train, test in self._kf: X_feat_train = X_feat[train] X_seq_train = X_seq[train] y_train = y[train] X_feat_test = X_feat[test] X_seq_test = X_seq[test] y_test = y[test] id_vec_test = id_vec[test] print(fold, '/', n_folds) dc = copy.deepcopy(self._concise_model) dc.train(X_feat_train, X_seq_train, y_train, X_feat_test, X_seq_test, y_test, n_cores=n_cores) dc._test(X_feat_test, X_seq_test, y_test, id_vec_test) cv_obj[fold] = dc best_val_acc_epoch_l.append(dc.get_accuracy()['best_val_acc_epoch']) self._cv_model = cv_obj if train_global_model: dc = copy.deepcopy(self._concise_model) dc._param['n_epochs'] = int(np.array(best_val_acc_epoch_l).mean()) print('tranining global model with n_epochs = ' + str(dc._param[ 'n_epochs'])) dc.train(X_feat, X_seq, y, n_cores=n_cores) dc._test(X_feat, X_seq, y, id_vec) self._concise_global_model = dc
train
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds=\n None, n_cores=1, train_global_model=False):\n self._use_stored_folds = use_stored_folds\n self._n_folds = n_folds\n self._n_rows = X_feat.shape[0]\n self._kf = self._get_folds(self._n_rows, self._n_folds, self.\n _use_stored_folds)\n cv_obj = {}\n if id_vec is None:\n id_vec = np.arange(1, self._n_rows + 1)\n best_val_acc_epoch_l = []\n for fold, train, test in self._kf:\n X_feat_train = X_feat[train]\n X_seq_train = X_seq[train]\n y_train = y[train]\n X_feat_test = X_feat[test]\n X_seq_test = X_seq[test]\n y_test = y[test]\n id_vec_test = id_vec[test]\n print(fold, '/', n_folds)\n dc = copy.deepcopy(self._concise_model)\n dc.train(X_feat_train, X_seq_train, y_train, X_feat_test,\n X_seq_test, y_test, n_cores=n_cores)\n dc._test(X_feat_test, X_seq_test, y_test, id_vec_test)\n cv_obj[fold] = dc\n best_val_acc_epoch_l.append(dc.get_accuracy()['best_val_acc_epoch'])\n self._cv_model = cv_obj\n if train_global_model:\n dc = copy.deepcopy(self._concise_model)\n dc._param['n_epochs'] = int(np.array(best_val_acc_epoch_l).mean())\n print('tranining global model with n_epochs = ' + str(dc._param[\n 'n_epochs']))\n dc.train(X_feat, X_seq, y, n_cores=n_cores)\n dc._test(X_feat, X_seq, y, id_vec)\n self._concise_global_model = dc\n", "role": "user" }, { "content": "train", "role": "assistant" } ]
def x(self): predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks)) for fold, train, test in self._kf: acc = self._cv_model[fold].get_accuracy() predict_vec[test, :] = acc['y_test_prediction'] return predict_vec
get_CV_prediction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks))\n for fold, train, test in self._kf:\n acc = self._cv_model[fold].get_accuracy()\n predict_vec[test, :] = acc['y_test_prediction']\n return predict_vec\n", "role": "user" }, { "content": "get_CV_prediction", "role": "assistant" } ]
def x(self): accuracy = {} for fold, train, test in self._kf: acc = self._cv_model[fold].get_accuracy() accuracy[fold] = acc['test_acc_final'] return accuracy
get_CV_accuracy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n accuracy = {}\n for fold, train, test in self._kf:\n acc = self._cv_model[fold].get_accuracy()\n accuracy[fold] = acc['test_acc_final']\n return accuracy\n", "role": "user" }, { "content": "get_CV_accuracy", "role": "assistant" } ]
def x(self): param = {'n_folds': self._n_folds, 'n_rows': self._n_rows, 'use_stored_folds': self._use_stored_folds} if self._concise_global_model is None: trained_global_model = None else: trained_global_model = self._concise_global_model.to_dict() obj_dict = {'param': param, 'folds': self._kf, 'init_model': self. _concise_model.to_dict(), 'trained_global_model': trained_global_model, 'output': {fold: model.to_dict() for fold, model in self.get_CV_models().items()}} return obj_dict
to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n param = {'n_folds': self._n_folds, 'n_rows': self._n_rows,\n 'use_stored_folds': self._use_stored_folds}\n if self._concise_global_model is None:\n trained_global_model = None\n else:\n trained_global_model = self._concise_global_model.to_dict()\n obj_dict = {'param': param, 'folds': self._kf, 'init_model': self.\n _concise_model.to_dict(), 'trained_global_model':\n trained_global_model, 'output': {fold: model.to_dict() for fold,\n model in self.get_CV_models().items()}}\n return obj_dict\n", "role": "user" }, { "content": "to_dict", "role": "assistant" } ]
def x(cls, obj_dict): default_model = Concise() cvdc = ConciseCV(default_model) cvdc._from_dict(obj_dict) return cvdc
from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, obj_dict):\n default_model = Concise()\n cvdc = ConciseCV(default_model)\n cvdc._from_dict(obj_dict)\n return cvdc\n", "role": "user" }, { "content": "from_dict", "role": "assistant" } ]
def x(self, obj_dict): self._n_folds = obj_dict['param']['n_folds'] self._n_rows = obj_dict['param']['n_rows'] self._use_stored_folds = obj_dict['param']['use_stored_folds'] self._concise_model = Concise.from_dict(obj_dict['init_model']) if obj_dict['trained_global_model'] is None: self._concise_global_model = None else: self._concise_global_model = Concise.from_dict(obj_dict[ 'trained_global_model']) self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train, test in obj_dict['folds']] self._cv_model = {fold: Concise.from_dict(model_dict) for fold, model_dict in obj_dict['output'].items()}
from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj_dict):\n self._n_folds = obj_dict['param']['n_folds']\n self._n_rows = obj_dict['param']['n_rows']\n self._use_stored_folds = obj_dict['param']['use_stored_folds']\n self._concise_model = Concise.from_dict(obj_dict['init_model'])\n if obj_dict['trained_global_model'] is None:\n self._concise_global_model = None\n else:\n self._concise_global_model = Concise.from_dict(obj_dict[\n 'trained_global_model'])\n self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train,\n test in obj_dict['folds']]\n self._cv_model = {fold: Concise.from_dict(model_dict) for fold,\n model_dict in obj_dict['output'].items()}\n", "role": "user" }, { "content": "from_dict", "role": "assistant" } ]
def x(cls, file_path): data = helper.read_json(file_path) return ConciseCV.from_dict(data)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, file_path):\n data = helper.read_json(file_path)\n return ConciseCV.from_dict(data)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(arr, background_probs=DEFAULT_BASE_BACKGROUND): b = background_probs2array(background_probs) b = b.reshape([1, 4, 1]) return np.log(arr / b).astype(arr.dtype)
pwm_array2pssm_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):\n b = background_probs2array(background_probs)\n b = b.reshape([1, 4, 1])\n return np.log(arr / b).astype(arr.dtype)\n", "role": "user" }, { "content": "pwm_array2pssm_array", "role": "assistant" } ]
def x(arr, background_probs=DEFAULT_BASE_BACKGROUND): b = background_probs2array(background_probs) b = b.reshape([1, 4, 1]) return (np.exp(arr) * b).astype(arr.dtype)
pssm_array2pwm_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):\n b = background_probs2array(background_probs)\n b = b.reshape([1, 4, 1])\n return (np.exp(arr) * b).astype(arr.dtype)\n", "role": "user" }, { "content": "pssm_array2pwm_array", "role": "assistant" } ]
def x(filename, skipn_matrix=0): if filename.endswith('.gz'): f = gzip.open(filename, 'rt', encoding='utf-8') else: f = open(filename, 'r') lines = f.readlines() f.close() motifs_dict = {} motif_lines = '' motif_name = None def x(lines): return np.loadtxt(StringIO(lines)) for line in lines: if line.startswith('>'): if motif_lines: motifs_dict[motif_name] = lines2matrix(motif_lines) motif_name = line[1:].strip() motif_lines = '' else: motif_lines += line[skipn_matrix:] if motif_lines and motif_name is not None: motifs_dict[motif_name] = lines2matrix(motif_lines) return motifs_dict
load_motif_db
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, skipn_matrix=0):\n if filename.endswith('.gz'):\n f = gzip.open(filename, 'rt', encoding='utf-8')\n else:\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n motifs_dict = {}\n motif_lines = ''\n motif_name = None\n\n def x(lines):\n return np.loadtxt(StringIO(lines))\n for line in lines:\n if line.startswith('>'):\n if motif_lines:\n motifs_dict[motif_name] = lines2matrix(motif_lines)\n motif_name = line[1:].strip()\n motif_lines = ''\n else:\n motif_lines += line[skipn_matrix:]\n if motif_lines and motif_name is not None:\n motifs_dict[motif_name] = lines2matrix(motif_lines)\n return motifs_dict\n", "role": "user" }, { "content": "load_motif_db", "role": "assistant" } ]
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs, output_filter_mask=None, out_annotation= None, dropout_iterations=30): prefix = 'do' seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc} assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs [k]))) for k in seqs.keys() if k != 'ref']) assert get_seq_len(ref)[0] == mutation_positions.shape[0] assert len(mutation_positions.shape) == 1 if output_filter_mask is None: if out_annotation is None: output_filter_mask = np.arange(out_annotation_all_outputs.shape[0]) else: output_filter_mask = np.where(np.in1d( out_annotation_all_outputs, out_annotation))[0] out_annotation = out_annotation_all_outputs[output_filter_mask] model_config = model._updated_config() alt_config = replace_dict_values(model_config, u'Dropout', u'BiDropout') alt_model = keras.layers.deserialize(alt_config) alt_model.set_weights(model.get_weights()) preds = {} for k in seqs: preds[k] = pred_do(alt_model, seqs[k], output_filter_mask= output_filter_mask, dropout_iterations=dropout_iterations) t, prob = ttest_ind(preds['ref'], preds['alt'], axis=0) t_rc, prob_rc = ttest_ind(preds['ref_rc'], preds['alt_rc'], axis=0) logit_prob = None logit_prob_rc = None pred_range = get_range(preds) if np.all([(pred_range[k] >= 0 and pred_range[k] <= 1) for k in pred_range] ): logit_preds = apply_over_single(preds, logit) logit_prob = apply_over_double(logit_preds['ref'], logit_preds[ 'alt'], apply_func=ttest_ind, select_return_elm=1, axis=0) logit_prob_rc = apply_over_double(logit_preds['ref_rc'], logit_preds['alt_rc'], apply_func=ttest_ind, select_return_elm= 1, axis=0) sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int) out_dict = {} out_dict['%s_pv' % prefix] = pd.DataFrame(overwite_by(prob, prob_rc, sel), columns=out_annotation) if logit_prob is not None: logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int) out_dict['%s_logit_pv' % prefix] = pd.DataFrame(overwite_by( logit_prob, logit_prob_rc, logit_sel), columns=out_annotation) pred_means = {} pred_vars = {} pred_cvar2 = {} for k in preds: pred_means[k] = np.mean(preds[k], axis=0) pred_vars[k] = np.var(preds[k], axis=0) pred_cvar2[k] = pred_vars[k] / pred_means[k] ** 2 mean_cvar = np.sqrt((pred_cvar2['ref'] + pred_cvar2['alt']) / 2) mean_cvar_rc = np.sqrt((pred_cvar2['ref_rc'] + pred_cvar2['alt_rc']) / 2) mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel) ref_mean = overwite_by(pred_means['ref'], pred_means['ref_rc'], sel) alt_mean = overwite_by(pred_means['alt'], pred_means['alt_rc'], sel) ref_var = overwite_by(pred_vars['ref'], pred_vars['ref_rc'], sel) alt_var = overwite_by(pred_vars['alt'], pred_vars['alt_rc'], sel) out_dict['%s_ref_mean' % prefix] = pd.DataFrame(ref_mean, columns= out_annotation) out_dict['%s_alt_mean' % prefix] = pd.DataFrame(alt_mean, columns= out_annotation) out_dict['%s_ref_var' % prefix] = pd.DataFrame(ref_var, columns= out_annotation) out_dict['%s_alt_var' % prefix] = pd.DataFrame(alt_var, columns= out_annotation) out_dict['%s_cvar' % prefix] = pd.DataFrame(mean_cvar, columns= out_annotation) out_dict['%s_diff' % prefix] = out_dict['%s_alt_mean' % prefix] - out_dict[ '%s_ref_mean' % prefix] return out_dict
dropout_pred
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=\n None, dropout_iterations=30):\n prefix = 'do'\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n model_config = model._updated_config()\n alt_config = replace_dict_values(model_config, u'Dropout', u'BiDropout')\n alt_model = keras.layers.deserialize(alt_config)\n alt_model.set_weights(model.get_weights())\n preds = {}\n for k in seqs:\n preds[k] = pred_do(alt_model, seqs[k], output_filter_mask=\n output_filter_mask, dropout_iterations=dropout_iterations)\n t, prob = ttest_ind(preds['ref'], preds['alt'], axis=0)\n t_rc, prob_rc = ttest_ind(preds['ref_rc'], preds['alt_rc'], axis=0)\n logit_prob = None\n logit_prob_rc = None\n pred_range = get_range(preds)\n if np.all([(pred_range[k] >= 0 and pred_range[k] <= 1) for k in pred_range]\n ):\n logit_preds = apply_over_single(preds, logit)\n logit_prob = apply_over_double(logit_preds['ref'], logit_preds[\n 'alt'], apply_func=ttest_ind, select_return_elm=1, axis=0)\n logit_prob_rc = apply_over_double(logit_preds['ref_rc'],\n logit_preds['alt_rc'], apply_func=ttest_ind, select_return_elm=\n 1, axis=0)\n sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int)\n out_dict = {}\n out_dict['%s_pv' % prefix] = pd.DataFrame(overwite_by(prob, prob_rc,\n sel), columns=out_annotation)\n if logit_prob is not None:\n logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int)\n out_dict['%s_logit_pv' % prefix] = pd.DataFrame(overwite_by(\n logit_prob, logit_prob_rc, logit_sel), columns=out_annotation)\n pred_means = {}\n pred_vars = {}\n pred_cvar2 = {}\n for k in preds:\n pred_means[k] = np.mean(preds[k], axis=0)\n pred_vars[k] = np.var(preds[k], axis=0)\n pred_cvar2[k] = pred_vars[k] / pred_means[k] ** 2\n mean_cvar = np.sqrt((pred_cvar2['ref'] + pred_cvar2['alt']) / 2)\n mean_cvar_rc = np.sqrt((pred_cvar2['ref_rc'] + pred_cvar2['alt_rc']) / 2)\n mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel)\n ref_mean = overwite_by(pred_means['ref'], pred_means['ref_rc'], sel)\n alt_mean = overwite_by(pred_means['alt'], pred_means['alt_rc'], sel)\n ref_var = overwite_by(pred_vars['ref'], pred_vars['ref_rc'], sel)\n alt_var = overwite_by(pred_vars['alt'], pred_vars['alt_rc'], sel)\n out_dict['%s_ref_mean' % prefix] = pd.DataFrame(ref_mean, columns=\n out_annotation)\n out_dict['%s_alt_mean' % prefix] = pd.DataFrame(alt_mean, columns=\n out_annotation)\n out_dict['%s_ref_var' % prefix] = pd.DataFrame(ref_var, columns=\n out_annotation)\n out_dict['%s_alt_var' % prefix] = pd.DataFrame(alt_var, columns=\n out_annotation)\n out_dict['%s_cvar' % prefix] = pd.DataFrame(mean_cvar, columns=\n out_annotation)\n out_dict['%s_diff' % prefix] = out_dict['%s_alt_mean' % prefix] - out_dict[\n '%s_ref_mean' % prefix]\n return out_dict\n", "role": "user" }, { "content": "dropout_pred", "role": "assistant" } ]
def x(file_path): fh = open(file_path) faiter = (x[1] for x in groupby(fh, lambda line: line[0] == '>')) for header in faiter: headerStr = header.__next__()[1:].strip() seq = ''.join(s.strip() for s in faiter.__next__()) yield headerStr, seq
iter_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n fh = open(file_path)\n faiter = (x[1] for x in groupby(fh, lambda line: line[0] == '>'))\n for header in faiter:\n headerStr = header.__next__()[1:].strip()\n seq = ''.join(s.strip() for s in faiter.__next__())\n yield headerStr, seq\n", "role": "user" }, { "content": "iter_fasta", "role": "assistant" } ]
def x(file_path, seq_list, name_list=None): if name_list is None: name_list = [str(i) for i in range(len(seq_list))] with open(file_path, 'w') as f: for i in range(len(seq_list)): f.write('>' + name_list[i] + '\n' + seq_list[i] + '\n')
write_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, seq_list, name_list=None):\n if name_list is None:\n name_list = [str(i) for i in range(len(seq_list))]\n with open(file_path, 'w') as f:\n for i in range(len(seq_list)):\n f.write('>' + name_list[i] + '\\n' + seq_list[i] + '\\n')\n", "role": "user" }, { "content": "write_fasta", "role": "assistant" } ]
def x(input_fasta, tmpdir, W=240, L=160, U=1): profiles = RNAplfold_PROFILES_EXECUTE for i, P in enumerate(profiles): print('running {P}_RNAplfold... ({i}/{N})'.format(P=P, i=i + 1, N= len(profiles))) command = '{bin}/{P}_RNAplfold'.format(bin=RNAplfold_BIN_DIR, P=P) file_out = '{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P) args = ' -W {W} -L {L} -u {U} < {fa} > {file_out}'.format(W=W, L=L, U=U, fa=input_fasta, file_out=file_out) os.system(command + args) if os.path.getsize(file_out) == 0: raise Exception('command wrote an empty file: {0}'.format(file_out) ) print('done!')
run_RNAplfold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_fasta, tmpdir, W=240, L=160, U=1):\n profiles = RNAplfold_PROFILES_EXECUTE\n for i, P in enumerate(profiles):\n print('running {P}_RNAplfold... ({i}/{N})'.format(P=P, i=i + 1, N=\n len(profiles)))\n command = '{bin}/{P}_RNAplfold'.format(bin=RNAplfold_BIN_DIR, P=P)\n file_out = '{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P)\n args = ' -W {W} -L {L} -u {U} < {fa} > {file_out}'.format(W=W, L=L,\n U=U, fa=input_fasta, file_out=file_out)\n os.system(command + args)\n if os.path.getsize(file_out) == 0:\n raise Exception('command wrote an empty file: {0}'.format(file_out)\n )\n print('done!')\n", "role": "user" }, { "content": "run_RNAplfold", "role": "assistant" } ]
def x(tmpdir, maxlen=None, seq_align='start', pad_with='E'): assert pad_with in {'P', 'H', 'I', 'M', 'E'} def x(tmpdir, P): return [values.strip().split('\t') for seq_name, values in iter_fasta('{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P))] def x(P, pad_width): return 1 if P is pad_with else 0 arr_hime = np.array([pad_sequences(read_profile(tmpdir, P), value=[ nelem(P, pad_with)], align=seq_align, maxlen=maxlen) for P in RNAplfold_PROFILES_EXECUTE], dtype='float32') arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis] arr = np.concatenate((arr_p, arr_hime)) arr = np.moveaxis(arr, 0, 2) return arr
read_RNAplfold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tmpdir, maxlen=None, seq_align='start', pad_with='E'):\n assert pad_with in {'P', 'H', 'I', 'M', 'E'}\n\n def x(tmpdir, P):\n return [values.strip().split('\\t') for seq_name, values in\n iter_fasta('{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P))]\n\n def x(P, pad_width):\n return 1 if P is pad_with else 0\n arr_hime = np.array([pad_sequences(read_profile(tmpdir, P), value=[\n nelem(P, pad_with)], align=seq_align, maxlen=maxlen) for P in\n RNAplfold_PROFILES_EXECUTE], dtype='float32')\n arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis]\n arr = np.concatenate((arr_p, arr_hime))\n arr = np.moveaxis(arr, 0, 2)\n return arr\n", "role": "user" }, { "content": "read_RNAplfold", "role": "assistant" } ]
def x(seq_vec, maxlen=None, seq_align='start', W=240, L=160, U=1, tmpdir= '/tmp/RNAplfold/'): tmpdir = tmpdir + '/' + str(uuid4()) + '/' if not isinstance(seq_vec, list): seq_vec = seq_vec.tolist() if not os.path.exists(tmpdir): os.makedirs(tmpdir) fasta_path = tmpdir + '/input.fasta' write_fasta(fasta_path, seq_vec) run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U) return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with='E')
encodeRNAStructure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq_vec, maxlen=None, seq_align='start', W=240, L=160, U=1, tmpdir=\n '/tmp/RNAplfold/'):\n tmpdir = tmpdir + '/' + str(uuid4()) + '/'\n if not isinstance(seq_vec, list):\n seq_vec = seq_vec.tolist()\n if not os.path.exists(tmpdir):\n os.makedirs(tmpdir)\n fasta_path = tmpdir + '/input.fasta'\n write_fasta(fasta_path, seq_vec)\n run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U)\n return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with='E')\n", "role": "user" }, { "content": "encodeRNAStructure", "role": "assistant" } ]
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions, out_annotation_all_outputs, output_filter_mask=None, out_annotation= None, diff_type='log_odds', rc_handling='maximum'): seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc} assert diff_type in ['log_odds', 'diff'] assert rc_handling in ['average', 'maximum'] assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs [k]))) for k in seqs.keys() if k != 'ref']) assert get_seq_len(ref)[0] == mutation_positions.shape[0] assert len(mutation_positions.shape) == 1 if output_filter_mask is None: if out_annotation is None: output_filter_mask = np.arange(out_annotation_all_outputs.shape[0]) else: output_filter_mask = np.where(np.in1d( out_annotation_all_outputs, out_annotation))[0] out_annotation = out_annotation_all_outputs[output_filter_mask] preds = {} for k in seqs: preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask]) if diff_type == 'log_odds': if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]): warnings.warn( 'Using log_odds on model outputs that are not bound [0,1]') diffs = np.log(preds['alt'] / (1 - preds['alt'])) - np.log(preds[ 'ref'] / (1 - preds['ref'])) diffs_rc = np.log(preds['alt_rc'] / (1 - preds['alt_rc'])) - np.log( preds['ref_rc'] / (1 - preds['ref_rc'])) elif diff_type == 'diff': diffs = preds['alt'] - preds['ref'] diffs_rc = preds['alt_rc'] - preds['ref_rc'] if rc_handling == 'average': diffs = np.mean([diffs, diffs_rc], axis=0) elif rc_handling == 'maximum': replace_filt = np.abs(diffs) < np.abs(diffs_rc) diffs[replace_filt] = diffs_rc[replace_filt] diffs = pd.DataFrame(diffs, columns=out_annotation) return {'ism': diffs}
ism
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=\n None, diff_type='log_odds', rc_handling='maximum'):\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n assert diff_type in ['log_odds', 'diff']\n assert rc_handling in ['average', 'maximum']\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n preds = {}\n for k in seqs:\n preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask])\n if diff_type == 'log_odds':\n if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]):\n warnings.warn(\n 'Using log_odds on model outputs that are not bound [0,1]')\n diffs = np.log(preds['alt'] / (1 - preds['alt'])) - np.log(preds[\n 'ref'] / (1 - preds['ref']))\n diffs_rc = np.log(preds['alt_rc'] / (1 - preds['alt_rc'])) - np.log(\n preds['ref_rc'] / (1 - preds['ref_rc']))\n elif diff_type == 'diff':\n diffs = preds['alt'] - preds['ref']\n diffs_rc = preds['alt_rc'] - preds['ref_rc']\n if rc_handling == 'average':\n diffs = np.mean([diffs, diffs_rc], axis=0)\n elif rc_handling == 'maximum':\n replace_filt = np.abs(diffs) < np.abs(diffs_rc)\n diffs[replace_filt] = diffs_rc[replace_filt]\n diffs = pd.DataFrame(diffs, columns=out_annotation)\n return {'ism': diffs}\n", "role": "user" }, { "content": "ism", "role": "assistant" } ]
def x(train, valid, model, batch_size=32, epochs=300, use_weight=False, callbacks=[], eval_best=False, add_eval_metrics={}): def x(history): return {'params': history.params, 'loss': merge_dicts({'epoch': history.epoch}, history.history)} if use_weight: sample_weight = train[2] else: sample_weight = None logger.info('Fit...') history = History() model.fit(train[0], train[1], batch_size=batch_size, validation_data= valid[:2], epochs=epochs, sample_weight=sample_weight, verbose=2, callbacks=[history] + callbacks) hist = _format_keras_history(history) if eval_best: mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)] assert len(mcp) == 1 model = load_model(mcp[0].filepath) return eval_model(model, valid, add_eval_metrics), hist
train_and_eval_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(train, valid, model, batch_size=32, epochs=300, use_weight=False,\n callbacks=[], eval_best=False, add_eval_metrics={}):\n\n def x(history):\n return {'params': history.params, 'loss': merge_dicts({'epoch':\n history.epoch}, history.history)}\n if use_weight:\n sample_weight = train[2]\n else:\n sample_weight = None\n logger.info('Fit...')\n history = History()\n model.fit(train[0], train[1], batch_size=batch_size, validation_data=\n valid[:2], epochs=epochs, sample_weight=sample_weight, verbose=2,\n callbacks=[history] + callbacks)\n hist = _format_keras_history(history)\n if eval_best:\n mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]\n assert len(mcp) == 1\n model = load_model(mcp[0].filepath)\n return eval_model(model, valid, add_eval_metrics), hist\n", "role": "user" }, { "content": "train_and_eval_single", "role": "assistant" } ]
def x(model, test, add_eval_metrics={}): logger.info('Evaluate...') model_metrics_values = model.evaluate(test[0], test[1], verbose=0, batch_size=test[1].shape[0]) model_metrics = dict(zip(_listify(model.metrics_names), _listify( model_metrics_values))) y_true = test[1] y_pred = model.predict(test[0], verbose=0) eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()} intersected_keys = set(model_metrics).intersection(set(eval_metrics)) if len(intersected_keys) > 0: logger.warning( 'Some metric names intersect: {0}. Ignoring the add_eval_metrics ones' .format(intersected_keys)) eval_metrics = _delete_keys(eval_metrics, intersected_keys) return merge_dicts(model_metrics, eval_metrics)
eval_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, test, add_eval_metrics={}):\n logger.info('Evaluate...')\n model_metrics_values = model.evaluate(test[0], test[1], verbose=0,\n batch_size=test[1].shape[0])\n model_metrics = dict(zip(_listify(model.metrics_names), _listify(\n model_metrics_values)))\n y_true = test[1]\n y_pred = model.predict(test[0], verbose=0)\n eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()}\n intersected_keys = set(model_metrics).intersection(set(eval_metrics))\n if len(intersected_keys) > 0:\n logger.warning(\n 'Some metric names intersect: {0}. Ignoring the add_eval_metrics ones'\n .format(intersected_keys))\n eval_metrics = _delete_keys(eval_metrics, intersected_keys)\n return merge_dicts(model_metrics, eval_metrics)\n", "role": "user" }, { "content": "eval_model", "role": "assistant" } ]
def x(model_fn, train_data, param): model_param = merge_dicts({'train_data': train_data}, param['model'], param.get('shared', {})) return model_fn(**model_param)
get_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model_fn, train_data, param):\n model_param = merge_dicts({'train_data': train_data}, param['model'],\n param.get('shared', {}))\n return model_fn(**model_param)\n", "role": "user" }, { "content": "get_model", "role": "assistant" } ]
def x(dct, keys): c = deepcopy(dct) assert isinstance(keys, list) for k in keys: c.pop(k) return c
delete_keys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dct, keys):\n c = deepcopy(dct)\n assert isinstance(keys, list)\n for k in keys:\n c.pop(k)\n return c\n", "role": "user" }, { "content": "delete_keys", "role": "assistant" } ]
def x(dict_list): return {k: np.array([d[k] for d in dict_list]).mean() for k in dict_list[0].keys()}
mean_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dict_list):\n return {k: np.array([d[k] for d in dict_list]).mean() for k in\n dict_list[0].keys()}\n", "role": "user" }, { "content": "mean_dict", "role": "assistant" } ]
def x(self, tid): lid = np.where(np.array(self.tids) == tid)[0][0] return self.trials[lid]
get_trial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tid):\n lid = np.where(np.array(self.tids) == tid)[0][0]\n return self.trials[lid]\n", "role": "user" }, { "content": "get_trial", "role": "assistant" } ]
def x(self, arg): if self.kill_timeout is not None: self.delete_running(self.kill_timeout) return super(CMongoTrials, self).count_by_state_unsynced(arg)
count_by_state_unsynced
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arg):\n if self.kill_timeout is not None:\n self.delete_running(self.kill_timeout)\n return super(CMongoTrials, self).count_by_state_unsynced(arg)\n", "role": "user" }, { "content": "count_by_state_unsynced", "role": "assistant" } ]
def x(self, timeout_last_refresh=0, dry_run=False): running_all = self.handle.jobs_running() running_timeout = [job for job in running_all if coarse_utcnow() > job[ 'refresh_time'] + timedelta(seconds=timeout_last_refresh)] if len(running_timeout) == 0: self.refresh_tids(None) return None if dry_run: logger.warning('Dry run. Not removing anything.') logger.info('Removing {0}/{1} running jobs. # all jobs: {2} '.format( len(running_timeout), len(running_all), len(self))) now = coarse_utcnow() logger.info('Current utc time: {0}'.format(now)) logger.info('Time horizont: {0}'.format(now - timedelta(seconds= timeout_last_refresh))) for job in running_timeout: logger.info('Removing job: ') pjob = job.to_dict() del pjob['misc'] logger.info(pprint.pformat(pjob)) if not dry_run: self.handle.delete(job) logger.info('Job deleted') self.refresh_tids(None)
delete_running
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout_last_refresh=0, dry_run=False):\n running_all = self.handle.jobs_running()\n running_timeout = [job for job in running_all if coarse_utcnow() > job[\n 'refresh_time'] + timedelta(seconds=timeout_last_refresh)]\n if len(running_timeout) == 0:\n self.refresh_tids(None)\n return None\n if dry_run:\n logger.warning('Dry run. Not removing anything.')\n logger.info('Removing {0}/{1} running jobs. # all jobs: {2} '.format(\n len(running_timeout), len(running_all), len(self)))\n now = coarse_utcnow()\n logger.info('Current utc time: {0}'.format(now))\n logger.info('Time horizont: {0}'.format(now - timedelta(seconds=\n timeout_last_refresh)))\n for job in running_timeout:\n logger.info('Removing job: ')\n pjob = job.to_dict()\n del pjob['misc']\n logger.info(pprint.pformat(pjob))\n if not dry_run:\n self.handle.delete(job)\n logger.info('Job deleted')\n self.refresh_tids(None)\n", "role": "user" }, { "content": "delete_running", "role": "assistant" } ]
def x(self, tid=None): def x(result): if isinstance(result['history'], list): return pd.concat([pd.DataFrame(hist['loss']).assign(fold=i) for i, hist in enumerate(result['history'])]) else: return pd.DataFrame(result['history']['loss']) if tid is None: tid = self.valid_tid() res = [result2history(t['result']).assign(tid=t['tid']) for t in self. trials if t['tid'] in _listify(tid)] df = pd.concat(res) fold_name = ['fold'] if 'fold' in df else [] df = _put_first(df, ['tid'] + fold_name + ['epoch']) return df
train_history
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tid=None):\n\n def x(result):\n if isinstance(result['history'], list):\n return pd.concat([pd.DataFrame(hist['loss']).assign(fold=i) for\n i, hist in enumerate(result['history'])])\n else:\n return pd.DataFrame(result['history']['loss'])\n if tid is None:\n tid = self.valid_tid()\n res = [result2history(t['result']).assign(tid=t['tid']) for t in self.\n trials if t['tid'] in _listify(tid)]\n df = pd.concat(res)\n fold_name = ['fold'] if 'fold' in df else []\n df = _put_first(df, ['tid'] + fold_name + ['epoch'])\n return df\n", "role": "user" }, { "content": "train_history", "role": "assistant" } ]
def x(self, ignore_vals=['history'], separator='.', verbose=True): def x(res): if 'eval' not in res: if isinstance(res['history'], list): eval_names = list(res['history'][0]['loss'].keys()) eval_metrics = np.array([[v[-1] for k, v in hist['loss']. items()] for hist in res['history']]).mean(axis=0).tolist() res['eval'] = {eval_names[i]: eval_metrics[i] for i in range(len(eval_metrics))} else: res['eval'] = {k: v[-1] for k, v in res['history']['loss']. items()} return res def x(df): df_epoch = self.train_history().groupby('tid')['epoch'].max( ).reset_index() df_epoch.rename(columns={'epoch': 'n_epoch'}, inplace=True) return pd.merge(df, df_epoch, on='tid', how='left') results = self.get_ok_results(verbose=verbose) rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for x in results] df = pd.DataFrame.from_records(rp) df = add_n_epoch(df) first = ['tid', 'loss', 'status'] return _put_first(df, first)
as_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ignore_vals=['history'], separator='.', verbose=True):\n\n def x(res):\n if 'eval' not in res:\n if isinstance(res['history'], list):\n eval_names = list(res['history'][0]['loss'].keys())\n eval_metrics = np.array([[v[-1] for k, v in hist['loss'].\n items()] for hist in res['history']]).mean(axis=0).tolist()\n res['eval'] = {eval_names[i]: eval_metrics[i] for i in\n range(len(eval_metrics))}\n else:\n res['eval'] = {k: v[-1] for k, v in res['history']['loss'].\n items()}\n return res\n\n def x(df):\n df_epoch = self.train_history().groupby('tid')['epoch'].max(\n ).reset_index()\n df_epoch.rename(columns={'epoch': 'n_epoch'}, inplace=True)\n return pd.merge(df, df_epoch, on='tid', how='left')\n results = self.get_ok_results(verbose=verbose)\n rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for\n x in results]\n df = pd.DataFrame.from_records(rp)\n df = add_n_epoch(df)\n first = ['tid', 'loss', 'status']\n return _put_first(df, first)\n", "role": "user" }, { "content": "as_df", "role": "assistant" } ]
def x(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions, out_annotation_all_outputs, extra_args=None, **argv): assert isinstance(methods, list) if isinstance(extra_args, list): assert len(extra_args) == len(methods) else: extra_args = [None] * len(methods) main_args = {'model': model, 'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc, 'mutation_positions': mutation_positions, 'out_annotation_all_outputs': out_annotation_all_outputs} pred_results = {} for method, xargs in zip(methods, extra_args): if xargs is not None: if isinstance(xargs, dict): for k in argv: if k not in xargs: xargs[k] = argv[k] else: xargs = argv for k in main_args: xargs[k] = main_args[k] res = method(**xargs) pred_results[method.__name__] = res return pred_results
effect_from_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions,\n out_annotation_all_outputs, extra_args=None, **argv):\n assert isinstance(methods, list)\n if isinstance(extra_args, list):\n assert len(extra_args) == len(methods)\n else:\n extra_args = [None] * len(methods)\n main_args = {'model': model, 'ref': ref, 'ref_rc': ref_rc, 'alt': alt,\n 'alt_rc': alt_rc, 'mutation_positions': mutation_positions,\n 'out_annotation_all_outputs': out_annotation_all_outputs}\n pred_results = {}\n for method, xargs in zip(methods, extra_args):\n if xargs is not None:\n if isinstance(xargs, dict):\n for k in argv:\n if k not in xargs:\n xargs[k] = argv[k]\n else:\n xargs = argv\n for k in main_args:\n xargs[k] = main_args[k]\n res = method(**xargs)\n pred_results[method.__name__] = res\n return pred_results\n", "role": "user" }, { "content": "effect_from_model", "role": "assistant" } ]
def x(ctx, market, limit, start, stop): market = Market(market, bitshares_instance=ctx.bitshares) t = [['time', 'quote', 'base', 'price']] for trade in market.trades(limit, start=start, stop=stop): t.append([str(trade['time']), str(trade['quote']), str(trade['base' ]), '{:f} {}/{}'.format(trade['price'], trade['base']['asset'][ 'symbol'], trade['quote']['asset']['symbol'])]) print_table(t)
trades
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, market, limit, start, stop):\n market = Market(market, bitshares_instance=ctx.bitshares)\n t = [['time', 'quote', 'base', 'price']]\n for trade in market.trades(limit, start=start, stop=stop):\n t.append([str(trade['time']), str(trade['quote']), str(trade['base'\n ]), '{:f} {}/{}'.format(trade['price'], trade['base']['asset'][\n 'symbol'], trade['quote']['asset']['symbol'])])\n print_table(t)\n", "role": "user" }, { "content": "trades", "role": "assistant" } ]
def x(ctx, market): market = Market(market, bitshares_instance=ctx.bitshares) ticker = market.ticker() t = [['key', 'value']] for key in ticker: t.append([key, str(ticker[key])]) print_table(t)
ticker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, market):\n market = Market(market, bitshares_instance=ctx.bitshares)\n ticker = market.ticker()\n t = [['key', 'value']]\n for key in ticker:\n t.append([key, str(ticker[key])])\n print_table(t)\n", "role": "user" }, { "content": "ticker", "role": "assistant" } ]
def x(ctx, orders, account): print_tx(ctx.bitshares.cancel(orders, account=account))
cancel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, orders, account):\n print_tx(ctx.bitshares.cancel(orders, account=account))\n", "role": "user" }, { "content": "cancel", "role": "assistant" } ]
def x(ctx, market): market = Market(market, bitshares_instance=ctx.bitshares) orderbook = market.orderbook() ta = {} ta['bids'] = [['quote', 'sum quote', 'base', 'sum base', 'price']] cumsumquote = Amount(0, market['quote']) cumsumbase = Amount(0, market['base']) for order in orderbook['bids']: cumsumbase += order['base'] cumsumquote += order['quote'] ta['bids'].append([str(order['quote']), str(cumsumquote), str(order ['base']), str(cumsumbase), '{:f} {}/{}'.format(order['price'], order['base']['asset']['symbol'], order['quote']['asset'][ 'symbol'])]) ta['asks'] = [['price', 'base', 'sum base', 'quote', 'sum quote']] cumsumquote = Amount(0, market['quote']) cumsumbase = Amount(0, market['base']) for order in orderbook['asks']: cumsumbase += order['base'] cumsumquote += order['quote'] ta['asks'].append(['{:f} {}/{}'.format(order['price'], order['base' ]['asset']['symbol'], order['quote']['asset']['symbol']), str( order['base']), str(cumsumbase), str(order['quote']), str( cumsumquote)]) t = [['bids', 'asks']] t.append([format_table(ta['bids']), format_table(ta['asks'])]) print_table(t)
orderbook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, market):\n market = Market(market, bitshares_instance=ctx.bitshares)\n orderbook = market.orderbook()\n ta = {}\n ta['bids'] = [['quote', 'sum quote', 'base', 'sum base', 'price']]\n cumsumquote = Amount(0, market['quote'])\n cumsumbase = Amount(0, market['base'])\n for order in orderbook['bids']:\n cumsumbase += order['base']\n cumsumquote += order['quote']\n ta['bids'].append([str(order['quote']), str(cumsumquote), str(order\n ['base']), str(cumsumbase), '{:f} {}/{}'.format(order['price'],\n order['base']['asset']['symbol'], order['quote']['asset'][\n 'symbol'])])\n ta['asks'] = [['price', 'base', 'sum base', 'quote', 'sum quote']]\n cumsumquote = Amount(0, market['quote'])\n cumsumbase = Amount(0, market['base'])\n for order in orderbook['asks']:\n cumsumbase += order['base']\n cumsumquote += order['quote']\n ta['asks'].append(['{:f} {}/{}'.format(order['price'], order['base'\n ]['asset']['symbol'], order['quote']['asset']['symbol']), str(\n order['base']), str(cumsumbase), str(order['quote']), str(\n cumsumquote)])\n t = [['bids', 'asks']]\n t.append([format_table(ta['bids']), format_table(ta['asks'])])\n print_table(t)\n", "role": "user" }, { "content": "orderbook", "role": "assistant" } ]
def x(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account ): amount = Amount(buy_amount, buy_asset) price = Price(price, base=sell_asset, quote=buy_asset, bitshares_instance=ctx.bitshares) print_tx(price.market.buy(price, amount, account=account, expiration= order_expiration))
buy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account\n ):\n amount = Amount(buy_amount, buy_asset)\n price = Price(price, base=sell_asset, quote=buy_asset,\n bitshares_instance=ctx.bitshares)\n print_tx(price.market.buy(price, amount, account=account, expiration=\n order_expiration))\n", "role": "user" }, { "content": "buy", "role": "assistant" } ]
def x(ctx, account): account = Account(account or config['default_account'], bitshares_instance=ctx.bitshares) t = [['Price', 'Quote', 'Base', 'ID']] for o in account.openorders: t.append(['{:f} {}/{}'.format(o['price'], o['base']['asset'][ 'symbol'], o['quote']['asset']['symbol']), str(o['quote']), str (o['base']), o['id']]) print_table(t)
openorders
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, account):\n account = Account(account or config['default_account'],\n bitshares_instance=ctx.bitshares)\n t = [['Price', 'Quote', 'Base', 'ID']]\n for o in account.openorders:\n t.append(['{:f} {}/{}'.format(o['price'], o['base']['asset'][\n 'symbol'], o['quote']['asset']['symbol']), str(o['quote']), str\n (o['base']), o['id']])\n print_table(t)\n", "role": "user" }, { "content": "openorders", "role": "assistant" } ]
def x(ctx, market, account): market = Market(market) ctx.bitshares.bundle = True market.cancel([x['id'] for x in market.accountopenorders(account)], account=account) print_tx(ctx.bitshares.txbuffer.broadcast())
cancelall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, market, account):\n market = Market(market)\n ctx.bitshares.bundle = True\n market.cancel([x['id'] for x in market.accountopenorders(account)],\n account=account)\n print_tx(ctx.bitshares.txbuffer.broadcast())\n", "role": "user" }, { "content": "cancelall", "role": "assistant" } ]
def x(ctx, market, side, min, max, num, total, order_expiration, account): from tqdm import tqdm from numpy import linspace market = Market(market) ctx.bitshares.bundle = True if min < max: space = linspace(min, max, num) else: space = linspace(max, min, num) func = getattr(market, side) for p in tqdm(space): func(p, total / float(num), account=account, expiration= order_expiration) print_tx(ctx.bitshares.txbuffer.broadcast())
spread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, market, side, min, max, num, total, order_expiration, account):\n from tqdm import tqdm\n from numpy import linspace\n market = Market(market)\n ctx.bitshares.bundle = True\n if min < max:\n space = linspace(min, max, num)\n else:\n space = linspace(max, min, num)\n func = getattr(market, side)\n for p in tqdm(space):\n func(p, total / float(num), account=account, expiration=\n order_expiration)\n print_tx(ctx.bitshares.txbuffer.broadcast())\n", "role": "user" }, { "content": "spread", "role": "assistant" } ]
def x(ctx, amount, symbol, ratio, account): from bitshares.dex import Dex dex = Dex(bitshares_instance=ctx.bitshares) print_tx(dex.borrow(Amount(amount, symbol), collateral_ratio=ratio, account=account))
borrow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, amount, symbol, ratio, account):\n from bitshares.dex import Dex\n dex = Dex(bitshares_instance=ctx.bitshares)\n print_tx(dex.borrow(Amount(amount, symbol), collateral_ratio=ratio,\n account=account))\n", "role": "user" }, { "content": "borrow", "role": "assistant" } ]
def x(ctx, symbol, ratio, account): from bitshares.dex import Dex dex = Dex(bitshares_instance=ctx.bitshares) print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account))
updateratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, symbol, ratio, account):\n from bitshares.dex import Dex\n dex = Dex(bitshares_instance=ctx.bitshares)\n print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account))\n", "role": "user" }, { "content": "updateratio", "role": "assistant" } ]
def x(ctx, symbol, amount, account): print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account))
fundfeepool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, symbol, amount, account):\n print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account))\n", "role": "user" }, { "content": "fundfeepool", "role": "assistant" } ]
def x(ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount, account): print_tx(ctx.bitshares.bid_collateral(Amount(collateral_amount, collateral_symbol), Amount(debt_amount, debt_symbol), account=account))
bidcollateral
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount,\n account):\n print_tx(ctx.bitshares.bid_collateral(Amount(collateral_amount,\n collateral_symbol), Amount(debt_amount, debt_symbol), account=account))\n", "role": "user" }, { "content": "bidcollateral", "role": "assistant" } ]
def x(ctx, symbol, amount, account): print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account= account))
settle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, symbol, amount, account):\n print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=\n account))\n", "role": "user" }, { "content": "settle", "role": "assistant" } ]
def x(ctx, account, type): if not isinstance(type, (list, tuple)): type = [type] account = Account(account, full=True) ret = {key: list() for key in Vote.types()} for vote in account['votes']: t = Vote.vote_type_from_id(vote['id']) ret[t].append(vote) t = [['id', 'url', 'account']] for vote in ret['committee']: t.append([vote['id'], vote['url'], Account(vote[ 'committee_member_account'])['name']]) if 'committee' in type: t = [['id', 'url', 'account', 'votes']] for vote in ret['committee']: t.append([vote['id'], vote['url'], Account(vote[ 'committee_member_account'])['name'], str(Amount({'amount': vote['total_votes'], 'asset_id': '1.3.0'}))]) print_table(t) if 'witness' in type: t = [['id', 'account', 'url', 'votes', 'last_confirmed_block_num', 'total_missed', 'westing']] for vote in ret['witness']: t.append([vote['id'], Account(vote['witness_account'])['name'], vote['url'], str(Amount({'amount': vote['total_votes'], 'asset_id': '1.3.0'})), vote['last_confirmed_block_num'], vote['total_missed'], str(Vesting(vote.get('pay_vb')). claimable) if vote.get('pay_vb') else '']) print_table(t) if 'worker' in type: t = [['id', 'name/url', 'daily_pay', 'votes', 'time', 'account']] for vote in ret['worker']: votes = Amount({'amount': vote['total_votes_for'], 'asset_id': '1.3.0'}) amount = Amount({'amount': vote['daily_pay'], 'asset_id': '1.3.0'}) t.append([vote['id'], '{name}\n{url}'.format(**vote), str( amount), str(votes), """{work_begin_date} - {work_end_date}""".format(**vote), str(Account(vote['worker_account'])['name'])]) print_table(t)
votes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, account, type):\n if not isinstance(type, (list, tuple)):\n type = [type]\n account = Account(account, full=True)\n ret = {key: list() for key in Vote.types()}\n for vote in account['votes']:\n t = Vote.vote_type_from_id(vote['id'])\n ret[t].append(vote)\n t = [['id', 'url', 'account']]\n for vote in ret['committee']:\n t.append([vote['id'], vote['url'], Account(vote[\n 'committee_member_account'])['name']])\n if 'committee' in type:\n t = [['id', 'url', 'account', 'votes']]\n for vote in ret['committee']:\n t.append([vote['id'], vote['url'], Account(vote[\n 'committee_member_account'])['name'], str(Amount({'amount':\n vote['total_votes'], 'asset_id': '1.3.0'}))])\n print_table(t)\n if 'witness' in type:\n t = [['id', 'account', 'url', 'votes', 'last_confirmed_block_num',\n 'total_missed', 'westing']]\n for vote in ret['witness']:\n t.append([vote['id'], Account(vote['witness_account'])['name'],\n vote['url'], str(Amount({'amount': vote['total_votes'],\n 'asset_id': '1.3.0'})), vote['last_confirmed_block_num'],\n vote['total_missed'], str(Vesting(vote.get('pay_vb')).\n claimable) if vote.get('pay_vb') else ''])\n print_table(t)\n if 'worker' in type:\n t = [['id', 'name/url', 'daily_pay', 'votes', 'time', 'account']]\n for vote in ret['worker']:\n votes = Amount({'amount': vote['total_votes_for'], 'asset_id':\n '1.3.0'})\n amount = Amount({'amount': vote['daily_pay'], 'asset_id': '1.3.0'})\n t.append([vote['id'], '{name}\\n{url}'.format(**vote), str(\n amount), str(votes),\n \"\"\"{work_begin_date}\n-\n{work_end_date}\"\"\".format(**vote),\n str(Account(vote['worker_account'])['name'])])\n print_table(t)\n", "role": "user" }, { "content": "votes", "role": "assistant" } ]
def x(ctx, objects): if not objects: t = [['Key', 'Value']] info = ctx.bitshares.rpc.get_dynamic_global_properties() for key in info: t.append([key, info[key]]) print_table(t) for obj in objects: if re.match('^[0-9]*$', obj): block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares) t = [['Key', 'Value']] for key in sorted(block): value = block[key] if key == 'transactions': value = format_tx(value) t.append([key, value]) print_table(t) elif re.match('^\\d*\\.\\d*\\.\\d*$', obj): data = ctx.bitshares.rpc.get_object(obj) if data: t = [['Key', 'Value']] for key in sorted(data): value = data[key] if isinstance(value, dict) or isinstance(value, list): value = format_tx(value) t.append([key, value]) print_table(t) else: print_message('Object %s unknown' % obj, 'warning') elif obj.upper() == obj and re.match('^[A-Z\\.]*$', obj): data = Asset(obj) t = [['Key', 'Value']] for key in sorted(data): value = data[key] if isinstance(value, dict): value = format_tx(value) t.append([key, value]) print_table(t) elif re.match('^BTS.{48,55}$', obj): account = ctx.bitshares.wallet.getAccountFromPublicKey(obj) if account: t = [['Account']] t.append([account]) print_table(t) else: print_message('Public Key not known: %s' % obj, 'warning') elif re.match('^[a-zA-Z0-9\\-\\._]{2,64}$', obj): account = Account(obj, full=True) if account: t = [['Key', 'Value']] for key in sorted(account): value = account[key] if isinstance(value, dict) or isinstance(value, list): value = format_tx(value) t.append([key, value]) print_table(t) else: print_message('Account %s unknown' % obj, 'warning') elif ':' in obj: vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0] if vote: t = [['Key', 'Value']] for key in sorted(vote): value = vote[key] if isinstance(value, dict) or isinstance(value, list): value = format_tx(value) t.append([key, value]) print_table(t) else: print_message('voteid %s unknown' % obj, 'warning') else: print_message("Couldn't identify object to read", 'warning')
info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, objects):\n if not objects:\n t = [['Key', 'Value']]\n info = ctx.bitshares.rpc.get_dynamic_global_properties()\n for key in info:\n t.append([key, info[key]])\n print_table(t)\n for obj in objects:\n if re.match('^[0-9]*$', obj):\n block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares)\n t = [['Key', 'Value']]\n for key in sorted(block):\n value = block[key]\n if key == 'transactions':\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n elif re.match('^\\\\d*\\\\.\\\\d*\\\\.\\\\d*$', obj):\n data = ctx.bitshares.rpc.get_object(obj)\n if data:\n t = [['Key', 'Value']]\n for key in sorted(data):\n value = data[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('Object %s unknown' % obj, 'warning')\n elif obj.upper() == obj and re.match('^[A-Z\\\\.]*$', obj):\n data = Asset(obj)\n t = [['Key', 'Value']]\n for key in sorted(data):\n value = data[key]\n if isinstance(value, dict):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n elif re.match('^BTS.{48,55}$', obj):\n account = ctx.bitshares.wallet.getAccountFromPublicKey(obj)\n if account:\n t = [['Account']]\n t.append([account])\n print_table(t)\n else:\n print_message('Public Key not known: %s' % obj, 'warning')\n elif re.match('^[a-zA-Z0-9\\\\-\\\\._]{2,64}$', obj):\n account = Account(obj, full=True)\n if account:\n t = [['Key', 'Value']]\n for key in sorted(account):\n value = account[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('Account %s unknown' % obj, 'warning')\n elif ':' in obj:\n vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0]\n if vote:\n t = [['Key', 'Value']]\n for key in sorted(vote):\n value = vote[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('voteid %s unknown' % obj, 'warning')\n else:\n print_message(\"Couldn't identify object to read\", 'warning')\n", "role": "user" }, { "content": "info", "role": "assistant" } ]
def x(ctx, currency): from bitsharesbase.operationids import getOperationNameForId from bitshares.market import Market market = Market('%s:%s' % (currency, 'BTS')) ticker = market.ticker() if 'quoteSettlement_price' in ticker: price = ticker.get('quoteSettlement_price') else: price = ticker.get('latest', 0) price.invert() chain = Blockchain(bitshares_instance=ctx.bitshares) feesObj = chain.chainParameters().get('current_fees') fees = feesObj['parameters'] t = [['Operation', 'Type', 'Fee', currency]] for fee in fees: for f in fee[1]: t.append([highlight(getOperationNameForId(fee[0])), detail(f), detail(str(Amount({'amount': fee[1].get(f, 0), 'asset_id': '1.3.0'}))), detail(str(price * Amount({'amount': fee[1]. get(f, 0), 'asset_id': '1.3.0'})))]) print_table(t)
fees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, currency):\n from bitsharesbase.operationids import getOperationNameForId\n from bitshares.market import Market\n market = Market('%s:%s' % (currency, 'BTS'))\n ticker = market.ticker()\n if 'quoteSettlement_price' in ticker:\n price = ticker.get('quoteSettlement_price')\n else:\n price = ticker.get('latest', 0)\n price.invert()\n chain = Blockchain(bitshares_instance=ctx.bitshares)\n feesObj = chain.chainParameters().get('current_fees')\n fees = feesObj['parameters']\n t = [['Operation', 'Type', 'Fee', currency]]\n for fee in fees:\n for f in fee[1]:\n t.append([highlight(getOperationNameForId(fee[0])), detail(f),\n detail(str(Amount({'amount': fee[1].get(f, 0), 'asset_id':\n '1.3.0'}))), detail(str(price * Amount({'amount': fee[1].\n get(f, 0), 'asset_id': '1.3.0'})))])\n print_table(t)\n", "role": "user" }, { "content": "fees", "role": "assistant" } ]
def x(ctx, to, amount, symbol, secret, hash, account, expiration): ctx.blockchain.blocking = True tx = ctx.blockchain.htlc_create(Amount(amount, symbol), to, secret, hash_type=hash, expiration=expiration, account=account) tx.pop('trx', None) print_tx(tx) results = tx.get('operation_results', {}) if results: htlc_id = results[0][1] print('Your htlc_id is: {}'.format(htlc_id))
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, to, amount, symbol, secret, hash, account, expiration):\n ctx.blockchain.blocking = True\n tx = ctx.blockchain.htlc_create(Amount(amount, symbol), to, secret,\n hash_type=hash, expiration=expiration, account=account)\n tx.pop('trx', None)\n print_tx(tx)\n results = tx.get('operation_results', {})\n if results:\n htlc_id = results[0][1]\n print('Your htlc_id is: {}'.format(htlc_id))\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(ctx, htlc_id, secret, account): print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account))
redeem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, htlc_id, secret, account):\n print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account))\n", "role": "user" }, { "content": "redeem", "role": "assistant" } ]
def x(flags_class): if not is_flags_class_final(flags_class): raise TypeError( 'unique check can be applied only to flags classes that have members' ) if not flags_class.__member_aliases__: return flags_class aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in flags_class.__member_aliases__.items()) raise ValueError('duplicate values found in %r: %s' % (flags_class, aliases))
unique
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(flags_class):\n if not is_flags_class_final(flags_class):\n raise TypeError(\n 'unique check can be applied only to flags classes that have members'\n )\n if not flags_class.__member_aliases__:\n return flags_class\n aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in\n flags_class.__member_aliases__.items())\n raise ValueError('duplicate values found in %r: %s' % (flags_class,\n aliases))\n", "role": "user" }, { "content": "unique", "role": "assistant" } ]
def x(flags_class): flags_class = unique(flags_class) other_bits = 0 for name, member in flags_class.__members_without_aliases__.items(): bits = int(member) if other_bits & bits: for other_name, other_member in flags_class.__members_without_aliases__.items( ): if int(other_member) & bits: raise ValueError( "%r: '%s' and '%s' have overlapping bits" % ( flags_class, other_name, name)) else: other_bits |= bits
unique_bits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(flags_class):\n flags_class = unique(flags_class)\n other_bits = 0\n for name, member in flags_class.__members_without_aliases__.items():\n bits = int(member)\n if other_bits & bits:\n for other_name, other_member in flags_class.__members_without_aliases__.items(\n ):\n if int(other_member) & bits:\n raise ValueError(\n \"%r: '%s' and '%s' have overlapping bits\" % (\n flags_class, other_name, name))\n else:\n other_bits |= bits\n", "role": "user" }, { "content": "unique_bits", "role": "assistant" } ]
def x(members): if isinstance(members, str): members = ((name, UNDEFINED) for name in members.replace(',', ' '). split()) elif isinstance(members, (tuple, list, collections.Set)): if members and isinstance(next(iter(members)), str): members = ((name, UNDEFINED) for name in members) elif isinstance(members, collections.Mapping): members = members.items() return members
process_inline_members_definition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(members):\n if isinstance(members, str):\n members = ((name, UNDEFINED) for name in members.replace(',', ' ').\n split())\n elif isinstance(members, (tuple, list, collections.Set)):\n if members and isinstance(next(iter(members)), str):\n members = ((name, UNDEFINED) for name in members)\n elif isinstance(members, collections.Mapping):\n members = members.items()\n return members\n", "role": "user" }, { "content": "process_inline_members_definition", "role": "assistant" } ]
def x(cls, member_definitions): members = [] auto_flags = [] all_bits = 0 for name, data in member_definitions: bits, data = cls.flag_attribute_value_to_bits_and_data(name, data) if bits is UNDEFINED: auto_flags.append(len(members)) members.append((name, data)) elif is_valid_bits_value(bits): all_bits |= bits members.append((name, bits, data)) else: raise TypeError( "Expected an int value as the bits of flag '%s', received %r" % (name, bits)) bit = 1 for index in auto_flags: while bit & all_bits: bit <<= 1 name, data = members[index] members[index] = name, bit, data bit <<= 1 return members
process_member_definitions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, member_definitions):\n members = []\n auto_flags = []\n all_bits = 0\n for name, data in member_definitions:\n bits, data = cls.flag_attribute_value_to_bits_and_data(name, data)\n if bits is UNDEFINED:\n auto_flags.append(len(members))\n members.append((name, data))\n elif is_valid_bits_value(bits):\n all_bits |= bits\n members.append((name, bits, data))\n else:\n raise TypeError(\n \"Expected an int value as the bits of flag '%s', received %r\" %\n (name, bits))\n bit = 1\n for index in auto_flags:\n while bit & all_bits:\n bit <<= 1\n name, data = members[index]\n members[index] = name, bit, data\n bit <<= 1\n return members\n", "role": "user" }, { "content": "process_member_definitions", "role": "assistant" } ]
def x(cls, s): if not isinstance(s, str): raise TypeError('Expected an str instance, received %r' % (s,)) return cls(cls.bits_from_simple_str(s))
from_simple_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n if not isinstance(s, str):\n raise TypeError('Expected an str instance, received %r' % (s,))\n return cls(cls.bits_from_simple_str(s))\n", "role": "user" }, { "content": "from_simple_str", "role": "assistant" } ]
def x(cls, s): if not isinstance(s, str): raise TypeError('Expected an str instance, received %r' % (s,)) return cls(cls.bits_from_str(s))
from_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n if not isinstance(s, str):\n raise TypeError('Expected an str instance, received %r' % (s,))\n return cls(cls.bits_from_str(s))\n", "role": "user" }, { "content": "from_str", "role": "assistant" } ]
def x(cls, s): try: if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__): return cls.bits_from_simple_str(s) c = s[len(cls.__name__)] if c == '(': if not s.endswith(')'): raise ValueError return cls.bits_from_simple_str(s[len(cls.__name__) + 1:-1]) elif c == '.': member_name = s[len(cls.__name__) + 1:] return int(cls.__all_members__[member_name]) else: raise ValueError except ValueError as ex: if ex.args: raise raise ValueError('%s.%s: invalid input: %r' % (cls.__name__, cls. bits_from_str.__name__, s)) except KeyError as ex: raise ValueError("%s.%s: Invalid flag name '%s' in input: %r" % ( cls.__name__, cls.bits_from_str.__name__, ex.args[0], s))
bits_from_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n try:\n if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__):\n return cls.bits_from_simple_str(s)\n c = s[len(cls.__name__)]\n if c == '(':\n if not s.endswith(')'):\n raise ValueError\n return cls.bits_from_simple_str(s[len(cls.__name__) + 1:-1])\n elif c == '.':\n member_name = s[len(cls.__name__) + 1:]\n return int(cls.__all_members__[member_name])\n else:\n raise ValueError\n except ValueError as ex:\n if ex.args:\n raise\n raise ValueError('%s.%s: invalid input: %r' % (cls.__name__, cls.\n bits_from_str.__name__, s))\n except KeyError as ex:\n raise ValueError(\"%s.%s: Invalid flag name '%s' in input: %r\" % (\n cls.__name__, cls.bits_from_str.__name__, ex.args[0], s))\n", "role": "user" }, { "content": "bits_from_str", "role": "assistant" } ]
def x(ctx, symbol, price, market, cer, mssr, mcr, account): if cer: cer = Price(cer, quote=symbol, base='1.3.0', bitshares_instance=ctx .bitshares) print_tx(ctx.bitshares.publish_price_feed(symbol, Price(price, market), cer=cer, mssr=mssr, mcr=mcr, account=account))
newfeed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, symbol, price, market, cer, mssr, mcr, account):\n if cer:\n cer = Price(cer, quote=symbol, base='1.3.0', bitshares_instance=ctx\n .bitshares)\n print_tx(ctx.bitshares.publish_price_feed(symbol, Price(price, market),\n cer=cer, mssr=mssr, mcr=mcr, account=account))\n", "role": "user" }, { "content": "newfeed", "role": "assistant" } ]
def x(ctx, assets, pricethreshold, maxage): import builtins witnesses = Witnesses(bitshares_instance=ctx.bitshares) def x(p, ref): if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0: return click.style(str(p), fg='red') elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0: return click.style(str(p), fg='yellow') else: return click.style(str(p), fg='green') def x(p, ref): d = (float(p) - float(ref)) / float(ref) * 100 if math.fabs(d) >= 5: color = 'red' elif math.fabs(d) >= 2.5: color = 'yellow' else: color = 'green' return click.style('{:8.2f}%'.format(d), fg=color) def x(d): t = d.replace(tzinfo=None) now = datetime.utcnow() if now < t + timedelta(minutes=maxage): return click.style(str(t), fg='green') if now < t + timedelta(minutes=maxage / 2.0): return click.style(str(t), fg='yellow') else: return click.style(str(t), fg='red') output = '' for asset in tqdm(assets): t = PrettyTable(['Asset', 'Producer', 'Active Witness', 'Date', 'Settlement Price', 'Core Exchange Price', 'MCR', 'SSPR', 'delta']) t.align = 'c' t.align['Producer'] = 'l' asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares) current_feed = asset.feed feeds = asset.feeds producingwitnesses = builtins.set() witness_accounts = [x['witness_account'] for x in witnesses] for feed in tqdm(feeds): producingwitnesses.add(feed['producer']['id']) t.add_row([asset['symbol'], feed['producer']['name'], click. style('X' if feed['producer']['id'] in witness_accounts else '', bold=True), test_date(feed['date']), test_price(feed[ 'settlement_price'], current_feed['settlement_price']), test_price(feed['core_exchange_rate'], current_feed[ 'core_exchange_rate']), feed['maintenance_collateral_ratio' ] / 10, feed['maximum_short_squeeze_ratio'] / 10, price_diff(feed['core_exchange_rate'], current_feed[ 'core_exchange_rate'])]) for missing in builtins.set(witness_accounts).difference( producingwitnesses): witness = Witness(missing) t.add_row([click.style(asset['symbol'], bg='red'), click.style( witness.account['name'], bg='red'), click.style('X' if feed ['producer']['id'] in witness_accounts else '', bold=True), click.style(str(datetime(1970, 1, 1))), click.style( 'missing', bg='red'), click.style('missing', bg='red'), click.style('missing', bg='red'), click.style('missing', bg ='red'), click.style('missing', bg='red')]) output += t.get_string(sortby='Date', reversesort=True) output += '\n' click.echo(output)
feeds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, assets, pricethreshold, maxage):\n import builtins\n witnesses = Witnesses(bitshares_instance=ctx.bitshares)\n\n def x(p, ref):\n if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0:\n return click.style(str(p), fg='red')\n elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0:\n return click.style(str(p), fg='yellow')\n else:\n return click.style(str(p), fg='green')\n\n def x(p, ref):\n d = (float(p) - float(ref)) / float(ref) * 100\n if math.fabs(d) >= 5:\n color = 'red'\n elif math.fabs(d) >= 2.5:\n color = 'yellow'\n else:\n color = 'green'\n return click.style('{:8.2f}%'.format(d), fg=color)\n\n def x(d):\n t = d.replace(tzinfo=None)\n now = datetime.utcnow()\n if now < t + timedelta(minutes=maxage):\n return click.style(str(t), fg='green')\n if now < t + timedelta(minutes=maxage / 2.0):\n return click.style(str(t), fg='yellow')\n else:\n return click.style(str(t), fg='red')\n output = ''\n for asset in tqdm(assets):\n t = PrettyTable(['Asset', 'Producer', 'Active Witness', 'Date',\n 'Settlement Price', 'Core Exchange Price', 'MCR', 'SSPR', 'delta'])\n t.align = 'c'\n t.align['Producer'] = 'l'\n asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares)\n current_feed = asset.feed\n feeds = asset.feeds\n producingwitnesses = builtins.set()\n witness_accounts = [x['witness_account'] for x in witnesses]\n for feed in tqdm(feeds):\n producingwitnesses.add(feed['producer']['id'])\n t.add_row([asset['symbol'], feed['producer']['name'], click.\n style('X' if feed['producer']['id'] in witness_accounts else\n '', bold=True), test_date(feed['date']), test_price(feed[\n 'settlement_price'], current_feed['settlement_price']),\n test_price(feed['core_exchange_rate'], current_feed[\n 'core_exchange_rate']), feed['maintenance_collateral_ratio'\n ] / 10, feed['maximum_short_squeeze_ratio'] / 10,\n price_diff(feed['core_exchange_rate'], current_feed[\n 'core_exchange_rate'])])\n for missing in builtins.set(witness_accounts).difference(\n producingwitnesses):\n witness = Witness(missing)\n t.add_row([click.style(asset['symbol'], bg='red'), click.style(\n witness.account['name'], bg='red'), click.style('X' if feed\n ['producer']['id'] in witness_accounts else '', bold=True),\n click.style(str(datetime(1970, 1, 1))), click.style(\n 'missing', bg='red'), click.style('missing', bg='red'),\n click.style('missing', bg='red'), click.style('missing', bg\n ='red'), click.style('missing', bg='red')])\n output += t.get_string(sortby='Date', reversesort=True)\n output += '\\n'\n click.echo(output)\n", "role": "user" }, { "content": "feeds", "role": "assistant" } ]
def x(*args, **kwargs): t = format_table(*args, **kwargs) click.echo(t)
print_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args, **kwargs):\n t = format_table(*args, **kwargs)\n click.echo(t)\n", "role": "user" }, { "content": "print_table", "role": "assistant" } ]
def x(ctx, call, arguments, api): try: data = list(eval(d) for d in arguments) except: data = arguments ret = getattr(ctx.bitshares.rpc, call)(*data, api=api) print_dict(ret)
rpc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, call, arguments, api):\n try:\n data = list(eval(d) for d in arguments)\n except:\n data = arguments\n ret = getattr(ctx.bitshares.rpc, call)(*data, api=api)\n print_dict(ret)\n", "role": "user" }, { "content": "rpc", "role": "assistant" } ]
def x(ctx, members, account): print_tx(ctx.bitshares.approvecommittee(members, account=account))
approvecommittee
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, members, account):\n print_tx(ctx.bitshares.approvecommittee(members, account=account))\n", "role": "user" }, { "content": "approvecommittee", "role": "assistant" } ]
def x(ctx, members, account): print_tx(ctx.bitshares.disapprovecommittee(members, account=account))
disapprovecommittee
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, members, account):\n print_tx(ctx.bitshares.disapprovecommittee(members, account=account))\n", "role": "user" }, { "content": "disapprovecommittee", "role": "assistant" } ]
def x(ctx, url, account): print_tx(ctx.bitshares.create_committee_member(url, account=account))
createcommittee
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, url, account):\n print_tx(ctx.bitshares.create_committee_member(url, account=account))\n", "role": "user" }, { "content": "createcommittee", "role": "assistant" } ]
def x(ctx, key, value): if key == 'default_account' and value[0] == '@': value = value[1:] ctx.bitshares.config[key] = value
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, key, value):\n if key == 'default_account' and value[0] == '@':\n value = value[1:]\n ctx.bitshares.config[key] = value\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(ctx): t = [['Key', 'Value']] for key in ctx.bitshares.config: t.append([key, ctx.bitshares.config[key]]) print_table(t)
configuration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx):\n t = [['Key', 'Value']]\n for key in ctx.bitshares.config:\n t.append([key, ctx.bitshares.config[key]])\n print_table(t)\n", "role": "user" }, { "content": "configuration", "role": "assistant" } ]
def x(ctx, filename): if filename: tx = filename.read() else: tx = sys.stdin.read() tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares) tx.appendMissingSignatures() tx.sign() print_tx(tx.json())
sign
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, filename):\n if filename:\n tx = filename.read()\n else:\n tx = sys.stdin.read()\n tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares)\n tx.appendMissingSignatures()\n tx.sign()\n print_tx(tx.json())\n", "role": "user" }, { "content": "sign", "role": "assistant" } ]
def x(prefix, num): from bitsharesbase.account import PrivateKey t = [['wif', 'pubkey']] for n in range(0, num): wif = PrivateKey() t.append([str(wif), format(wif.pubkey, prefix)]) print_table(t)
randomwif
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prefix, num):\n from bitsharesbase.account import PrivateKey\n t = [['wif', 'pubkey']]\n for n in range(0, num):\n wif = PrivateKey()\n t.append([str(wif), format(wif.pubkey, prefix)])\n print_table(t)\n", "role": "user" }, { "content": "randomwif", "role": "assistant" } ]
def x(ctx, witnesses, account): print_tx(ctx.bitshares.approvewitness(witnesses, account=account))
approvewitness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, witnesses, account):\n print_tx(ctx.bitshares.approvewitness(witnesses, account=account))\n", "role": "user" }, { "content": "approvewitness", "role": "assistant" } ]
def x(ctx, witnesses, account): print_tx(ctx.bitshares.disapprovewitness(witnesses, account=account))
disapprovewitness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, witnesses, account):\n print_tx(ctx.bitshares.disapprovewitness(witnesses, account=account))\n", "role": "user" }, { "content": "disapprovewitness", "role": "assistant" } ]
def x(ctx): t = [['weight', 'account', 'signing_key', 'vote_id', 'url', 'total_missed', 'last_confirmed_block_num']] for witness in sorted(Witnesses(), key=lambda x: x.weight, reverse=True): witness.refresh() t.append(['{:.2f}%'.format(witness.weight * 100), witness.account[ 'name'], witness['signing_key'], witness['vote_id'], witness[ 'url'], witness['total_missed'], witness[ 'last_confirmed_block_num']]) print_table(t)
witnesses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx):\n t = [['weight', 'account', 'signing_key', 'vote_id', 'url',\n 'total_missed', 'last_confirmed_block_num']]\n for witness in sorted(Witnesses(), key=lambda x: x.weight, reverse=True):\n witness.refresh()\n t.append(['{:.2f}%'.format(witness.weight * 100), witness.account[\n 'name'], witness['signing_key'], witness['vote_id'], witness[\n 'url'], witness['total_missed'], witness[\n 'last_confirmed_block_num']])\n print_table(t)\n", "role": "user" }, { "content": "witnesses", "role": "assistant" } ]