source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, meta, fname, data, fields, encoding):
field = meta.dfields[fname]
if field in meta.multifields:
fmeta = field.structure_class()._meta
if fmeta.name in ('hashtable', 'zset'):
return ((native_str(id, encoding), pairs_to_dict(fdata,
encoding)) for id, fdata in data)
else:
return ((native_str(id, encoding), fdata) for id, fdata in data)
else:
return self.build(data, meta, fields, fields, encoding)
|
load_related
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meta, fname, data, fields, encoding):\n field = meta.dfields[fname]\n if field in meta.multifields:\n fmeta = field.structure_class()._meta\n if fmeta.name in ('hashtable', 'zset'):\n return ((native_str(id, encoding), pairs_to_dict(fdata,\n encoding)) for id, fdata in data)\n else:\n return ((native_str(id, encoding), fdata) for id, fdata in data)\n else:\n return self.build(data, meta, fields, fields, encoding)\n",
"role": "user"
},
{
"content": "load_related",
"role": "assistant"
}
] |
def x(self):
pipe = self.pipe
if not self.card:
if self.meta.ordering:
self.ismember = getattr(self.backend.client, 'zrank')
self.card = getattr(pipe, 'zcard')
self._check_member = self.zism
else:
self.ismember = getattr(self.backend.client, 'sismember')
self.card = getattr(pipe, 'scard')
self._check_member = self.sism
else:
self.ismember = None
self.card(self.query_key)
result = yield pipe.execute()
yield result[-1]
|
execute_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pipe = self.pipe\n if not self.card:\n if self.meta.ordering:\n self.ismember = getattr(self.backend.client, 'zrank')\n self.card = getattr(pipe, 'zcard')\n self._check_member = self.zism\n else:\n self.ismember = getattr(self.backend.client, 'sismember')\n self.card = getattr(pipe, 'scard')\n self._check_member = self.sism\n else:\n self.ismember = None\n self.card(self.query_key)\n result = yield pipe.execute()\n yield result[-1]\n",
"role": "user"
},
{
"content": "execute_query",
"role": "assistant"
}
] |
def x(self, last):
desc = last.desc
field = last.name
nested = last.nested
nested_args = []
while nested:
meta = nested.model._meta
nested_args.extend((self.backend.basekey(meta), nested.name))
last = nested
nested = nested.nested
method = 'ALPHA' if last.field.internal_type == 'text' else ''
if field == last.model._meta.pkname():
field = ''
return {'field': field, 'method': method, 'desc': desc, 'nested':
nested_args}
|
order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, last):\n desc = last.desc\n field = last.name\n nested = last.nested\n nested_args = []\n while nested:\n meta = nested.model._meta\n nested_args.extend((self.backend.basekey(meta), nested.name))\n last = nested\n nested = nested.nested\n method = 'ALPHA' if last.field.internal_type == 'text' else ''\n if field == last.model._meta.pkname():\n field = ''\n return {'field': field, 'method': method, 'desc': desc, 'nested':\n nested_args}\n",
"role": "user"
},
{
"content": "order",
"role": "assistant"
}
] |
def x(self):
related = self.queryelem.select_related
if related:
meta = self.meta
for rel in related:
field = meta.dfields[rel]
relmodel = field.relmodel
bk = self.backend.basekey(relmodel._meta) if relmodel else ''
fields = list(related[rel])
if meta.pkname() in fields:
fields.remove(meta.pkname())
if not fields:
fields.append('')
ftype = field.type if field in meta.multifields else ''
data = {'field': field.attname, 'type': ftype, 'bk': bk,
'fields': fields}
yield field.name, data
|
related_lua_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n related = self.queryelem.select_related\n if related:\n meta = self.meta\n for rel in related:\n field = meta.dfields[rel]\n relmodel = field.relmodel\n bk = self.backend.basekey(relmodel._meta) if relmodel else ''\n fields = list(related[rel])\n if meta.pkname() in fields:\n fields.remove(meta.pkname())\n if not fields:\n fields.append('')\n ftype = field.type if field in meta.multifields else ''\n data = {'field': field.attname, 'type': ftype, 'bk': bk,\n 'fields': fields}\n yield field.name, data\n",
"role": "user"
},
{
"content": "related_lua_args",
"role": "assistant"
}
] |
def x(self, start, stop=None, withscores=True, **options):
return self.backend.execute(self.client.zpopbyrank(self.id, start, stop,
withscores=withscores, **options), partial(self._range, withscores))
|
ipop_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, stop=None, withscores=True, **options):\n return self.backend.execute(self.client.zpopbyrank(self.id, start, stop,\n withscores=withscores, **options), partial(self._range, withscores))\n",
"role": "user"
},
{
"content": "ipop_range",
"role": "assistant"
}
] |
def x(self, start, stop=None, withscores=True, **options):
return self.backend.execute(self.client.zpopbyscore(self.id, start,
stop, withscores=withscores, **options), partial(self._range,
withscores))
|
pop_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, stop=None, withscores=True, **options):\n return self.backend.execute(self.client.zpopbyscore(self.id, start,\n stop, withscores=withscores, **options), partial(self._range,\n withscores))\n",
"role": "user"
},
{
"content": "pop_range",
"role": "assistant"
}
] |
def x(self, meta):
data = meta.as_dict()
data['namespace'] = self.basekey(meta)
return data
|
meta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meta):\n data = meta.as_dict()\n data['namespace'] = self.basekey(meta)\n return data\n",
"role": "user"
},
{
"content": "meta",
"role": "assistant"
}
] |
def x(self, session_data):
pipe = self.client.pipeline()
for sm in session_data:
meta = sm.meta
if sm.structures:
self.flush_structure(sm, pipe)
delquery = None
if sm.deletes is not None:
delquery = sm.deletes.backend_query(pipe=pipe)
self.accumulate_delete(pipe, delquery)
if sm.dirty:
meta_info = json.dumps(self.meta(meta))
lua_data = [len(sm.dirty)]
processed = []
for instance in sm.dirty:
state = instance.get_state()
if not meta.is_valid(instance):
raise FieldValueError(json.dumps(instance._dbdata[
'errors']))
score = MIN_FLOAT
if meta.ordering:
if meta.ordering.auto:
score = meta.ordering.name.incrby
else:
v = getattr(instance, meta.ordering.name, None)
if v is not None:
score = meta.ordering.field.scorefun(v)
data = instance._dbdata['cleaned_data']
action = state.action
prev_id = state.iid if state.persistent else ''
id = instance.pkvalue() or ''
data = flat_mapping(data)
lua_data.extend((action, prev_id, id, score, len(data)))
lua_data.extend(data)
processed.append(state.iid)
self.odmrun(pipe, 'commit', meta, (), meta_info, *lua_data,
iids=processed)
return pipe.execute()
|
execute_session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session_data):\n pipe = self.client.pipeline()\n for sm in session_data:\n meta = sm.meta\n if sm.structures:\n self.flush_structure(sm, pipe)\n delquery = None\n if sm.deletes is not None:\n delquery = sm.deletes.backend_query(pipe=pipe)\n self.accumulate_delete(pipe, delquery)\n if sm.dirty:\n meta_info = json.dumps(self.meta(meta))\n lua_data = [len(sm.dirty)]\n processed = []\n for instance in sm.dirty:\n state = instance.get_state()\n if not meta.is_valid(instance):\n raise FieldValueError(json.dumps(instance._dbdata[\n 'errors']))\n score = MIN_FLOAT\n if meta.ordering:\n if meta.ordering.auto:\n score = meta.ordering.name.incrby\n else:\n v = getattr(instance, meta.ordering.name, None)\n if v is not None:\n score = meta.ordering.field.scorefun(v)\n data = instance._dbdata['cleaned_data']\n action = state.action\n prev_id = state.iid if state.persistent else ''\n id = instance.pkvalue() or ''\n data = flat_mapping(data)\n lua_data.extend((action, prev_id, id, score, len(data)))\n lua_data.extend(data)\n processed.append(state.iid)\n self.odmrun(pipe, 'commit', meta, (), meta_info, *lua_data,\n iids=processed)\n return pipe.execute()\n",
"role": "user"
},
{
"content": "execute_session",
"role": "assistant"
}
] |
def x(self, meta=None):
pattern = self.basekey(meta) if meta else self.namespace
return self.client.delpattern('%s*' % pattern)
|
flush
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meta=None):\n pattern = self.basekey(meta) if meta else self.namespace\n return self.client.delpattern('%s*' % pattern)\n",
"role": "user"
},
{
"content": "flush",
"role": "assistant"
}
] |
def x(kernel, kernel_params, time, errors):
K = np.diag(errors ** 2)
K += GP(kernel, kernel_params, white=False).get_matrix(time)
return K
|
GetCovariance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, kernel_params, time, errors):\n K = np.diag(errors ** 2)\n K += GP(kernel, kernel_params, white=False).get_matrix(time)\n return K\n",
"role": "user"
},
{
"content": "GetCovariance",
"role": "assistant"
}
] |
def x(time, flux, errors, kernel='Basic', mask=[], giter=3, gmaxf=200,
guess=None):
log.info('Optimizing the GP...')
time_copy = np.array(time)
errors_copy = np.array(errors)
time = np.delete(time, mask)
flux = np.delete(flux, mask)
errors = np.delete(errors, mask)
f = flux - savgol_filter(flux, 49, 2) + np.nanmedian(flux)
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
mask = np.where((f > med + 5 * MAD) | (f < med - 5 * MAD))[0]
time = np.delete(time, mask)
flux = np.delete(flux, mask)
errors = np.delete(errors, mask)
white = np.nanmedian([np.nanstd(c) for c in Chunks(flux, 13)])
amp = np.nanstd(flux)
tau = 30.0
if kernel == 'Basic':
if guess is None:
guess = [white, amp, tau]
bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [0.5,
100.0]]
elif kernel == 'QuasiPeriodic':
if guess is None:
guess = [white, amp, tau, 1.0, 20.0]
bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [1e-05,
100.0], [0.02, 100.0]]
else:
raise ValueError('Invalid value for `kernel`.')
llbest = -np.inf
xbest = np.array(guess)
for i in range(giter):
iguess = [np.inf for g in guess]
for j, b in enumerate(bounds):
tries = 0
while iguess[j] < b[0] or iguess[j] > b[1]:
iguess[j] = (1 + 0.5 * np.random.randn()) * guess[j]
tries += 1
if tries > 100:
iguess[j] = b[0] + np.random.random() * (b[1] - b[0])
break
x = fmin_l_bfgs_b(NegLnLike, iguess, approx_grad=False, bounds=
bounds, args=(time, flux, errors, kernel), maxfun=gmaxf)
log.info('Iteration #%d/%d:' % (i + 1, giter))
log.info(' ' + x[2]['task'].decode('utf-8'))
log.info(' ' + 'Function calls: %d' % x[2]['funcalls'])
log.info(' ' + 'Log-likelihood: %.3e' % -x[1])
if kernel == 'Basic':
log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (
x[0][0], x[0][0] / np.nanmedian(errors)))
log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x
[0][1], x[0][1] / np.nanstd(flux)))
log.info(' ' + 'Red timescale : %.2f days' % x[0][2])
elif kernel == 'QuasiPeriodic':
log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (
x[0][0], x[0][0] / np.nanmedian(errors)))
log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x
[0][1], x[0][1] / np.nanstd(flux)))
log.info(' ' + 'Gamma : %.3e' % x[0][2])
log.info(' ' + 'Period : %.2f days' % x[0][3])
if -x[1] > llbest:
llbest = -x[1]
xbest = np.array(x[0])
return xbest
|
GetKernelParams
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(time, flux, errors, kernel='Basic', mask=[], giter=3, gmaxf=200,\n guess=None):\n log.info('Optimizing the GP...')\n time_copy = np.array(time)\n errors_copy = np.array(errors)\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n errors = np.delete(errors, mask)\n f = flux - savgol_filter(flux, 49, 2) + np.nanmedian(flux)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n mask = np.where((f > med + 5 * MAD) | (f < med - 5 * MAD))[0]\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n errors = np.delete(errors, mask)\n white = np.nanmedian([np.nanstd(c) for c in Chunks(flux, 13)])\n amp = np.nanstd(flux)\n tau = 30.0\n if kernel == 'Basic':\n if guess is None:\n guess = [white, amp, tau]\n bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [0.5, \n 100.0]]\n elif kernel == 'QuasiPeriodic':\n if guess is None:\n guess = [white, amp, tau, 1.0, 20.0]\n bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [1e-05,\n 100.0], [0.02, 100.0]]\n else:\n raise ValueError('Invalid value for `kernel`.')\n llbest = -np.inf\n xbest = np.array(guess)\n for i in range(giter):\n iguess = [np.inf for g in guess]\n for j, b in enumerate(bounds):\n tries = 0\n while iguess[j] < b[0] or iguess[j] > b[1]:\n iguess[j] = (1 + 0.5 * np.random.randn()) * guess[j]\n tries += 1\n if tries > 100:\n iguess[j] = b[0] + np.random.random() * (b[1] - b[0])\n break\n x = fmin_l_bfgs_b(NegLnLike, iguess, approx_grad=False, bounds=\n bounds, args=(time, flux, errors, kernel), maxfun=gmaxf)\n log.info('Iteration #%d/%d:' % (i + 1, giter))\n log.info(' ' + x[2]['task'].decode('utf-8'))\n log.info(' ' + 'Function calls: %d' % x[2]['funcalls'])\n log.info(' ' + 'Log-likelihood: %.3e' % -x[1])\n if kernel == 'Basic':\n log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (\n x[0][0], x[0][0] / np.nanmedian(errors)))\n log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x\n [0][1], x[0][1] / np.nanstd(flux)))\n log.info(' ' + 'Red timescale : %.2f days' % x[0][2])\n elif kernel == 'QuasiPeriodic':\n log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (\n x[0][0], x[0][0] / np.nanmedian(errors)))\n log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x\n [0][1], x[0][1] / np.nanstd(flux)))\n log.info(' ' + 'Gamma : %.3e' % x[0][2])\n log.info(' ' + 'Period : %.2f days' % x[0][3])\n if -x[1] > llbest:\n llbest = -x[1]\n xbest = np.array(x[0])\n return xbest\n",
"role": "user"
},
{
"content": "GetKernelParams",
"role": "assistant"
}
] |
def x(x, time, flux, errors, kernel):
gp = GP(kernel, x, white=True)
gp.compute(time, errors)
if OLDGEORGE:
nll = -gp.lnlikelihood(flux)
ngr = -2 * gp.grad_lnlikelihood(flux) / np.sqrt(gp.kernel.pars)
else:
nll = -gp.log_likelihood(flux)
ngr = -2 * gp.grad_log_likelihood(flux) / np.sqrt(np.exp(gp.
get_parameter_vector()))
return nll, ngr
|
NegLnLike
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, time, flux, errors, kernel):\n gp = GP(kernel, x, white=True)\n gp.compute(time, errors)\n if OLDGEORGE:\n nll = -gp.lnlikelihood(flux)\n ngr = -2 * gp.grad_lnlikelihood(flux) / np.sqrt(gp.kernel.pars)\n else:\n nll = -gp.log_likelihood(flux)\n ngr = -2 * gp.grad_log_likelihood(flux) / np.sqrt(np.exp(gp.\n get_parameter_vector()))\n return nll, ngr\n",
"role": "user"
},
{
"content": "NegLnLike",
"role": "assistant"
}
] |
def x(startdate, enddate, start, end, dateconverter=None, parseinterval=
None, intervals=None):
parseinterval = parseinterval or default_parse_interval
dateconverter = dateconverter or todate
startdate = dateconverter(parseinterval(startdate, 0))
enddate = max(startdate, dateconverter(parseinterval(enddate, 0)))
if intervals is not None and not isinstance(intervals, Intervals):
intervals = Intervals(intervals)
calc_intervals = Intervals()
if start:
if startdate < start:
calc_start = startdate
calc_end = parseinterval(start, -1)
if calc_end >= calc_start:
calc_intervals.append(Interval(calc_start, calc_end))
if enddate > end:
calc_start = parseinterval(end, 1)
calc_end = enddate
if calc_end >= calc_start:
calc_intervals.append(Interval(calc_start, calc_end))
else:
start = startdate
end = enddate
calc_intervals.append(Interval(startdate, enddate))
if calc_intervals:
if intervals:
calc_intervals.extend(intervals)
elif intervals:
calc_intervals = intervals
return calc_intervals
|
missing_intervals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(startdate, enddate, start, end, dateconverter=None, parseinterval=\n None, intervals=None):\n parseinterval = parseinterval or default_parse_interval\n dateconverter = dateconverter or todate\n startdate = dateconverter(parseinterval(startdate, 0))\n enddate = max(startdate, dateconverter(parseinterval(enddate, 0)))\n if intervals is not None and not isinstance(intervals, Intervals):\n intervals = Intervals(intervals)\n calc_intervals = Intervals()\n if start:\n if startdate < start:\n calc_start = startdate\n calc_end = parseinterval(start, -1)\n if calc_end >= calc_start:\n calc_intervals.append(Interval(calc_start, calc_end))\n if enddate > end:\n calc_start = parseinterval(end, 1)\n calc_end = enddate\n if calc_end >= calc_start:\n calc_intervals.append(Interval(calc_start, calc_end))\n else:\n start = startdate\n end = enddate\n calc_intervals.append(Interval(startdate, enddate))\n if calc_intervals:\n if intervals:\n calc_intervals.extend(intervals)\n elif intervals:\n calc_intervals = intervals\n return calc_intervals\n",
"role": "user"
},
{
"content": "missing_intervals",
"role": "assistant"
}
] |
def x(start, end, step=1, desc=False):
delta = timedelta(abs(step))
end = max(start, end)
if desc:
dt = end
while dt >= start:
yield dt
dt -= delta
else:
dt = start
while dt <= end:
yield dt
dt += delta
|
dategenerator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end, step=1, desc=False):\n delta = timedelta(abs(step))\n end = max(start, end)\n if desc:\n dt = end\n while dt >= start:\n yield dt\n dt -= delta\n else:\n dt = start\n while dt <= end:\n yield dt\n dt += delta\n",
"role": "user"
},
{
"content": "dategenerator",
"role": "assistant"
}
] |
def x(file_name=None, log_level=logging.DEBUG, screen_level=logging.
CRITICAL, pdb=False):
root = logging.getLogger()
root.handlers = []
root.setLevel(logging.DEBUG)
if file_name is not None:
if not os.path.exists(os.path.dirname(file_name)):
os.makedirs(os.path.dirname(file_name))
fh = logging.FileHandler(file_name)
fh.setLevel(log_level)
fh_formatter = logging.Formatter(
'%(asctime)s %(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s'
, datefmt='%m/%d/%y %H:%M:%S')
fh.setFormatter(fh_formatter)
fh.addFilter(NoPILFilter())
root.addHandler(fh)
sh = logging.StreamHandler(sys.stdout)
if pdb:
sh.setLevel(logging.DEBUG)
else:
sh.setLevel(screen_level)
sh_formatter = logging.Formatter(
'%(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s')
sh.setFormatter(sh_formatter)
sh.addFilter(NoPILFilter())
root.addHandler(sh)
if pdb:
sys.excepthook = ExceptionHookPDB
else:
sys.excepthook = ExceptionHook
|
InitLog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_name=None, log_level=logging.DEBUG, screen_level=logging.\n CRITICAL, pdb=False):\n root = logging.getLogger()\n root.handlers = []\n root.setLevel(logging.DEBUG)\n if file_name is not None:\n if not os.path.exists(os.path.dirname(file_name)):\n os.makedirs(os.path.dirname(file_name))\n fh = logging.FileHandler(file_name)\n fh.setLevel(log_level)\n fh_formatter = logging.Formatter(\n '%(asctime)s %(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s'\n , datefmt='%m/%d/%y %H:%M:%S')\n fh.setFormatter(fh_formatter)\n fh.addFilter(NoPILFilter())\n root.addHandler(fh)\n sh = logging.StreamHandler(sys.stdout)\n if pdb:\n sh.setLevel(logging.DEBUG)\n else:\n sh.setLevel(screen_level)\n sh_formatter = logging.Formatter(\n '%(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s')\n sh.setFormatter(sh_formatter)\n sh.addFilter(NoPILFilter())\n root.addHandler(sh)\n if pdb:\n sys.excepthook = ExceptionHookPDB\n else:\n sys.excepthook = ExceptionHook\n",
"role": "user"
},
{
"content": "InitLog",
"role": "assistant"
}
] |
def x(exctype, value, tb):
for line in traceback.format_exception_only(exctype, value):
log.error(line.replace('\n', ''))
for line in traceback.format_tb(tb):
log.error(line.replace('\n', ''))
sys.__excepthook__(exctype, value, tb)
|
ExceptionHook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(exctype, value, tb):\n for line in traceback.format_exception_only(exctype, value):\n log.error(line.replace('\\n', ''))\n for line in traceback.format_tb(tb):\n log.error(line.replace('\\n', ''))\n sys.__excepthook__(exctype, value, tb)\n",
"role": "user"
},
{
"content": "ExceptionHook",
"role": "assistant"
}
] |
def x(exctype, value, tb):
for line in traceback.format_exception_only(exctype, value):
log.error(line.replace('\n', ''))
for line in traceback.format_tb(tb):
log.error(line.replace('\n', ''))
sys.__excepthook__(exctype, value, tb)
pdb.pm()
|
ExceptionHookPDB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(exctype, value, tb):\n for line in traceback.format_exception_only(exctype, value):\n log.error(line.replace('\\n', ''))\n for line in traceback.format_tb(tb):\n log.error(line.replace('\\n', ''))\n sys.__excepthook__(exctype, value, tb)\n pdb.pm()\n",
"role": "user"
},
{
"content": "ExceptionHookPDB",
"role": "assistant"
}
] |
def x(l, col1, col2):
s = np.zeros_like(col1) * np.nan
for i, c in enumerate(col1):
j = np.argmax(col2 == c)
if j == 0:
if col2[0] != c:
continue
s[i] = l[j]
return s
|
sort_like
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, col1, col2):\n s = np.zeros_like(col1) * np.nan\n for i, c in enumerate(col1):\n j = np.argmax(col2 == c)\n if j == 0:\n if col2[0] != c:\n continue\n s[i] = l[j]\n return s\n",
"role": "user"
},
{
"content": "sort_like",
"role": "assistant"
}
] |
def x(*x):
try:
root = logging.getLogger()
if len(root.handlers):
for h in root.handlers:
if type(h
) is logging.StreamHandler and h.level != logging.CRITICAL:
from tqdm import tqdm
return tqdm(range(*x))
return range(*x)
else:
from tqdm import tqdm
return tqdm(range(*x))
except ImportError:
return range(*x)
|
prange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*x):\n try:\n root = logging.getLogger()\n if len(root.handlers):\n for h in root.handlers:\n if type(h\n ) is logging.StreamHandler and h.level != logging.CRITICAL:\n from tqdm import tqdm\n return tqdm(range(*x))\n return range(*x)\n else:\n from tqdm import tqdm\n return tqdm(range(*x))\n except ImportError:\n return range(*x)\n",
"role": "user"
},
{
"content": "prange",
"role": "assistant"
}
] |
def x(self, *fields):
ts = self.irange(0, 0, fields=fields)
if ts:
return ts.start(), ts[0]
|
front
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *fields):\n ts = self.irange(0, 0, fields=fields)\n if ts:\n return ts.start(), ts[0]\n",
"role": "user"
},
{
"content": "front",
"role": "assistant"
}
] |
def x(self, *fields):
ts = self.irange(-1, -1, fields=fields)
if ts:
return ts.end(), ts[0]
|
back
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *fields):\n ts = self.irange(-1, -1, fields=fields)\n if ts:\n return ts.end(), ts[0]\n",
"role": "user"
},
{
"content": "back",
"role": "assistant"
}
] |
def x(backend):
r = urlparse.urlsplit(backend)
scheme, host = r.scheme, r.netloc
path, query = r.path, r.query
if path and not query:
query, path = path, ''
if query:
if query.find('?'):
path = query
else:
query = query[1:]
if query:
params = dict(urlparse.parse_qsl(query))
else:
params = {}
return scheme, host, params
|
parse_backend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(backend):\n r = urlparse.urlsplit(backend)\n scheme, host = r.scheme, r.netloc\n path, query = r.path, r.query\n if path and not query:\n query, path = path, ''\n if query:\n if query.find('?'):\n path = query\n else:\n query = query[1:]\n if query:\n params = dict(urlparse.parse_qsl(query))\n else:\n params = {}\n return scheme, host, params\n",
"role": "user"
},
{
"content": "parse_backend",
"role": "assistant"
}
] |
def x(backend=None, **kwargs):
if isinstance(backend, BackendDataServer):
return backend
backend = backend or settings.DEFAULT_BACKEND
if not backend:
return None
scheme, address, params = parse_backend(backend)
params.update(kwargs)
if 'timeout' in params:
params['timeout'] = int(params['timeout'])
return _getdb(scheme, address, params)
|
getdb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(backend=None, **kwargs):\n if isinstance(backend, BackendDataServer):\n return backend\n backend = backend or settings.DEFAULT_BACKEND\n if not backend:\n return None\n scheme, address, params = parse_backend(backend)\n params.update(kwargs)\n if 'timeout' in params:\n params['timeout'] = int(params['timeout'])\n return _getdb(scheme, address, params)\n",
"role": "user"
},
{
"content": "getdb",
"role": "assistant"
}
] |
def x(self, meta, *args):
key = '%s%s' % (self.namespace, meta.modelkey)
postfix = ':'.join(str(p) for p in args if p is not None)
return '%s:%s' % (key, postfix) if postfix else key
|
basekey
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meta, *args):\n key = '%s%s' % (self.namespace, meta.modelkey)\n postfix = ':'.join(str(p) for p in args if p is not None)\n return '%s:%s' % (key, postfix) if postfix else key\n",
"role": "user"
},
{
"content": "basekey",
"role": "assistant"
}
] |
def x(self, meta, data, related_fields=None):
make_object = meta.make_object
related_data = []
if related_fields:
for fname, fdata in iteritems(related_fields):
field = meta.dfields[fname]
if field in meta.multifields:
related = dict(fdata)
multi = True
else:
multi = False
relmodel = field.relmodel
related = dict((obj.id, obj) for obj in self.make_objects(
relmodel._meta, fdata))
related_data.append((field, related, multi))
for state in data:
instance = make_object(state, self)
for field, rdata, multi in related_data:
if multi:
field.set_cache(instance, rdata.get(str(instance.id)))
else:
rid = getattr(instance, field.attname, None)
if rid is not None:
value = rdata.get(rid)
setattr(instance, field.name, value)
yield instance
|
make_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meta, data, related_fields=None):\n make_object = meta.make_object\n related_data = []\n if related_fields:\n for fname, fdata in iteritems(related_fields):\n field = meta.dfields[fname]\n if field in meta.multifields:\n related = dict(fdata)\n multi = True\n else:\n multi = False\n relmodel = field.relmodel\n related = dict((obj.id, obj) for obj in self.make_objects(\n relmodel._meta, fdata))\n related_data.append((field, related, multi))\n for state in data:\n instance = make_object(state, self)\n for field, rdata, multi in related_data:\n if multi:\n field.set_cache(instance, rdata.get(str(instance.id)))\n else:\n rid = getattr(instance, field.attname, None)\n if rid is not None:\n value = rdata.get(rid)\n setattr(instance, field.name, value)\n yield instance\n",
"role": "user"
},
{
"content": "make_objects",
"role": "assistant"
}
] |
def x(self, instance, client=None):
struct = self.struct_map.get(instance._meta.name)
if struct is None:
raise ModelNotAvailable('"%s" is not available for backend "%s"' %
(instance._meta.name, self))
client = client if client is not None else self.client
return struct(instance, self, client)
|
structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, client=None):\n struct = self.struct_map.get(instance._meta.name)\n if struct is None:\n raise ModelNotAvailable('\"%s\" is not available for backend \"%s\"' %\n (instance._meta.name, self))\n client = client if client is not None else self.client\n return struct(instance, self, client)\n",
"role": "user"
},
{
"content": "structure",
"role": "assistant"
}
] |
def x(ID, mission='k2'):
assert mission == 'k2', 'Only the K2 mission is supported for now.'
print('Searching for target %d...' % ID)
season = missions.k2.Season(ID)
if season in [91, 92, [91, 92]]:
print('Campaign 9 is currently not part of the EVEREST catalog.')
return
elif season == 101:
print('The first half of campaign 10 is not currently part of ' +
'the EVEREST catalog.')
return
elif season is not None:
print('Target is in campaign %d of the EVEREST catalog.' % season)
return
star = k2plr_client.k2_star(ID)
if star.objtype.lower() != 'star':
print('Target is of type %s, not STAR, ' % star.objtype +
'and is therefore not included in the EVEREST catalog.')
return
try:
tpf = star.get_target_pixel_files()
except:
print('Unable to download the raw pixel files for this target.')
return
if len(tpf) == 0:
print(
'Raw pixel files are not available for this target. Looks like ' +
'data may not have been collected for it.')
return
if tpf[0].sci_campaign not in missions.k2.SEASONS:
print('Targets for campaign %d are not yet available.' % tpf[0].
sci_campaign)
return
try:
k2sff = k2plr.K2SFF(ID)
except:
print('Error downloading the K2SFF light curve for this target. ' +
'Currently, EVEREST uses the K2SFF apertures to perform ' +
'photometry. This is likely to change in the next version.')
return
try:
assert np.count_nonzero(k2sff.apertures[15]), 'Invalid aperture.'
except:
print('Unable to retrieve the K2SFF aperture for this target. ' +
'Currently, EVEREST uses the K2SFF apertures to perform ' +
'photometry. This is likely to change in the next version.')
return
if star.kp < 8:
print('Target has Kp = %.1f and is too saturated ' +
'for proper de-trending with EVEREST.')
return
print("I'm not sure why this target isn't in the EVEREST catalog." +
'You can try de-trending it yourself:')
print('http://faculty.washington.edu/rodluger/everest/pipeline.html')
return
|
Search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, mission='k2'):\n assert mission == 'k2', 'Only the K2 mission is supported for now.'\n print('Searching for target %d...' % ID)\n season = missions.k2.Season(ID)\n if season in [91, 92, [91, 92]]:\n print('Campaign 9 is currently not part of the EVEREST catalog.')\n return\n elif season == 101:\n print('The first half of campaign 10 is not currently part of ' +\n 'the EVEREST catalog.')\n return\n elif season is not None:\n print('Target is in campaign %d of the EVEREST catalog.' % season)\n return\n star = k2plr_client.k2_star(ID)\n if star.objtype.lower() != 'star':\n print('Target is of type %s, not STAR, ' % star.objtype +\n 'and is therefore not included in the EVEREST catalog.')\n return\n try:\n tpf = star.get_target_pixel_files()\n except:\n print('Unable to download the raw pixel files for this target.')\n return\n if len(tpf) == 0:\n print(\n 'Raw pixel files are not available for this target. Looks like ' +\n 'data may not have been collected for it.')\n return\n if tpf[0].sci_campaign not in missions.k2.SEASONS:\n print('Targets for campaign %d are not yet available.' % tpf[0].\n sci_campaign)\n return\n try:\n k2sff = k2plr.K2SFF(ID)\n except:\n print('Error downloading the K2SFF light curve for this target. ' +\n 'Currently, EVEREST uses the K2SFF apertures to perform ' +\n 'photometry. This is likely to change in the next version.')\n return\n try:\n assert np.count_nonzero(k2sff.apertures[15]), 'Invalid aperture.'\n except:\n print('Unable to retrieve the K2SFF aperture for this target. ' +\n 'Currently, EVEREST uses the K2SFF apertures to perform ' +\n 'photometry. This is likely to change in the next version.')\n return\n if star.kp < 8:\n print('Target has Kp = %.1f and is too saturated ' +\n 'for proper de-trending with EVEREST.')\n return\n print(\"I'm not sure why this target isn't in the EVEREST catalog.\" +\n 'You can try de-trending it yourself:')\n print('http://faculty.washington.edu/rodluger/everest/pipeline.html')\n return\n",
"role": "user"
},
{
"content": "Search",
"role": "assistant"
}
] |
def x(ID, season=None, mission='k2', cadence='lc', filename=None, clobber=False
):
if season is None:
season = getattr(missions, mission).Season(ID)
if hasattr(season, '__len__'):
raise AttributeError(
'Please choose a `season` for this target: %s.' % season)
if season is None:
if getattr(missions, mission).ISTARGET(ID):
raise ValueError('Target not found in local database. ' +
'Run `everest.Search(%d)` for more information.' % ID)
else:
raise ValueError('Invalid target ID.')
path = getattr(missions, mission).TargetDirectory(ID, season)
relpath = getattr(missions, mission).TargetDirectory(ID, season,
relative=True)
if filename is None:
filename = getattr(missions, mission).FITSFile(ID, season, cadence)
if not os.path.exists(path):
os.makedirs(path)
elif os.path.exists(os.path.join(path, filename)) and not clobber:
log.info('Found cached file.')
return os.path.join(path, filename)
log.info('Downloading the file...')
fitsurl = getattr(missions, mission).FITSUrl(ID, season)
if not fitsurl.endswith('/'):
fitsurl += '/'
r = urllib.request.Request(fitsurl + filename)
try:
handler = urllib.request.urlopen(r)
code = handler.getcode()
except (urllib.error.HTTPError, urllib.error.URLError):
code = 0
if int(code) == 200:
data = handler.read()
f = NamedTemporaryFile('wb', delete=False)
f.write(data)
f.flush()
os.fsync(f.fileno())
f.close()
shutil.move(f.name, os.path.join(path, filename))
else:
log.error("Error code {0} for URL '{1}'".format(code, fitsurl +
filename))
if EVEREST_FITS is None:
raise Exception('Unable to locate the file.')
inpath = os.path.join(EVEREST_FITS, relpath, filename)
outpath = os.path.join(path, filename)
log.info('Accessing file via `scp`...')
subprocess.call(['scp', inpath, outpath])
if os.path.exists(os.path.join(path, filename)):
return os.path.join(path, filename)
else:
raise Exception('Unable to download the file.' +
'Run `everest.Search(%d)` to troubleshoot.' % ID)
|
DownloadFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, season=None, mission='k2', cadence='lc', filename=None, clobber=False\n ):\n if season is None:\n season = getattr(missions, mission).Season(ID)\n if hasattr(season, '__len__'):\n raise AttributeError(\n 'Please choose a `season` for this target: %s.' % season)\n if season is None:\n if getattr(missions, mission).ISTARGET(ID):\n raise ValueError('Target not found in local database. ' + \n 'Run `everest.Search(%d)` for more information.' % ID)\n else:\n raise ValueError('Invalid target ID.')\n path = getattr(missions, mission).TargetDirectory(ID, season)\n relpath = getattr(missions, mission).TargetDirectory(ID, season,\n relative=True)\n if filename is None:\n filename = getattr(missions, mission).FITSFile(ID, season, cadence)\n if not os.path.exists(path):\n os.makedirs(path)\n elif os.path.exists(os.path.join(path, filename)) and not clobber:\n log.info('Found cached file.')\n return os.path.join(path, filename)\n log.info('Downloading the file...')\n fitsurl = getattr(missions, mission).FITSUrl(ID, season)\n if not fitsurl.endswith('/'):\n fitsurl += '/'\n r = urllib.request.Request(fitsurl + filename)\n try:\n handler = urllib.request.urlopen(r)\n code = handler.getcode()\n except (urllib.error.HTTPError, urllib.error.URLError):\n code = 0\n if int(code) == 200:\n data = handler.read()\n f = NamedTemporaryFile('wb', delete=False)\n f.write(data)\n f.flush()\n os.fsync(f.fileno())\n f.close()\n shutil.move(f.name, os.path.join(path, filename))\n else:\n log.error(\"Error code {0} for URL '{1}'\".format(code, fitsurl +\n filename))\n if EVEREST_FITS is None:\n raise Exception('Unable to locate the file.')\n inpath = os.path.join(EVEREST_FITS, relpath, filename)\n outpath = os.path.join(path, filename)\n log.info('Accessing file via `scp`...')\n subprocess.call(['scp', inpath, outpath])\n if os.path.exists(os.path.join(path, filename)):\n return os.path.join(path, filename)\n else:\n raise Exception('Unable to download the file.' + \n 'Run `everest.Search(%d)` to troubleshoot.' % ID)\n",
"role": "user"
},
{
"content": "DownloadFile",
"role": "assistant"
}
] |
def x(ID, season=None, mission='k2', clobber=False, cadence='lc', model='nPLD'
):
if season is None:
season = getattr(missions, mission).Season(ID)
if hasattr(season, '__len__'):
raise AttributeError(
'Please choose a `season` for this target: %s.' % season)
if model == 'nPLD':
filename = getattr(missions, mission).DVSFile(ID, season, cadence)
elif cadence == 'sc':
filename = model + '.sc.pdf'
else:
filename = model + '.pdf'
file = DownloadFile(ID, season=season, mission=mission, filename=
filename, clobber=clobber)
try:
if platform.system().lower().startswith('darwin'):
subprocess.call(['open', file])
elif os.name == 'nt':
os.startfile(file)
elif os.name == 'posix':
subprocess.call(['xdg-open', file])
else:
raise Exception('')
except:
log.info('Unable to open the pdf. Try opening it manually:')
log.info(file)
|
DVS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, season=None, mission='k2', clobber=False, cadence='lc', model='nPLD'\n ):\n if season is None:\n season = getattr(missions, mission).Season(ID)\n if hasattr(season, '__len__'):\n raise AttributeError(\n 'Please choose a `season` for this target: %s.' % season)\n if model == 'nPLD':\n filename = getattr(missions, mission).DVSFile(ID, season, cadence)\n elif cadence == 'sc':\n filename = model + '.sc.pdf'\n else:\n filename = model + '.pdf'\n file = DownloadFile(ID, season=season, mission=mission, filename=\n filename, clobber=clobber)\n try:\n if platform.system().lower().startswith('darwin'):\n subprocess.call(['open', file])\n elif os.name == 'nt':\n os.startfile(file)\n elif os.name == 'posix':\n subprocess.call(['xdg-open', file])\n else:\n raise Exception('')\n except:\n log.info('Unable to open the pdf. Try opening it manually:')\n log.info(file)\n",
"role": "user"
},
{
"content": "DVS",
"role": "assistant"
}
] |
def x(self):
if self.model_name == 'iPLD':
self._get_norm()
super(Everest, self).compute()
self.flux[self.nanmask] = np.nan
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.model_name == 'iPLD':\n self._get_norm()\n super(Everest, self).compute()\n self.flux[self.nanmask] = np.nan\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(self):
log.info('Computing the PLD normalization...')
mod = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
c = self.get_chunk(b)
inds = np.array(list(set(np.concatenate([self.transitmask, self.
recmask]))), dtype=int)
M = np.delete(np.arange(len(self.time)), inds, axis=0)
if b > 0:
m = M[(M > self.breakpoints[b - 1] - self.bpad) & (M <= self.
breakpoints[b] + self.bpad)]
else:
m = M[M <= self.breakpoints[b] + self.bpad]
mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],
self.fraw_err[m])
med = np.nanmedian(self.fraw[m])
f = self.fraw[m] - med
A = np.zeros((len(m), len(m)))
B = np.zeros((len(c), len(m)))
for n in range(self.pld_order):
XM = self.X(n, m)
XC = self.X(n, c)
A += self.reclam[b][n] * np.dot(XM, XM.T)
B += self.reclam[b][n] * np.dot(XC, XM.T)
del XM, XC
W = np.linalg.solve(mK + A, f)
mod[b] = np.dot(B, W)
del A, B, W
if len(mod) > 1:
model = mod[0][:-self.bpad]
for m in mod[1:-1]:
offset = model[-1] - m[self.bpad - 1]
model = np.concatenate([model, m[self.bpad:-self.bpad] + offset])
offset = model[-1] - mod[-1][self.bpad - 1]
model = np.concatenate([model, mod[-1][self.bpad:] + offset])
else:
model = mod[0]
model -= np.nanmedian(model)
self._norm = self.fraw - model
|
get_norm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log.info('Computing the PLD normalization...')\n mod = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n c = self.get_chunk(b)\n inds = np.array(list(set(np.concatenate([self.transitmask, self.\n recmask]))), dtype=int)\n M = np.delete(np.arange(len(self.time)), inds, axis=0)\n if b > 0:\n m = M[(M > self.breakpoints[b - 1] - self.bpad) & (M <= self.\n breakpoints[b] + self.bpad)]\n else:\n m = M[M <= self.breakpoints[b] + self.bpad]\n mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n med = np.nanmedian(self.fraw[m])\n f = self.fraw[m] - med\n A = np.zeros((len(m), len(m)))\n B = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n XM = self.X(n, m)\n XC = self.X(n, c)\n A += self.reclam[b][n] * np.dot(XM, XM.T)\n B += self.reclam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + A, f)\n mod[b] = np.dot(B, W)\n del A, B, W\n if len(mod) > 1:\n model = mod[0][:-self.bpad]\n for m in mod[1:-1]:\n offset = model[-1] - m[self.bpad - 1]\n model = np.concatenate([model, m[self.bpad:-self.bpad] + offset])\n offset = model[-1] - mod[-1][self.bpad - 1]\n model = np.concatenate([model, mod[-1][self.bpad:] + offset])\n else:\n model = mod[0]\n model -= np.nanmedian(model)\n self._norm = self.fraw - model\n",
"role": "user"
},
{
"content": "get_norm",
"role": "assistant"
}
] |
def x(self, show=True):
fig, ax = pl.subplots(2, 2, figsize=(6, 8))
fig.subplots_adjust(top=0.975, bottom=0.025, left=0.05, right=0.95,
hspace=0.05, wspace=0.05)
ax = ax.flatten()
fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))
super(Everest, self).plot_aperture(ax, labelsize=12)
if show:
pl.show()
pl.close()
else:
return fig, ax
|
plot_aperture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, show=True):\n fig, ax = pl.subplots(2, 2, figsize=(6, 8))\n fig.subplots_adjust(top=0.975, bottom=0.025, left=0.05, right=0.95,\n hspace=0.05, wspace=0.05)\n ax = ax.flatten()\n fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))\n super(Everest, self).plot_aperture(ax, labelsize=12)\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n",
"role": "user"
},
{
"content": "plot_aperture",
"role": "assistant"
}
] |
def x(self):
DVS(self.ID, season=self.season, mission=self.mission, model=self.
model_name, clobber=self.clobber)
|
dvs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n DVS(self.ID, season=self.season, mission=self.mission, model=self.\n model_name, clobber=self.clobber)\n",
"role": "user"
},
{
"content": "dvs",
"role": "assistant"
}
] |
def x(self, pipeline, *args, **kwargs):
if pipeline != 'everest2':
return getattr(missions, self.mission).pipelines.plot(self.ID,
pipeline, *args, **kwargs)
else:
plot_raw = kwargs.get('plot_raw', False)
plot_cbv = kwargs.get('plot_cbv', True)
show = kwargs.get('show', True)
if plot_raw:
y = self.fraw
ylabel = 'Raw Flux'
elif plot_cbv:
y = self.fcor
ylabel = 'EVEREST2 Flux'
else:
y = self.flux
ylabel = 'EVEREST2 Flux'
bnmask = np.concatenate([self.nanmask, self.badmask])
time = np.delete(self.time, bnmask)
flux = np.delete(y, bnmask)
fig, ax = pl.subplots(1, figsize=(10, 4))
fig.subplots_adjust(bottom=0.15)
ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
pad = (hi - lo) * 0.1
ylim = lo - pad, hi + pad
ax.set_ylim(ylim)
ax.plot(self.time[self.badmask], y[self.badmask], 'r.', markersize=
3, alpha=0.2)
ax.annotate('%.2f ppm' % self._mission.CDPP(flux), xy=(0.98, 0.975),
xycoords='axes fraction', ha='right', va='top', fontsize=12,
color='r', zorder=99)
ax.margins(0, None)
ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=16)
ax.set_ylabel(ylabel, fontsize=16)
fig.canvas.set_window_title('EVEREST2: EPIC %d' % self.ID)
if show:
pl.show()
pl.close()
else:
return fig, ax
|
plot_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pipeline, *args, **kwargs):\n if pipeline != 'everest2':\n return getattr(missions, self.mission).pipelines.plot(self.ID,\n pipeline, *args, **kwargs)\n else:\n plot_raw = kwargs.get('plot_raw', False)\n plot_cbv = kwargs.get('plot_cbv', True)\n show = kwargs.get('show', True)\n if plot_raw:\n y = self.fraw\n ylabel = 'Raw Flux'\n elif plot_cbv:\n y = self.fcor\n ylabel = 'EVEREST2 Flux'\n else:\n y = self.flux\n ylabel = 'EVEREST2 Flux'\n bnmask = np.concatenate([self.nanmask, self.badmask])\n time = np.delete(self.time, bnmask)\n flux = np.delete(y, bnmask)\n fig, ax = pl.subplots(1, figsize=(10, 4))\n fig.subplots_adjust(bottom=0.15)\n ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.plot(self.time[self.badmask], y[self.badmask], 'r.', markersize=\n 3, alpha=0.2)\n ax.annotate('%.2f ppm' % self._mission.CDPP(flux), xy=(0.98, 0.975),\n xycoords='axes fraction', ha='right', va='top', fontsize=12,\n color='r', zorder=99)\n ax.margins(0, None)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=16)\n ax.set_ylabel(ylabel, fontsize=16)\n fig.canvas.set_window_title('EVEREST2: EPIC %d' % self.ID)\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n",
"role": "user"
},
{
"content": "plot_pipeline",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
return getattr(missions, self.mission).pipelines.get(self.ID, *args, **
kwargs)
|
get_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n return getattr(missions, self.mission).pipelines.get(self.ID, *args, **\n kwargs)\n",
"role": "user"
},
{
"content": "get_pipeline",
"role": "assistant"
}
] |
def x(self, t0, period, dur=0.2):
mask = []
t0 += np.ceil((self.time[0] - dur - t0) / period) * period
for t in np.arange(t0, self.time[-1] + dur, period):
mask.extend(np.where(np.abs(self.time - t) < dur / 2.0)[0])
self.transitmask = np.array(list(set(np.concatenate([self.transitmask,
mask]))))
|
mask_planet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t0, period, dur=0.2):\n mask = []\n t0 += np.ceil((self.time[0] - dur - t0) / period) * period\n for t in np.arange(t0, self.time[-1] + dur, period):\n mask.extend(np.where(np.abs(self.time - t) < dur / 2.0)[0])\n self.transitmask = np.array(list(set(np.concatenate([self.transitmask,\n mask]))))\n",
"role": "user"
},
{
"content": "mask_planet",
"role": "assistant"
}
] |
def x(self):
d = dict(self.__dict__)
d.pop('_weights', None)
d.pop('_A', None)
d.pop('_B', None)
d.pop('_f', None)
d.pop('_mK', None)
d.pop('K', None)
d.pop('dvs', None)
d.pop('clobber', None)
d.pop('clobber_tpf', None)
d.pop('_mission', None)
d.pop('debug', None)
np.savez(os.path.join(self.dir, self.name + '.npz'), **d)
|
save_npz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = dict(self.__dict__)\n d.pop('_weights', None)\n d.pop('_A', None)\n d.pop('_B', None)\n d.pop('_f', None)\n d.pop('_mK', None)\n d.pop('K', None)\n d.pop('dvs', None)\n d.pop('clobber', None)\n d.pop('clobber_tpf', None)\n d.pop('_mission', None)\n d.pop('debug', None)\n np.savez(os.path.join(self.dir, self.name + '.npz'), **d)\n",
"role": "user"
},
{
"content": "save_npz",
"role": "assistant"
}
] |
def x(self, piter=3, pmaxf=300, ppert=0.1):
self._save_npz()
optimized = pPLD(self.ID, piter=piter, pmaxf=pmaxf, ppert=ppert, debug=
True, clobber=True)
optimized.publish()
self.reset()
|
optimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, piter=3, pmaxf=300, ppert=0.1):\n self._save_npz()\n optimized = pPLD(self.ID, piter=piter, pmaxf=pmaxf, ppert=ppert, debug=\n True, clobber=True)\n optimized.publish()\n self.reset()\n",
"role": "user"
},
{
"content": "optimize",
"role": "assistant"
}
] |
def x(self, t0, period, dur=0.2):
self.mask_planet(t0, period, dur)
gp = GP(self.kernel, self.kernel_params, white=False)
gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))
med = np.nanmedian(self.apply_mask(self.flux))
y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)
fwhite = self.flux - y
fwhite /= np.nanmedian(fwhite)
tfold = (self.time - t0 - period / 2.0) % period - period / 2.0
inds = np.where(np.abs(tfold) < 2 * dur)[0]
x = tfold[inds]
y = fwhite[inds]
fig, ax = pl.subplots(1, figsize=(9, 5))
fig.subplots_adjust(bottom=0.125)
ax.plot(x, y, 'k.', alpha=0.5)
yfin = np.delete(y, np.where(np.isnan(y)))
lo, hi = yfin[np.argsort(yfin)][[3, -3]]
pad = (hi - lo) * 0.1
ylim = lo - pad, hi + pad
ax.set_ylim(*ylim)
ax.set_xlabel('Time (days)', fontsize=18)
ax.set_ylabel('Normalized Flux', fontsize=18)
fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))
pl.show()
|
plot_folded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t0, period, dur=0.2):\n self.mask_planet(t0, period, dur)\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))\n med = np.nanmedian(self.apply_mask(self.flux))\n y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)\n fwhite = self.flux - y\n fwhite /= np.nanmedian(fwhite)\n tfold = (self.time - t0 - period / 2.0) % period - period / 2.0\n inds = np.where(np.abs(tfold) < 2 * dur)[0]\n x = tfold[inds]\n y = fwhite[inds]\n fig, ax = pl.subplots(1, figsize=(9, 5))\n fig.subplots_adjust(bottom=0.125)\n ax.plot(x, y, 'k.', alpha=0.5)\n yfin = np.delete(y, np.where(np.isnan(y)))\n lo, hi = yfin[np.argsort(yfin)][[3, -3]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(*ylim)\n ax.set_xlabel('Time (days)', fontsize=18)\n ax.set_ylabel('Normalized Flux', fontsize=18)\n fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))\n pl.show()\n",
"role": "user"
},
{
"content": "plot_folded",
"role": "assistant"
}
] |
def x(time, mask, y):
yy = np.array(y)
t_ = np.delete(time, mask)
y_ = np.delete(y, mask, axis=0)
if len(yy.shape) == 1:
yy[mask] = np.interp(time[mask], t_, y_)
elif len(yy.shape) == 2:
for n in range(yy.shape[1]):
yy[mask, n] = np.interp(time[mask], t_, y_[:, n])
else:
raise Exception('Array ``y`` must be either 1- or 2-d.')
return yy
|
Interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(time, mask, y):\n yy = np.array(y)\n t_ = np.delete(time, mask)\n y_ = np.delete(y, mask, axis=0)\n if len(yy.shape) == 1:\n yy[mask] = np.interp(time[mask], t_, y_)\n elif len(yy.shape) == 2:\n for n in range(yy.shape[1]):\n yy[mask, n] = np.interp(time[mask], t_, y_[:, n])\n else:\n raise Exception('Array ``y`` must be either 1- or 2-d.')\n return yy\n",
"role": "user"
},
{
"content": "Interpolate",
"role": "assistant"
}
] |
def x(l, n, all=False):
if all:
jarr = range(0, n - 1)
else:
jarr = [0]
for j in jarr:
for i in range(j, len(l), n):
if i + 2 * n <= len(l):
yield l[i:i + n]
else:
if not all:
yield l[i:]
break
|
Chunks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, n, all=False):\n if all:\n jarr = range(0, n - 1)\n else:\n jarr = [0]\n for j in jarr:\n for i in range(j, len(l), n):\n if i + 2 * n <= len(l):\n yield l[i:i + n]\n else:\n if not all:\n yield l[i:]\n break\n",
"role": "user"
},
{
"content": "Chunks",
"role": "assistant"
}
] |
def x(x, window_len=100, window='hanning'):
if window_len == 0:
return np.zeros_like(x)
s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:-
window_len:-1]]
if window == 'flat':
w = np.ones(window_len, 'd')
else:
w = eval('np.' + window + '(window_len)')
y = np.convolve(w / w.sum(), s, mode='same')
return y[window_len:-window_len + 1]
|
Smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, window_len=100, window='hanning'):\n if window_len == 0:\n return np.zeros_like(x)\n s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:-\n window_len:-1]]\n if window == 'flat':\n w = np.ones(window_len, 'd')\n else:\n w = eval('np.' + window + '(window_len)')\n y = np.convolve(w / w.sum(), s, mode='same')\n return y[window_len:-window_len + 1]\n",
"role": "user"
},
{
"content": "Smooth",
"role": "assistant"
}
] |
def x(y, win=13, remove_outliers=False):
if remove_outliers:
if len(y) >= 50:
ys = y - Smooth(y, 50)
else:
ys = y
M = np.nanmedian(ys)
MAD = 1.4826 * np.nanmedian(np.abs(ys - M))
out = []
for i, _ in enumerate(y):
if ys[i] > M + 5 * MAD or ys[i] < M - 5 * MAD:
out.append(i)
out = np.array(out, dtype=int)
y = np.delete(y, out)
if len(y):
return 1000000.0 * np.nanmedian([(np.std(yi) / np.sqrt(win)) for yi in
Chunks(y, win, all=True)])
else:
return np.nan
|
Scatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, win=13, remove_outliers=False):\n if remove_outliers:\n if len(y) >= 50:\n ys = y - Smooth(y, 50)\n else:\n ys = y\n M = np.nanmedian(ys)\n MAD = 1.4826 * np.nanmedian(np.abs(ys - M))\n out = []\n for i, _ in enumerate(y):\n if ys[i] > M + 5 * MAD or ys[i] < M - 5 * MAD:\n out.append(i)\n out = np.array(out, dtype=int)\n y = np.delete(y, out)\n if len(y):\n return 1000000.0 * np.nanmedian([(np.std(yi) / np.sqrt(win)) for yi in\n Chunks(y, win, all=True)])\n else:\n return np.nan\n",
"role": "user"
},
{
"content": "Scatter",
"role": "assistant"
}
] |
def x(y, win=49):
if len(y) >= win:
return y - savgol_filter(y, win, 2) + np.nanmedian(y)
else:
return y
|
SavGol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, win=49):\n if len(y) >= win:\n return y - savgol_filter(y, win, 2) + np.nanmedian(y)\n else:\n return y\n",
"role": "user"
},
{
"content": "SavGol",
"role": "assistant"
}
] |
def x(npix, pld_order, cross_terms=True):
res = 0
for k in range(1, pld_order + 1):
if cross_terms:
res += comb(npix + k - 1, k)
else:
res += npix
return int(res)
|
NumRegressors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(npix, pld_order, cross_terms=True):\n res = 0\n for k in range(1, pld_order + 1):\n if cross_terms:\n res += comb(npix + k - 1, k)\n else:\n res += npix\n return int(res)\n",
"role": "user"
},
{
"content": "NumRegressors",
"role": "assistant"
}
] |
def x(x, newsize, axis=0, operation='mean'):
assert newsize < x.shape[axis
], 'The new size of the array must be smaller than the current size.'
oldsize = x.shape[axis]
newshape = list(x.shape)
newshape[axis] = newsize
newshape.insert(axis + 1, oldsize // newsize)
trim = oldsize % newsize
if trim:
xtrim = x[:-trim]
else:
xtrim = x
if operation == 'mean':
xbin = np.nanmean(xtrim.reshape(newshape), axis=axis + 1)
elif operation == 'sum':
xbin = np.nansum(xtrim.reshape(newshape), axis=axis + 1)
elif operation == 'quadsum':
xbin = np.sqrt(np.nansum(xtrim.reshape(newshape) ** 2, axis=axis + 1))
elif operation == 'median':
xbin = np.nanmedian(xtrim.reshape(newshape), axis=axis + 1)
else:
raise ValueError('`operation` must be either `mean`, ' +
'`sum`, `quadsum`, or `median`.')
return xbin
|
Downbin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, newsize, axis=0, operation='mean'):\n assert newsize < x.shape[axis\n ], 'The new size of the array must be smaller than the current size.'\n oldsize = x.shape[axis]\n newshape = list(x.shape)\n newshape[axis] = newsize\n newshape.insert(axis + 1, oldsize // newsize)\n trim = oldsize % newsize\n if trim:\n xtrim = x[:-trim]\n else:\n xtrim = x\n if operation == 'mean':\n xbin = np.nanmean(xtrim.reshape(newshape), axis=axis + 1)\n elif operation == 'sum':\n xbin = np.nansum(xtrim.reshape(newshape), axis=axis + 1)\n elif operation == 'quadsum':\n xbin = np.sqrt(np.nansum(xtrim.reshape(newshape) ** 2, axis=axis + 1))\n elif operation == 'median':\n xbin = np.nanmedian(xtrim.reshape(newshape), axis=axis + 1)\n else:\n raise ValueError('`operation` must be either `mean`, ' +\n '`sum`, `quadsum`, or `median`.')\n return xbin\n",
"role": "user"
},
{
"content": "Downbin",
"role": "assistant"
}
] |
def x(self, name, model):
if self.name:
raise FieldError('Field %s is already registered with a model' % self)
self.name = name
self.attname = self.get_attname()
self.model = model
meta = model._meta
self.meta = meta
meta.dfields[name] = self
meta.fields.append(self)
if not self.primary_key:
self.add_to_fields()
else:
model._meta.pk = self
|
register_with_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, model):\n if self.name:\n raise FieldError('Field %s is already registered with a model' % self)\n self.name = name\n self.attname = self.get_attname()\n self.model = model\n meta = model._meta\n self.meta = meta\n meta.dfields[name] = self\n meta.fields.append(self)\n if not self.primary_key:\n self.add_to_fields()\n else:\n model._meta.pk = self\n",
"role": "user"
},
{
"content": "register_with_model",
"role": "assistant"
}
] |
def x(self):
meta = self.model._meta
meta.scalarfields.append(self)
if self.index:
meta.indices.append(self)
|
add_to_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n meta = self.model._meta\n meta.scalarfields.append(self)\n if self.index:\n meta.indices.append(self)\n",
"role": "user"
},
{
"content": "add_to_fields",
"role": "assistant"
}
] |
def x(self, remaining, errorClass=ValueError):
if remaining:
raise errorClass('Cannot use nested lookup on field %s' % self)
return self.attname, None
|
get_lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, remaining, errorClass=ValueError):\n if remaining:\n raise errorClass('Cannot use nested lookup on field %s' % self)\n return self.attname, None\n",
"role": "user"
},
{
"content": "get_lookup",
"role": "assistant"
}
] |
def x(self, instance, *bits):
if bits:
raise AttributeError
else:
return getattr(instance, self.attname)
|
get_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, *bits):\n if bits:\n raise AttributeError\n else:\n return getattr(instance, self.attname)\n",
"role": "user"
},
{
"content": "get_value",
"role": "assistant"
}
] |
def x(self, instance, value):
setattr(instance, self.attname, self.to_python(value))
|
set_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, value):\n setattr(instance, self.attname, self.to_python(value))\n",
"role": "user"
},
{
"content": "set_value",
"role": "assistant"
}
] |
def x(var_name, contexts=(), start=0):
start = len(contexts) if start >= 0 else start
for context in reversed(contexts[:start]):
try:
if var_name in context:
return context[var_name]
except TypeError as te:
continue
return None
|
lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(var_name, contexts=(), start=0):\n start = len(contexts) if start >= 0 else start\n for context in reversed(contexts[:start]):\n try:\n if var_name in context:\n return context[var_name]\n except TypeError as te:\n continue\n return None\n",
"role": "user"
},
{
"content": "lookup",
"role": "assistant"
}
] |
def x(delimiters):
delimiters = tuple(delimiters)
if delimiters in re_delimiters:
re_tag = re_delimiters[delimiters]
else:
open_tag, close_tag = delimiters
open_tag = ''.join([(c if c.isalnum() else '\\' + c) for c in open_tag]
)
close_tag = ''.join([(c if c.isalnum() else '\\' + c) for c in
close_tag])
re_tag = re.compile(open_tag + '([#^>&{/!=]?)\\s*(.*?)\\s*([}=]?)' +
close_tag, re.DOTALL)
re_delimiters[delimiters] = re_tag
return re_tag
|
delimiters_to_re
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(delimiters):\n delimiters = tuple(delimiters)\n if delimiters in re_delimiters:\n re_tag = re_delimiters[delimiters]\n else:\n open_tag, close_tag = delimiters\n open_tag = ''.join([(c if c.isalnum() else '\\\\' + c) for c in open_tag]\n )\n close_tag = ''.join([(c if c.isalnum() else '\\\\' + c) for c in\n close_tag])\n re_tag = re.compile(open_tag + '([#^>&{/!=]?)\\\\s*(.*?)\\\\s*([}=]?)' +\n close_tag, re.DOTALL)\n re_delimiters[delimiters] = re_tag\n return re_tag\n",
"role": "user"
},
{
"content": "delimiters_to_re",
"role": "assistant"
}
] |
def x(text, start, end):
left = False
start -= 1
while start >= 0 and text[start] in spaces_not_newline:
start -= 1
if start < 0 or text[start] == '\n':
left = True
right = re_space.match(text, end)
return (start + 1, right.end()) if left and right else None
|
is_standalone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, start, end):\n left = False\n start -= 1\n while start >= 0 and text[start] in spaces_not_newline:\n start -= 1\n if start < 0 or text[start] == '\\n':\n left = True\n right = re_space.match(text, end)\n return (start + 1, right.end()) if left and right else None\n",
"role": "user"
},
{
"content": "is_standalone",
"role": "assistant"
}
] |
def x(template, delimiters=DEFAULT_DELIMITERS):
re_tag = delimiters_to_re(delimiters)
tokens = []
index = 0
sections = []
tokens_stack = []
root = Root('root')
root.filters = copy.copy(filters)
m = re_tag.search(template, index)
while m is not None:
token = None
last_literal = None
strip_space = False
if m.start() > index:
last_literal = Literal('str', template[index:m.start()], root=root)
tokens.append(last_literal)
prefix, name, suffix = m.groups()
if prefix == '=' and suffix == '=':
delimiters = re.split('\\s+', name)
if len(delimiters) != 2:
raise SyntaxError('Invalid new delimiter definition: ' + m.
group())
re_tag = delimiters_to_re(delimiters)
strip_space = True
elif prefix == '{' and suffix == '}':
token = Variable(name, name, root=root)
elif prefix == '' and suffix == '':
token = Variable(name, name, root=root)
token.escape = True
elif suffix != '' and suffix != None:
raise SyntaxError('Invalid token: ' + m.group())
elif prefix == '&':
token = Variable(name, name, root=root)
elif prefix == '!':
token = Comment(name, root=root)
if len(sections) <= 0:
strip_space = True
elif prefix == '>':
token = Partial(name, name, root=root)
strip_space = True
pos = is_standalone(template, m.start(), m.end())
if pos:
token.indent = len(template[pos[0]:m.start()])
elif prefix == '#' or prefix == '^':
sec_name = name.split('|')[0].strip()
token = Section(sec_name, name, root=root
) if prefix == '#' else Inverted(name, name, root=root)
token.delimiter = delimiters
tokens.append(token)
token = None
tokens_stack.append(tokens)
tokens = []
sections.append((sec_name, prefix, m.end()))
strip_space = True
elif prefix == '/':
tag_name, sec_type, text_end = sections.pop()
if tag_name != name:
raise SyntaxError("unclosed tag: '" + tag_name + "' Got:" +
m.group())
children = tokens
tokens = tokens_stack.pop()
tokens[-1].text = template[text_end:m.start()]
tokens[-1].children = children
strip_space = True
else:
raise SyntaxError('Unknown tag: ' + m.group())
if token is not None:
tokens.append(token)
index = m.end()
if strip_space:
pos = is_standalone(template, m.start(), m.end())
if pos:
index = pos[1]
if last_literal:
last_literal.value = last_literal.value.rstrip(
spaces_not_newline)
m = re_tag.search(template, index)
tokens.append(Literal('str', template[index:]))
root.children = tokens
return root
|
compiled
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(template, delimiters=DEFAULT_DELIMITERS):\n re_tag = delimiters_to_re(delimiters)\n tokens = []\n index = 0\n sections = []\n tokens_stack = []\n root = Root('root')\n root.filters = copy.copy(filters)\n m = re_tag.search(template, index)\n while m is not None:\n token = None\n last_literal = None\n strip_space = False\n if m.start() > index:\n last_literal = Literal('str', template[index:m.start()], root=root)\n tokens.append(last_literal)\n prefix, name, suffix = m.groups()\n if prefix == '=' and suffix == '=':\n delimiters = re.split('\\\\s+', name)\n if len(delimiters) != 2:\n raise SyntaxError('Invalid new delimiter definition: ' + m.\n group())\n re_tag = delimiters_to_re(delimiters)\n strip_space = True\n elif prefix == '{' and suffix == '}':\n token = Variable(name, name, root=root)\n elif prefix == '' and suffix == '':\n token = Variable(name, name, root=root)\n token.escape = True\n elif suffix != '' and suffix != None:\n raise SyntaxError('Invalid token: ' + m.group())\n elif prefix == '&':\n token = Variable(name, name, root=root)\n elif prefix == '!':\n token = Comment(name, root=root)\n if len(sections) <= 0:\n strip_space = True\n elif prefix == '>':\n token = Partial(name, name, root=root)\n strip_space = True\n pos = is_standalone(template, m.start(), m.end())\n if pos:\n token.indent = len(template[pos[0]:m.start()])\n elif prefix == '#' or prefix == '^':\n sec_name = name.split('|')[0].strip()\n token = Section(sec_name, name, root=root\n ) if prefix == '#' else Inverted(name, name, root=root)\n token.delimiter = delimiters\n tokens.append(token)\n token = None\n tokens_stack.append(tokens)\n tokens = []\n sections.append((sec_name, prefix, m.end()))\n strip_space = True\n elif prefix == '/':\n tag_name, sec_type, text_end = sections.pop()\n if tag_name != name:\n raise SyntaxError(\"unclosed tag: '\" + tag_name + \"' Got:\" +\n m.group())\n children = tokens\n tokens = tokens_stack.pop()\n tokens[-1].text = template[text_end:m.start()]\n tokens[-1].children = children\n strip_space = True\n else:\n raise SyntaxError('Unknown tag: ' + m.group())\n if token is not None:\n tokens.append(token)\n index = m.end()\n if strip_space:\n pos = is_standalone(template, m.start(), m.end())\n if pos:\n index = pos[1]\n if last_literal:\n last_literal.value = last_literal.value.rstrip(\n spaces_not_newline)\n m = re_tag.search(template, index)\n tokens.append(Literal('str', template[index:]))\n root.children = tokens\n return root\n",
"role": "user"
},
{
"content": "compiled",
"role": "assistant"
}
] |
def x(self, text):
ret = EMPTYSTRING if text is None else str(text)
if self.escape:
return html_escape(ret)
else:
return ret
|
escape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n ret = EMPTYSTRING if text is None else str(text)\n if self.escape:\n return html_escape(ret)\n else:\n return ret\n",
"role": "user"
},
{
"content": "escape",
"role": "assistant"
}
] |
def x(self, dot_name, contexts):
filters = [x for x in map(lambda x: x.strip(), dot_name.split('|'))]
dot_name = filters[0]
filters = filters[1:]
if not dot_name.startswith('.'):
dot_name = './' + dot_name
paths = dot_name.split('/')
last_path = paths[-1]
refer_context = last_path == '' or last_path == '.' or last_path == '..'
paths = paths if refer_context else paths[:-1]
level = 0
for path in paths:
if path == '..':
level -= 1
elif path != '.':
level += len(path.strip('.').split('.'))
names = last_path.split('.')
if refer_context or names[0] == '':
try:
value = contexts[level - 1]
except:
value = None
else:
value = lookup(names[0], contexts, level)
if not refer_context:
for name in names[1:]:
try:
index = parse_int(name)
name = parse_int(name) if isinstance(value, (list, tuple)
) else name
value = value[name]
except:
value = None
break
for f in filters:
try:
func = self.root.filters[f]
value = func(value)
except:
continue
return value
|
lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dot_name, contexts):\n filters = [x for x in map(lambda x: x.strip(), dot_name.split('|'))]\n dot_name = filters[0]\n filters = filters[1:]\n if not dot_name.startswith('.'):\n dot_name = './' + dot_name\n paths = dot_name.split('/')\n last_path = paths[-1]\n refer_context = last_path == '' or last_path == '.' or last_path == '..'\n paths = paths if refer_context else paths[:-1]\n level = 0\n for path in paths:\n if path == '..':\n level -= 1\n elif path != '.':\n level += len(path.strip('.').split('.'))\n names = last_path.split('.')\n if refer_context or names[0] == '':\n try:\n value = contexts[level - 1]\n except:\n value = None\n else:\n value = lookup(names[0], contexts, level)\n if not refer_context:\n for name in names[1:]:\n try:\n index = parse_int(name)\n name = parse_int(name) if isinstance(value, (list, tuple)\n ) else name\n value = value[name]\n except:\n value = None\n break\n for f in filters:\n try:\n func = self.root.filters[f]\n value = func(value)\n except:\n continue\n return value\n",
"role": "user"
},
{
"content": "lookup",
"role": "assistant"
}
] |
def x(self, contexts, partials):
ret = []
for child in self.children:
ret.append(child._render(contexts, partials))
return EMPTYSTRING.join(ret)
|
render_children
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contexts, partials):\n ret = []\n for child in self.children:\n ret.append(child._render(contexts, partials))\n return EMPTYSTRING.join(ret)\n",
"role": "user"
},
{
"content": "render_children",
"role": "assistant"
}
] |
def x(self, contexts, partials):
value = self._lookup(self.value, contexts)
if callable(value):
value = inner_render(str(value()), contexts, partials)
return self._escape(value)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contexts, partials):\n value = self._lookup(self.value, contexts)\n if callable(value):\n value = inner_render(str(value()), contexts, partials)\n return self._escape(value)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, contexts, partials):
val = self._lookup(self.value, contexts)
if not val:
return EMPTYSTRING
if hasattr(val, '__iter__') and not isinstance(val, (str, dict)):
ret = []
for item in val:
contexts.append(item)
ret.append(self._render_children(contexts, partials))
contexts.pop()
if len(ret) <= 0:
return EMPTYSTRING
return self._escape(''.join(ret))
elif callable(val):
new_template = val(self.text)
value = inner_render(new_template, contexts, partials, self.delimiter)
else:
contexts.append(val)
value = self._render_children(contexts, partials)
contexts.pop()
return self._escape(value)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contexts, partials):\n val = self._lookup(self.value, contexts)\n if not val:\n return EMPTYSTRING\n if hasattr(val, '__iter__') and not isinstance(val, (str, dict)):\n ret = []\n for item in val:\n contexts.append(item)\n ret.append(self._render_children(contexts, partials))\n contexts.pop()\n if len(ret) <= 0:\n return EMPTYSTRING\n return self._escape(''.join(ret))\n elif callable(val):\n new_template = val(self.text)\n value = inner_render(new_template, contexts, partials, self.delimiter)\n else:\n contexts.append(val)\n value = self._render_children(contexts, partials)\n contexts.pop()\n return self._escape(value)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, contexts, partials):
val = self._lookup(self.value, contexts)
if val:
return EMPTYSTRING
return self._render_children(contexts, partials)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contexts, partials):\n val = self._lookup(self.value, contexts)\n if val:\n return EMPTYSTRING\n return self._render_children(contexts, partials)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, contexts, partials):
try:
partial = partials[self.value]
except KeyError as e:
return self._escape(EMPTYSTRING)
partial = re_insert_indent.sub('\\1' + ' ' * self.indent, partial)
return inner_render(partial, contexts, partials, self.delimiter)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contexts, partials):\n try:\n partial = partials[self.value]\n except KeyError as e:\n return self._escape(EMPTYSTRING)\n partial = re_insert_indent.sub('\\\\1' + ' ' * self.indent, partial)\n return inner_render(partial, contexts, partials, self.delimiter)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x():
if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')):
os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv'))
GetK2Stars(clobber=False)
|
Setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')):\n os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv'))\n GetK2Stars(clobber=False)\n",
"role": "user"
},
{
"content": "Setup",
"role": "assistant"
}
] |
def x(flux, mask=[], cadence='lc'):
rmswin = 13
svgwin = 49
if cadence == 'sc':
newsize = len(flux) // 30
flux = Downbin(flux, newsize, operation='mean')
flux_savgol = SavGol(np.delete(flux, mask), win=svgwin)
if len(flux_savgol):
return Scatter(flux_savgol / np.nanmedian(flux_savgol),
remove_outliers=True, win=rmswin)
else:
return np.nan
|
CDPP
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(flux, mask=[], cadence='lc'):\n rmswin = 13\n svgwin = 49\n if cadence == 'sc':\n newsize = len(flux) // 30\n flux = Downbin(flux, newsize, operation='mean')\n flux_savgol = SavGol(np.delete(flux, mask), win=svgwin)\n if len(flux_savgol):\n return Scatter(flux_savgol / np.nanmedian(flux_savgol),\n remove_outliers=True, win=rmswin)\n else:\n return np.nan\n",
"role": "user"
},
{
"content": "CDPP",
"role": "assistant"
}
] |
def x(EPIC, season=None, model=None, neighbors=10, mag_range=(11.0, 13.0),
cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs):
if neighbors == 0:
return []
if season is None:
campaign = Season(EPIC)
if hasattr(campaign, '__len__'):
raise AttributeError(
'Please choose a campaign/season for this target: %s.' %
campaign)
else:
campaign = season
epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[campaign]
).T
short_cadence = np.array(short_cadence, dtype=bool)
epics = np.array(epics, dtype=int)
c = GetNeighboringChannels(Channel(EPIC, campaign=season))
if aperture_name is None:
aperture_name = 'k2sff_15'
if mag_range is None:
mag_lo = -np.inf
mag_hi = np.inf
else:
mag_lo = mag_range[0]
mag_hi = mag_range[1]
if cadence == 'sc':
mag_lo = 8.0
if cdpp_range is None:
cdpp_lo = -np.inf
cdpp_hi = np.inf
else:
cdpp_lo = cdpp_range[0]
cdpp_hi = cdpp_range[1]
targets = []
for n in range(3):
if n == 0:
nearby = True
elif n == 1:
nearby = False
elif n == 2:
mag_lo -= 1
mag_hi += 1
for star, kp, channel, sc in zip(epics, kepmags, channels,
short_cadence):
if not ((channel in c if nearby else True) and kp < mag_hi and
kp > mag_lo and (sc if cadence == 'sc' else True)):
continue
if star == EPIC or star in targets:
continue
if not os.path.exists(os.path.join(TargetDirectory(star,
campaign), 'data.npz')):
continue
contam = False
data = np.load(os.path.join(TargetDirectory(star, campaign),
'data.npz'))
aperture = data['apertures'][()][aperture_name]
if aperture is None:
continue
fpix = data['fpix']
for source in data['nearby'][()]:
if source['ID'] == star:
continue
if source['mag'] < kp - 5:
continue
x = int(np.round(source['x'] - source['x0']))
y = int(np.round(source['y'] - source['y0']))
for j in [x - 2, x - 1, x, x + 1, x + 2]:
if j < 0:
continue
for i in [y - 2, y - 1, y, y + 1, y + 2]:
if i < 0:
continue
try:
if aperture[i][j]:
contam = True
except IndexError:
pass
if contam:
continue
if aperture.shape != fpix.shape[1:]:
continue
if model is not None:
if not os.path.exists(os.path.join(TargetDirectory(star,
campaign), model + '.npz')):
continue
if cdpp_range is not None:
cdpp = np.load(os.path.join(TargetDirectory(star,
campaign), model + '.npz'))['cdpp']
if cdpp > cdpp_hi or cdpp < cdpp_lo:
continue
targets.append(star)
if len(targets) == neighbors:
random.shuffle(targets)
return targets
return targets
|
GetNeighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(EPIC, season=None, model=None, neighbors=10, mag_range=(11.0, 13.0),\n cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs):\n if neighbors == 0:\n return []\n if season is None:\n campaign = Season(EPIC)\n if hasattr(campaign, '__len__'):\n raise AttributeError(\n 'Please choose a campaign/season for this target: %s.' %\n campaign)\n else:\n campaign = season\n epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[campaign]\n ).T\n short_cadence = np.array(short_cadence, dtype=bool)\n epics = np.array(epics, dtype=int)\n c = GetNeighboringChannels(Channel(EPIC, campaign=season))\n if aperture_name is None:\n aperture_name = 'k2sff_15'\n if mag_range is None:\n mag_lo = -np.inf\n mag_hi = np.inf\n else:\n mag_lo = mag_range[0]\n mag_hi = mag_range[1]\n if cadence == 'sc':\n mag_lo = 8.0\n if cdpp_range is None:\n cdpp_lo = -np.inf\n cdpp_hi = np.inf\n else:\n cdpp_lo = cdpp_range[0]\n cdpp_hi = cdpp_range[1]\n targets = []\n for n in range(3):\n if n == 0:\n nearby = True\n elif n == 1:\n nearby = False\n elif n == 2:\n mag_lo -= 1\n mag_hi += 1\n for star, kp, channel, sc in zip(epics, kepmags, channels,\n short_cadence):\n if not ((channel in c if nearby else True) and kp < mag_hi and \n kp > mag_lo and (sc if cadence == 'sc' else True)):\n continue\n if star == EPIC or star in targets:\n continue\n if not os.path.exists(os.path.join(TargetDirectory(star,\n campaign), 'data.npz')):\n continue\n contam = False\n data = np.load(os.path.join(TargetDirectory(star, campaign),\n 'data.npz'))\n aperture = data['apertures'][()][aperture_name]\n if aperture is None:\n continue\n fpix = data['fpix']\n for source in data['nearby'][()]:\n if source['ID'] == star:\n continue\n if source['mag'] < kp - 5:\n continue\n x = int(np.round(source['x'] - source['x0']))\n y = int(np.round(source['y'] - source['y0']))\n for j in [x - 2, x - 1, x, x + 1, x + 2]:\n if j < 0:\n continue\n for i in [y - 2, y - 1, y, y + 1, y + 2]:\n if i < 0:\n continue\n try:\n if aperture[i][j]:\n contam = True\n except IndexError:\n pass\n if contam:\n continue\n if aperture.shape != fpix.shape[1:]:\n continue\n if model is not None:\n if not os.path.exists(os.path.join(TargetDirectory(star,\n campaign), model + '.npz')):\n continue\n if cdpp_range is not None:\n cdpp = np.load(os.path.join(TargetDirectory(star,\n campaign), model + '.npz'))['cdpp']\n if cdpp > cdpp_hi or cdpp < cdpp_lo:\n continue\n targets.append(star)\n if len(targets) == neighbors:\n random.shuffle(targets)\n return targets\n return targets\n",
"role": "user"
},
{
"content": "GetNeighbors",
"role": "assistant"
}
] |
def x(model='nPLD', compare_to='k2sff', **kwargs):
f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv')
epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt(f, unpack=True,
skiprows=2)
epic = np.array(epic, dtype=int)
campaign = np.array(campaign, dtype=int)
cdpp = np.zeros(len(epic))
saturated = np.zeros(len(epic), dtype=int)
cdpp_1 = np.zeros(len(epic))
for c in set(campaign):
f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables',
'c%02d_%s.cdpp' % (int(c), model))
e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2)
for i, e in enumerate(epic):
if e in e0:
j = np.argmax(e0 == e)
cdpp[i] = c0[j]
saturated[i] = s0[j]
f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables',
'c%02d_%s.cdpp' % (int(c), compare_to.lower()))
if not os.path.exists(f):
continue
if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']:
e1, c1 = np.loadtxt(f, unpack=True, skiprows=2)
else:
e1, _, _, c1, _, _, _, _, _ = np.loadtxt(f, unpack=True, skiprows=2
)
for i, e in enumerate(epic):
if e in e1:
j = np.argmax(e1 == e)
cdpp_1[i] = c1[j]
sat = np.where(saturated == 1)
unsat = np.where(saturated == 0)
fig, ax = pl.subplots(1)
fig.canvas.set_window_title('K2 Planet Hosts: %s versus %s' % (model,
compare_to))
x = kp
y = (cdpp - cdpp_1) / cdpp_1
ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder
=-1, picker=True)
ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1,
picker=True)
ax.set_ylim(-1, 1)
ax.set_xlim(8, 18)
ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5)
ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)
ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)
ax.set_title('K2 Planet Hosts', fontsize=18)
ax.set_ylabel('Relative CDPP', fontsize=18)
ax.set_xlabel('Kepler Magnitude', fontsize=18)
Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to=
compare_to)
fig.canvas.mpl_connect('pick_event', Picker)
pl.show()
|
PlanetStatistics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model='nPLD', compare_to='k2sff', **kwargs):\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv')\n epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt(f, unpack=True,\n skiprows=2)\n epic = np.array(epic, dtype=int)\n campaign = np.array(campaign, dtype=int)\n cdpp = np.zeros(len(epic))\n saturated = np.zeros(len(epic), dtype=int)\n cdpp_1 = np.zeros(len(epic))\n for c in set(campaign):\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(c), model))\n e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2)\n for i, e in enumerate(epic):\n if e in e0:\n j = np.argmax(e0 == e)\n cdpp[i] = c0[j]\n saturated[i] = s0[j]\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(c), compare_to.lower()))\n if not os.path.exists(f):\n continue\n if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']:\n e1, c1 = np.loadtxt(f, unpack=True, skiprows=2)\n else:\n e1, _, _, c1, _, _, _, _, _ = np.loadtxt(f, unpack=True, skiprows=2\n )\n for i, e in enumerate(epic):\n if e in e1:\n j = np.argmax(e1 == e)\n cdpp_1[i] = c1[j]\n sat = np.where(saturated == 1)\n unsat = np.where(saturated == 0)\n fig, ax = pl.subplots(1)\n fig.canvas.set_window_title('K2 Planet Hosts: %s versus %s' % (model,\n compare_to))\n x = kp\n y = (cdpp - cdpp_1) / cdpp_1\n ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder\n =-1, picker=True)\n ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1,\n picker=True)\n ax.set_ylim(-1, 1)\n ax.set_xlim(8, 18)\n ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5)\n ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)\n ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)\n ax.set_title('K2 Planet Hosts', fontsize=18)\n ax.set_ylabel('Relative CDPP', fontsize=18)\n ax.set_xlabel('Kepler Magnitude', fontsize=18)\n Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to=\n compare_to)\n fig.canvas.mpl_connect('pick_event', Picker)\n pl.show()\n",
"role": "user"
},
{
"content": "PlanetStatistics",
"role": "assistant"
}
] |
def x(EPIC, season=None):
if season is None:
season = Campaign(EPIC)
if season is None:
return None
stars = GetK2Campaign(season)
i = np.where([(s[0] == EPIC) for s in stars])[0]
if len(i):
return stars[i[0]][3]
else:
return None
|
HasShortCadence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(EPIC, season=None):\n if season is None:\n season = Campaign(EPIC)\n if season is None:\n return None\n stars = GetK2Campaign(season)\n i = np.where([(s[0] == EPIC) for s in stars])[0]\n if len(i):\n return stars[i[0]][3]\n else:\n return None\n",
"role": "user"
},
{
"content": "HasShortCadence",
"role": "assistant"
}
] |
def x(ID, season, relative=False, **kwargs):
if season is None:
return None
if relative:
path = ''
else:
path = EVEREST_DAT
return os.path.join(path, 'k2', 'c%02d' % season, ('%09d' % ID)[:4] +
'00000', ('%09d' % ID)[4:])
|
TargetDirectory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, season, relative=False, **kwargs):\n if season is None:\n return None\n if relative:\n path = ''\n else:\n path = EVEREST_DAT\n return os.path.join(path, 'k2', 'c%02d' % season, ('%09d' % ID)[:4] +\n '00000', ('%09d' % ID)[4:])\n",
"role": "user"
},
{
"content": "TargetDirectory",
"role": "assistant"
}
] |
def x(ID, season, cadence='lc'):
if cadence == 'sc':
strcadence = '_sc'
else:
strcadence = ''
return 'hlsp_everest_k2_llc_%d-c%02d_kepler_v%s_dvs%s.pdf' % (ID,
season, EVEREST_MAJOR_MINOR, strcadence)
|
DVSFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, season, cadence='lc'):\n if cadence == 'sc':\n strcadence = '_sc'\n else:\n strcadence = ''\n return 'hlsp_everest_k2_llc_%d-c%02d_kepler_v%s_dvs%s.pdf' % (ID,\n season, EVEREST_MAJOR_MINOR, strcadence)\n",
"role": "user"
},
{
"content": "DVSFile",
"role": "assistant"
}
] |
def x(model):
season = model.season
name = model.name
if name.endswith('.sc'):
name = name[:-3]
model.XCBV = sysrem.GetCBVs(season, model=name, niter=model.cbv_niter,
sv_win=model.cbv_win, sv_order=model.cbv_order)
|
GetTargetCBVs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n season = model.season\n name = model.name\n if name.endswith('.sc'):\n name = name[:-3]\n model.XCBV = sysrem.GetCBVs(season, model=name, niter=model.cbv_niter,\n sv_win=model.cbv_win, sv_order=model.cbv_order)\n",
"role": "user"
},
{
"content": "GetTargetCBVs",
"role": "assistant"
}
] |
def x(model):
if model.XCBV is None:
GetTargetCBVs(model)
ncbv = model.cbv_num
if model.cadence == 'lc':
m = [None for b in range(len(model.breakpoints))]
weights = [None for b in range(len(model.breakpoints))]
for b in range(len(model.breakpoints)):
inds = model.get_chunk(b, pad=False)
masked_inds = model.get_masked_chunk(b, pad=False)
mX = model.XCBV[masked_inds, :ncbv + 1]
A = np.dot(mX.T, mX)
B = np.dot(mX.T, model.flux[masked_inds])
try:
weights[b] = np.linalg.solve(A, B)
except np.linalg.linalg.LinAlgError:
log.warn('Singular matrix!')
weights[b] = np.zeros(mX.shape[1])
m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])
if b == 0:
m[b] -= np.nanmedian(m[b])
else:
i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in
range(1, len(m[b - 1]) - 1)])
i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]
)
m[b] += m[b - 1][i0] - m[b][i1]
m = np.concatenate(m)
m -= np.nanmedian(m)
else:
flux = Interpolate(model.time, model.mask, model.flux)
newsize = len(model.time) // 30
time = Downbin(model.time, newsize, operation='mean')
flux = Downbin(flux, newsize, operation='mean')
breakpoints = list(Breakpoints(model.ID, season=model.season,
cadence='lc'))
breakpoints += [len(time) - 1]
m = [None for b in range(len(breakpoints))]
weights = [None for b in range(len(breakpoints))]
for b in range(len(breakpoints)):
M = np.arange(len(time))
if b > 0:
inds = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])]
else:
inds = M[M <= breakpoints[b]]
A = np.dot(model.XCBV[inds, :ncbv + 1].T, model.XCBV[inds, :
ncbv + 1])
B = np.dot(model.XCBV[inds, :ncbv + 1].T, flux[inds])
weights[b] = np.linalg.solve(A, B)
m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])
if b == 0:
m[b] -= np.nanmedian(m[b])
else:
i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in
range(1, len(m[b - 1]) - 1)])
i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]
)
m[b] += m[b - 1][i0] - m[b][i1]
m = np.concatenate(m)
m -= np.nanmedian(m)
m = np.interp(model.time, time, m)
return m
|
FitCBVs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n if model.XCBV is None:\n GetTargetCBVs(model)\n ncbv = model.cbv_num\n if model.cadence == 'lc':\n m = [None for b in range(len(model.breakpoints))]\n weights = [None for b in range(len(model.breakpoints))]\n for b in range(len(model.breakpoints)):\n inds = model.get_chunk(b, pad=False)\n masked_inds = model.get_masked_chunk(b, pad=False)\n mX = model.XCBV[masked_inds, :ncbv + 1]\n A = np.dot(mX.T, mX)\n B = np.dot(mX.T, model.flux[masked_inds])\n try:\n weights[b] = np.linalg.solve(A, B)\n except np.linalg.linalg.LinAlgError:\n log.warn('Singular matrix!')\n weights[b] = np.zeros(mX.shape[1])\n m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])\n if b == 0:\n m[b] -= np.nanmedian(m[b])\n else:\n i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in\n range(1, len(m[b - 1]) - 1)])\n i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]\n )\n m[b] += m[b - 1][i0] - m[b][i1]\n m = np.concatenate(m)\n m -= np.nanmedian(m)\n else:\n flux = Interpolate(model.time, model.mask, model.flux)\n newsize = len(model.time) // 30\n time = Downbin(model.time, newsize, operation='mean')\n flux = Downbin(flux, newsize, operation='mean')\n breakpoints = list(Breakpoints(model.ID, season=model.season,\n cadence='lc'))\n breakpoints += [len(time) - 1]\n m = [None for b in range(len(breakpoints))]\n weights = [None for b in range(len(breakpoints))]\n for b in range(len(breakpoints)):\n M = np.arange(len(time))\n if b > 0:\n inds = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])]\n else:\n inds = M[M <= breakpoints[b]]\n A = np.dot(model.XCBV[inds, :ncbv + 1].T, model.XCBV[inds, :\n ncbv + 1])\n B = np.dot(model.XCBV[inds, :ncbv + 1].T, flux[inds])\n weights[b] = np.linalg.solve(A, B)\n m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])\n if b == 0:\n m[b] -= np.nanmedian(m[b])\n else:\n i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in\n range(1, len(m[b - 1]) - 1)])\n i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]\n )\n m[b] += m[b - 1][i0] - m[b][i1]\n m = np.concatenate(m)\n m -= np.nanmedian(m)\n m = np.interp(model.time, time, m)\n return m\n",
"role": "user"
},
{
"content": "FitCBVs",
"role": "assistant"
}
] |
def x(campaign, model='nPLD'):
statsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables',
'c%02d_%s.cdpp' % (campaign, model))
csvfile = os.path.join(os.path.dirname(EVEREST_SRC), 'docs',
'c%02d.csv' % campaign)
epic, kp, cdpp6r, cdpp6, _, _, _, _, saturated = np.loadtxt(statsfile,
unpack=True, skiprows=2)
with open(csvfile, 'w') as f:
print('c%02d' % campaign, file=f)
for i in range(len(epic)):
print('%09d,%.3f,%.3f,%.3f,%d' % (epic[i], kp[i], cdpp6r[i],
cdpp6[i], int(saturated[i])), file=f)
|
StatsToCSV
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign, model='nPLD'):\n statsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (campaign, model))\n csvfile = os.path.join(os.path.dirname(EVEREST_SRC), 'docs', \n 'c%02d.csv' % campaign)\n epic, kp, cdpp6r, cdpp6, _, _, _, _, saturated = np.loadtxt(statsfile,\n unpack=True, skiprows=2)\n with open(csvfile, 'w') as f:\n print('c%02d' % campaign, file=f)\n for i in range(len(epic)):\n print('%09d,%.3f,%.3f,%.3f,%d' % (epic[i], kp[i], cdpp6r[i],\n cdpp6[i], int(saturated[i])), file=f)\n",
"role": "user"
},
{
"content": "StatsToCSV",
"role": "assistant"
}
] |
def x(self, item):
score = self._dict.pop(item, None)
if score is not None:
self._sl.remove(score)
return score
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item):\n score = self._dict.pop(item, None)\n if score is not None:\n self._sl.remove(score)\n return score\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self):
key = self.id + ':fields'
encoding = self.client.encoding
return tuple(sorted(f.decode(encoding) for f in self.client.smembers(key)))
|
fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n key = self.id + ':fields'\n encoding = self.client.encoding\n return tuple(sorted(f.decode(encoding) for f in self.client.smembers(key)))\n",
"role": "user"
},
{
"content": "fields",
"role": "assistant"
}
] |
def x(event, sender, **kwargs):
key = sender._meta.app_label, sender._meta.name
for callback in pending_lookups.pop(key, []):
callback(sender)
|
do_pending_lookups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(event, sender, **kwargs):\n key = sender._meta.app_label, sender._meta.name\n for callback in pending_lookups.pop(key, []):\n callback(sender)\n",
"role": "user"
},
{
"content": "do_pending_lookups",
"role": "assistant"
}
] |
def x(field):
from stdnet.odm import ModelType, StdModel, ForeignKey, CompositeIdField
name_model = field.model._meta.name
name_relmodel = field.relmodel._meta.name
if name_model == name_relmodel:
name_relmodel += '2'
through = field.through
if through is None:
name = '{0}_{1}'.format(name_model, name_relmodel)
class Meta:
app_label = field.model._meta.app_label
through = ModelType(name, (StdModel,), {'Meta': Meta})
field.through = through
field1 = ForeignKey(field.model, related_name=field.name,
related_manager_class=makeMany2ManyRelatedManager(field.relmodel,
name_model, name_relmodel))
field1.register_with_model(name_model, through)
field2 = ForeignKey(field.relmodel, related_name=field.related_name,
related_manager_class=makeMany2ManyRelatedManager(field.model,
name_relmodel, name_model))
field2.register_with_model(name_relmodel, through)
pk = CompositeIdField(name_model, name_relmodel)
pk.register_with_model('id', through)
|
Many2ManyThroughModel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(field):\n from stdnet.odm import ModelType, StdModel, ForeignKey, CompositeIdField\n name_model = field.model._meta.name\n name_relmodel = field.relmodel._meta.name\n if name_model == name_relmodel:\n name_relmodel += '2'\n through = field.through\n if through is None:\n name = '{0}_{1}'.format(name_model, name_relmodel)\n\n\n class Meta:\n app_label = field.model._meta.app_label\n through = ModelType(name, (StdModel,), {'Meta': Meta})\n field.through = through\n field1 = ForeignKey(field.model, related_name=field.name,\n related_manager_class=makeMany2ManyRelatedManager(field.relmodel,\n name_model, name_relmodel))\n field1.register_with_model(name_model, through)\n field2 = ForeignKey(field.relmodel, related_name=field.related_name,\n related_manager_class=makeMany2ManyRelatedManager(field.model,\n name_relmodel, name_model))\n field2.register_with_model(name_relmodel, through)\n pk = CompositeIdField(name_model, name_relmodel)\n pk.register_with_model('id', through)\n",
"role": "user"
},
{
"content": "Many2ManyThroughModel",
"role": "assistant"
}
] |
def x(formodel, name_relmodel, name_formodel):
class _Many2ManyRelatedManager(Many2ManyRelatedManager):
pass
_Many2ManyRelatedManager.formodel = formodel
_Many2ManyRelatedManager.name_relmodel = name_relmodel
_Many2ManyRelatedManager.name_formodel = name_formodel
return _Many2ManyRelatedManager
|
makeMany2ManyRelatedManager
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(formodel, name_relmodel, name_formodel):\n\n\n class _Many2ManyRelatedManager(Many2ManyRelatedManager):\n pass\n _Many2ManyRelatedManager.formodel = formodel\n _Many2ManyRelatedManager.name_relmodel = name_relmodel\n _Many2ManyRelatedManager.name_formodel = name_formodel\n return _Many2ManyRelatedManager\n",
"role": "user"
},
{
"content": "makeMany2ManyRelatedManager",
"role": "assistant"
}
] |
def x(self, session=None):
if self.related_instance:
session = self.related_instance.session
if session is None:
raise QuerySetError(
'Related manager can be accessed only from a loaded instance of its related model.'
)
return session
|
session
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session=None):\n if self.related_instance:\n session = self.related_instance.session\n if session is None:\n raise QuerySetError(\n 'Related manager can be accessed only from a loaded instance of its related model.'\n )\n return session\n",
"role": "user"
},
{
"content": "session",
"role": "assistant"
}
] |
def x(self, value, session=None, **kwargs):
s, instance = self.session_instance('add', value, session, **kwargs)
return s.add(instance)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, session=None, **kwargs):\n s, instance = self.session_instance('add', value, session, **kwargs)\n return s.add(instance)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, value, session=None):
s, instance = self.session_instance('remove', value, session)
instance.get_state(iid=instance.pkvalue(), action='update')
return s.delete(instance)
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, session=None):\n s, instance = self.session_instance('remove', value, session)\n instance.get_state(iid=instance.pkvalue(), action='update')\n return s.delete(instance)\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(words):
for word in words:
for w in double_metaphone(word):
if w:
w = w.strip()
if w:
yield w
|
metaphone_processor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(words):\n for word in words:\n for w in double_metaphone(word):\n if w:\n w = w.strip()\n if w:\n yield w\n",
"role": "user"
},
{
"content": "metaphone_processor",
"role": "assistant"
}
] |
def x(words):
for word in words:
r = 0
for w in double_metaphone(word):
if w:
w = w.strip()
if w:
r += 1
yield w
if not r:
yield word
|
tolerant_metaphone_processor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(words):\n for word in words:\n r = 0\n for w in double_metaphone(word):\n if w:\n w = w.strip()\n if w:\n r += 1\n yield w\n if not r:\n yield word\n",
"role": "user"
},
{
"content": "tolerant_metaphone_processor",
"role": "assistant"
}
] |
def x(words):
stem = PorterStemmer().stem
for word in words:
word = stem(word, 0, len(word) - 1)
yield word
|
stemming_processor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(words):\n stem = PorterStemmer().stem\n for word in words:\n word = stem(word, 0, len(word) - 1)\n yield word\n",
"role": "user"
},
{
"content": "stemming_processor",
"role": "assistant"
}
] |
def x(pool='AnyPool', **kwargs):
if pool == 'MPIPool':
return MPIPool(**kwargs)
elif pool == 'MultiPool':
return MultiPool(**kwargs)
elif pool == 'SerialPool':
return SerialPool(**kwargs)
elif pool == 'AnyPool':
if MPIPool.enabled():
return MPIPool(**kwargs)
elif MultiPool.enabled():
return MultiPool(**kwargs)
else:
return SerialPool(**kwargs)
else:
raise ValueError('Invalid pool ``%s``.' % pool)
|
Pool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pool='AnyPool', **kwargs):\n if pool == 'MPIPool':\n return MPIPool(**kwargs)\n elif pool == 'MultiPool':\n return MultiPool(**kwargs)\n elif pool == 'SerialPool':\n return SerialPool(**kwargs)\n elif pool == 'AnyPool':\n if MPIPool.enabled():\n return MPIPool(**kwargs)\n elif MultiPool.enabled():\n return MultiPool(**kwargs)\n else:\n return SerialPool(**kwargs)\n else:\n raise ValueError('Invalid pool ``%s``.' % pool)\n",
"role": "user"
},
{
"content": "Pool",
"role": "assistant"
}
] |
def x(self):
if self.is_master():
raise RuntimeError('Master node told to await jobs.')
status = MPI.Status()
while True:
if self.debug:
print('Worker {0} waiting for task.'.format(self.rank))
task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
if self.debug:
print('Worker {0} got task {1} with tag {2}.'.format(self.rank,
type(task), status.tag))
if isinstance(task, _close_pool_message):
if self.debug:
print('Worker {0} told to quit.'.format(self.rank))
break
if isinstance(task, _function_wrapper):
self.function = task.function
if self.debug:
print('Worker {0} replaced its task function: {1}.'.format(
self.rank, self.function))
continue
result = self.function(task)
if self.debug:
print('Worker {0} sending answer {1} with tag {2}.'.format(self
.rank, type(result), status.tag))
self.comm.isend(result, dest=0, tag=status.tag)
if self.exit_on_end:
sys.exit()
|
wait
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.is_master():\n raise RuntimeError('Master node told to await jobs.')\n status = MPI.Status()\n while True:\n if self.debug:\n print('Worker {0} waiting for task.'.format(self.rank))\n task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status)\n if self.debug:\n print('Worker {0} got task {1} with tag {2}.'.format(self.rank,\n type(task), status.tag))\n if isinstance(task, _close_pool_message):\n if self.debug:\n print('Worker {0} told to quit.'.format(self.rank))\n break\n if isinstance(task, _function_wrapper):\n self.function = task.function\n if self.debug:\n print('Worker {0} replaced its task function: {1}.'.format(\n self.rank, self.function))\n continue\n result = self.function(task)\n if self.debug:\n print('Worker {0} sending answer {1} with tag {2}.'.format(self\n .rank, type(result), status.tag))\n self.comm.isend(result, dest=0, tag=status.tag)\n if self.exit_on_end:\n sys.exit()\n",
"role": "user"
},
{
"content": "wait",
"role": "assistant"
}
] |
def x(self, function, tasks):
ntask = len(tasks)
if not self.is_master():
self.wait()
return
if function is not self.function:
if self.debug:
print('Master replacing pool function with {0}.'.format(function))
self.function = function
F = _function_wrapper(function)
requests = []
for i in range(self.size):
r = self.comm.isend(F, dest=i + 1)
requests.append(r)
MPI.Request.waitall(requests)
if not self.loadbalance or ntask <= self.size:
requests = []
for i, task in enumerate(tasks):
worker = i % self.size + 1
if self.debug:
print('Sent task {0} to worker {1} with tag {2}.'.format(
type(task), worker, i))
r = self.comm.isend(task, dest=worker, tag=i)
requests.append(r)
MPI.Request.waitall(requests)
results = []
for i in range(ntask):
worker = i % self.size + 1
if self.debug:
print('Master waiting for worker {0} with tag {1}'.format(
worker, i))
result = self.comm.recv(source=worker, tag=i)
results.append(result)
return results
else:
for i, task in enumerate(tasks[0:self.size]):
worker = i + 1
if self.debug:
print('Sent task {0} to worker {1} with tag {2}.'.format(
type(task), worker, i))
self.comm.isend(task, dest=worker, tag=i)
ntasks_dispatched = self.size
results = [None] * ntask
for itask in range(ntask):
status = MPI.Status()
try:
result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.
ANY_TAG, status=status)
except Exception as e:
self.close()
raise e
worker = status.source
i = status.tag
results[i] = result
if self.debug:
print('Master received from worker {0} with tag {1}'.format
(worker, i))
if ntasks_dispatched < ntask:
task = tasks[ntasks_dispatched]
i = ntasks_dispatched
if self.debug:
print('Sent task {0} to worker {1} with tag {2}.'.
format(type(task), worker, i))
self.comm.isend(task, dest=worker, tag=i)
ntasks_dispatched += 1
return results
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, function, tasks):\n ntask = len(tasks)\n if not self.is_master():\n self.wait()\n return\n if function is not self.function:\n if self.debug:\n print('Master replacing pool function with {0}.'.format(function))\n self.function = function\n F = _function_wrapper(function)\n requests = []\n for i in range(self.size):\n r = self.comm.isend(F, dest=i + 1)\n requests.append(r)\n MPI.Request.waitall(requests)\n if not self.loadbalance or ntask <= self.size:\n requests = []\n for i, task in enumerate(tasks):\n worker = i % self.size + 1\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.format(\n type(task), worker, i))\n r = self.comm.isend(task, dest=worker, tag=i)\n requests.append(r)\n MPI.Request.waitall(requests)\n results = []\n for i in range(ntask):\n worker = i % self.size + 1\n if self.debug:\n print('Master waiting for worker {0} with tag {1}'.format(\n worker, i))\n result = self.comm.recv(source=worker, tag=i)\n results.append(result)\n return results\n else:\n for i, task in enumerate(tasks[0:self.size]):\n worker = i + 1\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.format(\n type(task), worker, i))\n self.comm.isend(task, dest=worker, tag=i)\n ntasks_dispatched = self.size\n results = [None] * ntask\n for itask in range(ntask):\n status = MPI.Status()\n try:\n result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.\n ANY_TAG, status=status)\n except Exception as e:\n self.close()\n raise e\n worker = status.source\n i = status.tag\n results[i] = result\n if self.debug:\n print('Master received from worker {0} with tag {1}'.format\n (worker, i))\n if ntasks_dispatched < ntask:\n task = tasks[ntasks_dispatched]\n i = ntasks_dispatched\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.\n format(type(task), worker, i))\n self.comm.isend(task, dest=worker, tag=i)\n ntasks_dispatched += 1\n return results\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(self):
if self.is_master():
for i in range(self.size):
self.comm.isend(_close_pool_message(), dest=i + 1)
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.is_master():\n for i in range(self.size):\n self.comm.isend(_close_pool_message(), dest=i + 1)\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(f):
def x(self, *args, **kwargs):
r = f(self, *args, **kwargs)
return self.session.add(self) if self.session is not None else r
_.__name__ = f.__name__
_.__doc__ = f.__doc__
return _
|
commit_when_no_transaction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f):\n\n def x(self, *args, **kwargs):\n r = f(self, *args, **kwargs)\n return self.session.add(self) if self.session is not None else r\n _.__name__ = f.__name__\n _.__doc__ = f.__doc__\n return _\n",
"role": "user"
},
{
"content": "commit_when_no_transaction",
"role": "assistant"
}
] |
def x(self):
session = self.session
if session is not None:
if self._field:
return session.model(self._field.model).backend
else:
return session.model(self).backend
|
backend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n session = self.session\n if session is not None:\n if self._field:\n return session.model(self._field.model).backend\n else:\n return session.model(self).backend\n",
"role": "user"
},
{
"content": "backend",
"role": "assistant"
}
] |
def x(self):
session = self.session
if session is not None:
if self._field:
return session.model(self._field.model).read_backend
else:
return session.model(self).read_backend
|
read_backend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n session = self.session\n if session is not None:\n if self._field:\n return session.model(self._field.model).read_backend\n else:\n return session.model(self).read_backend\n",
"role": "user"
},
{
"content": "read_backend",
"role": "assistant"
}
] |
def x(self):
if self.cache.cache is None:
return self.read_backend_structure().size()
else:
return len(self.cache.cache)
|
size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.cache.cache is None:\n return self.read_backend_structure().size()\n else:\n return len(self.cache.cache)\n",
"role": "user"
},
{
"content": "size",
"role": "assistant"
}
] |
def x(self, data, callback=None):
return self.backend.execute(self.value_pickler.load_iterable(data, self
.session), callback)
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, callback=None):\n return self.backend.execute(self.value_pickler.load_iterable(data, self\n .session), callback)\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self):
if self.cache.cache is None:
backend = self.read_backend
return backend.execute(backend.structure(self).values(), self.
load_values)
else:
return self.cache.cache.values()
|
values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.cache.cache is None:\n backend = self.read_backend\n return backend.execute(backend.structure(self).values(), self.\n load_values)\n else:\n return self.cache.cache.values()\n",
"role": "user"
},
{
"content": "values",
"role": "assistant"
}
] |
def x(self, pair):
if len(pair) == 1:
return pair[0].score(), pair[0]
elif len(pair) != 2:
raise TypeError('add expected 2 arguments, got {0}'.format(len(pair)))
else:
return pair
|
pair
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pair):\n if len(pair) == 1:\n return pair[0].score(), pair[0]\n elif len(pair) != 2:\n raise TypeError('add expected 2 arguments, got {0}'.format(len(pair)))\n else:\n return pair\n",
"role": "user"
},
{
"content": "pair",
"role": "assistant"
}
] |
def x(self, *keys):
dumps = self.pickler.dumps
self.cache.remove([dumps(v) for v in keys])
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *keys):\n dumps = self.pickler.dumps\n self.cache.remove([dumps(v) for v in keys])\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self, start, stop):
s1 = self.pickler.dumps(start)
s2 = self.pickler.dumps(stop)
return self.backend_structure().count(s1, s2)
|
count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, stop):\n s1 = self.pickler.dumps(start)\n s2 = self.pickler.dumps(stop)\n return self.backend_structure().count(s1, s2)\n",
"role": "user"
},
{
"content": "count",
"role": "assistant"
}
] |
def x(self, start=0, end=-1, callback=None, withscores=True, **options):
backend = self.read_backend
res = backend.structure(self).irange(start, end, withscores=withscores,
**options)
if not callback:
callback = self.load_data if withscores else self.load_values
return backend.execute(res, callback)
|
irange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=0, end=-1, callback=None, withscores=True, **options):\n backend = self.read_backend\n res = backend.structure(self).irange(start, end, withscores=withscores,\n **options)\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n",
"role": "user"
},
{
"content": "irange",
"role": "assistant"
}
] |
def x(self, start, stop, callback=None, withscores=True):
s1 = self.pickler.dumps(start)
s2 = self.pickler.dumps(stop)
backend = self.backend
res = backend.structure(self).pop_range(s1, s2, withscores=withscores)
if not callback:
callback = self.load_data if withscores else self.load_values
return backend.execute(res, callback)
|
pop_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, stop, callback=None, withscores=True):\n s1 = self.pickler.dumps(start)\n s2 = self.pickler.dumps(stop)\n backend = self.backend\n res = backend.structure(self).pop_range(s1, s2, withscores=withscores)\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n",
"role": "user"
},
{
"content": "pop_range",
"role": "assistant"
}
] |
def x(self, start=0, stop=-1, callback=None, withscores=True):
backend = self.backend
res = backend.structure(self).ipop_range(start, stop, withscores=withscores
)
if not callback:
callback = self.load_data if withscores else self.load_values
return backend.execute(res, callback)
|
ipop_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=0, stop=-1, callback=None, withscores=True):\n backend = self.backend\n res = backend.structure(self).ipop_range(start, stop, withscores=withscores\n )\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n",
"role": "user"
},
{
"content": "ipop_range",
"role": "assistant"
}
] |
def x(self, value):
self.cache.push_back(self.value_pickler.dumps(value))
return self
|
push_back
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self.cache.push_back(self.value_pickler.dumps(value))\n return self\n",
"role": "user"
},
{
"content": "push_back",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.