source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(res):
ac_list = [(accuracy['train_acc_final'], accuracy['test_acc_final']) for
accuracy, weights in res]
ac = np.array(ac_list)
perf = {'mean_train_acc': np.mean(ac[:, 0]), 'std_train_acc': np.std(ac
[:, 0]), 'mean_test_acc': np.mean(ac[:, 1]), 'std_test_acc': np.std
(ac[:, 1])}
return perf
|
get_cv_accuracy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(res):\n ac_list = [(accuracy['train_acc_final'], accuracy['test_acc_final']) for\n accuracy, weights in res]\n ac = np.array(ac_list)\n perf = {'mean_train_acc': np.mean(ac[:, 0]), 'std_train_acc': np.std(ac\n [:, 0]), 'mean_test_acc': np.mean(ac[:, 1]), 'std_test_acc': np.std\n (ac[:, 1])}\n return perf\n",
"role": "user"
},
{
"content": "get_cv_accuracy",
"role": "assistant"
}
] |
def x(arr, vocab):
tokens = one_hot2token(arr)
indexToLetter = _get_index_dict(vocab)
return [''.join([indexToLetter[x] for x in row]) for row in tokens]
|
one_hot2string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, vocab):\n tokens = one_hot2token(arr)\n indexToLetter = _get_index_dict(vocab)\n return [''.join([indexToLetter[x] for x in row]) for row in tokens]\n",
"role": "user"
},
{
"content": "one_hot2string",
"role": "assistant"
}
] |
def x(seq, vocab, neutral_vocab=[]):
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
nchar = len(vocab[0])
for l in (vocab + neutral_vocab):
assert len(l) == nchar
assert len(seq) % nchar == 0
vocab_dict = _get_vocab_dict(vocab)
for l in neutral_vocab:
vocab_dict[l] = -1
return [vocab_dict[seq[i * nchar:(i + 1) * nchar]] for i in range(len(
seq) // nchar)]
|
tokenize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, vocab, neutral_vocab=[]):\n if isinstance(neutral_vocab, str):\n neutral_vocab = [neutral_vocab]\n nchar = len(vocab[0])\n for l in (vocab + neutral_vocab):\n assert len(l) == nchar\n assert len(seq) % nchar == 0\n vocab_dict = _get_vocab_dict(vocab)\n for l in neutral_vocab:\n vocab_dict[l] = -1\n return [vocab_dict[seq[i * nchar:(i + 1) * nchar]] for i in range(len(\n seq) // nchar)]\n",
"role": "user"
},
{
"content": "tokenize",
"role": "assistant"
}
] |
def x(tvec, vocab_size):
arr = np.zeros((len(tvec), vocab_size))
tvec_range = np.arange(len(tvec))
tvec = np.asarray(tvec)
arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1
return arr
|
token2one_hot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tvec, vocab_size):\n arr = np.zeros((len(tvec), vocab_size))\n tvec_range = np.arange(len(tvec))\n tvec = np.asarray(tvec)\n arr[tvec_range[tvec >= 0], tvec[tvec >= 0]] = 1\n return arr\n",
"role": "user"
},
{
"content": "token2one_hot",
"role": "assistant"
}
] |
def x(seq_vec, vocab, neutral_vocab, maxlen=None, seq_align='start',
pad_value='N', encode_type='one_hot'):
if isinstance(neutral_vocab, str):
neutral_vocab = [neutral_vocab]
if isinstance(seq_vec, str):
raise ValueError('seq_vec should be an iterable returning ' +
'strings not a string itself')
assert len(vocab[0]) == len(pad_value)
assert pad_value in neutral_vocab
assert encode_type in ['one_hot', 'token']
seq_vec = pad_sequences(seq_vec, maxlen=maxlen, align=seq_align, value=
pad_value)
if encode_type == 'one_hot':
arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len(
vocab)) for i, seq in enumerate(seq_vec)]
elif encode_type == 'token':
arr_list = [(1 + np.array(tokenize(seq, vocab, neutral_vocab))) for
seq in seq_vec]
return np.stack(arr_list)
|
encodeSequence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, vocab, neutral_vocab, maxlen=None, seq_align='start',\n pad_value='N', encode_type='one_hot'):\n if isinstance(neutral_vocab, str):\n neutral_vocab = [neutral_vocab]\n if isinstance(seq_vec, str):\n raise ValueError('seq_vec should be an iterable returning ' +\n 'strings not a string itself')\n assert len(vocab[0]) == len(pad_value)\n assert pad_value in neutral_vocab\n assert encode_type in ['one_hot', 'token']\n seq_vec = pad_sequences(seq_vec, maxlen=maxlen, align=seq_align, value=\n pad_value)\n if encode_type == 'one_hot':\n arr_list = [token2one_hot(tokenize(seq, vocab, neutral_vocab), len(\n vocab)) for i, seq in enumerate(seq_vec)]\n elif encode_type == 'token':\n arr_list = [(1 + np.array(tokenize(seq, vocab, neutral_vocab))) for\n seq in seq_vec]\n return np.stack(arr_list)\n",
"role": "user"
},
{
"content": "encodeSequence",
"role": "assistant"
}
] |
def x(seq_vec, maxlen=None, seq_align='start'):
return encodeSequence(seq_vec, vocab=DNA, neutral_vocab='N', maxlen=
maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')
|
encodeDNA
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, maxlen=None, seq_align='start'):\n return encodeSequence(seq_vec, vocab=DNA, neutral_vocab='N', maxlen=\n maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')\n",
"role": "user"
},
{
"content": "encodeDNA",
"role": "assistant"
}
] |
def x(seq_vec, maxlen=None, seq_align='start'):
return encodeSequence(seq_vec, vocab=RNA, neutral_vocab='N', maxlen=
maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')
|
encodeRNA
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, maxlen=None, seq_align='start'):\n return encodeSequence(seq_vec, vocab=RNA, neutral_vocab='N', maxlen=\n maxlen, seq_align=seq_align, pad_value='N', encode_type='one_hot')\n",
"role": "user"
},
{
"content": "encodeRNA",
"role": "assistant"
}
] |
def x(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align='start',
encode_type='one_hot'):
if ignore_stop_codons:
vocab = CODONS
neutral_vocab = STOP_CODONS + ['NNN']
else:
vocab = CODONS + STOP_CODONS
neutral_vocab = ['NNN']
seq_vec = [str(seq).replace('U', 'T') for seq in seq_vec]
return encodeSequence(seq_vec, vocab=vocab, neutral_vocab=neutral_vocab,
maxlen=maxlen, seq_align=seq_align, pad_value='NNN', encode_type=
encode_type)
|
encodeCodon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, ignore_stop_codons=True, maxlen=None, seq_align='start',\n encode_type='one_hot'):\n if ignore_stop_codons:\n vocab = CODONS\n neutral_vocab = STOP_CODONS + ['NNN']\n else:\n vocab = CODONS + STOP_CODONS\n neutral_vocab = ['NNN']\n seq_vec = [str(seq).replace('U', 'T') for seq in seq_vec]\n return encodeSequence(seq_vec, vocab=vocab, neutral_vocab=neutral_vocab,\n maxlen=maxlen, seq_align=seq_align, pad_value='NNN', encode_type=\n encode_type)\n",
"role": "user"
},
{
"content": "encodeCodon",
"role": "assistant"
}
] |
def x(seq_vec, maxlen=None, seq_align='start', encode_type='one_hot'):
return encodeSequence(seq_vec, vocab=AMINO_ACIDS, neutral_vocab='_',
maxlen=maxlen, seq_align=seq_align, pad_value='_', encode_type=
encode_type)
|
encodeAA
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, maxlen=None, seq_align='start', encode_type='one_hot'):\n return encodeSequence(seq_vec, vocab=AMINO_ACIDS, neutral_vocab='_',\n maxlen=maxlen, seq_align=seq_align, pad_value='_', encode_type=\n encode_type)\n",
"role": "user"
},
{
"content": "encodeAA",
"role": "assistant"
}
] |
def x(sequence_vec, maxlen=None, align='end', value='N'):
assert isinstance(value, list) or isinstance(value, str)
assert isinstance(value, type(sequence_vec[0]))
assert not isinstance(sequence_vec, str)
assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str
)
max_seq_len = max([len(seq) for seq in sequence_vec])
if maxlen is None:
maxlen = max_seq_len
else:
maxlen = int(maxlen)
if max_seq_len < maxlen:
print(
'WARNING: Maximum sequence length (%s) is less than maxlen (%s)' %
(max_seq_len, maxlen))
max_seq_len = maxlen
for seq in sequence_vec:
if not len(seq) % len(value) == 0:
raise ValueError('All sequences need to be dividable by len(value)'
)
if not maxlen % len(value) == 0:
raise ValueError('maxlen needs to be dividable by len(value)')
def x(seq, max_seq_len, value='N', align='end'):
seq_len = len(seq)
assert max_seq_len >= seq_len
if align is 'end':
n_left = max_seq_len - seq_len
n_right = 0
elif align is 'start':
n_right = max_seq_len - seq_len
n_left = 0
elif align is 'center':
n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2
n_right = (max_seq_len - seq_len) // 2
else:
raise ValueError('align can be of: end, start or center')
n_left = n_left // len(value)
n_right = n_right // len(value)
return value * n_left + seq + value * n_right
def x(seq, maxlen, align='end'):
seq_len = len(seq)
assert maxlen <= seq_len
if align is 'end':
return seq[-maxlen:]
elif align is 'start':
return seq[0:maxlen]
elif align is 'center':
dl = seq_len - maxlen
n_left = dl // 2 + dl % 2
n_right = seq_len - dl // 2
return seq[n_left:n_right]
else:
raise ValueError('align can be of: end, start or center')
padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen), value=value,
align=align) for seq in sequence_vec]
padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in
padded_sequence_vec]
return padded_sequence_vec
|
pad_sequences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sequence_vec, maxlen=None, align='end', value='N'):\n assert isinstance(value, list) or isinstance(value, str)\n assert isinstance(value, type(sequence_vec[0]))\n assert not isinstance(sequence_vec, str)\n assert isinstance(sequence_vec[0], list) or isinstance(sequence_vec[0], str\n )\n max_seq_len = max([len(seq) for seq in sequence_vec])\n if maxlen is None:\n maxlen = max_seq_len\n else:\n maxlen = int(maxlen)\n if max_seq_len < maxlen:\n print(\n 'WARNING: Maximum sequence length (%s) is less than maxlen (%s)' %\n (max_seq_len, maxlen))\n max_seq_len = maxlen\n for seq in sequence_vec:\n if not len(seq) % len(value) == 0:\n raise ValueError('All sequences need to be dividable by len(value)'\n )\n if not maxlen % len(value) == 0:\n raise ValueError('maxlen needs to be dividable by len(value)')\n\n def x(seq, max_seq_len, value='N', align='end'):\n seq_len = len(seq)\n assert max_seq_len >= seq_len\n if align is 'end':\n n_left = max_seq_len - seq_len\n n_right = 0\n elif align is 'start':\n n_right = max_seq_len - seq_len\n n_left = 0\n elif align is 'center':\n n_left = (max_seq_len - seq_len) // 2 + (max_seq_len - seq_len) % 2\n n_right = (max_seq_len - seq_len) // 2\n else:\n raise ValueError('align can be of: end, start or center')\n n_left = n_left // len(value)\n n_right = n_right // len(value)\n return value * n_left + seq + value * n_right\n\n def x(seq, maxlen, align='end'):\n seq_len = len(seq)\n assert maxlen <= seq_len\n if align is 'end':\n return seq[-maxlen:]\n elif align is 'start':\n return seq[0:maxlen]\n elif align is 'center':\n dl = seq_len - maxlen\n n_left = dl // 2 + dl % 2\n n_right = seq_len - dl // 2\n return seq[n_left:n_right]\n else:\n raise ValueError('align can be of: end, start or center')\n padded_sequence_vec = [pad(seq, max(max_seq_len, maxlen), value=value,\n align=align) for seq in sequence_vec]\n padded_sequence_vec = [trim(seq, maxlen, align=align) for seq in\n padded_sequence_vec]\n return padded_sequence_vec\n",
"role": "user"
},
{
"content": "pad_sequences",
"role": "assistant"
}
] |
def x(gtf, landmarks=ALL_LANDMARKS):
if isinstance(gtf, str):
_logger.info('Reading gtf file..')
gtf = read_gtf(gtf)
_logger.info('Done')
_logger.info('Running landmark extractors..')
assert isinstance(landmarks, (list, tuple, set, dict))
if isinstance(landmarks, dict):
landmarks = {k: _get_fun(v) for k, v in landmarks.items()}
else:
landmarks = {_to_string(fn_str): _get_fun(fn_str) for fn_str in
landmarks}
r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()}
_logger.info('Done!')
return r
|
extract_landmarks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gtf, landmarks=ALL_LANDMARKS):\n if isinstance(gtf, str):\n _logger.info('Reading gtf file..')\n gtf = read_gtf(gtf)\n _logger.info('Done')\n _logger.info('Running landmark extractors..')\n assert isinstance(landmarks, (list, tuple, set, dict))\n if isinstance(landmarks, dict):\n landmarks = {k: _get_fun(v) for k, v in landmarks.items()}\n else:\n landmarks = {_to_string(fn_str): _get_fun(fn_str) for fn_str in\n landmarks}\n r = {k: _validate_pos(v(gtf)) for k, v in landmarks.items()}\n _logger.info('Done!')\n return r\n",
"role": "user"
},
{
"content": "extract_landmarks",
"role": "assistant"
}
] |
def x(df):
assert isinstance(df, pd.DataFrame)
assert ['seqname', 'position', 'strand'] == df.columns.tolist()
assert df.position.dtype == np.dtype('int64')
assert df.strand.dtype == np.dtype('O')
assert df.seqname.dtype == np.dtype('O')
return df
|
validate_pos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n assert isinstance(df, pd.DataFrame)\n assert ['seqname', 'position', 'strand'] == df.columns.tolist()\n assert df.position.dtype == np.dtype('int64')\n assert df.strand.dtype == np.dtype('O')\n assert df.seqname.dtype == np.dtype('O')\n return df\n",
"role": "user"
},
{
"content": "validate_pos",
"role": "assistant"
}
] |
def x(tensor, k=1, scope=None):
with tf.name_scope(scope, 'L1Loss', [tensor]):
loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k, 0.5 * tf.square
(tensor), k * tf.abs(tensor) - 0.5 * k ^ 2))
return loss
|
huber_loss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tensor, k=1, scope=None):\n with tf.name_scope(scope, 'L1Loss', [tensor]):\n loss = tf.reduce_mean(tf.select(tf.abs(tensor) < k, 0.5 * tf.square\n (tensor), k * tf.abs(tensor) - 0.5 * k ^ 2))\n return loss\n",
"role": "user"
},
{
"content": "huber_loss",
"role": "assistant"
}
] |
def x():
dt = pd.read_table(ATTRACT_METADTA)
dt.rename(columns={'Matrix_id': 'PWM_id'}, inplace=True)
cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id']
return dt[cols]
|
get_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dt = pd.read_table(ATTRACT_METADTA)\n dt.rename(columns={'Matrix_id': 'PWM_id'}, inplace=True)\n cols = ['PWM_id'] + [col for col in dt if col != 'PWM_id']\n return dt[cols]\n",
"role": "user"
},
{
"content": "get_metadata",
"role": "assistant"
}
] |
def x(pwm_id_list, pseudocountProb=0.0001):
l = load_motif_db(ATTRACT_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list]
return pwm_list
|
get_pwm_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pwm_id_list, pseudocountProb=0.0001):\n l = load_motif_db(ATTRACT_PWM)\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(l[str(m)] + pseudocountProb, name=m) for m in pwm_id_list]\n return pwm_list\n",
"role": "user"
},
{
"content": "get_pwm_list",
"role": "assistant"
}
] |
def x(loss, mask_value=MASK_VALUE):
loss_fn = kloss.deserialize(loss)
def x(y_true, y_pred):
mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask)
masked_loss_fn.__name__ = loss + '_masked'
return masked_loss_fn
|
mask_loss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loss, mask_value=MASK_VALUE):\n loss_fn = kloss.deserialize(loss)\n\n def x(y_true, y_pred):\n mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())\n return loss_fn(y_true * mask, y_pred * mask) / K.mean(mask)\n masked_loss_fn.__name__ = loss + '_masked'\n return masked_loss_fn\n",
"role": "user"
},
{
"content": "mask_loss",
"role": "assistant"
}
] |
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,
out_annotation_all_outputs, output_filter_mask=None, out_annotation=None):
seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}
for k in seqs:
if not isinstance(seqs[k], (list, tuple, np.ndarray)):
raise Exception(
'At the moment only models with list, tuple or np.ndarray inputs are supported.'
)
assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs
[k]))) for k in seqs.keys() if k != 'ref'])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(
out_annotation_all_outputs, out_annotation))[0]
out_annotation = out_annotation_all_outputs[output_filter_mask]
sal_funcs = __generate_direct_saliency_functions__(model,
out_annotation_all_outputs, out_annotation)
preds = {}
for k in seqs:
preds[k] = {}
if '_rc' in k:
mutated_positions_here = get_seq_len(ref)[1
] - 1 - mutation_positions
else:
mutated_positions_here = mutation_positions
for l in out_annotation:
preds[k][l] = predict_vals(input_data=seqs[k], apply_function=
__get_direct_saliencies__, score_func=sal_funcs[l],
mutated_positions=mutated_positions_here, model=model)
diff_ret_dGrad = {}
pred_out = {'ref': {}, 'alt': {}}
for k in preds['ref']:
diff_fwd = general_diff(preds['alt'][k]['dGrad'], preds['ref'][k][
'dGrad'])
diff_rc = general_diff(preds['alt_rc'][k]['dGrad'], preds['ref_rc']
[k]['dGrad'])
sel = general_sel(diff_fwd, diff_rc)
replace_by_sel(diff_fwd, diff_rc, sel)
diff_ret_dGrad[k] = diff_fwd
replace_by_sel(preds['ref'][k]['dGrad'], preds['ref_rc'][k]['dGrad'
], sel)
replace_by_sel(preds['alt'][k]['dGrad'], preds['alt_rc'][k]['dGrad'
], sel)
pred_out['ref'][k] = preds['ref'][k]['dGrad']
pred_out['alt'][k] = preds['alt'][k]['dGrad']
return {'diff': pd.DataFrame(diff_ret_dGrad), 'ref': pd.DataFrame(
pred_out['ref']), 'alt': pd.DataFrame(pred_out['alt'])}
|
gradient_pred
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=None):\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n for k in seqs:\n if not isinstance(seqs[k], (list, tuple, np.ndarray)):\n raise Exception(\n 'At the moment only models with list, tuple or np.ndarray inputs are supported.'\n )\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n sal_funcs = __generate_direct_saliency_functions__(model,\n out_annotation_all_outputs, out_annotation)\n preds = {}\n for k in seqs:\n preds[k] = {}\n if '_rc' in k:\n mutated_positions_here = get_seq_len(ref)[1\n ] - 1 - mutation_positions\n else:\n mutated_positions_here = mutation_positions\n for l in out_annotation:\n preds[k][l] = predict_vals(input_data=seqs[k], apply_function=\n __get_direct_saliencies__, score_func=sal_funcs[l],\n mutated_positions=mutated_positions_here, model=model)\n diff_ret_dGrad = {}\n pred_out = {'ref': {}, 'alt': {}}\n for k in preds['ref']:\n diff_fwd = general_diff(preds['alt'][k]['dGrad'], preds['ref'][k][\n 'dGrad'])\n diff_rc = general_diff(preds['alt_rc'][k]['dGrad'], preds['ref_rc']\n [k]['dGrad'])\n sel = general_sel(diff_fwd, diff_rc)\n replace_by_sel(diff_fwd, diff_rc, sel)\n diff_ret_dGrad[k] = diff_fwd\n replace_by_sel(preds['ref'][k]['dGrad'], preds['ref_rc'][k]['dGrad'\n ], sel)\n replace_by_sel(preds['alt'][k]['dGrad'], preds['alt_rc'][k]['dGrad'\n ], sel)\n pred_out['ref'][k] = preds['ref'][k]['dGrad']\n pred_out['alt'][k] = preds['alt'][k]['dGrad']\n return {'diff': pd.DataFrame(diff_ret_dGrad), 'ref': pd.DataFrame(\n pred_out['ref']), 'alt': pd.DataFrame(pred_out['alt'])}\n",
"role": "user"
},
{
"content": "gradient_pred",
"role": "assistant"
}
] |
def x(pwm_id_list, pseudocountProb=0.0001):
l = load_motif_db(HOCOMOCO_PWM)
l = {k.split()[0]: v for k, v in l.items()}
pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in
pwm_id_list]
return pwm_list
|
get_pwm_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pwm_id_list, pseudocountProb=0.0001):\n l = load_motif_db(HOCOMOCO_PWM)\n l = {k.split()[0]: v for k, v in l.items()}\n pwm_list = [PWM(_normalize_pwm(l[m]) + pseudocountProb, name=m) for m in\n pwm_id_list]\n return pwm_list\n",
"role": "user"
},
{
"content": "get_pwm_list",
"role": "assistant"
}
] |
def x(self):
if self.is_trained() is False:
return None
var_res = self._var_res
weights = self._var_res_to_weights(var_res)
weights['final_bias_fit'] = weights['final_bias']
weights['feature_weights_fit'] = weights['feature_weights']
return weights
|
get_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.is_trained() is False:\n return None\n var_res = self._var_res\n weights = self._var_res_to_weights(var_res)\n weights['final_bias_fit'] = weights['final_bias']\n weights['feature_weights_fit'] = weights['feature_weights']\n return weights\n",
"role": "user"
},
{
"content": "get_weights",
"role": "assistant"
}
] |
def x(self, var_res):
motif_base_weights_raw = var_res['motif_base_weights'][0]
motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2)
motif_weights = var_res['motif_weights']
motif_bias = var_res['motif_bias']
final_bias = var_res['final_bias']
feature_weights = var_res['feature_weights']
spline_pred = None
spline_weights = None
if self._param['n_splines'] is not None:
spline_pred = self._splines['X_spline'].dot(var_res['spline_weights'])
if self._param['spline_exp'] is True:
spline_pred = np.exp(spline_pred)
else:
spline_pred = spline_pred + 1
spline_pred.reshape([-1])
spline_weights = var_res['spline_weights']
weights = {'motif_base_weights': motif_base_weights, 'motif_weights':
motif_weights, 'motif_bias': motif_bias, 'final_bias': final_bias,
'feature_weights': feature_weights, 'spline_pred': spline_pred,
'spline_weights': spline_weights}
return weights
|
var_res_to_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, var_res):\n motif_base_weights_raw = var_res['motif_base_weights'][0]\n motif_base_weights = np.swapaxes(motif_base_weights_raw, 0, 2)\n motif_weights = var_res['motif_weights']\n motif_bias = var_res['motif_bias']\n final_bias = var_res['final_bias']\n feature_weights = var_res['feature_weights']\n spline_pred = None\n spline_weights = None\n if self._param['n_splines'] is not None:\n spline_pred = self._splines['X_spline'].dot(var_res['spline_weights'])\n if self._param['spline_exp'] is True:\n spline_pred = np.exp(spline_pred)\n else:\n spline_pred = spline_pred + 1\n spline_pred.reshape([-1])\n spline_weights = var_res['spline_weights']\n weights = {'motif_base_weights': motif_base_weights, 'motif_weights':\n motif_weights, 'motif_bias': motif_bias, 'final_bias': final_bias,\n 'feature_weights': feature_weights, 'spline_pred': spline_pred,\n 'spline_weights': spline_weights}\n return weights\n",
"role": "user"
},
{
"content": "var_res_to_weights",
"role": "assistant"
}
] |
def x(self, graph, var, other_var):
with tf.Session(graph=graph) as sess:
sess.run(other_var['init'])
var_res = self._get_var_res_sess(sess, var)
return var_res
|
get_var_res
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, var, other_var):\n with tf.Session(graph=graph) as sess:\n sess.run(other_var['init'])\n var_res = self._get_var_res_sess(sess, var)\n return var_res\n",
"role": "user"
},
{
"content": "get_var_res",
"role": "assistant"
}
] |
def x(self, graph, var_res):
with graph.as_default():
var = {}
for key, value in var_res.items():
if value is not None:
var[key] = tf.Variable(value, name='tf_%s' % key)
else:
var[key] = None
return var
|
convert_to_var
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, var_res):\n with graph.as_default():\n var = {}\n for key, value in var_res.items():\n if value is not None:\n var[key] = tf.Variable(value, name='tf_%s' % key)\n else:\n var[key] = None\n return var\n",
"role": "user"
},
{
"content": "convert_to_var",
"role": "assistant"
}
] |
def x(self, X_feat, X_seq, y, X_feat_valid=None, X_seq_valid=None, y_valid=
None, n_cores=3):
if X_feat_valid is None and X_seq_valid is None and y_valid is None:
X_feat_valid = X_feat
X_seq_valid = X_seq
y_valid = y
print('Using training samples also for validation ')
X_seq = np.expand_dims(X_seq, axis=1)
X_seq_valid = np.expand_dims(X_seq_valid, axis=1)
if self.is_trained() is True:
print('Model already fitted. Re-training feature not implemented yet')
return
assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0]
assert y.shape == (X_feat.shape[0], self._num_tasks)
self._param['seq_length'] = X_seq.shape[2]
self._param['n_add_features'] = X_feat.shape[1]
if not self._param['seq_length'] == X_seq_valid.shape[2]:
raise Exception("sequence lengths don't match")
if self._param['n_splines'] is not None:
padd_loss = self._param['motif_length'] - 1
X_spline, S, _ = splines.get_gam_splines(start=0, end=self._param[
'seq_length'] - padd_loss - 1, n_bases=self._param['n_splines'],
spline_order=3, add_intercept=False)
self._splines = {'X_spline': X_spline, 'S': S}
self._graph = tf.Graph()
self._var = self._get_var_initialization(self._graph, X_feat_train=
X_feat, y_train=y)
self._other_var = self._build_graph(self._graph, self._var)
var_res_init = self._get_var_res(self._graph, self._var, self._other_var)
self.init_weights = self._var_res_to_weights(var_res=var_res_init)
if self._param['optimizer'] == 'adam':
_train = self._train_adam
elif self._param['optimizer'] == 'lbfgs':
_train = self._train_lbfgs
else:
raise Exception('Optimizer {} not implemented'.format(self._param[
'optimizer']))
self._var_res = _train(X_feat, X_seq, y, X_feat_valid, X_seq_valid,
y_valid, graph=self._graph, var=self._var, other_var=self.
_other_var, early_stop_patience=self._param['early_stop_patience'],
n_cores=n_cores)
self._model_fitted = True
return True
|
train
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X_feat, X_seq, y, X_feat_valid=None, X_seq_valid=None, y_valid=\n None, n_cores=3):\n if X_feat_valid is None and X_seq_valid is None and y_valid is None:\n X_feat_valid = X_feat\n X_seq_valid = X_seq\n y_valid = y\n print('Using training samples also for validation ')\n X_seq = np.expand_dims(X_seq, axis=1)\n X_seq_valid = np.expand_dims(X_seq_valid, axis=1)\n if self.is_trained() is True:\n print('Model already fitted. Re-training feature not implemented yet')\n return\n assert X_seq.shape[0] == X_feat.shape[0] == y.shape[0]\n assert y.shape == (X_feat.shape[0], self._num_tasks)\n self._param['seq_length'] = X_seq.shape[2]\n self._param['n_add_features'] = X_feat.shape[1]\n if not self._param['seq_length'] == X_seq_valid.shape[2]:\n raise Exception(\"sequence lengths don't match\")\n if self._param['n_splines'] is not None:\n padd_loss = self._param['motif_length'] - 1\n X_spline, S, _ = splines.get_gam_splines(start=0, end=self._param[\n 'seq_length'] - padd_loss - 1, n_bases=self._param['n_splines'],\n spline_order=3, add_intercept=False)\n self._splines = {'X_spline': X_spline, 'S': S}\n self._graph = tf.Graph()\n self._var = self._get_var_initialization(self._graph, X_feat_train=\n X_feat, y_train=y)\n self._other_var = self._build_graph(self._graph, self._var)\n var_res_init = self._get_var_res(self._graph, self._var, self._other_var)\n self.init_weights = self._var_res_to_weights(var_res=var_res_init)\n if self._param['optimizer'] == 'adam':\n _train = self._train_adam\n elif self._param['optimizer'] == 'lbfgs':\n _train = self._train_lbfgs\n else:\n raise Exception('Optimizer {} not implemented'.format(self._param[\n 'optimizer']))\n self._var_res = _train(X_feat, X_seq, y, X_feat_valid, X_seq_valid,\n y_valid, graph=self._graph, var=self._var, other_var=self.\n _other_var, early_stop_patience=self._param['early_stop_patience'],\n n_cores=n_cores)\n self._model_fitted = True\n return True\n",
"role": "user"
},
{
"content": "train",
"role": "assistant"
}
] |
def x(self, sess, other_var, X_feat, X_seq, variable='y_pred'):
feed_dict = {other_var['tf_X_feat']: X_feat, other_var['tf_X_seq']: X_seq}
y_pred = sess.run(other_var[variable], feed_dict=feed_dict)
return y_pred
|
predict_in_session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sess, other_var, X_feat, X_seq, variable='y_pred'):\n feed_dict = {other_var['tf_X_feat']: X_feat, other_var['tf_X_seq']: X_seq}\n y_pred = sess.run(other_var[variable], feed_dict=feed_dict)\n return y_pred\n",
"role": "user"
},
{
"content": "predict_in_session",
"role": "assistant"
}
] |
def x(self, sess, other_var, X_feat, X_seq, y):
y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq)
return ce.mse(y_pred, y)
|
accuracy_in_session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sess, other_var, X_feat, X_seq, y):\n y_pred = self._predict_in_session(sess, other_var, X_feat, X_seq)\n return ce.mse(y_pred, y)\n",
"role": "user"
},
{
"content": "accuracy_in_session",
"role": "assistant"
}
] |
def x(self, X_feat_train, X_seq_train, y_train, X_feat_valid, X_seq_valid,
y_valid, graph, var, other_var, early_stop_patience=None, n_cores=3):
tic = time.time()
n_epochs = self._param['n_epochs']
print_every = self._param['print_every']
step_size = self._param['step_size']
num_steps = n_epochs
print('Number of epochs:', n_epochs)
loss_history = []
train_acc_vec = []
valid_acc_vec = []
step_history = []
with tf.Session(graph=graph, config=tf.ConfigProto(
use_per_session_threads=True, inter_op_parallelism_threads=n_cores,
intra_op_parallelism_threads=n_cores)) as sess:
sess.run(other_var['init'])
best_performance = None
best_performance_epoch = 0
for step in range(n_epochs):
feed_dict = {other_var['tf_X_seq']: X_seq_train, other_var[
'tf_y']: y_train, other_var['tf_X_feat']: X_feat_train,
other_var['tf_step_size']: step_size}
other_var['optimizer'].minimize(sess, feed_dict=feed_dict)
l = sess.run(other_var['loss'], feed_dict=feed_dict)
loss_history.append(l)
if step % print_every == 0:
train_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
train_acc_vec.append(train_accuracy)
valid_acc_vec.append(valid_accuracy)
step_history.append(step / num_steps)
print(
'Step %4d: loss %f, train mse: %f, validation mse: %f' %
(step, l, train_accuracy, valid_accuracy))
if (best_performance is None or valid_accuracy <=
best_performance):
best_performance = valid_accuracy
best_performance_epoch = step
if (early_stop_patience is not None and step >
best_performance_epoch + early_stop_patience):
print(
'Early stopping. best_performance_epoch: %d, best_performance: %f'
% (best_performance_epoch, best_performance))
break
train_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_train, X_seq_train, y_train)
valid_accuracy_final = self._accuracy_in_session(sess, other_var,
X_feat_valid, X_seq_valid, y_valid)
print('Validation accuracy final: %f' % valid_accuracy_final)
var_res = self._get_var_res_sess(sess, var)
if self._param['n_splines'] is not None:
self._splines['quasi_X'] = [self._predict_in_session(sess,
other_var, X_feat_train[i:i + 1], X_seq_train[i:i + 1],
variable='spline_quasi_X') for i in range(X_feat_train.
shape[0])]
self._splines['quasi_X'] = np.concatenate([x[0][np.newaxis] for
x in self._splines['quasi_X']])
accuracy = {'loss_history': np.array(loss_history), 'step_history':
np.array(step_history), 'train_acc_history': np.array(
train_acc_vec), 'val_acc_history': np.array(valid_acc_vec),
'train_acc_final': train_accuracy_final, 'val_acc_final':
valid_accuracy_final, 'best_val_acc': best_performance,
'best_val_acc_epoch': best_performance_epoch, 'test_acc_final':
None, 'y_test': None, 'y_test_prediction': None, 'id_vec_test':
None}
self._accuracy = accuracy
toc = time.time()
exec_time = toc - tic
self._exec_time = exec_time
print('That took %fs' % exec_time)
return var_res
|
train_lbfgs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X_feat_train, X_seq_train, y_train, X_feat_valid, X_seq_valid,\n y_valid, graph, var, other_var, early_stop_patience=None, n_cores=3):\n tic = time.time()\n n_epochs = self._param['n_epochs']\n print_every = self._param['print_every']\n step_size = self._param['step_size']\n num_steps = n_epochs\n print('Number of epochs:', n_epochs)\n loss_history = []\n train_acc_vec = []\n valid_acc_vec = []\n step_history = []\n with tf.Session(graph=graph, config=tf.ConfigProto(\n use_per_session_threads=True, inter_op_parallelism_threads=n_cores,\n intra_op_parallelism_threads=n_cores)) as sess:\n sess.run(other_var['init'])\n best_performance = None\n best_performance_epoch = 0\n for step in range(n_epochs):\n feed_dict = {other_var['tf_X_seq']: X_seq_train, other_var[\n 'tf_y']: y_train, other_var['tf_X_feat']: X_feat_train,\n other_var['tf_step_size']: step_size}\n other_var['optimizer'].minimize(sess, feed_dict=feed_dict)\n l = sess.run(other_var['loss'], feed_dict=feed_dict)\n loss_history.append(l)\n if step % print_every == 0:\n train_accuracy = self._accuracy_in_session(sess, other_var,\n X_feat_train, X_seq_train, y_train)\n valid_accuracy = self._accuracy_in_session(sess, other_var,\n X_feat_valid, X_seq_valid, y_valid)\n train_acc_vec.append(train_accuracy)\n valid_acc_vec.append(valid_accuracy)\n step_history.append(step / num_steps)\n print(\n 'Step %4d: loss %f, train mse: %f, validation mse: %f' %\n (step, l, train_accuracy, valid_accuracy))\n if (best_performance is None or valid_accuracy <=\n best_performance):\n best_performance = valid_accuracy\n best_performance_epoch = step\n if (early_stop_patience is not None and step > \n best_performance_epoch + early_stop_patience):\n print(\n 'Early stopping. best_performance_epoch: %d, best_performance: %f'\n % (best_performance_epoch, best_performance))\n break\n train_accuracy_final = self._accuracy_in_session(sess, other_var,\n X_feat_train, X_seq_train, y_train)\n valid_accuracy_final = self._accuracy_in_session(sess, other_var,\n X_feat_valid, X_seq_valid, y_valid)\n print('Validation accuracy final: %f' % valid_accuracy_final)\n var_res = self._get_var_res_sess(sess, var)\n if self._param['n_splines'] is not None:\n self._splines['quasi_X'] = [self._predict_in_session(sess,\n other_var, X_feat_train[i:i + 1], X_seq_train[i:i + 1],\n variable='spline_quasi_X') for i in range(X_feat_train.\n shape[0])]\n self._splines['quasi_X'] = np.concatenate([x[0][np.newaxis] for\n x in self._splines['quasi_X']])\n accuracy = {'loss_history': np.array(loss_history), 'step_history':\n np.array(step_history), 'train_acc_history': np.array(\n train_acc_vec), 'val_acc_history': np.array(valid_acc_vec),\n 'train_acc_final': train_accuracy_final, 'val_acc_final':\n valid_accuracy_final, 'best_val_acc': best_performance,\n 'best_val_acc_epoch': best_performance_epoch, 'test_acc_final':\n None, 'y_test': None, 'y_test_prediction': None, 'id_vec_test':\n None}\n self._accuracy = accuracy\n toc = time.time()\n exec_time = toc - tic\n self._exec_time = exec_time\n print('That took %fs' % exec_time)\n return var_res\n",
"role": "user"
},
{
"content": "train_lbfgs",
"role": "assistant"
}
] |
def x(self, X_feat, X_seq):
X_seq = np.expand_dims(X_seq, axis=1)
return self._get_other_var(X_feat, X_seq, variable='y_pred')
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X_feat, X_seq):\n X_seq = np.expand_dims(X_seq, axis=1)\n return self._get_other_var(X_feat, X_seq, variable='y_pred')\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self, X_feat, X_seq, variable='y_pred'):
if self.is_trained() is False:
print('Model not fitted yet. Use object.fit() to fit the model.')
return
assert X_seq.shape[0] == X_feat.shape[0]
assert self._param['n_add_features'] == X_feat.shape[1]
graph = tf.Graph()
var = self._convert_to_var(graph, self._var_res)
other_var = self._build_graph(graph, var)
with tf.Session(graph=graph) as sess:
sess.run(other_var['init'])
y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable)
return y
|
get_other_var
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X_feat, X_seq, variable='y_pred'):\n if self.is_trained() is False:\n print('Model not fitted yet. Use object.fit() to fit the model.')\n return\n assert X_seq.shape[0] == X_feat.shape[0]\n assert self._param['n_add_features'] == X_feat.shape[1]\n graph = tf.Graph()\n var = self._convert_to_var(graph, self._var_res)\n other_var = self._build_graph(graph, var)\n with tf.Session(graph=graph) as sess:\n sess.run(other_var['init'])\n y = self._predict_in_session(sess, other_var, X_feat, X_seq, variable)\n return y\n",
"role": "user"
},
{
"content": "get_other_var",
"role": "assistant"
}
] |
def x(self):
final_res = {'param': self._param, 'unused_param': self.unused_param,
'execution_time': self._exec_time, 'output': {'accuracy': self.
get_accuracy(), 'weights': self.get_weights(), 'splines': self.
_splines}}
return final_res
|
to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n final_res = {'param': self._param, 'unused_param': self.unused_param,\n 'execution_time': self._exec_time, 'output': {'accuracy': self.\n get_accuracy(), 'weights': self.get_weights(), 'splines': self.\n _splines}}\n return final_res\n",
"role": "user"
},
{
"content": "to_dict",
"role": "assistant"
}
] |
def x(self, weights):
if weights is None:
return
motif_base_weights_raw = np.swapaxes(weights['motif_base_weights'], 2, 0)
motif_base_weights = motif_base_weights_raw[np.newaxis]
motif_bias = weights['motif_bias']
feature_weights = weights['feature_weights']
spline_weights = weights['spline_weights']
motif_weights = weights['motif_weights']
final_bias = weights['final_bias']
var_res = {'motif_base_weights': motif_base_weights, 'motif_bias':
motif_bias, 'spline_weights': spline_weights, 'feature_weights':
feature_weights, 'motif_weights': motif_weights, 'final_bias':
final_bias}
var_res = {key: (value.astype(np.float32) if value is not None else
None) for key, value in var_res.items()}
self._var_res = var_res
|
set_var_res
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, weights):\n if weights is None:\n return\n motif_base_weights_raw = np.swapaxes(weights['motif_base_weights'], 2, 0)\n motif_base_weights = motif_base_weights_raw[np.newaxis]\n motif_bias = weights['motif_bias']\n feature_weights = weights['feature_weights']\n spline_weights = weights['spline_weights']\n motif_weights = weights['motif_weights']\n final_bias = weights['final_bias']\n var_res = {'motif_base_weights': motif_base_weights, 'motif_bias':\n motif_bias, 'spline_weights': spline_weights, 'feature_weights':\n feature_weights, 'motif_weights': motif_weights, 'final_bias':\n final_bias}\n var_res = {key: (value.astype(np.float32) if value is not None else\n None) for key, value in var_res.items()}\n self._var_res = var_res\n",
"role": "user"
},
{
"content": "set_var_res",
"role": "assistant"
}
] |
def x(cls, obj_dict):
obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict['output'])
helper.dict_to_numpy_dict(obj_dict['output'])
if 'trained_global_model' in obj_dict.keys():
raise Exception(
'Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.'
)
dc = Concise(**obj_dict['param'])
dc._param = obj_dict['param']
if obj_dict['output']['weights'] is None:
dc._model_fitted = False
else:
dc._model_fitted = True
dc._exec_time = obj_dict['execution_time']
dc.unused_param = obj_dict['unused_param']
dc._accuracy = obj_dict['output']['accuracy']
dc._splines = obj_dict['output']['splines']
weights = obj_dict['output']['weights']
if weights is not None:
if weights['feature_weights'].shape == (0,):
weights['feature_weights'].shape = 0, obj_dict['param']['num_tasks'
]
dc._set_var_res(weights)
return dc
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, obj_dict):\n obj_dict['output'] = helper.rec_dict_to_numpy_dict(obj_dict['output'])\n helper.dict_to_numpy_dict(obj_dict['output'])\n if 'trained_global_model' in obj_dict.keys():\n raise Exception(\n 'Found trained_global_model feature in dictionary. Use ConciseCV.load to load this file.'\n )\n dc = Concise(**obj_dict['param'])\n dc._param = obj_dict['param']\n if obj_dict['output']['weights'] is None:\n dc._model_fitted = False\n else:\n dc._model_fitted = True\n dc._exec_time = obj_dict['execution_time']\n dc.unused_param = obj_dict['unused_param']\n dc._accuracy = obj_dict['output']['accuracy']\n dc._splines = obj_dict['output']['splines']\n weights = obj_dict['output']['weights']\n if weights is not None:\n if weights['feature_weights'].shape == (0,):\n weights['feature_weights'].shape = 0, obj_dict['param']['num_tasks'\n ]\n dc._set_var_res(weights)\n return dc\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(cls, file_path):
data = helper.read_json(file_path)
return Concise.from_dict(data)
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, file_path):\n data = helper.read_json(file_path)\n return Concise.from_dict(data)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(n_rows, n_folds, use_stored):
if use_stored is not None:
with open(os.path.expanduser(use_stored)) as json_file:
json_data = json.load(json_file)
if json_data['N_rows'] != n_rows:
raise Exception(
'N_rows from folds doesnt match the number of rows of X_seq, X_feat, y'
)
if json_data['N_folds'] != n_folds:
raise Exception('n_folds dont match', json_data['N_folds'], n_folds
)
kf = [(np.array(train), np.array(test)) for train, test in
json_data['folds']]
else:
kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1)))
i = 1
folds = []
for train, test in kf:
fold = 'fold_' + str(i)
folds.append((fold, train, test))
i = i + 1
return folds
|
get_folds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n_rows, n_folds, use_stored):\n if use_stored is not None:\n with open(os.path.expanduser(use_stored)) as json_file:\n json_data = json.load(json_file)\n if json_data['N_rows'] != n_rows:\n raise Exception(\n 'N_rows from folds doesnt match the number of rows of X_seq, X_feat, y'\n )\n if json_data['N_folds'] != n_folds:\n raise Exception('n_folds dont match', json_data['N_folds'], n_folds\n )\n kf = [(np.array(train), np.array(test)) for train, test in\n json_data['folds']]\n else:\n kf = KFold(n_splits=n_folds).split(np.zeros((n_rows, 1)))\n i = 1\n folds = []\n for train, test in kf:\n fold = 'fold_' + str(i)\n folds.append((fold, train, test))\n i = i + 1\n return folds\n",
"role": "user"
},
{
"content": "get_folds",
"role": "assistant"
}
] |
def x(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds=
None, n_cores=1, train_global_model=False):
self._use_stored_folds = use_stored_folds
self._n_folds = n_folds
self._n_rows = X_feat.shape[0]
self._kf = self._get_folds(self._n_rows, self._n_folds, self.
_use_stored_folds)
cv_obj = {}
if id_vec is None:
id_vec = np.arange(1, self._n_rows + 1)
best_val_acc_epoch_l = []
for fold, train, test in self._kf:
X_feat_train = X_feat[train]
X_seq_train = X_seq[train]
y_train = y[train]
X_feat_test = X_feat[test]
X_seq_test = X_seq[test]
y_test = y[test]
id_vec_test = id_vec[test]
print(fold, '/', n_folds)
dc = copy.deepcopy(self._concise_model)
dc.train(X_feat_train, X_seq_train, y_train, X_feat_test,
X_seq_test, y_test, n_cores=n_cores)
dc._test(X_feat_test, X_seq_test, y_test, id_vec_test)
cv_obj[fold] = dc
best_val_acc_epoch_l.append(dc.get_accuracy()['best_val_acc_epoch'])
self._cv_model = cv_obj
if train_global_model:
dc = copy.deepcopy(self._concise_model)
dc._param['n_epochs'] = int(np.array(best_val_acc_epoch_l).mean())
print('tranining global model with n_epochs = ' + str(dc._param[
'n_epochs']))
dc.train(X_feat, X_seq, y, n_cores=n_cores)
dc._test(X_feat, X_seq, y, id_vec)
self._concise_global_model = dc
|
train
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X_feat, X_seq, y, id_vec=None, n_folds=10, use_stored_folds=\n None, n_cores=1, train_global_model=False):\n self._use_stored_folds = use_stored_folds\n self._n_folds = n_folds\n self._n_rows = X_feat.shape[0]\n self._kf = self._get_folds(self._n_rows, self._n_folds, self.\n _use_stored_folds)\n cv_obj = {}\n if id_vec is None:\n id_vec = np.arange(1, self._n_rows + 1)\n best_val_acc_epoch_l = []\n for fold, train, test in self._kf:\n X_feat_train = X_feat[train]\n X_seq_train = X_seq[train]\n y_train = y[train]\n X_feat_test = X_feat[test]\n X_seq_test = X_seq[test]\n y_test = y[test]\n id_vec_test = id_vec[test]\n print(fold, '/', n_folds)\n dc = copy.deepcopy(self._concise_model)\n dc.train(X_feat_train, X_seq_train, y_train, X_feat_test,\n X_seq_test, y_test, n_cores=n_cores)\n dc._test(X_feat_test, X_seq_test, y_test, id_vec_test)\n cv_obj[fold] = dc\n best_val_acc_epoch_l.append(dc.get_accuracy()['best_val_acc_epoch'])\n self._cv_model = cv_obj\n if train_global_model:\n dc = copy.deepcopy(self._concise_model)\n dc._param['n_epochs'] = int(np.array(best_val_acc_epoch_l).mean())\n print('tranining global model with n_epochs = ' + str(dc._param[\n 'n_epochs']))\n dc.train(X_feat, X_seq, y, n_cores=n_cores)\n dc._test(X_feat, X_seq, y, id_vec)\n self._concise_global_model = dc\n",
"role": "user"
},
{
"content": "train",
"role": "assistant"
}
] |
def x(self):
predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks))
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
predict_vec[test, :] = acc['y_test_prediction']
return predict_vec
|
get_CV_prediction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n predict_vec = np.zeros((self._n_rows, self._concise_model._num_tasks))\n for fold, train, test in self._kf:\n acc = self._cv_model[fold].get_accuracy()\n predict_vec[test, :] = acc['y_test_prediction']\n return predict_vec\n",
"role": "user"
},
{
"content": "get_CV_prediction",
"role": "assistant"
}
] |
def x(self):
accuracy = {}
for fold, train, test in self._kf:
acc = self._cv_model[fold].get_accuracy()
accuracy[fold] = acc['test_acc_final']
return accuracy
|
get_CV_accuracy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n accuracy = {}\n for fold, train, test in self._kf:\n acc = self._cv_model[fold].get_accuracy()\n accuracy[fold] = acc['test_acc_final']\n return accuracy\n",
"role": "user"
},
{
"content": "get_CV_accuracy",
"role": "assistant"
}
] |
def x(self):
param = {'n_folds': self._n_folds, 'n_rows': self._n_rows,
'use_stored_folds': self._use_stored_folds}
if self._concise_global_model is None:
trained_global_model = None
else:
trained_global_model = self._concise_global_model.to_dict()
obj_dict = {'param': param, 'folds': self._kf, 'init_model': self.
_concise_model.to_dict(), 'trained_global_model':
trained_global_model, 'output': {fold: model.to_dict() for fold,
model in self.get_CV_models().items()}}
return obj_dict
|
to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n param = {'n_folds': self._n_folds, 'n_rows': self._n_rows,\n 'use_stored_folds': self._use_stored_folds}\n if self._concise_global_model is None:\n trained_global_model = None\n else:\n trained_global_model = self._concise_global_model.to_dict()\n obj_dict = {'param': param, 'folds': self._kf, 'init_model': self.\n _concise_model.to_dict(), 'trained_global_model':\n trained_global_model, 'output': {fold: model.to_dict() for fold,\n model in self.get_CV_models().items()}}\n return obj_dict\n",
"role": "user"
},
{
"content": "to_dict",
"role": "assistant"
}
] |
def x(cls, obj_dict):
default_model = Concise()
cvdc = ConciseCV(default_model)
cvdc._from_dict(obj_dict)
return cvdc
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, obj_dict):\n default_model = Concise()\n cvdc = ConciseCV(default_model)\n cvdc._from_dict(obj_dict)\n return cvdc\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(self, obj_dict):
self._n_folds = obj_dict['param']['n_folds']
self._n_rows = obj_dict['param']['n_rows']
self._use_stored_folds = obj_dict['param']['use_stored_folds']
self._concise_model = Concise.from_dict(obj_dict['init_model'])
if obj_dict['trained_global_model'] is None:
self._concise_global_model = None
else:
self._concise_global_model = Concise.from_dict(obj_dict[
'trained_global_model'])
self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train,
test in obj_dict['folds']]
self._cv_model = {fold: Concise.from_dict(model_dict) for fold,
model_dict in obj_dict['output'].items()}
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj_dict):\n self._n_folds = obj_dict['param']['n_folds']\n self._n_rows = obj_dict['param']['n_rows']\n self._use_stored_folds = obj_dict['param']['use_stored_folds']\n self._concise_model = Concise.from_dict(obj_dict['init_model'])\n if obj_dict['trained_global_model'] is None:\n self._concise_global_model = None\n else:\n self._concise_global_model = Concise.from_dict(obj_dict[\n 'trained_global_model'])\n self._kf = [(fold, np.asarray(train), np.asarray(test)) for fold, train,\n test in obj_dict['folds']]\n self._cv_model = {fold: Concise.from_dict(model_dict) for fold,\n model_dict in obj_dict['output'].items()}\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(cls, file_path):
data = helper.read_json(file_path)
return ConciseCV.from_dict(data)
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, file_path):\n data = helper.read_json(file_path)\n return ConciseCV.from_dict(data)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return np.log(arr / b).astype(arr.dtype)
|
pwm_array2pssm_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):\n b = background_probs2array(background_probs)\n b = b.reshape([1, 4, 1])\n return np.log(arr / b).astype(arr.dtype)\n",
"role": "user"
},
{
"content": "pwm_array2pssm_array",
"role": "assistant"
}
] |
def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):
b = background_probs2array(background_probs)
b = b.reshape([1, 4, 1])
return (np.exp(arr) * b).astype(arr.dtype)
|
pssm_array2pwm_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, background_probs=DEFAULT_BASE_BACKGROUND):\n b = background_probs2array(background_probs)\n b = b.reshape([1, 4, 1])\n return (np.exp(arr) * b).astype(arr.dtype)\n",
"role": "user"
},
{
"content": "pssm_array2pwm_array",
"role": "assistant"
}
] |
def x(filename, skipn_matrix=0):
if filename.endswith('.gz'):
f = gzip.open(filename, 'rt', encoding='utf-8')
else:
f = open(filename, 'r')
lines = f.readlines()
f.close()
motifs_dict = {}
motif_lines = ''
motif_name = None
def x(lines):
return np.loadtxt(StringIO(lines))
for line in lines:
if line.startswith('>'):
if motif_lines:
motifs_dict[motif_name] = lines2matrix(motif_lines)
motif_name = line[1:].strip()
motif_lines = ''
else:
motif_lines += line[skipn_matrix:]
if motif_lines and motif_name is not None:
motifs_dict[motif_name] = lines2matrix(motif_lines)
return motifs_dict
|
load_motif_db
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, skipn_matrix=0):\n if filename.endswith('.gz'):\n f = gzip.open(filename, 'rt', encoding='utf-8')\n else:\n f = open(filename, 'r')\n lines = f.readlines()\n f.close()\n motifs_dict = {}\n motif_lines = ''\n motif_name = None\n\n def x(lines):\n return np.loadtxt(StringIO(lines))\n for line in lines:\n if line.startswith('>'):\n if motif_lines:\n motifs_dict[motif_name] = lines2matrix(motif_lines)\n motif_name = line[1:].strip()\n motif_lines = ''\n else:\n motif_lines += line[skipn_matrix:]\n if motif_lines and motif_name is not None:\n motifs_dict[motif_name] = lines2matrix(motif_lines)\n return motifs_dict\n",
"role": "user"
},
{
"content": "load_motif_db",
"role": "assistant"
}
] |
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,
out_annotation_all_outputs, output_filter_mask=None, out_annotation=
None, dropout_iterations=30):
prefix = 'do'
seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}
assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs
[k]))) for k in seqs.keys() if k != 'ref'])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(
out_annotation_all_outputs, out_annotation))[0]
out_annotation = out_annotation_all_outputs[output_filter_mask]
model_config = model._updated_config()
alt_config = replace_dict_values(model_config, u'Dropout', u'BiDropout')
alt_model = keras.layers.deserialize(alt_config)
alt_model.set_weights(model.get_weights())
preds = {}
for k in seqs:
preds[k] = pred_do(alt_model, seqs[k], output_filter_mask=
output_filter_mask, dropout_iterations=dropout_iterations)
t, prob = ttest_ind(preds['ref'], preds['alt'], axis=0)
t_rc, prob_rc = ttest_ind(preds['ref_rc'], preds['alt_rc'], axis=0)
logit_prob = None
logit_prob_rc = None
pred_range = get_range(preds)
if np.all([(pred_range[k] >= 0 and pred_range[k] <= 1) for k in pred_range]
):
logit_preds = apply_over_single(preds, logit)
logit_prob = apply_over_double(logit_preds['ref'], logit_preds[
'alt'], apply_func=ttest_ind, select_return_elm=1, axis=0)
logit_prob_rc = apply_over_double(logit_preds['ref_rc'],
logit_preds['alt_rc'], apply_func=ttest_ind, select_return_elm=
1, axis=0)
sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int)
out_dict = {}
out_dict['%s_pv' % prefix] = pd.DataFrame(overwite_by(prob, prob_rc,
sel), columns=out_annotation)
if logit_prob is not None:
logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int)
out_dict['%s_logit_pv' % prefix] = pd.DataFrame(overwite_by(
logit_prob, logit_prob_rc, logit_sel), columns=out_annotation)
pred_means = {}
pred_vars = {}
pred_cvar2 = {}
for k in preds:
pred_means[k] = np.mean(preds[k], axis=0)
pred_vars[k] = np.var(preds[k], axis=0)
pred_cvar2[k] = pred_vars[k] / pred_means[k] ** 2
mean_cvar = np.sqrt((pred_cvar2['ref'] + pred_cvar2['alt']) / 2)
mean_cvar_rc = np.sqrt((pred_cvar2['ref_rc'] + pred_cvar2['alt_rc']) / 2)
mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel)
ref_mean = overwite_by(pred_means['ref'], pred_means['ref_rc'], sel)
alt_mean = overwite_by(pred_means['alt'], pred_means['alt_rc'], sel)
ref_var = overwite_by(pred_vars['ref'], pred_vars['ref_rc'], sel)
alt_var = overwite_by(pred_vars['alt'], pred_vars['alt_rc'], sel)
out_dict['%s_ref_mean' % prefix] = pd.DataFrame(ref_mean, columns=
out_annotation)
out_dict['%s_alt_mean' % prefix] = pd.DataFrame(alt_mean, columns=
out_annotation)
out_dict['%s_ref_var' % prefix] = pd.DataFrame(ref_var, columns=
out_annotation)
out_dict['%s_alt_var' % prefix] = pd.DataFrame(alt_var, columns=
out_annotation)
out_dict['%s_cvar' % prefix] = pd.DataFrame(mean_cvar, columns=
out_annotation)
out_dict['%s_diff' % prefix] = out_dict['%s_alt_mean' % prefix] - out_dict[
'%s_ref_mean' % prefix]
return out_dict
|
dropout_pred
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=\n None, dropout_iterations=30):\n prefix = 'do'\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n model_config = model._updated_config()\n alt_config = replace_dict_values(model_config, u'Dropout', u'BiDropout')\n alt_model = keras.layers.deserialize(alt_config)\n alt_model.set_weights(model.get_weights())\n preds = {}\n for k in seqs:\n preds[k] = pred_do(alt_model, seqs[k], output_filter_mask=\n output_filter_mask, dropout_iterations=dropout_iterations)\n t, prob = ttest_ind(preds['ref'], preds['alt'], axis=0)\n t_rc, prob_rc = ttest_ind(preds['ref_rc'], preds['alt_rc'], axis=0)\n logit_prob = None\n logit_prob_rc = None\n pred_range = get_range(preds)\n if np.all([(pred_range[k] >= 0 and pred_range[k] <= 1) for k in pred_range]\n ):\n logit_preds = apply_over_single(preds, logit)\n logit_prob = apply_over_double(logit_preds['ref'], logit_preds[\n 'alt'], apply_func=ttest_ind, select_return_elm=1, axis=0)\n logit_prob_rc = apply_over_double(logit_preds['ref_rc'],\n logit_preds['alt_rc'], apply_func=ttest_ind, select_return_elm=\n 1, axis=0)\n sel = (np.abs(prob) > np.abs(prob_rc)).astype(np.int)\n out_dict = {}\n out_dict['%s_pv' % prefix] = pd.DataFrame(overwite_by(prob, prob_rc,\n sel), columns=out_annotation)\n if logit_prob is not None:\n logit_sel = (np.abs(logit_prob) > np.abs(logit_prob_rc)).astype(np.int)\n out_dict['%s_logit_pv' % prefix] = pd.DataFrame(overwite_by(\n logit_prob, logit_prob_rc, logit_sel), columns=out_annotation)\n pred_means = {}\n pred_vars = {}\n pred_cvar2 = {}\n for k in preds:\n pred_means[k] = np.mean(preds[k], axis=0)\n pred_vars[k] = np.var(preds[k], axis=0)\n pred_cvar2[k] = pred_vars[k] / pred_means[k] ** 2\n mean_cvar = np.sqrt((pred_cvar2['ref'] + pred_cvar2['alt']) / 2)\n mean_cvar_rc = np.sqrt((pred_cvar2['ref_rc'] + pred_cvar2['alt_rc']) / 2)\n mean_cvar = overwite_by(mean_cvar, mean_cvar_rc, sel)\n ref_mean = overwite_by(pred_means['ref'], pred_means['ref_rc'], sel)\n alt_mean = overwite_by(pred_means['alt'], pred_means['alt_rc'], sel)\n ref_var = overwite_by(pred_vars['ref'], pred_vars['ref_rc'], sel)\n alt_var = overwite_by(pred_vars['alt'], pred_vars['alt_rc'], sel)\n out_dict['%s_ref_mean' % prefix] = pd.DataFrame(ref_mean, columns=\n out_annotation)\n out_dict['%s_alt_mean' % prefix] = pd.DataFrame(alt_mean, columns=\n out_annotation)\n out_dict['%s_ref_var' % prefix] = pd.DataFrame(ref_var, columns=\n out_annotation)\n out_dict['%s_alt_var' % prefix] = pd.DataFrame(alt_var, columns=\n out_annotation)\n out_dict['%s_cvar' % prefix] = pd.DataFrame(mean_cvar, columns=\n out_annotation)\n out_dict['%s_diff' % prefix] = out_dict['%s_alt_mean' % prefix] - out_dict[\n '%s_ref_mean' % prefix]\n return out_dict\n",
"role": "user"
},
{
"content": "dropout_pred",
"role": "assistant"
}
] |
def x(file_path):
fh = open(file_path)
faiter = (x[1] for x in groupby(fh, lambda line: line[0] == '>'))
for header in faiter:
headerStr = header.__next__()[1:].strip()
seq = ''.join(s.strip() for s in faiter.__next__())
yield headerStr, seq
|
iter_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n fh = open(file_path)\n faiter = (x[1] for x in groupby(fh, lambda line: line[0] == '>'))\n for header in faiter:\n headerStr = header.__next__()[1:].strip()\n seq = ''.join(s.strip() for s in faiter.__next__())\n yield headerStr, seq\n",
"role": "user"
},
{
"content": "iter_fasta",
"role": "assistant"
}
] |
def x(file_path, seq_list, name_list=None):
if name_list is None:
name_list = [str(i) for i in range(len(seq_list))]
with open(file_path, 'w') as f:
for i in range(len(seq_list)):
f.write('>' + name_list[i] + '\n' + seq_list[i] + '\n')
|
write_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, seq_list, name_list=None):\n if name_list is None:\n name_list = [str(i) for i in range(len(seq_list))]\n with open(file_path, 'w') as f:\n for i in range(len(seq_list)):\n f.write('>' + name_list[i] + '\\n' + seq_list[i] + '\\n')\n",
"role": "user"
},
{
"content": "write_fasta",
"role": "assistant"
}
] |
def x(input_fasta, tmpdir, W=240, L=160, U=1):
profiles = RNAplfold_PROFILES_EXECUTE
for i, P in enumerate(profiles):
print('running {P}_RNAplfold... ({i}/{N})'.format(P=P, i=i + 1, N=
len(profiles)))
command = '{bin}/{P}_RNAplfold'.format(bin=RNAplfold_BIN_DIR, P=P)
file_out = '{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P)
args = ' -W {W} -L {L} -u {U} < {fa} > {file_out}'.format(W=W, L=L,
U=U, fa=input_fasta, file_out=file_out)
os.system(command + args)
if os.path.getsize(file_out) == 0:
raise Exception('command wrote an empty file: {0}'.format(file_out)
)
print('done!')
|
run_RNAplfold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_fasta, tmpdir, W=240, L=160, U=1):\n profiles = RNAplfold_PROFILES_EXECUTE\n for i, P in enumerate(profiles):\n print('running {P}_RNAplfold... ({i}/{N})'.format(P=P, i=i + 1, N=\n len(profiles)))\n command = '{bin}/{P}_RNAplfold'.format(bin=RNAplfold_BIN_DIR, P=P)\n file_out = '{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P)\n args = ' -W {W} -L {L} -u {U} < {fa} > {file_out}'.format(W=W, L=L,\n U=U, fa=input_fasta, file_out=file_out)\n os.system(command + args)\n if os.path.getsize(file_out) == 0:\n raise Exception('command wrote an empty file: {0}'.format(file_out)\n )\n print('done!')\n",
"role": "user"
},
{
"content": "run_RNAplfold",
"role": "assistant"
}
] |
def x(tmpdir, maxlen=None, seq_align='start', pad_with='E'):
assert pad_with in {'P', 'H', 'I', 'M', 'E'}
def x(tmpdir, P):
return [values.strip().split('\t') for seq_name, values in
iter_fasta('{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P))]
def x(P, pad_width):
return 1 if P is pad_with else 0
arr_hime = np.array([pad_sequences(read_profile(tmpdir, P), value=[
nelem(P, pad_with)], align=seq_align, maxlen=maxlen) for P in
RNAplfold_PROFILES_EXECUTE], dtype='float32')
arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis]
arr = np.concatenate((arr_p, arr_hime))
arr = np.moveaxis(arr, 0, 2)
return arr
|
read_RNAplfold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tmpdir, maxlen=None, seq_align='start', pad_with='E'):\n assert pad_with in {'P', 'H', 'I', 'M', 'E'}\n\n def x(tmpdir, P):\n return [values.strip().split('\\t') for seq_name, values in\n iter_fasta('{tmp}/{P}_profile.fa'.format(tmp=tmpdir, P=P))]\n\n def x(P, pad_width):\n return 1 if P is pad_with else 0\n arr_hime = np.array([pad_sequences(read_profile(tmpdir, P), value=[\n nelem(P, pad_with)], align=seq_align, maxlen=maxlen) for P in\n RNAplfold_PROFILES_EXECUTE], dtype='float32')\n arr_p = 1 - arr_hime.sum(axis=0)[np.newaxis]\n arr = np.concatenate((arr_p, arr_hime))\n arr = np.moveaxis(arr, 0, 2)\n return arr\n",
"role": "user"
},
{
"content": "read_RNAplfold",
"role": "assistant"
}
] |
def x(seq_vec, maxlen=None, seq_align='start', W=240, L=160, U=1, tmpdir=
'/tmp/RNAplfold/'):
tmpdir = tmpdir + '/' + str(uuid4()) + '/'
if not isinstance(seq_vec, list):
seq_vec = seq_vec.tolist()
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
fasta_path = tmpdir + '/input.fasta'
write_fasta(fasta_path, seq_vec)
run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U)
return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with='E')
|
encodeRNAStructure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq_vec, maxlen=None, seq_align='start', W=240, L=160, U=1, tmpdir=\n '/tmp/RNAplfold/'):\n tmpdir = tmpdir + '/' + str(uuid4()) + '/'\n if not isinstance(seq_vec, list):\n seq_vec = seq_vec.tolist()\n if not os.path.exists(tmpdir):\n os.makedirs(tmpdir)\n fasta_path = tmpdir + '/input.fasta'\n write_fasta(fasta_path, seq_vec)\n run_RNAplfold(fasta_path, tmpdir, W=W, L=L, U=U)\n return read_RNAplfold(tmpdir, maxlen, seq_align=seq_align, pad_with='E')\n",
"role": "user"
},
{
"content": "encodeRNAStructure",
"role": "assistant"
}
] |
def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,
out_annotation_all_outputs, output_filter_mask=None, out_annotation=
None, diff_type='log_odds', rc_handling='maximum'):
seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}
assert diff_type in ['log_odds', 'diff']
assert rc_handling in ['average', 'maximum']
assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs
[k]))) for k in seqs.keys() if k != 'ref'])
assert get_seq_len(ref)[0] == mutation_positions.shape[0]
assert len(mutation_positions.shape) == 1
if output_filter_mask is None:
if out_annotation is None:
output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])
else:
output_filter_mask = np.where(np.in1d(
out_annotation_all_outputs, out_annotation))[0]
out_annotation = out_annotation_all_outputs[output_filter_mask]
preds = {}
for k in seqs:
preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask])
if diff_type == 'log_odds':
if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]):
warnings.warn(
'Using log_odds on model outputs that are not bound [0,1]')
diffs = np.log(preds['alt'] / (1 - preds['alt'])) - np.log(preds[
'ref'] / (1 - preds['ref']))
diffs_rc = np.log(preds['alt_rc'] / (1 - preds['alt_rc'])) - np.log(
preds['ref_rc'] / (1 - preds['ref_rc']))
elif diff_type == 'diff':
diffs = preds['alt'] - preds['ref']
diffs_rc = preds['alt_rc'] - preds['ref_rc']
if rc_handling == 'average':
diffs = np.mean([diffs, diffs_rc], axis=0)
elif rc_handling == 'maximum':
replace_filt = np.abs(diffs) < np.abs(diffs_rc)
diffs[replace_filt] = diffs_rc[replace_filt]
diffs = pd.DataFrame(diffs, columns=out_annotation)
return {'ism': diffs}
|
ism
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, ref, ref_rc, alt, alt_rc, mutation_positions,\n out_annotation_all_outputs, output_filter_mask=None, out_annotation=\n None, diff_type='log_odds', rc_handling='maximum'):\n seqs = {'ref': ref, 'ref_rc': ref_rc, 'alt': alt, 'alt_rc': alt_rc}\n assert diff_type in ['log_odds', 'diff']\n assert rc_handling in ['average', 'maximum']\n assert np.all([(np.array(get_seq_len(ref)) == np.array(get_seq_len(seqs\n [k]))) for k in seqs.keys() if k != 'ref'])\n assert get_seq_len(ref)[0] == mutation_positions.shape[0]\n assert len(mutation_positions.shape) == 1\n if output_filter_mask is None:\n if out_annotation is None:\n output_filter_mask = np.arange(out_annotation_all_outputs.shape[0])\n else:\n output_filter_mask = np.where(np.in1d(\n out_annotation_all_outputs, out_annotation))[0]\n out_annotation = out_annotation_all_outputs[output_filter_mask]\n preds = {}\n for k in seqs:\n preds[k] = np.array(model.predict(seqs[k])[..., output_filter_mask])\n if diff_type == 'log_odds':\n if np.any([(preds[k].min() < 0 or preds[k].max() > 1) for k in preds]):\n warnings.warn(\n 'Using log_odds on model outputs that are not bound [0,1]')\n diffs = np.log(preds['alt'] / (1 - preds['alt'])) - np.log(preds[\n 'ref'] / (1 - preds['ref']))\n diffs_rc = np.log(preds['alt_rc'] / (1 - preds['alt_rc'])) - np.log(\n preds['ref_rc'] / (1 - preds['ref_rc']))\n elif diff_type == 'diff':\n diffs = preds['alt'] - preds['ref']\n diffs_rc = preds['alt_rc'] - preds['ref_rc']\n if rc_handling == 'average':\n diffs = np.mean([diffs, diffs_rc], axis=0)\n elif rc_handling == 'maximum':\n replace_filt = np.abs(diffs) < np.abs(diffs_rc)\n diffs[replace_filt] = diffs_rc[replace_filt]\n diffs = pd.DataFrame(diffs, columns=out_annotation)\n return {'ism': diffs}\n",
"role": "user"
},
{
"content": "ism",
"role": "assistant"
}
] |
def x(train, valid, model, batch_size=32, epochs=300, use_weight=False,
callbacks=[], eval_best=False, add_eval_metrics={}):
def x(history):
return {'params': history.params, 'loss': merge_dicts({'epoch':
history.epoch}, history.history)}
if use_weight:
sample_weight = train[2]
else:
sample_weight = None
logger.info('Fit...')
history = History()
model.fit(train[0], train[1], batch_size=batch_size, validation_data=
valid[:2], epochs=epochs, sample_weight=sample_weight, verbose=2,
callbacks=[history] + callbacks)
hist = _format_keras_history(history)
if eval_best:
mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]
assert len(mcp) == 1
model = load_model(mcp[0].filepath)
return eval_model(model, valid, add_eval_metrics), hist
|
train_and_eval_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(train, valid, model, batch_size=32, epochs=300, use_weight=False,\n callbacks=[], eval_best=False, add_eval_metrics={}):\n\n def x(history):\n return {'params': history.params, 'loss': merge_dicts({'epoch':\n history.epoch}, history.history)}\n if use_weight:\n sample_weight = train[2]\n else:\n sample_weight = None\n logger.info('Fit...')\n history = History()\n model.fit(train[0], train[1], batch_size=batch_size, validation_data=\n valid[:2], epochs=epochs, sample_weight=sample_weight, verbose=2,\n callbacks=[history] + callbacks)\n hist = _format_keras_history(history)\n if eval_best:\n mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]\n assert len(mcp) == 1\n model = load_model(mcp[0].filepath)\n return eval_model(model, valid, add_eval_metrics), hist\n",
"role": "user"
},
{
"content": "train_and_eval_single",
"role": "assistant"
}
] |
def x(model, test, add_eval_metrics={}):
logger.info('Evaluate...')
model_metrics_values = model.evaluate(test[0], test[1], verbose=0,
batch_size=test[1].shape[0])
model_metrics = dict(zip(_listify(model.metrics_names), _listify(
model_metrics_values)))
y_true = test[1]
y_pred = model.predict(test[0], verbose=0)
eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()}
intersected_keys = set(model_metrics).intersection(set(eval_metrics))
if len(intersected_keys) > 0:
logger.warning(
'Some metric names intersect: {0}. Ignoring the add_eval_metrics ones'
.format(intersected_keys))
eval_metrics = _delete_keys(eval_metrics, intersected_keys)
return merge_dicts(model_metrics, eval_metrics)
|
eval_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, test, add_eval_metrics={}):\n logger.info('Evaluate...')\n model_metrics_values = model.evaluate(test[0], test[1], verbose=0,\n batch_size=test[1].shape[0])\n model_metrics = dict(zip(_listify(model.metrics_names), _listify(\n model_metrics_values)))\n y_true = test[1]\n y_pred = model.predict(test[0], verbose=0)\n eval_metrics = {k: v(y_true, y_pred) for k, v in add_eval_metrics.items()}\n intersected_keys = set(model_metrics).intersection(set(eval_metrics))\n if len(intersected_keys) > 0:\n logger.warning(\n 'Some metric names intersect: {0}. Ignoring the add_eval_metrics ones'\n .format(intersected_keys))\n eval_metrics = _delete_keys(eval_metrics, intersected_keys)\n return merge_dicts(model_metrics, eval_metrics)\n",
"role": "user"
},
{
"content": "eval_model",
"role": "assistant"
}
] |
def x(model_fn, train_data, param):
model_param = merge_dicts({'train_data': train_data}, param['model'],
param.get('shared', {}))
return model_fn(**model_param)
|
get_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model_fn, train_data, param):\n model_param = merge_dicts({'train_data': train_data}, param['model'],\n param.get('shared', {}))\n return model_fn(**model_param)\n",
"role": "user"
},
{
"content": "get_model",
"role": "assistant"
}
] |
def x(dct, keys):
c = deepcopy(dct)
assert isinstance(keys, list)
for k in keys:
c.pop(k)
return c
|
delete_keys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dct, keys):\n c = deepcopy(dct)\n assert isinstance(keys, list)\n for k in keys:\n c.pop(k)\n return c\n",
"role": "user"
},
{
"content": "delete_keys",
"role": "assistant"
}
] |
def x(dict_list):
return {k: np.array([d[k] for d in dict_list]).mean() for k in
dict_list[0].keys()}
|
mean_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dict_list):\n return {k: np.array([d[k] for d in dict_list]).mean() for k in\n dict_list[0].keys()}\n",
"role": "user"
},
{
"content": "mean_dict",
"role": "assistant"
}
] |
def x(self, tid):
lid = np.where(np.array(self.tids) == tid)[0][0]
return self.trials[lid]
|
get_trial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tid):\n lid = np.where(np.array(self.tids) == tid)[0][0]\n return self.trials[lid]\n",
"role": "user"
},
{
"content": "get_trial",
"role": "assistant"
}
] |
def x(self, arg):
if self.kill_timeout is not None:
self.delete_running(self.kill_timeout)
return super(CMongoTrials, self).count_by_state_unsynced(arg)
|
count_by_state_unsynced
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arg):\n if self.kill_timeout is not None:\n self.delete_running(self.kill_timeout)\n return super(CMongoTrials, self).count_by_state_unsynced(arg)\n",
"role": "user"
},
{
"content": "count_by_state_unsynced",
"role": "assistant"
}
] |
def x(self, timeout_last_refresh=0, dry_run=False):
running_all = self.handle.jobs_running()
running_timeout = [job for job in running_all if coarse_utcnow() > job[
'refresh_time'] + timedelta(seconds=timeout_last_refresh)]
if len(running_timeout) == 0:
self.refresh_tids(None)
return None
if dry_run:
logger.warning('Dry run. Not removing anything.')
logger.info('Removing {0}/{1} running jobs. # all jobs: {2} '.format(
len(running_timeout), len(running_all), len(self)))
now = coarse_utcnow()
logger.info('Current utc time: {0}'.format(now))
logger.info('Time horizont: {0}'.format(now - timedelta(seconds=
timeout_last_refresh)))
for job in running_timeout:
logger.info('Removing job: ')
pjob = job.to_dict()
del pjob['misc']
logger.info(pprint.pformat(pjob))
if not dry_run:
self.handle.delete(job)
logger.info('Job deleted')
self.refresh_tids(None)
|
delete_running
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout_last_refresh=0, dry_run=False):\n running_all = self.handle.jobs_running()\n running_timeout = [job for job in running_all if coarse_utcnow() > job[\n 'refresh_time'] + timedelta(seconds=timeout_last_refresh)]\n if len(running_timeout) == 0:\n self.refresh_tids(None)\n return None\n if dry_run:\n logger.warning('Dry run. Not removing anything.')\n logger.info('Removing {0}/{1} running jobs. # all jobs: {2} '.format(\n len(running_timeout), len(running_all), len(self)))\n now = coarse_utcnow()\n logger.info('Current utc time: {0}'.format(now))\n logger.info('Time horizont: {0}'.format(now - timedelta(seconds=\n timeout_last_refresh)))\n for job in running_timeout:\n logger.info('Removing job: ')\n pjob = job.to_dict()\n del pjob['misc']\n logger.info(pprint.pformat(pjob))\n if not dry_run:\n self.handle.delete(job)\n logger.info('Job deleted')\n self.refresh_tids(None)\n",
"role": "user"
},
{
"content": "delete_running",
"role": "assistant"
}
] |
def x(self, tid=None):
def x(result):
if isinstance(result['history'], list):
return pd.concat([pd.DataFrame(hist['loss']).assign(fold=i) for
i, hist in enumerate(result['history'])])
else:
return pd.DataFrame(result['history']['loss'])
if tid is None:
tid = self.valid_tid()
res = [result2history(t['result']).assign(tid=t['tid']) for t in self.
trials if t['tid'] in _listify(tid)]
df = pd.concat(res)
fold_name = ['fold'] if 'fold' in df else []
df = _put_first(df, ['tid'] + fold_name + ['epoch'])
return df
|
train_history
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tid=None):\n\n def x(result):\n if isinstance(result['history'], list):\n return pd.concat([pd.DataFrame(hist['loss']).assign(fold=i) for\n i, hist in enumerate(result['history'])])\n else:\n return pd.DataFrame(result['history']['loss'])\n if tid is None:\n tid = self.valid_tid()\n res = [result2history(t['result']).assign(tid=t['tid']) for t in self.\n trials if t['tid'] in _listify(tid)]\n df = pd.concat(res)\n fold_name = ['fold'] if 'fold' in df else []\n df = _put_first(df, ['tid'] + fold_name + ['epoch'])\n return df\n",
"role": "user"
},
{
"content": "train_history",
"role": "assistant"
}
] |
def x(self, ignore_vals=['history'], separator='.', verbose=True):
def x(res):
if 'eval' not in res:
if isinstance(res['history'], list):
eval_names = list(res['history'][0]['loss'].keys())
eval_metrics = np.array([[v[-1] for k, v in hist['loss'].
items()] for hist in res['history']]).mean(axis=0).tolist()
res['eval'] = {eval_names[i]: eval_metrics[i] for i in
range(len(eval_metrics))}
else:
res['eval'] = {k: v[-1] for k, v in res['history']['loss'].
items()}
return res
def x(df):
df_epoch = self.train_history().groupby('tid')['epoch'].max(
).reset_index()
df_epoch.rename(columns={'epoch': 'n_epoch'}, inplace=True)
return pd.merge(df, df_epoch, on='tid', how='left')
results = self.get_ok_results(verbose=verbose)
rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for
x in results]
df = pd.DataFrame.from_records(rp)
df = add_n_epoch(df)
first = ['tid', 'loss', 'status']
return _put_first(df, first)
|
as_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ignore_vals=['history'], separator='.', verbose=True):\n\n def x(res):\n if 'eval' not in res:\n if isinstance(res['history'], list):\n eval_names = list(res['history'][0]['loss'].keys())\n eval_metrics = np.array([[v[-1] for k, v in hist['loss'].\n items()] for hist in res['history']]).mean(axis=0).tolist()\n res['eval'] = {eval_names[i]: eval_metrics[i] for i in\n range(len(eval_metrics))}\n else:\n res['eval'] = {k: v[-1] for k, v in res['history']['loss'].\n items()}\n return res\n\n def x(df):\n df_epoch = self.train_history().groupby('tid')['epoch'].max(\n ).reset_index()\n df_epoch.rename(columns={'epoch': 'n_epoch'}, inplace=True)\n return pd.merge(df, df_epoch, on='tid', how='left')\n results = self.get_ok_results(verbose=verbose)\n rp = [_flatten_dict(_delete_keys(add_eval(x), ignore_vals), separator) for\n x in results]\n df = pd.DataFrame.from_records(rp)\n df = add_n_epoch(df)\n first = ['tid', 'loss', 'status']\n return _put_first(df, first)\n",
"role": "user"
},
{
"content": "as_df",
"role": "assistant"
}
] |
def x(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions,
out_annotation_all_outputs, extra_args=None, **argv):
assert isinstance(methods, list)
if isinstance(extra_args, list):
assert len(extra_args) == len(methods)
else:
extra_args = [None] * len(methods)
main_args = {'model': model, 'ref': ref, 'ref_rc': ref_rc, 'alt': alt,
'alt_rc': alt_rc, 'mutation_positions': mutation_positions,
'out_annotation_all_outputs': out_annotation_all_outputs}
pred_results = {}
for method, xargs in zip(methods, extra_args):
if xargs is not None:
if isinstance(xargs, dict):
for k in argv:
if k not in xargs:
xargs[k] = argv[k]
else:
xargs = argv
for k in main_args:
xargs[k] = main_args[k]
res = method(**xargs)
pred_results[method.__name__] = res
return pred_results
|
effect_from_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, ref, ref_rc, alt, alt_rc, methods, mutation_positions,\n out_annotation_all_outputs, extra_args=None, **argv):\n assert isinstance(methods, list)\n if isinstance(extra_args, list):\n assert len(extra_args) == len(methods)\n else:\n extra_args = [None] * len(methods)\n main_args = {'model': model, 'ref': ref, 'ref_rc': ref_rc, 'alt': alt,\n 'alt_rc': alt_rc, 'mutation_positions': mutation_positions,\n 'out_annotation_all_outputs': out_annotation_all_outputs}\n pred_results = {}\n for method, xargs in zip(methods, extra_args):\n if xargs is not None:\n if isinstance(xargs, dict):\n for k in argv:\n if k not in xargs:\n xargs[k] = argv[k]\n else:\n xargs = argv\n for k in main_args:\n xargs[k] = main_args[k]\n res = method(**xargs)\n pred_results[method.__name__] = res\n return pred_results\n",
"role": "user"
},
{
"content": "effect_from_model",
"role": "assistant"
}
] |
def x(ctx, market, limit, start, stop):
market = Market(market, bitshares_instance=ctx.bitshares)
t = [['time', 'quote', 'base', 'price']]
for trade in market.trades(limit, start=start, stop=stop):
t.append([str(trade['time']), str(trade['quote']), str(trade['base'
]), '{:f} {}/{}'.format(trade['price'], trade['base']['asset'][
'symbol'], trade['quote']['asset']['symbol'])])
print_table(t)
|
trades
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, market, limit, start, stop):\n market = Market(market, bitshares_instance=ctx.bitshares)\n t = [['time', 'quote', 'base', 'price']]\n for trade in market.trades(limit, start=start, stop=stop):\n t.append([str(trade['time']), str(trade['quote']), str(trade['base'\n ]), '{:f} {}/{}'.format(trade['price'], trade['base']['asset'][\n 'symbol'], trade['quote']['asset']['symbol'])])\n print_table(t)\n",
"role": "user"
},
{
"content": "trades",
"role": "assistant"
}
] |
def x(ctx, market):
market = Market(market, bitshares_instance=ctx.bitshares)
ticker = market.ticker()
t = [['key', 'value']]
for key in ticker:
t.append([key, str(ticker[key])])
print_table(t)
|
ticker
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, market):\n market = Market(market, bitshares_instance=ctx.bitshares)\n ticker = market.ticker()\n t = [['key', 'value']]\n for key in ticker:\n t.append([key, str(ticker[key])])\n print_table(t)\n",
"role": "user"
},
{
"content": "ticker",
"role": "assistant"
}
] |
def x(ctx, orders, account):
print_tx(ctx.bitshares.cancel(orders, account=account))
|
cancel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, orders, account):\n print_tx(ctx.bitshares.cancel(orders, account=account))\n",
"role": "user"
},
{
"content": "cancel",
"role": "assistant"
}
] |
def x(ctx, market):
market = Market(market, bitshares_instance=ctx.bitshares)
orderbook = market.orderbook()
ta = {}
ta['bids'] = [['quote', 'sum quote', 'base', 'sum base', 'price']]
cumsumquote = Amount(0, market['quote'])
cumsumbase = Amount(0, market['base'])
for order in orderbook['bids']:
cumsumbase += order['base']
cumsumquote += order['quote']
ta['bids'].append([str(order['quote']), str(cumsumquote), str(order
['base']), str(cumsumbase), '{:f} {}/{}'.format(order['price'],
order['base']['asset']['symbol'], order['quote']['asset'][
'symbol'])])
ta['asks'] = [['price', 'base', 'sum base', 'quote', 'sum quote']]
cumsumquote = Amount(0, market['quote'])
cumsumbase = Amount(0, market['base'])
for order in orderbook['asks']:
cumsumbase += order['base']
cumsumquote += order['quote']
ta['asks'].append(['{:f} {}/{}'.format(order['price'], order['base'
]['asset']['symbol'], order['quote']['asset']['symbol']), str(
order['base']), str(cumsumbase), str(order['quote']), str(
cumsumquote)])
t = [['bids', 'asks']]
t.append([format_table(ta['bids']), format_table(ta['asks'])])
print_table(t)
|
orderbook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, market):\n market = Market(market, bitshares_instance=ctx.bitshares)\n orderbook = market.orderbook()\n ta = {}\n ta['bids'] = [['quote', 'sum quote', 'base', 'sum base', 'price']]\n cumsumquote = Amount(0, market['quote'])\n cumsumbase = Amount(0, market['base'])\n for order in orderbook['bids']:\n cumsumbase += order['base']\n cumsumquote += order['quote']\n ta['bids'].append([str(order['quote']), str(cumsumquote), str(order\n ['base']), str(cumsumbase), '{:f} {}/{}'.format(order['price'],\n order['base']['asset']['symbol'], order['quote']['asset'][\n 'symbol'])])\n ta['asks'] = [['price', 'base', 'sum base', 'quote', 'sum quote']]\n cumsumquote = Amount(0, market['quote'])\n cumsumbase = Amount(0, market['base'])\n for order in orderbook['asks']:\n cumsumbase += order['base']\n cumsumquote += order['quote']\n ta['asks'].append(['{:f} {}/{}'.format(order['price'], order['base'\n ]['asset']['symbol'], order['quote']['asset']['symbol']), str(\n order['base']), str(cumsumbase), str(order['quote']), str(\n cumsumquote)])\n t = [['bids', 'asks']]\n t.append([format_table(ta['bids']), format_table(ta['asks'])])\n print_table(t)\n",
"role": "user"
},
{
"content": "orderbook",
"role": "assistant"
}
] |
def x(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account
):
amount = Amount(buy_amount, buy_asset)
price = Price(price, base=sell_asset, quote=buy_asset,
bitshares_instance=ctx.bitshares)
print_tx(price.market.buy(price, amount, account=account, expiration=
order_expiration))
|
buy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, buy_amount, buy_asset, price, sell_asset, order_expiration, account\n ):\n amount = Amount(buy_amount, buy_asset)\n price = Price(price, base=sell_asset, quote=buy_asset,\n bitshares_instance=ctx.bitshares)\n print_tx(price.market.buy(price, amount, account=account, expiration=\n order_expiration))\n",
"role": "user"
},
{
"content": "buy",
"role": "assistant"
}
] |
def x(ctx, account):
account = Account(account or config['default_account'],
bitshares_instance=ctx.bitshares)
t = [['Price', 'Quote', 'Base', 'ID']]
for o in account.openorders:
t.append(['{:f} {}/{}'.format(o['price'], o['base']['asset'][
'symbol'], o['quote']['asset']['symbol']), str(o['quote']), str
(o['base']), o['id']])
print_table(t)
|
openorders
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, account):\n account = Account(account or config['default_account'],\n bitshares_instance=ctx.bitshares)\n t = [['Price', 'Quote', 'Base', 'ID']]\n for o in account.openorders:\n t.append(['{:f} {}/{}'.format(o['price'], o['base']['asset'][\n 'symbol'], o['quote']['asset']['symbol']), str(o['quote']), str\n (o['base']), o['id']])\n print_table(t)\n",
"role": "user"
},
{
"content": "openorders",
"role": "assistant"
}
] |
def x(ctx, market, account):
market = Market(market)
ctx.bitshares.bundle = True
market.cancel([x['id'] for x in market.accountopenorders(account)],
account=account)
print_tx(ctx.bitshares.txbuffer.broadcast())
|
cancelall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, market, account):\n market = Market(market)\n ctx.bitshares.bundle = True\n market.cancel([x['id'] for x in market.accountopenorders(account)],\n account=account)\n print_tx(ctx.bitshares.txbuffer.broadcast())\n",
"role": "user"
},
{
"content": "cancelall",
"role": "assistant"
}
] |
def x(ctx, market, side, min, max, num, total, order_expiration, account):
from tqdm import tqdm
from numpy import linspace
market = Market(market)
ctx.bitshares.bundle = True
if min < max:
space = linspace(min, max, num)
else:
space = linspace(max, min, num)
func = getattr(market, side)
for p in tqdm(space):
func(p, total / float(num), account=account, expiration=
order_expiration)
print_tx(ctx.bitshares.txbuffer.broadcast())
|
spread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, market, side, min, max, num, total, order_expiration, account):\n from tqdm import tqdm\n from numpy import linspace\n market = Market(market)\n ctx.bitshares.bundle = True\n if min < max:\n space = linspace(min, max, num)\n else:\n space = linspace(max, min, num)\n func = getattr(market, side)\n for p in tqdm(space):\n func(p, total / float(num), account=account, expiration=\n order_expiration)\n print_tx(ctx.bitshares.txbuffer.broadcast())\n",
"role": "user"
},
{
"content": "spread",
"role": "assistant"
}
] |
def x(ctx, amount, symbol, ratio, account):
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(dex.borrow(Amount(amount, symbol), collateral_ratio=ratio,
account=account))
|
borrow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, amount, symbol, ratio, account):\n from bitshares.dex import Dex\n dex = Dex(bitshares_instance=ctx.bitshares)\n print_tx(dex.borrow(Amount(amount, symbol), collateral_ratio=ratio,\n account=account))\n",
"role": "user"
},
{
"content": "borrow",
"role": "assistant"
}
] |
def x(ctx, symbol, ratio, account):
from bitshares.dex import Dex
dex = Dex(bitshares_instance=ctx.bitshares)
print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account))
|
updateratio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, symbol, ratio, account):\n from bitshares.dex import Dex\n dex = Dex(bitshares_instance=ctx.bitshares)\n print_tx(dex.adjust_collateral_ratio(symbol, ratio, account=account))\n",
"role": "user"
},
{
"content": "updateratio",
"role": "assistant"
}
] |
def x(ctx, symbol, amount, account):
print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account))
|
fundfeepool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, symbol, amount, account):\n print_tx(ctx.bitshares.fund_fee_pool(symbol, amount, account=account))\n",
"role": "user"
},
{
"content": "fundfeepool",
"role": "assistant"
}
] |
def x(ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount,
account):
print_tx(ctx.bitshares.bid_collateral(Amount(collateral_amount,
collateral_symbol), Amount(debt_amount, debt_symbol), account=account))
|
bidcollateral
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, collateral_symbol, collateral_amount, debt_symbol, debt_amount,\n account):\n print_tx(ctx.bitshares.bid_collateral(Amount(collateral_amount,\n collateral_symbol), Amount(debt_amount, debt_symbol), account=account))\n",
"role": "user"
},
{
"content": "bidcollateral",
"role": "assistant"
}
] |
def x(ctx, symbol, amount, account):
print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=
account))
|
settle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, symbol, amount, account):\n print_tx(ctx.bitshares.asset_settle(Amount(amount, symbol), account=\n account))\n",
"role": "user"
},
{
"content": "settle",
"role": "assistant"
}
] |
def x(ctx, account, type):
if not isinstance(type, (list, tuple)):
type = [type]
account = Account(account, full=True)
ret = {key: list() for key in Vote.types()}
for vote in account['votes']:
t = Vote.vote_type_from_id(vote['id'])
ret[t].append(vote)
t = [['id', 'url', 'account']]
for vote in ret['committee']:
t.append([vote['id'], vote['url'], Account(vote[
'committee_member_account'])['name']])
if 'committee' in type:
t = [['id', 'url', 'account', 'votes']]
for vote in ret['committee']:
t.append([vote['id'], vote['url'], Account(vote[
'committee_member_account'])['name'], str(Amount({'amount':
vote['total_votes'], 'asset_id': '1.3.0'}))])
print_table(t)
if 'witness' in type:
t = [['id', 'account', 'url', 'votes', 'last_confirmed_block_num',
'total_missed', 'westing']]
for vote in ret['witness']:
t.append([vote['id'], Account(vote['witness_account'])['name'],
vote['url'], str(Amount({'amount': vote['total_votes'],
'asset_id': '1.3.0'})), vote['last_confirmed_block_num'],
vote['total_missed'], str(Vesting(vote.get('pay_vb')).
claimable) if vote.get('pay_vb') else ''])
print_table(t)
if 'worker' in type:
t = [['id', 'name/url', 'daily_pay', 'votes', 'time', 'account']]
for vote in ret['worker']:
votes = Amount({'amount': vote['total_votes_for'], 'asset_id':
'1.3.0'})
amount = Amount({'amount': vote['daily_pay'], 'asset_id': '1.3.0'})
t.append([vote['id'], '{name}\n{url}'.format(**vote), str(
amount), str(votes),
"""{work_begin_date}
-
{work_end_date}""".format(**vote),
str(Account(vote['worker_account'])['name'])])
print_table(t)
|
votes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, account, type):\n if not isinstance(type, (list, tuple)):\n type = [type]\n account = Account(account, full=True)\n ret = {key: list() for key in Vote.types()}\n for vote in account['votes']:\n t = Vote.vote_type_from_id(vote['id'])\n ret[t].append(vote)\n t = [['id', 'url', 'account']]\n for vote in ret['committee']:\n t.append([vote['id'], vote['url'], Account(vote[\n 'committee_member_account'])['name']])\n if 'committee' in type:\n t = [['id', 'url', 'account', 'votes']]\n for vote in ret['committee']:\n t.append([vote['id'], vote['url'], Account(vote[\n 'committee_member_account'])['name'], str(Amount({'amount':\n vote['total_votes'], 'asset_id': '1.3.0'}))])\n print_table(t)\n if 'witness' in type:\n t = [['id', 'account', 'url', 'votes', 'last_confirmed_block_num',\n 'total_missed', 'westing']]\n for vote in ret['witness']:\n t.append([vote['id'], Account(vote['witness_account'])['name'],\n vote['url'], str(Amount({'amount': vote['total_votes'],\n 'asset_id': '1.3.0'})), vote['last_confirmed_block_num'],\n vote['total_missed'], str(Vesting(vote.get('pay_vb')).\n claimable) if vote.get('pay_vb') else ''])\n print_table(t)\n if 'worker' in type:\n t = [['id', 'name/url', 'daily_pay', 'votes', 'time', 'account']]\n for vote in ret['worker']:\n votes = Amount({'amount': vote['total_votes_for'], 'asset_id':\n '1.3.0'})\n amount = Amount({'amount': vote['daily_pay'], 'asset_id': '1.3.0'})\n t.append([vote['id'], '{name}\\n{url}'.format(**vote), str(\n amount), str(votes),\n \"\"\"{work_begin_date}\n-\n{work_end_date}\"\"\".format(**vote),\n str(Account(vote['worker_account'])['name'])])\n print_table(t)\n",
"role": "user"
},
{
"content": "votes",
"role": "assistant"
}
] |
def x(ctx, objects):
if not objects:
t = [['Key', 'Value']]
info = ctx.bitshares.rpc.get_dynamic_global_properties()
for key in info:
t.append([key, info[key]])
print_table(t)
for obj in objects:
if re.match('^[0-9]*$', obj):
block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares)
t = [['Key', 'Value']]
for key in sorted(block):
value = block[key]
if key == 'transactions':
value = format_tx(value)
t.append([key, value])
print_table(t)
elif re.match('^\\d*\\.\\d*\\.\\d*$', obj):
data = ctx.bitshares.rpc.get_object(obj)
if data:
t = [['Key', 'Value']]
for key in sorted(data):
value = data[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message('Object %s unknown' % obj, 'warning')
elif obj.upper() == obj and re.match('^[A-Z\\.]*$', obj):
data = Asset(obj)
t = [['Key', 'Value']]
for key in sorted(data):
value = data[key]
if isinstance(value, dict):
value = format_tx(value)
t.append([key, value])
print_table(t)
elif re.match('^BTS.{48,55}$', obj):
account = ctx.bitshares.wallet.getAccountFromPublicKey(obj)
if account:
t = [['Account']]
t.append([account])
print_table(t)
else:
print_message('Public Key not known: %s' % obj, 'warning')
elif re.match('^[a-zA-Z0-9\\-\\._]{2,64}$', obj):
account = Account(obj, full=True)
if account:
t = [['Key', 'Value']]
for key in sorted(account):
value = account[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message('Account %s unknown' % obj, 'warning')
elif ':' in obj:
vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0]
if vote:
t = [['Key', 'Value']]
for key in sorted(vote):
value = vote[key]
if isinstance(value, dict) or isinstance(value, list):
value = format_tx(value)
t.append([key, value])
print_table(t)
else:
print_message('voteid %s unknown' % obj, 'warning')
else:
print_message("Couldn't identify object to read", 'warning')
|
info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, objects):\n if not objects:\n t = [['Key', 'Value']]\n info = ctx.bitshares.rpc.get_dynamic_global_properties()\n for key in info:\n t.append([key, info[key]])\n print_table(t)\n for obj in objects:\n if re.match('^[0-9]*$', obj):\n block = Block(obj, lazy=False, bitshares_instance=ctx.bitshares)\n t = [['Key', 'Value']]\n for key in sorted(block):\n value = block[key]\n if key == 'transactions':\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n elif re.match('^\\\\d*\\\\.\\\\d*\\\\.\\\\d*$', obj):\n data = ctx.bitshares.rpc.get_object(obj)\n if data:\n t = [['Key', 'Value']]\n for key in sorted(data):\n value = data[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('Object %s unknown' % obj, 'warning')\n elif obj.upper() == obj and re.match('^[A-Z\\\\.]*$', obj):\n data = Asset(obj)\n t = [['Key', 'Value']]\n for key in sorted(data):\n value = data[key]\n if isinstance(value, dict):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n elif re.match('^BTS.{48,55}$', obj):\n account = ctx.bitshares.wallet.getAccountFromPublicKey(obj)\n if account:\n t = [['Account']]\n t.append([account])\n print_table(t)\n else:\n print_message('Public Key not known: %s' % obj, 'warning')\n elif re.match('^[a-zA-Z0-9\\\\-\\\\._]{2,64}$', obj):\n account = Account(obj, full=True)\n if account:\n t = [['Key', 'Value']]\n for key in sorted(account):\n value = account[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('Account %s unknown' % obj, 'warning')\n elif ':' in obj:\n vote = ctx.bitshares.rpc.lookup_vote_ids([obj])[0]\n if vote:\n t = [['Key', 'Value']]\n for key in sorted(vote):\n value = vote[key]\n if isinstance(value, dict) or isinstance(value, list):\n value = format_tx(value)\n t.append([key, value])\n print_table(t)\n else:\n print_message('voteid %s unknown' % obj, 'warning')\n else:\n print_message(\"Couldn't identify object to read\", 'warning')\n",
"role": "user"
},
{
"content": "info",
"role": "assistant"
}
] |
def x(ctx, currency):
from bitsharesbase.operationids import getOperationNameForId
from bitshares.market import Market
market = Market('%s:%s' % (currency, 'BTS'))
ticker = market.ticker()
if 'quoteSettlement_price' in ticker:
price = ticker.get('quoteSettlement_price')
else:
price = ticker.get('latest', 0)
price.invert()
chain = Blockchain(bitshares_instance=ctx.bitshares)
feesObj = chain.chainParameters().get('current_fees')
fees = feesObj['parameters']
t = [['Operation', 'Type', 'Fee', currency]]
for fee in fees:
for f in fee[1]:
t.append([highlight(getOperationNameForId(fee[0])), detail(f),
detail(str(Amount({'amount': fee[1].get(f, 0), 'asset_id':
'1.3.0'}))), detail(str(price * Amount({'amount': fee[1].
get(f, 0), 'asset_id': '1.3.0'})))])
print_table(t)
|
fees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, currency):\n from bitsharesbase.operationids import getOperationNameForId\n from bitshares.market import Market\n market = Market('%s:%s' % (currency, 'BTS'))\n ticker = market.ticker()\n if 'quoteSettlement_price' in ticker:\n price = ticker.get('quoteSettlement_price')\n else:\n price = ticker.get('latest', 0)\n price.invert()\n chain = Blockchain(bitshares_instance=ctx.bitshares)\n feesObj = chain.chainParameters().get('current_fees')\n fees = feesObj['parameters']\n t = [['Operation', 'Type', 'Fee', currency]]\n for fee in fees:\n for f in fee[1]:\n t.append([highlight(getOperationNameForId(fee[0])), detail(f),\n detail(str(Amount({'amount': fee[1].get(f, 0), 'asset_id':\n '1.3.0'}))), detail(str(price * Amount({'amount': fee[1].\n get(f, 0), 'asset_id': '1.3.0'})))])\n print_table(t)\n",
"role": "user"
},
{
"content": "fees",
"role": "assistant"
}
] |
def x(ctx, to, amount, symbol, secret, hash, account, expiration):
ctx.blockchain.blocking = True
tx = ctx.blockchain.htlc_create(Amount(amount, symbol), to, secret,
hash_type=hash, expiration=expiration, account=account)
tx.pop('trx', None)
print_tx(tx)
results = tx.get('operation_results', {})
if results:
htlc_id = results[0][1]
print('Your htlc_id is: {}'.format(htlc_id))
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, to, amount, symbol, secret, hash, account, expiration):\n ctx.blockchain.blocking = True\n tx = ctx.blockchain.htlc_create(Amount(amount, symbol), to, secret,\n hash_type=hash, expiration=expiration, account=account)\n tx.pop('trx', None)\n print_tx(tx)\n results = tx.get('operation_results', {})\n if results:\n htlc_id = results[0][1]\n print('Your htlc_id is: {}'.format(htlc_id))\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(ctx, htlc_id, secret, account):
print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account))
|
redeem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, htlc_id, secret, account):\n print_tx(ctx.blockchain.htlc_redeem(htlc_id, secret, account=account))\n",
"role": "user"
},
{
"content": "redeem",
"role": "assistant"
}
] |
def x(flags_class):
if not is_flags_class_final(flags_class):
raise TypeError(
'unique check can be applied only to flags classes that have members'
)
if not flags_class.__member_aliases__:
return flags_class
aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in
flags_class.__member_aliases__.items())
raise ValueError('duplicate values found in %r: %s' % (flags_class,
aliases))
|
unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(flags_class):\n if not is_flags_class_final(flags_class):\n raise TypeError(\n 'unique check can be applied only to flags classes that have members'\n )\n if not flags_class.__member_aliases__:\n return flags_class\n aliases = ', '.join('%s -> %s' % (alias, name) for alias, name in\n flags_class.__member_aliases__.items())\n raise ValueError('duplicate values found in %r: %s' % (flags_class,\n aliases))\n",
"role": "user"
},
{
"content": "unique",
"role": "assistant"
}
] |
def x(flags_class):
flags_class = unique(flags_class)
other_bits = 0
for name, member in flags_class.__members_without_aliases__.items():
bits = int(member)
if other_bits & bits:
for other_name, other_member in flags_class.__members_without_aliases__.items(
):
if int(other_member) & bits:
raise ValueError(
"%r: '%s' and '%s' have overlapping bits" % (
flags_class, other_name, name))
else:
other_bits |= bits
|
unique_bits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(flags_class):\n flags_class = unique(flags_class)\n other_bits = 0\n for name, member in flags_class.__members_without_aliases__.items():\n bits = int(member)\n if other_bits & bits:\n for other_name, other_member in flags_class.__members_without_aliases__.items(\n ):\n if int(other_member) & bits:\n raise ValueError(\n \"%r: '%s' and '%s' have overlapping bits\" % (\n flags_class, other_name, name))\n else:\n other_bits |= bits\n",
"role": "user"
},
{
"content": "unique_bits",
"role": "assistant"
}
] |
def x(members):
if isinstance(members, str):
members = ((name, UNDEFINED) for name in members.replace(',', ' ').
split())
elif isinstance(members, (tuple, list, collections.Set)):
if members and isinstance(next(iter(members)), str):
members = ((name, UNDEFINED) for name in members)
elif isinstance(members, collections.Mapping):
members = members.items()
return members
|
process_inline_members_definition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(members):\n if isinstance(members, str):\n members = ((name, UNDEFINED) for name in members.replace(',', ' ').\n split())\n elif isinstance(members, (tuple, list, collections.Set)):\n if members and isinstance(next(iter(members)), str):\n members = ((name, UNDEFINED) for name in members)\n elif isinstance(members, collections.Mapping):\n members = members.items()\n return members\n",
"role": "user"
},
{
"content": "process_inline_members_definition",
"role": "assistant"
}
] |
def x(cls, member_definitions):
members = []
auto_flags = []
all_bits = 0
for name, data in member_definitions:
bits, data = cls.flag_attribute_value_to_bits_and_data(name, data)
if bits is UNDEFINED:
auto_flags.append(len(members))
members.append((name, data))
elif is_valid_bits_value(bits):
all_bits |= bits
members.append((name, bits, data))
else:
raise TypeError(
"Expected an int value as the bits of flag '%s', received %r" %
(name, bits))
bit = 1
for index in auto_flags:
while bit & all_bits:
bit <<= 1
name, data = members[index]
members[index] = name, bit, data
bit <<= 1
return members
|
process_member_definitions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, member_definitions):\n members = []\n auto_flags = []\n all_bits = 0\n for name, data in member_definitions:\n bits, data = cls.flag_attribute_value_to_bits_and_data(name, data)\n if bits is UNDEFINED:\n auto_flags.append(len(members))\n members.append((name, data))\n elif is_valid_bits_value(bits):\n all_bits |= bits\n members.append((name, bits, data))\n else:\n raise TypeError(\n \"Expected an int value as the bits of flag '%s', received %r\" %\n (name, bits))\n bit = 1\n for index in auto_flags:\n while bit & all_bits:\n bit <<= 1\n name, data = members[index]\n members[index] = name, bit, data\n bit <<= 1\n return members\n",
"role": "user"
},
{
"content": "process_member_definitions",
"role": "assistant"
}
] |
def x(cls, s):
if not isinstance(s, str):
raise TypeError('Expected an str instance, received %r' % (s,))
return cls(cls.bits_from_simple_str(s))
|
from_simple_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n if not isinstance(s, str):\n raise TypeError('Expected an str instance, received %r' % (s,))\n return cls(cls.bits_from_simple_str(s))\n",
"role": "user"
},
{
"content": "from_simple_str",
"role": "assistant"
}
] |
def x(cls, s):
if not isinstance(s, str):
raise TypeError('Expected an str instance, received %r' % (s,))
return cls(cls.bits_from_str(s))
|
from_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n if not isinstance(s, str):\n raise TypeError('Expected an str instance, received %r' % (s,))\n return cls(cls.bits_from_str(s))\n",
"role": "user"
},
{
"content": "from_str",
"role": "assistant"
}
] |
def x(cls, s):
try:
if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__):
return cls.bits_from_simple_str(s)
c = s[len(cls.__name__)]
if c == '(':
if not s.endswith(')'):
raise ValueError
return cls.bits_from_simple_str(s[len(cls.__name__) + 1:-1])
elif c == '.':
member_name = s[len(cls.__name__) + 1:]
return int(cls.__all_members__[member_name])
else:
raise ValueError
except ValueError as ex:
if ex.args:
raise
raise ValueError('%s.%s: invalid input: %r' % (cls.__name__, cls.
bits_from_str.__name__, s))
except KeyError as ex:
raise ValueError("%s.%s: Invalid flag name '%s' in input: %r" % (
cls.__name__, cls.bits_from_str.__name__, ex.args[0], s))
|
bits_from_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n try:\n if len(s) <= len(cls.__name__) or not s.startswith(cls.__name__):\n return cls.bits_from_simple_str(s)\n c = s[len(cls.__name__)]\n if c == '(':\n if not s.endswith(')'):\n raise ValueError\n return cls.bits_from_simple_str(s[len(cls.__name__) + 1:-1])\n elif c == '.':\n member_name = s[len(cls.__name__) + 1:]\n return int(cls.__all_members__[member_name])\n else:\n raise ValueError\n except ValueError as ex:\n if ex.args:\n raise\n raise ValueError('%s.%s: invalid input: %r' % (cls.__name__, cls.\n bits_from_str.__name__, s))\n except KeyError as ex:\n raise ValueError(\"%s.%s: Invalid flag name '%s' in input: %r\" % (\n cls.__name__, cls.bits_from_str.__name__, ex.args[0], s))\n",
"role": "user"
},
{
"content": "bits_from_str",
"role": "assistant"
}
] |
def x(ctx, symbol, price, market, cer, mssr, mcr, account):
if cer:
cer = Price(cer, quote=symbol, base='1.3.0', bitshares_instance=ctx
.bitshares)
print_tx(ctx.bitshares.publish_price_feed(symbol, Price(price, market),
cer=cer, mssr=mssr, mcr=mcr, account=account))
|
newfeed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, symbol, price, market, cer, mssr, mcr, account):\n if cer:\n cer = Price(cer, quote=symbol, base='1.3.0', bitshares_instance=ctx\n .bitshares)\n print_tx(ctx.bitshares.publish_price_feed(symbol, Price(price, market),\n cer=cer, mssr=mssr, mcr=mcr, account=account))\n",
"role": "user"
},
{
"content": "newfeed",
"role": "assistant"
}
] |
def x(ctx, assets, pricethreshold, maxage):
import builtins
witnesses = Witnesses(bitshares_instance=ctx.bitshares)
def x(p, ref):
if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0:
return click.style(str(p), fg='red')
elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0:
return click.style(str(p), fg='yellow')
else:
return click.style(str(p), fg='green')
def x(p, ref):
d = (float(p) - float(ref)) / float(ref) * 100
if math.fabs(d) >= 5:
color = 'red'
elif math.fabs(d) >= 2.5:
color = 'yellow'
else:
color = 'green'
return click.style('{:8.2f}%'.format(d), fg=color)
def x(d):
t = d.replace(tzinfo=None)
now = datetime.utcnow()
if now < t + timedelta(minutes=maxage):
return click.style(str(t), fg='green')
if now < t + timedelta(minutes=maxage / 2.0):
return click.style(str(t), fg='yellow')
else:
return click.style(str(t), fg='red')
output = ''
for asset in tqdm(assets):
t = PrettyTable(['Asset', 'Producer', 'Active Witness', 'Date',
'Settlement Price', 'Core Exchange Price', 'MCR', 'SSPR', 'delta'])
t.align = 'c'
t.align['Producer'] = 'l'
asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares)
current_feed = asset.feed
feeds = asset.feeds
producingwitnesses = builtins.set()
witness_accounts = [x['witness_account'] for x in witnesses]
for feed in tqdm(feeds):
producingwitnesses.add(feed['producer']['id'])
t.add_row([asset['symbol'], feed['producer']['name'], click.
style('X' if feed['producer']['id'] in witness_accounts else
'', bold=True), test_date(feed['date']), test_price(feed[
'settlement_price'], current_feed['settlement_price']),
test_price(feed['core_exchange_rate'], current_feed[
'core_exchange_rate']), feed['maintenance_collateral_ratio'
] / 10, feed['maximum_short_squeeze_ratio'] / 10,
price_diff(feed['core_exchange_rate'], current_feed[
'core_exchange_rate'])])
for missing in builtins.set(witness_accounts).difference(
producingwitnesses):
witness = Witness(missing)
t.add_row([click.style(asset['symbol'], bg='red'), click.style(
witness.account['name'], bg='red'), click.style('X' if feed
['producer']['id'] in witness_accounts else '', bold=True),
click.style(str(datetime(1970, 1, 1))), click.style(
'missing', bg='red'), click.style('missing', bg='red'),
click.style('missing', bg='red'), click.style('missing', bg
='red'), click.style('missing', bg='red')])
output += t.get_string(sortby='Date', reversesort=True)
output += '\n'
click.echo(output)
|
feeds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, assets, pricethreshold, maxage):\n import builtins\n witnesses = Witnesses(bitshares_instance=ctx.bitshares)\n\n def x(p, ref):\n if math.fabs(float(p / ref) - 1.0) > pricethreshold / 100.0:\n return click.style(str(p), fg='red')\n elif math.fabs(float(p / ref) - 1.0) > pricethreshold / 2.0 / 100.0:\n return click.style(str(p), fg='yellow')\n else:\n return click.style(str(p), fg='green')\n\n def x(p, ref):\n d = (float(p) - float(ref)) / float(ref) * 100\n if math.fabs(d) >= 5:\n color = 'red'\n elif math.fabs(d) >= 2.5:\n color = 'yellow'\n else:\n color = 'green'\n return click.style('{:8.2f}%'.format(d), fg=color)\n\n def x(d):\n t = d.replace(tzinfo=None)\n now = datetime.utcnow()\n if now < t + timedelta(minutes=maxage):\n return click.style(str(t), fg='green')\n if now < t + timedelta(minutes=maxage / 2.0):\n return click.style(str(t), fg='yellow')\n else:\n return click.style(str(t), fg='red')\n output = ''\n for asset in tqdm(assets):\n t = PrettyTable(['Asset', 'Producer', 'Active Witness', 'Date',\n 'Settlement Price', 'Core Exchange Price', 'MCR', 'SSPR', 'delta'])\n t.align = 'c'\n t.align['Producer'] = 'l'\n asset = Asset(asset, full=True, bitshares_instance=ctx.bitshares)\n current_feed = asset.feed\n feeds = asset.feeds\n producingwitnesses = builtins.set()\n witness_accounts = [x['witness_account'] for x in witnesses]\n for feed in tqdm(feeds):\n producingwitnesses.add(feed['producer']['id'])\n t.add_row([asset['symbol'], feed['producer']['name'], click.\n style('X' if feed['producer']['id'] in witness_accounts else\n '', bold=True), test_date(feed['date']), test_price(feed[\n 'settlement_price'], current_feed['settlement_price']),\n test_price(feed['core_exchange_rate'], current_feed[\n 'core_exchange_rate']), feed['maintenance_collateral_ratio'\n ] / 10, feed['maximum_short_squeeze_ratio'] / 10,\n price_diff(feed['core_exchange_rate'], current_feed[\n 'core_exchange_rate'])])\n for missing in builtins.set(witness_accounts).difference(\n producingwitnesses):\n witness = Witness(missing)\n t.add_row([click.style(asset['symbol'], bg='red'), click.style(\n witness.account['name'], bg='red'), click.style('X' if feed\n ['producer']['id'] in witness_accounts else '', bold=True),\n click.style(str(datetime(1970, 1, 1))), click.style(\n 'missing', bg='red'), click.style('missing', bg='red'),\n click.style('missing', bg='red'), click.style('missing', bg\n ='red'), click.style('missing', bg='red')])\n output += t.get_string(sortby='Date', reversesort=True)\n output += '\\n'\n click.echo(output)\n",
"role": "user"
},
{
"content": "feeds",
"role": "assistant"
}
] |
def x(*args, **kwargs):
t = format_table(*args, **kwargs)
click.echo(t)
|
print_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*args, **kwargs):\n t = format_table(*args, **kwargs)\n click.echo(t)\n",
"role": "user"
},
{
"content": "print_table",
"role": "assistant"
}
] |
def x(ctx, call, arguments, api):
try:
data = list(eval(d) for d in arguments)
except:
data = arguments
ret = getattr(ctx.bitshares.rpc, call)(*data, api=api)
print_dict(ret)
|
rpc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, call, arguments, api):\n try:\n data = list(eval(d) for d in arguments)\n except:\n data = arguments\n ret = getattr(ctx.bitshares.rpc, call)(*data, api=api)\n print_dict(ret)\n",
"role": "user"
},
{
"content": "rpc",
"role": "assistant"
}
] |
def x(ctx, members, account):
print_tx(ctx.bitshares.approvecommittee(members, account=account))
|
approvecommittee
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, members, account):\n print_tx(ctx.bitshares.approvecommittee(members, account=account))\n",
"role": "user"
},
{
"content": "approvecommittee",
"role": "assistant"
}
] |
def x(ctx, members, account):
print_tx(ctx.bitshares.disapprovecommittee(members, account=account))
|
disapprovecommittee
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, members, account):\n print_tx(ctx.bitshares.disapprovecommittee(members, account=account))\n",
"role": "user"
},
{
"content": "disapprovecommittee",
"role": "assistant"
}
] |
def x(ctx, url, account):
print_tx(ctx.bitshares.create_committee_member(url, account=account))
|
createcommittee
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, url, account):\n print_tx(ctx.bitshares.create_committee_member(url, account=account))\n",
"role": "user"
},
{
"content": "createcommittee",
"role": "assistant"
}
] |
def x(ctx, key, value):
if key == 'default_account' and value[0] == '@':
value = value[1:]
ctx.bitshares.config[key] = value
|
set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, key, value):\n if key == 'default_account' and value[0] == '@':\n value = value[1:]\n ctx.bitshares.config[key] = value\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(ctx):
t = [['Key', 'Value']]
for key in ctx.bitshares.config:
t.append([key, ctx.bitshares.config[key]])
print_table(t)
|
configuration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx):\n t = [['Key', 'Value']]\n for key in ctx.bitshares.config:\n t.append([key, ctx.bitshares.config[key]])\n print_table(t)\n",
"role": "user"
},
{
"content": "configuration",
"role": "assistant"
}
] |
def x(ctx, filename):
if filename:
tx = filename.read()
else:
tx = sys.stdin.read()
tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares)
tx.appendMissingSignatures()
tx.sign()
print_tx(tx.json())
|
sign
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, filename):\n if filename:\n tx = filename.read()\n else:\n tx = sys.stdin.read()\n tx = TransactionBuilder(eval(tx), bitshares_instance=ctx.bitshares)\n tx.appendMissingSignatures()\n tx.sign()\n print_tx(tx.json())\n",
"role": "user"
},
{
"content": "sign",
"role": "assistant"
}
] |
def x(prefix, num):
from bitsharesbase.account import PrivateKey
t = [['wif', 'pubkey']]
for n in range(0, num):
wif = PrivateKey()
t.append([str(wif), format(wif.pubkey, prefix)])
print_table(t)
|
randomwif
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prefix, num):\n from bitsharesbase.account import PrivateKey\n t = [['wif', 'pubkey']]\n for n in range(0, num):\n wif = PrivateKey()\n t.append([str(wif), format(wif.pubkey, prefix)])\n print_table(t)\n",
"role": "user"
},
{
"content": "randomwif",
"role": "assistant"
}
] |
def x(ctx, witnesses, account):
print_tx(ctx.bitshares.approvewitness(witnesses, account=account))
|
approvewitness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, witnesses, account):\n print_tx(ctx.bitshares.approvewitness(witnesses, account=account))\n",
"role": "user"
},
{
"content": "approvewitness",
"role": "assistant"
}
] |
def x(ctx, witnesses, account):
print_tx(ctx.bitshares.disapprovewitness(witnesses, account=account))
|
disapprovewitness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, witnesses, account):\n print_tx(ctx.bitshares.disapprovewitness(witnesses, account=account))\n",
"role": "user"
},
{
"content": "disapprovewitness",
"role": "assistant"
}
] |
def x(ctx):
t = [['weight', 'account', 'signing_key', 'vote_id', 'url',
'total_missed', 'last_confirmed_block_num']]
for witness in sorted(Witnesses(), key=lambda x: x.weight, reverse=True):
witness.refresh()
t.append(['{:.2f}%'.format(witness.weight * 100), witness.account[
'name'], witness['signing_key'], witness['vote_id'], witness[
'url'], witness['total_missed'], witness[
'last_confirmed_block_num']])
print_table(t)
|
witnesses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx):\n t = [['weight', 'account', 'signing_key', 'vote_id', 'url',\n 'total_missed', 'last_confirmed_block_num']]\n for witness in sorted(Witnesses(), key=lambda x: x.weight, reverse=True):\n witness.refresh()\n t.append(['{:.2f}%'.format(witness.weight * 100), witness.account[\n 'name'], witness['signing_key'], witness['vote_id'], witness[\n 'url'], witness['total_missed'], witness[\n 'last_confirmed_block_num']])\n print_table(t)\n",
"role": "user"
},
{
"content": "witnesses",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.