source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, meta, fname, data, fields, encoding): field = meta.dfields[fname] if field in meta.multifields: fmeta = field.structure_class()._meta if fmeta.name in ('hashtable', 'zset'): return ((native_str(id, encoding), pairs_to_dict(fdata, encoding)) for id, fdata in data) else: return ((native_str(id, encoding), fdata) for id, fdata in data) else: return self.build(data, meta, fields, fields, encoding)
load_related
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meta, fname, data, fields, encoding):\n field = meta.dfields[fname]\n if field in meta.multifields:\n fmeta = field.structure_class()._meta\n if fmeta.name in ('hashtable', 'zset'):\n return ((native_str(id, encoding), pairs_to_dict(fdata,\n encoding)) for id, fdata in data)\n else:\n return ((native_str(id, encoding), fdata) for id, fdata in data)\n else:\n return self.build(data, meta, fields, fields, encoding)\n", "role": "user" }, { "content": "load_related", "role": "assistant" } ]
def x(self): pipe = self.pipe if not self.card: if self.meta.ordering: self.ismember = getattr(self.backend.client, 'zrank') self.card = getattr(pipe, 'zcard') self._check_member = self.zism else: self.ismember = getattr(self.backend.client, 'sismember') self.card = getattr(pipe, 'scard') self._check_member = self.sism else: self.ismember = None self.card(self.query_key) result = yield pipe.execute() yield result[-1]
execute_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pipe = self.pipe\n if not self.card:\n if self.meta.ordering:\n self.ismember = getattr(self.backend.client, 'zrank')\n self.card = getattr(pipe, 'zcard')\n self._check_member = self.zism\n else:\n self.ismember = getattr(self.backend.client, 'sismember')\n self.card = getattr(pipe, 'scard')\n self._check_member = self.sism\n else:\n self.ismember = None\n self.card(self.query_key)\n result = yield pipe.execute()\n yield result[-1]\n", "role": "user" }, { "content": "execute_query", "role": "assistant" } ]
def x(self, last): desc = last.desc field = last.name nested = last.nested nested_args = [] while nested: meta = nested.model._meta nested_args.extend((self.backend.basekey(meta), nested.name)) last = nested nested = nested.nested method = 'ALPHA' if last.field.internal_type == 'text' else '' if field == last.model._meta.pkname(): field = '' return {'field': field, 'method': method, 'desc': desc, 'nested': nested_args}
order
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, last):\n desc = last.desc\n field = last.name\n nested = last.nested\n nested_args = []\n while nested:\n meta = nested.model._meta\n nested_args.extend((self.backend.basekey(meta), nested.name))\n last = nested\n nested = nested.nested\n method = 'ALPHA' if last.field.internal_type == 'text' else ''\n if field == last.model._meta.pkname():\n field = ''\n return {'field': field, 'method': method, 'desc': desc, 'nested':\n nested_args}\n", "role": "user" }, { "content": "order", "role": "assistant" } ]
def x(self): related = self.queryelem.select_related if related: meta = self.meta for rel in related: field = meta.dfields[rel] relmodel = field.relmodel bk = self.backend.basekey(relmodel._meta) if relmodel else '' fields = list(related[rel]) if meta.pkname() in fields: fields.remove(meta.pkname()) if not fields: fields.append('') ftype = field.type if field in meta.multifields else '' data = {'field': field.attname, 'type': ftype, 'bk': bk, 'fields': fields} yield field.name, data
related_lua_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n related = self.queryelem.select_related\n if related:\n meta = self.meta\n for rel in related:\n field = meta.dfields[rel]\n relmodel = field.relmodel\n bk = self.backend.basekey(relmodel._meta) if relmodel else ''\n fields = list(related[rel])\n if meta.pkname() in fields:\n fields.remove(meta.pkname())\n if not fields:\n fields.append('')\n ftype = field.type if field in meta.multifields else ''\n data = {'field': field.attname, 'type': ftype, 'bk': bk,\n 'fields': fields}\n yield field.name, data\n", "role": "user" }, { "content": "related_lua_args", "role": "assistant" } ]
def x(self, start, stop=None, withscores=True, **options): return self.backend.execute(self.client.zpopbyrank(self.id, start, stop, withscores=withscores, **options), partial(self._range, withscores))
ipop_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, stop=None, withscores=True, **options):\n return self.backend.execute(self.client.zpopbyrank(self.id, start, stop,\n withscores=withscores, **options), partial(self._range, withscores))\n", "role": "user" }, { "content": "ipop_range", "role": "assistant" } ]
def x(self, start, stop=None, withscores=True, **options): return self.backend.execute(self.client.zpopbyscore(self.id, start, stop, withscores=withscores, **options), partial(self._range, withscores))
pop_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, stop=None, withscores=True, **options):\n return self.backend.execute(self.client.zpopbyscore(self.id, start,\n stop, withscores=withscores, **options), partial(self._range,\n withscores))\n", "role": "user" }, { "content": "pop_range", "role": "assistant" } ]
def x(self, meta): data = meta.as_dict() data['namespace'] = self.basekey(meta) return data
meta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meta):\n data = meta.as_dict()\n data['namespace'] = self.basekey(meta)\n return data\n", "role": "user" }, { "content": "meta", "role": "assistant" } ]
def x(self, session_data): pipe = self.client.pipeline() for sm in session_data: meta = sm.meta if sm.structures: self.flush_structure(sm, pipe) delquery = None if sm.deletes is not None: delquery = sm.deletes.backend_query(pipe=pipe) self.accumulate_delete(pipe, delquery) if sm.dirty: meta_info = json.dumps(self.meta(meta)) lua_data = [len(sm.dirty)] processed = [] for instance in sm.dirty: state = instance.get_state() if not meta.is_valid(instance): raise FieldValueError(json.dumps(instance._dbdata[ 'errors'])) score = MIN_FLOAT if meta.ordering: if meta.ordering.auto: score = meta.ordering.name.incrby else: v = getattr(instance, meta.ordering.name, None) if v is not None: score = meta.ordering.field.scorefun(v) data = instance._dbdata['cleaned_data'] action = state.action prev_id = state.iid if state.persistent else '' id = instance.pkvalue() or '' data = flat_mapping(data) lua_data.extend((action, prev_id, id, score, len(data))) lua_data.extend(data) processed.append(state.iid) self.odmrun(pipe, 'commit', meta, (), meta_info, *lua_data, iids=processed) return pipe.execute()
execute_session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session_data):\n pipe = self.client.pipeline()\n for sm in session_data:\n meta = sm.meta\n if sm.structures:\n self.flush_structure(sm, pipe)\n delquery = None\n if sm.deletes is not None:\n delquery = sm.deletes.backend_query(pipe=pipe)\n self.accumulate_delete(pipe, delquery)\n if sm.dirty:\n meta_info = json.dumps(self.meta(meta))\n lua_data = [len(sm.dirty)]\n processed = []\n for instance in sm.dirty:\n state = instance.get_state()\n if not meta.is_valid(instance):\n raise FieldValueError(json.dumps(instance._dbdata[\n 'errors']))\n score = MIN_FLOAT\n if meta.ordering:\n if meta.ordering.auto:\n score = meta.ordering.name.incrby\n else:\n v = getattr(instance, meta.ordering.name, None)\n if v is not None:\n score = meta.ordering.field.scorefun(v)\n data = instance._dbdata['cleaned_data']\n action = state.action\n prev_id = state.iid if state.persistent else ''\n id = instance.pkvalue() or ''\n data = flat_mapping(data)\n lua_data.extend((action, prev_id, id, score, len(data)))\n lua_data.extend(data)\n processed.append(state.iid)\n self.odmrun(pipe, 'commit', meta, (), meta_info, *lua_data,\n iids=processed)\n return pipe.execute()\n", "role": "user" }, { "content": "execute_session", "role": "assistant" } ]
def x(self, meta=None): pattern = self.basekey(meta) if meta else self.namespace return self.client.delpattern('%s*' % pattern)
flush
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meta=None):\n pattern = self.basekey(meta) if meta else self.namespace\n return self.client.delpattern('%s*' % pattern)\n", "role": "user" }, { "content": "flush", "role": "assistant" } ]
def x(kernel, kernel_params, time, errors): K = np.diag(errors ** 2) K += GP(kernel, kernel_params, white=False).get_matrix(time) return K
GetCovariance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, kernel_params, time, errors):\n K = np.diag(errors ** 2)\n K += GP(kernel, kernel_params, white=False).get_matrix(time)\n return K\n", "role": "user" }, { "content": "GetCovariance", "role": "assistant" } ]
def x(time, flux, errors, kernel='Basic', mask=[], giter=3, gmaxf=200, guess=None): log.info('Optimizing the GP...') time_copy = np.array(time) errors_copy = np.array(errors) time = np.delete(time, mask) flux = np.delete(flux, mask) errors = np.delete(errors, mask) f = flux - savgol_filter(flux, 49, 2) + np.nanmedian(flux) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) mask = np.where((f > med + 5 * MAD) | (f < med - 5 * MAD))[0] time = np.delete(time, mask) flux = np.delete(flux, mask) errors = np.delete(errors, mask) white = np.nanmedian([np.nanstd(c) for c in Chunks(flux, 13)]) amp = np.nanstd(flux) tau = 30.0 if kernel == 'Basic': if guess is None: guess = [white, amp, tau] bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [0.5, 100.0]] elif kernel == 'QuasiPeriodic': if guess is None: guess = [white, amp, tau, 1.0, 20.0] bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [1e-05, 100.0], [0.02, 100.0]] else: raise ValueError('Invalid value for `kernel`.') llbest = -np.inf xbest = np.array(guess) for i in range(giter): iguess = [np.inf for g in guess] for j, b in enumerate(bounds): tries = 0 while iguess[j] < b[0] or iguess[j] > b[1]: iguess[j] = (1 + 0.5 * np.random.randn()) * guess[j] tries += 1 if tries > 100: iguess[j] = b[0] + np.random.random() * (b[1] - b[0]) break x = fmin_l_bfgs_b(NegLnLike, iguess, approx_grad=False, bounds= bounds, args=(time, flux, errors, kernel), maxfun=gmaxf) log.info('Iteration #%d/%d:' % (i + 1, giter)) log.info(' ' + x[2]['task'].decode('utf-8')) log.info(' ' + 'Function calls: %d' % x[2]['funcalls']) log.info(' ' + 'Log-likelihood: %.3e' % -x[1]) if kernel == 'Basic': log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % ( x[0][0], x[0][0] / np.nanmedian(errors))) log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x [0][1], x[0][1] / np.nanstd(flux))) log.info(' ' + 'Red timescale : %.2f days' % x[0][2]) elif kernel == 'QuasiPeriodic': log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % ( x[0][0], x[0][0] / np.nanmedian(errors))) log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x [0][1], x[0][1] / np.nanstd(flux))) log.info(' ' + 'Gamma : %.3e' % x[0][2]) log.info(' ' + 'Period : %.2f days' % x[0][3]) if -x[1] > llbest: llbest = -x[1] xbest = np.array(x[0]) return xbest
GetKernelParams
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(time, flux, errors, kernel='Basic', mask=[], giter=3, gmaxf=200,\n guess=None):\n log.info('Optimizing the GP...')\n time_copy = np.array(time)\n errors_copy = np.array(errors)\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n errors = np.delete(errors, mask)\n f = flux - savgol_filter(flux, 49, 2) + np.nanmedian(flux)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n mask = np.where((f > med + 5 * MAD) | (f < med - 5 * MAD))[0]\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n errors = np.delete(errors, mask)\n white = np.nanmedian([np.nanstd(c) for c in Chunks(flux, 13)])\n amp = np.nanstd(flux)\n tau = 30.0\n if kernel == 'Basic':\n if guess is None:\n guess = [white, amp, tau]\n bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [0.5, \n 100.0]]\n elif kernel == 'QuasiPeriodic':\n if guess is None:\n guess = [white, amp, tau, 1.0, 20.0]\n bounds = [[0.1 * white, 10.0 * white], [1.0, 10000.0 * amp], [1e-05,\n 100.0], [0.02, 100.0]]\n else:\n raise ValueError('Invalid value for `kernel`.')\n llbest = -np.inf\n xbest = np.array(guess)\n for i in range(giter):\n iguess = [np.inf for g in guess]\n for j, b in enumerate(bounds):\n tries = 0\n while iguess[j] < b[0] or iguess[j] > b[1]:\n iguess[j] = (1 + 0.5 * np.random.randn()) * guess[j]\n tries += 1\n if tries > 100:\n iguess[j] = b[0] + np.random.random() * (b[1] - b[0])\n break\n x = fmin_l_bfgs_b(NegLnLike, iguess, approx_grad=False, bounds=\n bounds, args=(time, flux, errors, kernel), maxfun=gmaxf)\n log.info('Iteration #%d/%d:' % (i + 1, giter))\n log.info(' ' + x[2]['task'].decode('utf-8'))\n log.info(' ' + 'Function calls: %d' % x[2]['funcalls'])\n log.info(' ' + 'Log-likelihood: %.3e' % -x[1])\n if kernel == 'Basic':\n log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (\n x[0][0], x[0][0] / np.nanmedian(errors)))\n log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x\n [0][1], x[0][1] / np.nanstd(flux)))\n log.info(' ' + 'Red timescale : %.2f days' % x[0][2])\n elif kernel == 'QuasiPeriodic':\n log.info(' ' + 'White noise : %.3e (%.1f x error bars)' % (\n x[0][0], x[0][0] / np.nanmedian(errors)))\n log.info(' ' + 'Red amplitude : %.3e (%.1f x stand dev)' % (x\n [0][1], x[0][1] / np.nanstd(flux)))\n log.info(' ' + 'Gamma : %.3e' % x[0][2])\n log.info(' ' + 'Period : %.2f days' % x[0][3])\n if -x[1] > llbest:\n llbest = -x[1]\n xbest = np.array(x[0])\n return xbest\n", "role": "user" }, { "content": "GetKernelParams", "role": "assistant" } ]
def x(x, time, flux, errors, kernel): gp = GP(kernel, x, white=True) gp.compute(time, errors) if OLDGEORGE: nll = -gp.lnlikelihood(flux) ngr = -2 * gp.grad_lnlikelihood(flux) / np.sqrt(gp.kernel.pars) else: nll = -gp.log_likelihood(flux) ngr = -2 * gp.grad_log_likelihood(flux) / np.sqrt(np.exp(gp. get_parameter_vector())) return nll, ngr
NegLnLike
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, time, flux, errors, kernel):\n gp = GP(kernel, x, white=True)\n gp.compute(time, errors)\n if OLDGEORGE:\n nll = -gp.lnlikelihood(flux)\n ngr = -2 * gp.grad_lnlikelihood(flux) / np.sqrt(gp.kernel.pars)\n else:\n nll = -gp.log_likelihood(flux)\n ngr = -2 * gp.grad_log_likelihood(flux) / np.sqrt(np.exp(gp.\n get_parameter_vector()))\n return nll, ngr\n", "role": "user" }, { "content": "NegLnLike", "role": "assistant" } ]
def x(startdate, enddate, start, end, dateconverter=None, parseinterval= None, intervals=None): parseinterval = parseinterval or default_parse_interval dateconverter = dateconverter or todate startdate = dateconverter(parseinterval(startdate, 0)) enddate = max(startdate, dateconverter(parseinterval(enddate, 0))) if intervals is not None and not isinstance(intervals, Intervals): intervals = Intervals(intervals) calc_intervals = Intervals() if start: if startdate < start: calc_start = startdate calc_end = parseinterval(start, -1) if calc_end >= calc_start: calc_intervals.append(Interval(calc_start, calc_end)) if enddate > end: calc_start = parseinterval(end, 1) calc_end = enddate if calc_end >= calc_start: calc_intervals.append(Interval(calc_start, calc_end)) else: start = startdate end = enddate calc_intervals.append(Interval(startdate, enddate)) if calc_intervals: if intervals: calc_intervals.extend(intervals) elif intervals: calc_intervals = intervals return calc_intervals
missing_intervals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(startdate, enddate, start, end, dateconverter=None, parseinterval=\n None, intervals=None):\n parseinterval = parseinterval or default_parse_interval\n dateconverter = dateconverter or todate\n startdate = dateconverter(parseinterval(startdate, 0))\n enddate = max(startdate, dateconverter(parseinterval(enddate, 0)))\n if intervals is not None and not isinstance(intervals, Intervals):\n intervals = Intervals(intervals)\n calc_intervals = Intervals()\n if start:\n if startdate < start:\n calc_start = startdate\n calc_end = parseinterval(start, -1)\n if calc_end >= calc_start:\n calc_intervals.append(Interval(calc_start, calc_end))\n if enddate > end:\n calc_start = parseinterval(end, 1)\n calc_end = enddate\n if calc_end >= calc_start:\n calc_intervals.append(Interval(calc_start, calc_end))\n else:\n start = startdate\n end = enddate\n calc_intervals.append(Interval(startdate, enddate))\n if calc_intervals:\n if intervals:\n calc_intervals.extend(intervals)\n elif intervals:\n calc_intervals = intervals\n return calc_intervals\n", "role": "user" }, { "content": "missing_intervals", "role": "assistant" } ]
def x(start, end, step=1, desc=False): delta = timedelta(abs(step)) end = max(start, end) if desc: dt = end while dt >= start: yield dt dt -= delta else: dt = start while dt <= end: yield dt dt += delta
dategenerator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end, step=1, desc=False):\n delta = timedelta(abs(step))\n end = max(start, end)\n if desc:\n dt = end\n while dt >= start:\n yield dt\n dt -= delta\n else:\n dt = start\n while dt <= end:\n yield dt\n dt += delta\n", "role": "user" }, { "content": "dategenerator", "role": "assistant" } ]
def x(file_name=None, log_level=logging.DEBUG, screen_level=logging. CRITICAL, pdb=False): root = logging.getLogger() root.handlers = [] root.setLevel(logging.DEBUG) if file_name is not None: if not os.path.exists(os.path.dirname(file_name)): os.makedirs(os.path.dirname(file_name)) fh = logging.FileHandler(file_name) fh.setLevel(log_level) fh_formatter = logging.Formatter( '%(asctime)s %(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s' , datefmt='%m/%d/%y %H:%M:%S') fh.setFormatter(fh_formatter) fh.addFilter(NoPILFilter()) root.addHandler(fh) sh = logging.StreamHandler(sys.stdout) if pdb: sh.setLevel(logging.DEBUG) else: sh.setLevel(screen_level) sh_formatter = logging.Formatter( '%(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s') sh.setFormatter(sh_formatter) sh.addFilter(NoPILFilter()) root.addHandler(sh) if pdb: sys.excepthook = ExceptionHookPDB else: sys.excepthook = ExceptionHook
InitLog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_name=None, log_level=logging.DEBUG, screen_level=logging.\n CRITICAL, pdb=False):\n root = logging.getLogger()\n root.handlers = []\n root.setLevel(logging.DEBUG)\n if file_name is not None:\n if not os.path.exists(os.path.dirname(file_name)):\n os.makedirs(os.path.dirname(file_name))\n fh = logging.FileHandler(file_name)\n fh.setLevel(log_level)\n fh_formatter = logging.Formatter(\n '%(asctime)s %(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s'\n , datefmt='%m/%d/%y %H:%M:%S')\n fh.setFormatter(fh_formatter)\n fh.addFilter(NoPILFilter())\n root.addHandler(fh)\n sh = logging.StreamHandler(sys.stdout)\n if pdb:\n sh.setLevel(logging.DEBUG)\n else:\n sh.setLevel(screen_level)\n sh_formatter = logging.Formatter(\n '%(levelname)-5s [%(name)s.%(funcName)s()]: %(message)s')\n sh.setFormatter(sh_formatter)\n sh.addFilter(NoPILFilter())\n root.addHandler(sh)\n if pdb:\n sys.excepthook = ExceptionHookPDB\n else:\n sys.excepthook = ExceptionHook\n", "role": "user" }, { "content": "InitLog", "role": "assistant" } ]
def x(exctype, value, tb): for line in traceback.format_exception_only(exctype, value): log.error(line.replace('\n', '')) for line in traceback.format_tb(tb): log.error(line.replace('\n', '')) sys.__excepthook__(exctype, value, tb)
ExceptionHook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exctype, value, tb):\n for line in traceback.format_exception_only(exctype, value):\n log.error(line.replace('\\n', ''))\n for line in traceback.format_tb(tb):\n log.error(line.replace('\\n', ''))\n sys.__excepthook__(exctype, value, tb)\n", "role": "user" }, { "content": "ExceptionHook", "role": "assistant" } ]
def x(exctype, value, tb): for line in traceback.format_exception_only(exctype, value): log.error(line.replace('\n', '')) for line in traceback.format_tb(tb): log.error(line.replace('\n', '')) sys.__excepthook__(exctype, value, tb) pdb.pm()
ExceptionHookPDB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exctype, value, tb):\n for line in traceback.format_exception_only(exctype, value):\n log.error(line.replace('\\n', ''))\n for line in traceback.format_tb(tb):\n log.error(line.replace('\\n', ''))\n sys.__excepthook__(exctype, value, tb)\n pdb.pm()\n", "role": "user" }, { "content": "ExceptionHookPDB", "role": "assistant" } ]
def x(l, col1, col2): s = np.zeros_like(col1) * np.nan for i, c in enumerate(col1): j = np.argmax(col2 == c) if j == 0: if col2[0] != c: continue s[i] = l[j] return s
sort_like
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, col1, col2):\n s = np.zeros_like(col1) * np.nan\n for i, c in enumerate(col1):\n j = np.argmax(col2 == c)\n if j == 0:\n if col2[0] != c:\n continue\n s[i] = l[j]\n return s\n", "role": "user" }, { "content": "sort_like", "role": "assistant" } ]
def x(*x): try: root = logging.getLogger() if len(root.handlers): for h in root.handlers: if type(h ) is logging.StreamHandler and h.level != logging.CRITICAL: from tqdm import tqdm return tqdm(range(*x)) return range(*x) else: from tqdm import tqdm return tqdm(range(*x)) except ImportError: return range(*x)
prange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*x):\n try:\n root = logging.getLogger()\n if len(root.handlers):\n for h in root.handlers:\n if type(h\n ) is logging.StreamHandler and h.level != logging.CRITICAL:\n from tqdm import tqdm\n return tqdm(range(*x))\n return range(*x)\n else:\n from tqdm import tqdm\n return tqdm(range(*x))\n except ImportError:\n return range(*x)\n", "role": "user" }, { "content": "prange", "role": "assistant" } ]
def x(self, *fields): ts = self.irange(0, 0, fields=fields) if ts: return ts.start(), ts[0]
front
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *fields):\n ts = self.irange(0, 0, fields=fields)\n if ts:\n return ts.start(), ts[0]\n", "role": "user" }, { "content": "front", "role": "assistant" } ]
def x(self, *fields): ts = self.irange(-1, -1, fields=fields) if ts: return ts.end(), ts[0]
back
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *fields):\n ts = self.irange(-1, -1, fields=fields)\n if ts:\n return ts.end(), ts[0]\n", "role": "user" }, { "content": "back", "role": "assistant" } ]
def x(backend): r = urlparse.urlsplit(backend) scheme, host = r.scheme, r.netloc path, query = r.path, r.query if path and not query: query, path = path, '' if query: if query.find('?'): path = query else: query = query[1:] if query: params = dict(urlparse.parse_qsl(query)) else: params = {} return scheme, host, params
parse_backend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(backend):\n r = urlparse.urlsplit(backend)\n scheme, host = r.scheme, r.netloc\n path, query = r.path, r.query\n if path and not query:\n query, path = path, ''\n if query:\n if query.find('?'):\n path = query\n else:\n query = query[1:]\n if query:\n params = dict(urlparse.parse_qsl(query))\n else:\n params = {}\n return scheme, host, params\n", "role": "user" }, { "content": "parse_backend", "role": "assistant" } ]
def x(backend=None, **kwargs): if isinstance(backend, BackendDataServer): return backend backend = backend or settings.DEFAULT_BACKEND if not backend: return None scheme, address, params = parse_backend(backend) params.update(kwargs) if 'timeout' in params: params['timeout'] = int(params['timeout']) return _getdb(scheme, address, params)
getdb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(backend=None, **kwargs):\n if isinstance(backend, BackendDataServer):\n return backend\n backend = backend or settings.DEFAULT_BACKEND\n if not backend:\n return None\n scheme, address, params = parse_backend(backend)\n params.update(kwargs)\n if 'timeout' in params:\n params['timeout'] = int(params['timeout'])\n return _getdb(scheme, address, params)\n", "role": "user" }, { "content": "getdb", "role": "assistant" } ]
def x(self, meta, *args): key = '%s%s' % (self.namespace, meta.modelkey) postfix = ':'.join(str(p) for p in args if p is not None) return '%s:%s' % (key, postfix) if postfix else key
basekey
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meta, *args):\n key = '%s%s' % (self.namespace, meta.modelkey)\n postfix = ':'.join(str(p) for p in args if p is not None)\n return '%s:%s' % (key, postfix) if postfix else key\n", "role": "user" }, { "content": "basekey", "role": "assistant" } ]
def x(self, meta, data, related_fields=None): make_object = meta.make_object related_data = [] if related_fields: for fname, fdata in iteritems(related_fields): field = meta.dfields[fname] if field in meta.multifields: related = dict(fdata) multi = True else: multi = False relmodel = field.relmodel related = dict((obj.id, obj) for obj in self.make_objects( relmodel._meta, fdata)) related_data.append((field, related, multi)) for state in data: instance = make_object(state, self) for field, rdata, multi in related_data: if multi: field.set_cache(instance, rdata.get(str(instance.id))) else: rid = getattr(instance, field.attname, None) if rid is not None: value = rdata.get(rid) setattr(instance, field.name, value) yield instance
make_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meta, data, related_fields=None):\n make_object = meta.make_object\n related_data = []\n if related_fields:\n for fname, fdata in iteritems(related_fields):\n field = meta.dfields[fname]\n if field in meta.multifields:\n related = dict(fdata)\n multi = True\n else:\n multi = False\n relmodel = field.relmodel\n related = dict((obj.id, obj) for obj in self.make_objects(\n relmodel._meta, fdata))\n related_data.append((field, related, multi))\n for state in data:\n instance = make_object(state, self)\n for field, rdata, multi in related_data:\n if multi:\n field.set_cache(instance, rdata.get(str(instance.id)))\n else:\n rid = getattr(instance, field.attname, None)\n if rid is not None:\n value = rdata.get(rid)\n setattr(instance, field.name, value)\n yield instance\n", "role": "user" }, { "content": "make_objects", "role": "assistant" } ]
def x(self, instance, client=None): struct = self.struct_map.get(instance._meta.name) if struct is None: raise ModelNotAvailable('"%s" is not available for backend "%s"' % (instance._meta.name, self)) client = client if client is not None else self.client return struct(instance, self, client)
structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, client=None):\n struct = self.struct_map.get(instance._meta.name)\n if struct is None:\n raise ModelNotAvailable('\"%s\" is not available for backend \"%s\"' %\n (instance._meta.name, self))\n client = client if client is not None else self.client\n return struct(instance, self, client)\n", "role": "user" }, { "content": "structure", "role": "assistant" } ]
def x(ID, mission='k2'): assert mission == 'k2', 'Only the K2 mission is supported for now.' print('Searching for target %d...' % ID) season = missions.k2.Season(ID) if season in [91, 92, [91, 92]]: print('Campaign 9 is currently not part of the EVEREST catalog.') return elif season == 101: print('The first half of campaign 10 is not currently part of ' + 'the EVEREST catalog.') return elif season is not None: print('Target is in campaign %d of the EVEREST catalog.' % season) return star = k2plr_client.k2_star(ID) if star.objtype.lower() != 'star': print('Target is of type %s, not STAR, ' % star.objtype + 'and is therefore not included in the EVEREST catalog.') return try: tpf = star.get_target_pixel_files() except: print('Unable to download the raw pixel files for this target.') return if len(tpf) == 0: print( 'Raw pixel files are not available for this target. Looks like ' + 'data may not have been collected for it.') return if tpf[0].sci_campaign not in missions.k2.SEASONS: print('Targets for campaign %d are not yet available.' % tpf[0]. sci_campaign) return try: k2sff = k2plr.K2SFF(ID) except: print('Error downloading the K2SFF light curve for this target. ' + 'Currently, EVEREST uses the K2SFF apertures to perform ' + 'photometry. This is likely to change in the next version.') return try: assert np.count_nonzero(k2sff.apertures[15]), 'Invalid aperture.' except: print('Unable to retrieve the K2SFF aperture for this target. ' + 'Currently, EVEREST uses the K2SFF apertures to perform ' + 'photometry. This is likely to change in the next version.') return if star.kp < 8: print('Target has Kp = %.1f and is too saturated ' + 'for proper de-trending with EVEREST.') return print("I'm not sure why this target isn't in the EVEREST catalog." + 'You can try de-trending it yourself:') print('http://faculty.washington.edu/rodluger/everest/pipeline.html') return
Search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, mission='k2'):\n assert mission == 'k2', 'Only the K2 mission is supported for now.'\n print('Searching for target %d...' % ID)\n season = missions.k2.Season(ID)\n if season in [91, 92, [91, 92]]:\n print('Campaign 9 is currently not part of the EVEREST catalog.')\n return\n elif season == 101:\n print('The first half of campaign 10 is not currently part of ' +\n 'the EVEREST catalog.')\n return\n elif season is not None:\n print('Target is in campaign %d of the EVEREST catalog.' % season)\n return\n star = k2plr_client.k2_star(ID)\n if star.objtype.lower() != 'star':\n print('Target is of type %s, not STAR, ' % star.objtype +\n 'and is therefore not included in the EVEREST catalog.')\n return\n try:\n tpf = star.get_target_pixel_files()\n except:\n print('Unable to download the raw pixel files for this target.')\n return\n if len(tpf) == 0:\n print(\n 'Raw pixel files are not available for this target. Looks like ' +\n 'data may not have been collected for it.')\n return\n if tpf[0].sci_campaign not in missions.k2.SEASONS:\n print('Targets for campaign %d are not yet available.' % tpf[0].\n sci_campaign)\n return\n try:\n k2sff = k2plr.K2SFF(ID)\n except:\n print('Error downloading the K2SFF light curve for this target. ' +\n 'Currently, EVEREST uses the K2SFF apertures to perform ' +\n 'photometry. This is likely to change in the next version.')\n return\n try:\n assert np.count_nonzero(k2sff.apertures[15]), 'Invalid aperture.'\n except:\n print('Unable to retrieve the K2SFF aperture for this target. ' +\n 'Currently, EVEREST uses the K2SFF apertures to perform ' +\n 'photometry. This is likely to change in the next version.')\n return\n if star.kp < 8:\n print('Target has Kp = %.1f and is too saturated ' +\n 'for proper de-trending with EVEREST.')\n return\n print(\"I'm not sure why this target isn't in the EVEREST catalog.\" +\n 'You can try de-trending it yourself:')\n print('http://faculty.washington.edu/rodluger/everest/pipeline.html')\n return\n", "role": "user" }, { "content": "Search", "role": "assistant" } ]
def x(ID, season=None, mission='k2', cadence='lc', filename=None, clobber=False ): if season is None: season = getattr(missions, mission).Season(ID) if hasattr(season, '__len__'): raise AttributeError( 'Please choose a `season` for this target: %s.' % season) if season is None: if getattr(missions, mission).ISTARGET(ID): raise ValueError('Target not found in local database. ' + 'Run `everest.Search(%d)` for more information.' % ID) else: raise ValueError('Invalid target ID.') path = getattr(missions, mission).TargetDirectory(ID, season) relpath = getattr(missions, mission).TargetDirectory(ID, season, relative=True) if filename is None: filename = getattr(missions, mission).FITSFile(ID, season, cadence) if not os.path.exists(path): os.makedirs(path) elif os.path.exists(os.path.join(path, filename)) and not clobber: log.info('Found cached file.') return os.path.join(path, filename) log.info('Downloading the file...') fitsurl = getattr(missions, mission).FITSUrl(ID, season) if not fitsurl.endswith('/'): fitsurl += '/' r = urllib.request.Request(fitsurl + filename) try: handler = urllib.request.urlopen(r) code = handler.getcode() except (urllib.error.HTTPError, urllib.error.URLError): code = 0 if int(code) == 200: data = handler.read() f = NamedTemporaryFile('wb', delete=False) f.write(data) f.flush() os.fsync(f.fileno()) f.close() shutil.move(f.name, os.path.join(path, filename)) else: log.error("Error code {0} for URL '{1}'".format(code, fitsurl + filename)) if EVEREST_FITS is None: raise Exception('Unable to locate the file.') inpath = os.path.join(EVEREST_FITS, relpath, filename) outpath = os.path.join(path, filename) log.info('Accessing file via `scp`...') subprocess.call(['scp', inpath, outpath]) if os.path.exists(os.path.join(path, filename)): return os.path.join(path, filename) else: raise Exception('Unable to download the file.' + 'Run `everest.Search(%d)` to troubleshoot.' % ID)
DownloadFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, season=None, mission='k2', cadence='lc', filename=None, clobber=False\n ):\n if season is None:\n season = getattr(missions, mission).Season(ID)\n if hasattr(season, '__len__'):\n raise AttributeError(\n 'Please choose a `season` for this target: %s.' % season)\n if season is None:\n if getattr(missions, mission).ISTARGET(ID):\n raise ValueError('Target not found in local database. ' + \n 'Run `everest.Search(%d)` for more information.' % ID)\n else:\n raise ValueError('Invalid target ID.')\n path = getattr(missions, mission).TargetDirectory(ID, season)\n relpath = getattr(missions, mission).TargetDirectory(ID, season,\n relative=True)\n if filename is None:\n filename = getattr(missions, mission).FITSFile(ID, season, cadence)\n if not os.path.exists(path):\n os.makedirs(path)\n elif os.path.exists(os.path.join(path, filename)) and not clobber:\n log.info('Found cached file.')\n return os.path.join(path, filename)\n log.info('Downloading the file...')\n fitsurl = getattr(missions, mission).FITSUrl(ID, season)\n if not fitsurl.endswith('/'):\n fitsurl += '/'\n r = urllib.request.Request(fitsurl + filename)\n try:\n handler = urllib.request.urlopen(r)\n code = handler.getcode()\n except (urllib.error.HTTPError, urllib.error.URLError):\n code = 0\n if int(code) == 200:\n data = handler.read()\n f = NamedTemporaryFile('wb', delete=False)\n f.write(data)\n f.flush()\n os.fsync(f.fileno())\n f.close()\n shutil.move(f.name, os.path.join(path, filename))\n else:\n log.error(\"Error code {0} for URL '{1}'\".format(code, fitsurl +\n filename))\n if EVEREST_FITS is None:\n raise Exception('Unable to locate the file.')\n inpath = os.path.join(EVEREST_FITS, relpath, filename)\n outpath = os.path.join(path, filename)\n log.info('Accessing file via `scp`...')\n subprocess.call(['scp', inpath, outpath])\n if os.path.exists(os.path.join(path, filename)):\n return os.path.join(path, filename)\n else:\n raise Exception('Unable to download the file.' + \n 'Run `everest.Search(%d)` to troubleshoot.' % ID)\n", "role": "user" }, { "content": "DownloadFile", "role": "assistant" } ]
def x(ID, season=None, mission='k2', clobber=False, cadence='lc', model='nPLD' ): if season is None: season = getattr(missions, mission).Season(ID) if hasattr(season, '__len__'): raise AttributeError( 'Please choose a `season` for this target: %s.' % season) if model == 'nPLD': filename = getattr(missions, mission).DVSFile(ID, season, cadence) elif cadence == 'sc': filename = model + '.sc.pdf' else: filename = model + '.pdf' file = DownloadFile(ID, season=season, mission=mission, filename= filename, clobber=clobber) try: if platform.system().lower().startswith('darwin'): subprocess.call(['open', file]) elif os.name == 'nt': os.startfile(file) elif os.name == 'posix': subprocess.call(['xdg-open', file]) else: raise Exception('') except: log.info('Unable to open the pdf. Try opening it manually:') log.info(file)
DVS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, season=None, mission='k2', clobber=False, cadence='lc', model='nPLD'\n ):\n if season is None:\n season = getattr(missions, mission).Season(ID)\n if hasattr(season, '__len__'):\n raise AttributeError(\n 'Please choose a `season` for this target: %s.' % season)\n if model == 'nPLD':\n filename = getattr(missions, mission).DVSFile(ID, season, cadence)\n elif cadence == 'sc':\n filename = model + '.sc.pdf'\n else:\n filename = model + '.pdf'\n file = DownloadFile(ID, season=season, mission=mission, filename=\n filename, clobber=clobber)\n try:\n if platform.system().lower().startswith('darwin'):\n subprocess.call(['open', file])\n elif os.name == 'nt':\n os.startfile(file)\n elif os.name == 'posix':\n subprocess.call(['xdg-open', file])\n else:\n raise Exception('')\n except:\n log.info('Unable to open the pdf. Try opening it manually:')\n log.info(file)\n", "role": "user" }, { "content": "DVS", "role": "assistant" } ]
def x(self): if self.model_name == 'iPLD': self._get_norm() super(Everest, self).compute() self.flux[self.nanmask] = np.nan
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.model_name == 'iPLD':\n self._get_norm()\n super(Everest, self).compute()\n self.flux[self.nanmask] = np.nan\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(self): log.info('Computing the PLD normalization...') mod = [None for b in self.breakpoints] for b, brkpt in enumerate(self.breakpoints): c = self.get_chunk(b) inds = np.array(list(set(np.concatenate([self.transitmask, self. recmask]))), dtype=int) M = np.delete(np.arange(len(self.time)), inds, axis=0) if b > 0: m = M[(M > self.breakpoints[b - 1] - self.bpad) & (M <= self. breakpoints[b] + self.bpad)] else: m = M[M <= self.breakpoints[b] + self.bpad] mK = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) med = np.nanmedian(self.fraw[m]) f = self.fraw[m] - med A = np.zeros((len(m), len(m))) B = np.zeros((len(c), len(m))) for n in range(self.pld_order): XM = self.X(n, m) XC = self.X(n, c) A += self.reclam[b][n] * np.dot(XM, XM.T) B += self.reclam[b][n] * np.dot(XC, XM.T) del XM, XC W = np.linalg.solve(mK + A, f) mod[b] = np.dot(B, W) del A, B, W if len(mod) > 1: model = mod[0][:-self.bpad] for m in mod[1:-1]: offset = model[-1] - m[self.bpad - 1] model = np.concatenate([model, m[self.bpad:-self.bpad] + offset]) offset = model[-1] - mod[-1][self.bpad - 1] model = np.concatenate([model, mod[-1][self.bpad:] + offset]) else: model = mod[0] model -= np.nanmedian(model) self._norm = self.fraw - model
get_norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log.info('Computing the PLD normalization...')\n mod = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n c = self.get_chunk(b)\n inds = np.array(list(set(np.concatenate([self.transitmask, self.\n recmask]))), dtype=int)\n M = np.delete(np.arange(len(self.time)), inds, axis=0)\n if b > 0:\n m = M[(M > self.breakpoints[b - 1] - self.bpad) & (M <= self.\n breakpoints[b] + self.bpad)]\n else:\n m = M[M <= self.breakpoints[b] + self.bpad]\n mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n med = np.nanmedian(self.fraw[m])\n f = self.fraw[m] - med\n A = np.zeros((len(m), len(m)))\n B = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n XM = self.X(n, m)\n XC = self.X(n, c)\n A += self.reclam[b][n] * np.dot(XM, XM.T)\n B += self.reclam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + A, f)\n mod[b] = np.dot(B, W)\n del A, B, W\n if len(mod) > 1:\n model = mod[0][:-self.bpad]\n for m in mod[1:-1]:\n offset = model[-1] - m[self.bpad - 1]\n model = np.concatenate([model, m[self.bpad:-self.bpad] + offset])\n offset = model[-1] - mod[-1][self.bpad - 1]\n model = np.concatenate([model, mod[-1][self.bpad:] + offset])\n else:\n model = mod[0]\n model -= np.nanmedian(model)\n self._norm = self.fraw - model\n", "role": "user" }, { "content": "get_norm", "role": "assistant" } ]
def x(self, show=True): fig, ax = pl.subplots(2, 2, figsize=(6, 8)) fig.subplots_adjust(top=0.975, bottom=0.025, left=0.05, right=0.95, hspace=0.05, wspace=0.05) ax = ax.flatten() fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID)) super(Everest, self).plot_aperture(ax, labelsize=12) if show: pl.show() pl.close() else: return fig, ax
plot_aperture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, show=True):\n fig, ax = pl.subplots(2, 2, figsize=(6, 8))\n fig.subplots_adjust(top=0.975, bottom=0.025, left=0.05, right=0.95,\n hspace=0.05, wspace=0.05)\n ax = ax.flatten()\n fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))\n super(Everest, self).plot_aperture(ax, labelsize=12)\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n", "role": "user" }, { "content": "plot_aperture", "role": "assistant" } ]
def x(self): DVS(self.ID, season=self.season, mission=self.mission, model=self. model_name, clobber=self.clobber)
dvs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n DVS(self.ID, season=self.season, mission=self.mission, model=self.\n model_name, clobber=self.clobber)\n", "role": "user" }, { "content": "dvs", "role": "assistant" } ]
def x(self, pipeline, *args, **kwargs): if pipeline != 'everest2': return getattr(missions, self.mission).pipelines.plot(self.ID, pipeline, *args, **kwargs) else: plot_raw = kwargs.get('plot_raw', False) plot_cbv = kwargs.get('plot_cbv', True) show = kwargs.get('show', True) if plot_raw: y = self.fraw ylabel = 'Raw Flux' elif plot_cbv: y = self.fcor ylabel = 'EVEREST2 Flux' else: y = self.flux ylabel = 'EVEREST2 Flux' bnmask = np.concatenate([self.nanmask, self.badmask]) time = np.delete(self.time, bnmask) flux = np.delete(y, bnmask) fig, ax = pl.subplots(1, figsize=(10, 4)) fig.subplots_adjust(bottom=0.15) ax.plot(time, flux, 'k.', markersize=3, alpha=0.5) N = int(0.995 * len(flux)) hi, lo = flux[np.argsort(flux)][[N, -N]] pad = (hi - lo) * 0.1 ylim = lo - pad, hi + pad ax.set_ylim(ylim) ax.plot(self.time[self.badmask], y[self.badmask], 'r.', markersize= 3, alpha=0.2) ax.annotate('%.2f ppm' % self._mission.CDPP(flux), xy=(0.98, 0.975), xycoords='axes fraction', ha='right', va='top', fontsize=12, color='r', zorder=99) ax.margins(0, None) ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=16) ax.set_ylabel(ylabel, fontsize=16) fig.canvas.set_window_title('EVEREST2: EPIC %d' % self.ID) if show: pl.show() pl.close() else: return fig, ax
plot_pipeline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pipeline, *args, **kwargs):\n if pipeline != 'everest2':\n return getattr(missions, self.mission).pipelines.plot(self.ID,\n pipeline, *args, **kwargs)\n else:\n plot_raw = kwargs.get('plot_raw', False)\n plot_cbv = kwargs.get('plot_cbv', True)\n show = kwargs.get('show', True)\n if plot_raw:\n y = self.fraw\n ylabel = 'Raw Flux'\n elif plot_cbv:\n y = self.fcor\n ylabel = 'EVEREST2 Flux'\n else:\n y = self.flux\n ylabel = 'EVEREST2 Flux'\n bnmask = np.concatenate([self.nanmask, self.badmask])\n time = np.delete(self.time, bnmask)\n flux = np.delete(y, bnmask)\n fig, ax = pl.subplots(1, figsize=(10, 4))\n fig.subplots_adjust(bottom=0.15)\n ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.plot(self.time[self.badmask], y[self.badmask], 'r.', markersize=\n 3, alpha=0.2)\n ax.annotate('%.2f ppm' % self._mission.CDPP(flux), xy=(0.98, 0.975),\n xycoords='axes fraction', ha='right', va='top', fontsize=12,\n color='r', zorder=99)\n ax.margins(0, None)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=16)\n ax.set_ylabel(ylabel, fontsize=16)\n fig.canvas.set_window_title('EVEREST2: EPIC %d' % self.ID)\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n", "role": "user" }, { "content": "plot_pipeline", "role": "assistant" } ]
def x(self, *args, **kwargs): return getattr(missions, self.mission).pipelines.get(self.ID, *args, ** kwargs)
get_pipeline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n return getattr(missions, self.mission).pipelines.get(self.ID, *args, **\n kwargs)\n", "role": "user" }, { "content": "get_pipeline", "role": "assistant" } ]
def x(self, t0, period, dur=0.2): mask = [] t0 += np.ceil((self.time[0] - dur - t0) / period) * period for t in np.arange(t0, self.time[-1] + dur, period): mask.extend(np.where(np.abs(self.time - t) < dur / 2.0)[0]) self.transitmask = np.array(list(set(np.concatenate([self.transitmask, mask]))))
mask_planet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t0, period, dur=0.2):\n mask = []\n t0 += np.ceil((self.time[0] - dur - t0) / period) * period\n for t in np.arange(t0, self.time[-1] + dur, period):\n mask.extend(np.where(np.abs(self.time - t) < dur / 2.0)[0])\n self.transitmask = np.array(list(set(np.concatenate([self.transitmask,\n mask]))))\n", "role": "user" }, { "content": "mask_planet", "role": "assistant" } ]
def x(self): d = dict(self.__dict__) d.pop('_weights', None) d.pop('_A', None) d.pop('_B', None) d.pop('_f', None) d.pop('_mK', None) d.pop('K', None) d.pop('dvs', None) d.pop('clobber', None) d.pop('clobber_tpf', None) d.pop('_mission', None) d.pop('debug', None) np.savez(os.path.join(self.dir, self.name + '.npz'), **d)
save_npz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = dict(self.__dict__)\n d.pop('_weights', None)\n d.pop('_A', None)\n d.pop('_B', None)\n d.pop('_f', None)\n d.pop('_mK', None)\n d.pop('K', None)\n d.pop('dvs', None)\n d.pop('clobber', None)\n d.pop('clobber_tpf', None)\n d.pop('_mission', None)\n d.pop('debug', None)\n np.savez(os.path.join(self.dir, self.name + '.npz'), **d)\n", "role": "user" }, { "content": "save_npz", "role": "assistant" } ]
def x(self, piter=3, pmaxf=300, ppert=0.1): self._save_npz() optimized = pPLD(self.ID, piter=piter, pmaxf=pmaxf, ppert=ppert, debug= True, clobber=True) optimized.publish() self.reset()
optimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, piter=3, pmaxf=300, ppert=0.1):\n self._save_npz()\n optimized = pPLD(self.ID, piter=piter, pmaxf=pmaxf, ppert=ppert, debug=\n True, clobber=True)\n optimized.publish()\n self.reset()\n", "role": "user" }, { "content": "optimize", "role": "assistant" } ]
def x(self, t0, period, dur=0.2): self.mask_planet(t0, period, dur) gp = GP(self.kernel, self.kernel_params, white=False) gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err)) med = np.nanmedian(self.apply_mask(self.flux)) y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time) fwhite = self.flux - y fwhite /= np.nanmedian(fwhite) tfold = (self.time - t0 - period / 2.0) % period - period / 2.0 inds = np.where(np.abs(tfold) < 2 * dur)[0] x = tfold[inds] y = fwhite[inds] fig, ax = pl.subplots(1, figsize=(9, 5)) fig.subplots_adjust(bottom=0.125) ax.plot(x, y, 'k.', alpha=0.5) yfin = np.delete(y, np.where(np.isnan(y))) lo, hi = yfin[np.argsort(yfin)][[3, -3]] pad = (hi - lo) * 0.1 ylim = lo - pad, hi + pad ax.set_ylim(*ylim) ax.set_xlabel('Time (days)', fontsize=18) ax.set_ylabel('Normalized Flux', fontsize=18) fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID)) pl.show()
plot_folded
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t0, period, dur=0.2):\n self.mask_planet(t0, period, dur)\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))\n med = np.nanmedian(self.apply_mask(self.flux))\n y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)\n fwhite = self.flux - y\n fwhite /= np.nanmedian(fwhite)\n tfold = (self.time - t0 - period / 2.0) % period - period / 2.0\n inds = np.where(np.abs(tfold) < 2 * dur)[0]\n x = tfold[inds]\n y = fwhite[inds]\n fig, ax = pl.subplots(1, figsize=(9, 5))\n fig.subplots_adjust(bottom=0.125)\n ax.plot(x, y, 'k.', alpha=0.5)\n yfin = np.delete(y, np.where(np.isnan(y)))\n lo, hi = yfin[np.argsort(yfin)][[3, -3]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(*ylim)\n ax.set_xlabel('Time (days)', fontsize=18)\n ax.set_ylabel('Normalized Flux', fontsize=18)\n fig.canvas.set_window_title('%s %d' % (self._mission.IDSTRING, self.ID))\n pl.show()\n", "role": "user" }, { "content": "plot_folded", "role": "assistant" } ]
def x(time, mask, y): yy = np.array(y) t_ = np.delete(time, mask) y_ = np.delete(y, mask, axis=0) if len(yy.shape) == 1: yy[mask] = np.interp(time[mask], t_, y_) elif len(yy.shape) == 2: for n in range(yy.shape[1]): yy[mask, n] = np.interp(time[mask], t_, y_[:, n]) else: raise Exception('Array ``y`` must be either 1- or 2-d.') return yy
Interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(time, mask, y):\n yy = np.array(y)\n t_ = np.delete(time, mask)\n y_ = np.delete(y, mask, axis=0)\n if len(yy.shape) == 1:\n yy[mask] = np.interp(time[mask], t_, y_)\n elif len(yy.shape) == 2:\n for n in range(yy.shape[1]):\n yy[mask, n] = np.interp(time[mask], t_, y_[:, n])\n else:\n raise Exception('Array ``y`` must be either 1- or 2-d.')\n return yy\n", "role": "user" }, { "content": "Interpolate", "role": "assistant" } ]
def x(l, n, all=False): if all: jarr = range(0, n - 1) else: jarr = [0] for j in jarr: for i in range(j, len(l), n): if i + 2 * n <= len(l): yield l[i:i + n] else: if not all: yield l[i:] break
Chunks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, n, all=False):\n if all:\n jarr = range(0, n - 1)\n else:\n jarr = [0]\n for j in jarr:\n for i in range(j, len(l), n):\n if i + 2 * n <= len(l):\n yield l[i:i + n]\n else:\n if not all:\n yield l[i:]\n break\n", "role": "user" }, { "content": "Chunks", "role": "assistant" } ]
def x(x, window_len=100, window='hanning'): if window_len == 0: return np.zeros_like(x) s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:- window_len:-1]] if window == 'flat': w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w / w.sum(), s, mode='same') return y[window_len:-window_len + 1]
Smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, window_len=100, window='hanning'):\n if window_len == 0:\n return np.zeros_like(x)\n s = np.r_[2 * x[0] - x[window_len - 1::-1], x, 2 * x[-1] - x[-1:-\n window_len:-1]]\n if window == 'flat':\n w = np.ones(window_len, 'd')\n else:\n w = eval('np.' + window + '(window_len)')\n y = np.convolve(w / w.sum(), s, mode='same')\n return y[window_len:-window_len + 1]\n", "role": "user" }, { "content": "Smooth", "role": "assistant" } ]
def x(y, win=13, remove_outliers=False): if remove_outliers: if len(y) >= 50: ys = y - Smooth(y, 50) else: ys = y M = np.nanmedian(ys) MAD = 1.4826 * np.nanmedian(np.abs(ys - M)) out = [] for i, _ in enumerate(y): if ys[i] > M + 5 * MAD or ys[i] < M - 5 * MAD: out.append(i) out = np.array(out, dtype=int) y = np.delete(y, out) if len(y): return 1000000.0 * np.nanmedian([(np.std(yi) / np.sqrt(win)) for yi in Chunks(y, win, all=True)]) else: return np.nan
Scatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, win=13, remove_outliers=False):\n if remove_outliers:\n if len(y) >= 50:\n ys = y - Smooth(y, 50)\n else:\n ys = y\n M = np.nanmedian(ys)\n MAD = 1.4826 * np.nanmedian(np.abs(ys - M))\n out = []\n for i, _ in enumerate(y):\n if ys[i] > M + 5 * MAD or ys[i] < M - 5 * MAD:\n out.append(i)\n out = np.array(out, dtype=int)\n y = np.delete(y, out)\n if len(y):\n return 1000000.0 * np.nanmedian([(np.std(yi) / np.sqrt(win)) for yi in\n Chunks(y, win, all=True)])\n else:\n return np.nan\n", "role": "user" }, { "content": "Scatter", "role": "assistant" } ]
def x(y, win=49): if len(y) >= win: return y - savgol_filter(y, win, 2) + np.nanmedian(y) else: return y
SavGol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, win=49):\n if len(y) >= win:\n return y - savgol_filter(y, win, 2) + np.nanmedian(y)\n else:\n return y\n", "role": "user" }, { "content": "SavGol", "role": "assistant" } ]
def x(npix, pld_order, cross_terms=True): res = 0 for k in range(1, pld_order + 1): if cross_terms: res += comb(npix + k - 1, k) else: res += npix return int(res)
NumRegressors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(npix, pld_order, cross_terms=True):\n res = 0\n for k in range(1, pld_order + 1):\n if cross_terms:\n res += comb(npix + k - 1, k)\n else:\n res += npix\n return int(res)\n", "role": "user" }, { "content": "NumRegressors", "role": "assistant" } ]
def x(x, newsize, axis=0, operation='mean'): assert newsize < x.shape[axis ], 'The new size of the array must be smaller than the current size.' oldsize = x.shape[axis] newshape = list(x.shape) newshape[axis] = newsize newshape.insert(axis + 1, oldsize // newsize) trim = oldsize % newsize if trim: xtrim = x[:-trim] else: xtrim = x if operation == 'mean': xbin = np.nanmean(xtrim.reshape(newshape), axis=axis + 1) elif operation == 'sum': xbin = np.nansum(xtrim.reshape(newshape), axis=axis + 1) elif operation == 'quadsum': xbin = np.sqrt(np.nansum(xtrim.reshape(newshape) ** 2, axis=axis + 1)) elif operation == 'median': xbin = np.nanmedian(xtrim.reshape(newshape), axis=axis + 1) else: raise ValueError('`operation` must be either `mean`, ' + '`sum`, `quadsum`, or `median`.') return xbin
Downbin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, newsize, axis=0, operation='mean'):\n assert newsize < x.shape[axis\n ], 'The new size of the array must be smaller than the current size.'\n oldsize = x.shape[axis]\n newshape = list(x.shape)\n newshape[axis] = newsize\n newshape.insert(axis + 1, oldsize // newsize)\n trim = oldsize % newsize\n if trim:\n xtrim = x[:-trim]\n else:\n xtrim = x\n if operation == 'mean':\n xbin = np.nanmean(xtrim.reshape(newshape), axis=axis + 1)\n elif operation == 'sum':\n xbin = np.nansum(xtrim.reshape(newshape), axis=axis + 1)\n elif operation == 'quadsum':\n xbin = np.sqrt(np.nansum(xtrim.reshape(newshape) ** 2, axis=axis + 1))\n elif operation == 'median':\n xbin = np.nanmedian(xtrim.reshape(newshape), axis=axis + 1)\n else:\n raise ValueError('`operation` must be either `mean`, ' +\n '`sum`, `quadsum`, or `median`.')\n return xbin\n", "role": "user" }, { "content": "Downbin", "role": "assistant" } ]
def x(self, name, model): if self.name: raise FieldError('Field %s is already registered with a model' % self) self.name = name self.attname = self.get_attname() self.model = model meta = model._meta self.meta = meta meta.dfields[name] = self meta.fields.append(self) if not self.primary_key: self.add_to_fields() else: model._meta.pk = self
register_with_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, model):\n if self.name:\n raise FieldError('Field %s is already registered with a model' % self)\n self.name = name\n self.attname = self.get_attname()\n self.model = model\n meta = model._meta\n self.meta = meta\n meta.dfields[name] = self\n meta.fields.append(self)\n if not self.primary_key:\n self.add_to_fields()\n else:\n model._meta.pk = self\n", "role": "user" }, { "content": "register_with_model", "role": "assistant" } ]
def x(self): meta = self.model._meta meta.scalarfields.append(self) if self.index: meta.indices.append(self)
add_to_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n meta = self.model._meta\n meta.scalarfields.append(self)\n if self.index:\n meta.indices.append(self)\n", "role": "user" }, { "content": "add_to_fields", "role": "assistant" } ]
def x(self, remaining, errorClass=ValueError): if remaining: raise errorClass('Cannot use nested lookup on field %s' % self) return self.attname, None
get_lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, remaining, errorClass=ValueError):\n if remaining:\n raise errorClass('Cannot use nested lookup on field %s' % self)\n return self.attname, None\n", "role": "user" }, { "content": "get_lookup", "role": "assistant" } ]
def x(self, instance, *bits): if bits: raise AttributeError else: return getattr(instance, self.attname)
get_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, *bits):\n if bits:\n raise AttributeError\n else:\n return getattr(instance, self.attname)\n", "role": "user" }, { "content": "get_value", "role": "assistant" } ]
def x(self, instance, value): setattr(instance, self.attname, self.to_python(value))
set_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, value):\n setattr(instance, self.attname, self.to_python(value))\n", "role": "user" }, { "content": "set_value", "role": "assistant" } ]
def x(var_name, contexts=(), start=0): start = len(contexts) if start >= 0 else start for context in reversed(contexts[:start]): try: if var_name in context: return context[var_name] except TypeError as te: continue return None
lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(var_name, contexts=(), start=0):\n start = len(contexts) if start >= 0 else start\n for context in reversed(contexts[:start]):\n try:\n if var_name in context:\n return context[var_name]\n except TypeError as te:\n continue\n return None\n", "role": "user" }, { "content": "lookup", "role": "assistant" } ]
def x(delimiters): delimiters = tuple(delimiters) if delimiters in re_delimiters: re_tag = re_delimiters[delimiters] else: open_tag, close_tag = delimiters open_tag = ''.join([(c if c.isalnum() else '\\' + c) for c in open_tag] ) close_tag = ''.join([(c if c.isalnum() else '\\' + c) for c in close_tag]) re_tag = re.compile(open_tag + '([#^>&{/!=]?)\\s*(.*?)\\s*([}=]?)' + close_tag, re.DOTALL) re_delimiters[delimiters] = re_tag return re_tag
delimiters_to_re
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(delimiters):\n delimiters = tuple(delimiters)\n if delimiters in re_delimiters:\n re_tag = re_delimiters[delimiters]\n else:\n open_tag, close_tag = delimiters\n open_tag = ''.join([(c if c.isalnum() else '\\\\' + c) for c in open_tag]\n )\n close_tag = ''.join([(c if c.isalnum() else '\\\\' + c) for c in\n close_tag])\n re_tag = re.compile(open_tag + '([#^>&{/!=]?)\\\\s*(.*?)\\\\s*([}=]?)' +\n close_tag, re.DOTALL)\n re_delimiters[delimiters] = re_tag\n return re_tag\n", "role": "user" }, { "content": "delimiters_to_re", "role": "assistant" } ]
def x(text, start, end): left = False start -= 1 while start >= 0 and text[start] in spaces_not_newline: start -= 1 if start < 0 or text[start] == '\n': left = True right = re_space.match(text, end) return (start + 1, right.end()) if left and right else None
is_standalone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, start, end):\n left = False\n start -= 1\n while start >= 0 and text[start] in spaces_not_newline:\n start -= 1\n if start < 0 or text[start] == '\\n':\n left = True\n right = re_space.match(text, end)\n return (start + 1, right.end()) if left and right else None\n", "role": "user" }, { "content": "is_standalone", "role": "assistant" } ]
def x(template, delimiters=DEFAULT_DELIMITERS): re_tag = delimiters_to_re(delimiters) tokens = [] index = 0 sections = [] tokens_stack = [] root = Root('root') root.filters = copy.copy(filters) m = re_tag.search(template, index) while m is not None: token = None last_literal = None strip_space = False if m.start() > index: last_literal = Literal('str', template[index:m.start()], root=root) tokens.append(last_literal) prefix, name, suffix = m.groups() if prefix == '=' and suffix == '=': delimiters = re.split('\\s+', name) if len(delimiters) != 2: raise SyntaxError('Invalid new delimiter definition: ' + m. group()) re_tag = delimiters_to_re(delimiters) strip_space = True elif prefix == '{' and suffix == '}': token = Variable(name, name, root=root) elif prefix == '' and suffix == '': token = Variable(name, name, root=root) token.escape = True elif suffix != '' and suffix != None: raise SyntaxError('Invalid token: ' + m.group()) elif prefix == '&': token = Variable(name, name, root=root) elif prefix == '!': token = Comment(name, root=root) if len(sections) <= 0: strip_space = True elif prefix == '>': token = Partial(name, name, root=root) strip_space = True pos = is_standalone(template, m.start(), m.end()) if pos: token.indent = len(template[pos[0]:m.start()]) elif prefix == '#' or prefix == '^': sec_name = name.split('|')[0].strip() token = Section(sec_name, name, root=root ) if prefix == '#' else Inverted(name, name, root=root) token.delimiter = delimiters tokens.append(token) token = None tokens_stack.append(tokens) tokens = [] sections.append((sec_name, prefix, m.end())) strip_space = True elif prefix == '/': tag_name, sec_type, text_end = sections.pop() if tag_name != name: raise SyntaxError("unclosed tag: '" + tag_name + "' Got:" + m.group()) children = tokens tokens = tokens_stack.pop() tokens[-1].text = template[text_end:m.start()] tokens[-1].children = children strip_space = True else: raise SyntaxError('Unknown tag: ' + m.group()) if token is not None: tokens.append(token) index = m.end() if strip_space: pos = is_standalone(template, m.start(), m.end()) if pos: index = pos[1] if last_literal: last_literal.value = last_literal.value.rstrip( spaces_not_newline) m = re_tag.search(template, index) tokens.append(Literal('str', template[index:])) root.children = tokens return root
compiled
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(template, delimiters=DEFAULT_DELIMITERS):\n re_tag = delimiters_to_re(delimiters)\n tokens = []\n index = 0\n sections = []\n tokens_stack = []\n root = Root('root')\n root.filters = copy.copy(filters)\n m = re_tag.search(template, index)\n while m is not None:\n token = None\n last_literal = None\n strip_space = False\n if m.start() > index:\n last_literal = Literal('str', template[index:m.start()], root=root)\n tokens.append(last_literal)\n prefix, name, suffix = m.groups()\n if prefix == '=' and suffix == '=':\n delimiters = re.split('\\\\s+', name)\n if len(delimiters) != 2:\n raise SyntaxError('Invalid new delimiter definition: ' + m.\n group())\n re_tag = delimiters_to_re(delimiters)\n strip_space = True\n elif prefix == '{' and suffix == '}':\n token = Variable(name, name, root=root)\n elif prefix == '' and suffix == '':\n token = Variable(name, name, root=root)\n token.escape = True\n elif suffix != '' and suffix != None:\n raise SyntaxError('Invalid token: ' + m.group())\n elif prefix == '&':\n token = Variable(name, name, root=root)\n elif prefix == '!':\n token = Comment(name, root=root)\n if len(sections) <= 0:\n strip_space = True\n elif prefix == '>':\n token = Partial(name, name, root=root)\n strip_space = True\n pos = is_standalone(template, m.start(), m.end())\n if pos:\n token.indent = len(template[pos[0]:m.start()])\n elif prefix == '#' or prefix == '^':\n sec_name = name.split('|')[0].strip()\n token = Section(sec_name, name, root=root\n ) if prefix == '#' else Inverted(name, name, root=root)\n token.delimiter = delimiters\n tokens.append(token)\n token = None\n tokens_stack.append(tokens)\n tokens = []\n sections.append((sec_name, prefix, m.end()))\n strip_space = True\n elif prefix == '/':\n tag_name, sec_type, text_end = sections.pop()\n if tag_name != name:\n raise SyntaxError(\"unclosed tag: '\" + tag_name + \"' Got:\" +\n m.group())\n children = tokens\n tokens = tokens_stack.pop()\n tokens[-1].text = template[text_end:m.start()]\n tokens[-1].children = children\n strip_space = True\n else:\n raise SyntaxError('Unknown tag: ' + m.group())\n if token is not None:\n tokens.append(token)\n index = m.end()\n if strip_space:\n pos = is_standalone(template, m.start(), m.end())\n if pos:\n index = pos[1]\n if last_literal:\n last_literal.value = last_literal.value.rstrip(\n spaces_not_newline)\n m = re_tag.search(template, index)\n tokens.append(Literal('str', template[index:]))\n root.children = tokens\n return root\n", "role": "user" }, { "content": "compiled", "role": "assistant" } ]
def x(self, text): ret = EMPTYSTRING if text is None else str(text) if self.escape: return html_escape(ret) else: return ret
escape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n ret = EMPTYSTRING if text is None else str(text)\n if self.escape:\n return html_escape(ret)\n else:\n return ret\n", "role": "user" }, { "content": "escape", "role": "assistant" } ]
def x(self, dot_name, contexts): filters = [x for x in map(lambda x: x.strip(), dot_name.split('|'))] dot_name = filters[0] filters = filters[1:] if not dot_name.startswith('.'): dot_name = './' + dot_name paths = dot_name.split('/') last_path = paths[-1] refer_context = last_path == '' or last_path == '.' or last_path == '..' paths = paths if refer_context else paths[:-1] level = 0 for path in paths: if path == '..': level -= 1 elif path != '.': level += len(path.strip('.').split('.')) names = last_path.split('.') if refer_context or names[0] == '': try: value = contexts[level - 1] except: value = None else: value = lookup(names[0], contexts, level) if not refer_context: for name in names[1:]: try: index = parse_int(name) name = parse_int(name) if isinstance(value, (list, tuple) ) else name value = value[name] except: value = None break for f in filters: try: func = self.root.filters[f] value = func(value) except: continue return value
lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dot_name, contexts):\n filters = [x for x in map(lambda x: x.strip(), dot_name.split('|'))]\n dot_name = filters[0]\n filters = filters[1:]\n if not dot_name.startswith('.'):\n dot_name = './' + dot_name\n paths = dot_name.split('/')\n last_path = paths[-1]\n refer_context = last_path == '' or last_path == '.' or last_path == '..'\n paths = paths if refer_context else paths[:-1]\n level = 0\n for path in paths:\n if path == '..':\n level -= 1\n elif path != '.':\n level += len(path.strip('.').split('.'))\n names = last_path.split('.')\n if refer_context or names[0] == '':\n try:\n value = contexts[level - 1]\n except:\n value = None\n else:\n value = lookup(names[0], contexts, level)\n if not refer_context:\n for name in names[1:]:\n try:\n index = parse_int(name)\n name = parse_int(name) if isinstance(value, (list, tuple)\n ) else name\n value = value[name]\n except:\n value = None\n break\n for f in filters:\n try:\n func = self.root.filters[f]\n value = func(value)\n except:\n continue\n return value\n", "role": "user" }, { "content": "lookup", "role": "assistant" } ]
def x(self, contexts, partials): ret = [] for child in self.children: ret.append(child._render(contexts, partials)) return EMPTYSTRING.join(ret)
render_children
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contexts, partials):\n ret = []\n for child in self.children:\n ret.append(child._render(contexts, partials))\n return EMPTYSTRING.join(ret)\n", "role": "user" }, { "content": "render_children", "role": "assistant" } ]
def x(self, contexts, partials): value = self._lookup(self.value, contexts) if callable(value): value = inner_render(str(value()), contexts, partials) return self._escape(value)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contexts, partials):\n value = self._lookup(self.value, contexts)\n if callable(value):\n value = inner_render(str(value()), contexts, partials)\n return self._escape(value)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, contexts, partials): val = self._lookup(self.value, contexts) if not val: return EMPTYSTRING if hasattr(val, '__iter__') and not isinstance(val, (str, dict)): ret = [] for item in val: contexts.append(item) ret.append(self._render_children(contexts, partials)) contexts.pop() if len(ret) <= 0: return EMPTYSTRING return self._escape(''.join(ret)) elif callable(val): new_template = val(self.text) value = inner_render(new_template, contexts, partials, self.delimiter) else: contexts.append(val) value = self._render_children(contexts, partials) contexts.pop() return self._escape(value)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contexts, partials):\n val = self._lookup(self.value, contexts)\n if not val:\n return EMPTYSTRING\n if hasattr(val, '__iter__') and not isinstance(val, (str, dict)):\n ret = []\n for item in val:\n contexts.append(item)\n ret.append(self._render_children(contexts, partials))\n contexts.pop()\n if len(ret) <= 0:\n return EMPTYSTRING\n return self._escape(''.join(ret))\n elif callable(val):\n new_template = val(self.text)\n value = inner_render(new_template, contexts, partials, self.delimiter)\n else:\n contexts.append(val)\n value = self._render_children(contexts, partials)\n contexts.pop()\n return self._escape(value)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, contexts, partials): val = self._lookup(self.value, contexts) if val: return EMPTYSTRING return self._render_children(contexts, partials)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contexts, partials):\n val = self._lookup(self.value, contexts)\n if val:\n return EMPTYSTRING\n return self._render_children(contexts, partials)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, contexts, partials): try: partial = partials[self.value] except KeyError as e: return self._escape(EMPTYSTRING) partial = re_insert_indent.sub('\\1' + ' ' * self.indent, partial) return inner_render(partial, contexts, partials, self.delimiter)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contexts, partials):\n try:\n partial = partials[self.value]\n except KeyError as e:\n return self._escape(EMPTYSTRING)\n partial = re_insert_indent.sub('\\\\1' + ' ' * self.indent, partial)\n return inner_render(partial, contexts, partials, self.delimiter)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(): if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')): os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv')) GetK2Stars(clobber=False)
Setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')):\n os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv'))\n GetK2Stars(clobber=False)\n", "role": "user" }, { "content": "Setup", "role": "assistant" } ]
def x(flux, mask=[], cadence='lc'): rmswin = 13 svgwin = 49 if cadence == 'sc': newsize = len(flux) // 30 flux = Downbin(flux, newsize, operation='mean') flux_savgol = SavGol(np.delete(flux, mask), win=svgwin) if len(flux_savgol): return Scatter(flux_savgol / np.nanmedian(flux_savgol), remove_outliers=True, win=rmswin) else: return np.nan
CDPP
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(flux, mask=[], cadence='lc'):\n rmswin = 13\n svgwin = 49\n if cadence == 'sc':\n newsize = len(flux) // 30\n flux = Downbin(flux, newsize, operation='mean')\n flux_savgol = SavGol(np.delete(flux, mask), win=svgwin)\n if len(flux_savgol):\n return Scatter(flux_savgol / np.nanmedian(flux_savgol),\n remove_outliers=True, win=rmswin)\n else:\n return np.nan\n", "role": "user" }, { "content": "CDPP", "role": "assistant" } ]
def x(EPIC, season=None, model=None, neighbors=10, mag_range=(11.0, 13.0), cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs): if neighbors == 0: return [] if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( 'Please choose a campaign/season for this target: %s.' % campaign) else: campaign = season epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[campaign] ).T short_cadence = np.array(short_cadence, dtype=bool) epics = np.array(epics, dtype=int) c = GetNeighboringChannels(Channel(EPIC, campaign=season)) if aperture_name is None: aperture_name = 'k2sff_15' if mag_range is None: mag_lo = -np.inf mag_hi = np.inf else: mag_lo = mag_range[0] mag_hi = mag_range[1] if cadence == 'sc': mag_lo = 8.0 if cdpp_range is None: cdpp_lo = -np.inf cdpp_hi = np.inf else: cdpp_lo = cdpp_range[0] cdpp_hi = cdpp_range[1] targets = [] for n in range(3): if n == 0: nearby = True elif n == 1: nearby = False elif n == 2: mag_lo -= 1 mag_hi += 1 for star, kp, channel, sc in zip(epics, kepmags, channels, short_cadence): if not ((channel in c if nearby else True) and kp < mag_hi and kp > mag_lo and (sc if cadence == 'sc' else True)): continue if star == EPIC or star in targets: continue if not os.path.exists(os.path.join(TargetDirectory(star, campaign), 'data.npz')): continue contam = False data = np.load(os.path.join(TargetDirectory(star, campaign), 'data.npz')) aperture = data['apertures'][()][aperture_name] if aperture is None: continue fpix = data['fpix'] for source in data['nearby'][()]: if source['ID'] == star: continue if source['mag'] < kp - 5: continue x = int(np.round(source['x'] - source['x0'])) y = int(np.round(source['y'] - source['y0'])) for j in [x - 2, x - 1, x, x + 1, x + 2]: if j < 0: continue for i in [y - 2, y - 1, y, y + 1, y + 2]: if i < 0: continue try: if aperture[i][j]: contam = True except IndexError: pass if contam: continue if aperture.shape != fpix.shape[1:]: continue if model is not None: if not os.path.exists(os.path.join(TargetDirectory(star, campaign), model + '.npz')): continue if cdpp_range is not None: cdpp = np.load(os.path.join(TargetDirectory(star, campaign), model + '.npz'))['cdpp'] if cdpp > cdpp_hi or cdpp < cdpp_lo: continue targets.append(star) if len(targets) == neighbors: random.shuffle(targets) return targets return targets
GetNeighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(EPIC, season=None, model=None, neighbors=10, mag_range=(11.0, 13.0),\n cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs):\n if neighbors == 0:\n return []\n if season is None:\n campaign = Season(EPIC)\n if hasattr(campaign, '__len__'):\n raise AttributeError(\n 'Please choose a campaign/season for this target: %s.' %\n campaign)\n else:\n campaign = season\n epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[campaign]\n ).T\n short_cadence = np.array(short_cadence, dtype=bool)\n epics = np.array(epics, dtype=int)\n c = GetNeighboringChannels(Channel(EPIC, campaign=season))\n if aperture_name is None:\n aperture_name = 'k2sff_15'\n if mag_range is None:\n mag_lo = -np.inf\n mag_hi = np.inf\n else:\n mag_lo = mag_range[0]\n mag_hi = mag_range[1]\n if cadence == 'sc':\n mag_lo = 8.0\n if cdpp_range is None:\n cdpp_lo = -np.inf\n cdpp_hi = np.inf\n else:\n cdpp_lo = cdpp_range[0]\n cdpp_hi = cdpp_range[1]\n targets = []\n for n in range(3):\n if n == 0:\n nearby = True\n elif n == 1:\n nearby = False\n elif n == 2:\n mag_lo -= 1\n mag_hi += 1\n for star, kp, channel, sc in zip(epics, kepmags, channels,\n short_cadence):\n if not ((channel in c if nearby else True) and kp < mag_hi and \n kp > mag_lo and (sc if cadence == 'sc' else True)):\n continue\n if star == EPIC or star in targets:\n continue\n if not os.path.exists(os.path.join(TargetDirectory(star,\n campaign), 'data.npz')):\n continue\n contam = False\n data = np.load(os.path.join(TargetDirectory(star, campaign),\n 'data.npz'))\n aperture = data['apertures'][()][aperture_name]\n if aperture is None:\n continue\n fpix = data['fpix']\n for source in data['nearby'][()]:\n if source['ID'] == star:\n continue\n if source['mag'] < kp - 5:\n continue\n x = int(np.round(source['x'] - source['x0']))\n y = int(np.round(source['y'] - source['y0']))\n for j in [x - 2, x - 1, x, x + 1, x + 2]:\n if j < 0:\n continue\n for i in [y - 2, y - 1, y, y + 1, y + 2]:\n if i < 0:\n continue\n try:\n if aperture[i][j]:\n contam = True\n except IndexError:\n pass\n if contam:\n continue\n if aperture.shape != fpix.shape[1:]:\n continue\n if model is not None:\n if not os.path.exists(os.path.join(TargetDirectory(star,\n campaign), model + '.npz')):\n continue\n if cdpp_range is not None:\n cdpp = np.load(os.path.join(TargetDirectory(star,\n campaign), model + '.npz'))['cdpp']\n if cdpp > cdpp_hi or cdpp < cdpp_lo:\n continue\n targets.append(star)\n if len(targets) == neighbors:\n random.shuffle(targets)\n return targets\n return targets\n", "role": "user" }, { "content": "GetNeighbors", "role": "assistant" } ]
def x(model='nPLD', compare_to='k2sff', **kwargs): f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv') epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt(f, unpack=True, skiprows=2) epic = np.array(epic, dtype=int) campaign = np.array(campaign, dtype=int) cdpp = np.zeros(len(epic)) saturated = np.zeros(len(epic), dtype=int) cdpp_1 = np.zeros(len(epic)) for c in set(campaign): f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), model)) e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2) for i, e in enumerate(epic): if e in e0: j = np.argmax(e0 == e) cdpp[i] = c0[j] saturated[i] = s0[j] f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), compare_to.lower())) if not os.path.exists(f): continue if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']: e1, c1 = np.loadtxt(f, unpack=True, skiprows=2) else: e1, _, _, c1, _, _, _, _, _ = np.loadtxt(f, unpack=True, skiprows=2 ) for i, e in enumerate(epic): if e in e1: j = np.argmax(e1 == e) cdpp_1[i] = c1[j] sat = np.where(saturated == 1) unsat = np.where(saturated == 0) fig, ax = pl.subplots(1) fig.canvas.set_window_title('K2 Planet Hosts: %s versus %s' % (model, compare_to)) x = kp y = (cdpp - cdpp_1) / cdpp_1 ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder =-1, picker=True) ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1, picker=True) ax.set_ylim(-1, 1) ax.set_xlim(8, 18) ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5) ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.set_title('K2 Planet Hosts', fontsize=18) ax.set_ylabel('Relative CDPP', fontsize=18) ax.set_xlabel('Kepler Magnitude', fontsize=18) Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to= compare_to) fig.canvas.mpl_connect('pick_event', Picker) pl.show()
PlanetStatistics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model='nPLD', compare_to='k2sff', **kwargs):\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv')\n epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt(f, unpack=True,\n skiprows=2)\n epic = np.array(epic, dtype=int)\n campaign = np.array(campaign, dtype=int)\n cdpp = np.zeros(len(epic))\n saturated = np.zeros(len(epic), dtype=int)\n cdpp_1 = np.zeros(len(epic))\n for c in set(campaign):\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(c), model))\n e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2)\n for i, e in enumerate(epic):\n if e in e0:\n j = np.argmax(e0 == e)\n cdpp[i] = c0[j]\n saturated[i] = s0[j]\n f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(c), compare_to.lower()))\n if not os.path.exists(f):\n continue\n if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']:\n e1, c1 = np.loadtxt(f, unpack=True, skiprows=2)\n else:\n e1, _, _, c1, _, _, _, _, _ = np.loadtxt(f, unpack=True, skiprows=2\n )\n for i, e in enumerate(epic):\n if e in e1:\n j = np.argmax(e1 == e)\n cdpp_1[i] = c1[j]\n sat = np.where(saturated == 1)\n unsat = np.where(saturated == 0)\n fig, ax = pl.subplots(1)\n fig.canvas.set_window_title('K2 Planet Hosts: %s versus %s' % (model,\n compare_to))\n x = kp\n y = (cdpp - cdpp_1) / cdpp_1\n ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder\n =-1, picker=True)\n ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1,\n picker=True)\n ax.set_ylim(-1, 1)\n ax.set_xlim(8, 18)\n ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5)\n ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)\n ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5)\n ax.set_title('K2 Planet Hosts', fontsize=18)\n ax.set_ylabel('Relative CDPP', fontsize=18)\n ax.set_xlabel('Kepler Magnitude', fontsize=18)\n Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to=\n compare_to)\n fig.canvas.mpl_connect('pick_event', Picker)\n pl.show()\n", "role": "user" }, { "content": "PlanetStatistics", "role": "assistant" } ]
def x(EPIC, season=None): if season is None: season = Campaign(EPIC) if season is None: return None stars = GetK2Campaign(season) i = np.where([(s[0] == EPIC) for s in stars])[0] if len(i): return stars[i[0]][3] else: return None
HasShortCadence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(EPIC, season=None):\n if season is None:\n season = Campaign(EPIC)\n if season is None:\n return None\n stars = GetK2Campaign(season)\n i = np.where([(s[0] == EPIC) for s in stars])[0]\n if len(i):\n return stars[i[0]][3]\n else:\n return None\n", "role": "user" }, { "content": "HasShortCadence", "role": "assistant" } ]
def x(ID, season, relative=False, **kwargs): if season is None: return None if relative: path = '' else: path = EVEREST_DAT return os.path.join(path, 'k2', 'c%02d' % season, ('%09d' % ID)[:4] + '00000', ('%09d' % ID)[4:])
TargetDirectory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, season, relative=False, **kwargs):\n if season is None:\n return None\n if relative:\n path = ''\n else:\n path = EVEREST_DAT\n return os.path.join(path, 'k2', 'c%02d' % season, ('%09d' % ID)[:4] +\n '00000', ('%09d' % ID)[4:])\n", "role": "user" }, { "content": "TargetDirectory", "role": "assistant" } ]
def x(ID, season, cadence='lc'): if cadence == 'sc': strcadence = '_sc' else: strcadence = '' return 'hlsp_everest_k2_llc_%d-c%02d_kepler_v%s_dvs%s.pdf' % (ID, season, EVEREST_MAJOR_MINOR, strcadence)
DVSFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, season, cadence='lc'):\n if cadence == 'sc':\n strcadence = '_sc'\n else:\n strcadence = ''\n return 'hlsp_everest_k2_llc_%d-c%02d_kepler_v%s_dvs%s.pdf' % (ID,\n season, EVEREST_MAJOR_MINOR, strcadence)\n", "role": "user" }, { "content": "DVSFile", "role": "assistant" } ]
def x(model): season = model.season name = model.name if name.endswith('.sc'): name = name[:-3] model.XCBV = sysrem.GetCBVs(season, model=name, niter=model.cbv_niter, sv_win=model.cbv_win, sv_order=model.cbv_order)
GetTargetCBVs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n season = model.season\n name = model.name\n if name.endswith('.sc'):\n name = name[:-3]\n model.XCBV = sysrem.GetCBVs(season, model=name, niter=model.cbv_niter,\n sv_win=model.cbv_win, sv_order=model.cbv_order)\n", "role": "user" }, { "content": "GetTargetCBVs", "role": "assistant" } ]
def x(model): if model.XCBV is None: GetTargetCBVs(model) ncbv = model.cbv_num if model.cadence == 'lc': m = [None for b in range(len(model.breakpoints))] weights = [None for b in range(len(model.breakpoints))] for b in range(len(model.breakpoints)): inds = model.get_chunk(b, pad=False) masked_inds = model.get_masked_chunk(b, pad=False) mX = model.XCBV[masked_inds, :ncbv + 1] A = np.dot(mX.T, mX) B = np.dot(mX.T, model.flux[masked_inds]) try: weights[b] = np.linalg.solve(A, B) except np.linalg.linalg.LinAlgError: log.warn('Singular matrix!') weights[b] = np.zeros(mX.shape[1]) m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b]) if b == 0: m[b] -= np.nanmedian(m[b]) else: i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in range(1, len(m[b - 1]) - 1)]) i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))] ) m[b] += m[b - 1][i0] - m[b][i1] m = np.concatenate(m) m -= np.nanmedian(m) else: flux = Interpolate(model.time, model.mask, model.flux) newsize = len(model.time) // 30 time = Downbin(model.time, newsize, operation='mean') flux = Downbin(flux, newsize, operation='mean') breakpoints = list(Breakpoints(model.ID, season=model.season, cadence='lc')) breakpoints += [len(time) - 1] m = [None for b in range(len(breakpoints))] weights = [None for b in range(len(breakpoints))] for b in range(len(breakpoints)): M = np.arange(len(time)) if b > 0: inds = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])] else: inds = M[M <= breakpoints[b]] A = np.dot(model.XCBV[inds, :ncbv + 1].T, model.XCBV[inds, : ncbv + 1]) B = np.dot(model.XCBV[inds, :ncbv + 1].T, flux[inds]) weights[b] = np.linalg.solve(A, B) m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b]) if b == 0: m[b] -= np.nanmedian(m[b]) else: i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in range(1, len(m[b - 1]) - 1)]) i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))] ) m[b] += m[b - 1][i0] - m[b][i1] m = np.concatenate(m) m -= np.nanmedian(m) m = np.interp(model.time, time, m) return m
FitCBVs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n if model.XCBV is None:\n GetTargetCBVs(model)\n ncbv = model.cbv_num\n if model.cadence == 'lc':\n m = [None for b in range(len(model.breakpoints))]\n weights = [None for b in range(len(model.breakpoints))]\n for b in range(len(model.breakpoints)):\n inds = model.get_chunk(b, pad=False)\n masked_inds = model.get_masked_chunk(b, pad=False)\n mX = model.XCBV[masked_inds, :ncbv + 1]\n A = np.dot(mX.T, mX)\n B = np.dot(mX.T, model.flux[masked_inds])\n try:\n weights[b] = np.linalg.solve(A, B)\n except np.linalg.linalg.LinAlgError:\n log.warn('Singular matrix!')\n weights[b] = np.zeros(mX.shape[1])\n m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])\n if b == 0:\n m[b] -= np.nanmedian(m[b])\n else:\n i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in\n range(1, len(m[b - 1]) - 1)])\n i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]\n )\n m[b] += m[b - 1][i0] - m[b][i1]\n m = np.concatenate(m)\n m -= np.nanmedian(m)\n else:\n flux = Interpolate(model.time, model.mask, model.flux)\n newsize = len(model.time) // 30\n time = Downbin(model.time, newsize, operation='mean')\n flux = Downbin(flux, newsize, operation='mean')\n breakpoints = list(Breakpoints(model.ID, season=model.season,\n cadence='lc'))\n breakpoints += [len(time) - 1]\n m = [None for b in range(len(breakpoints))]\n weights = [None for b in range(len(breakpoints))]\n for b in range(len(breakpoints)):\n M = np.arange(len(time))\n if b > 0:\n inds = M[(M > breakpoints[b - 1]) & (M <= breakpoints[b])]\n else:\n inds = M[M <= breakpoints[b]]\n A = np.dot(model.XCBV[inds, :ncbv + 1].T, model.XCBV[inds, :\n ncbv + 1])\n B = np.dot(model.XCBV[inds, :ncbv + 1].T, flux[inds])\n weights[b] = np.linalg.solve(A, B)\n m[b] = np.dot(model.XCBV[inds, :ncbv + 1], weights[b])\n if b == 0:\n m[b] -= np.nanmedian(m[b])\n else:\n i0 = -1 - np.argmax([np.isfinite(m[b - 1][-i]) for i in\n range(1, len(m[b - 1]) - 1)])\n i1 = np.argmax([np.isfinite(m[b][i]) for i in range(len(m[b]))]\n )\n m[b] += m[b - 1][i0] - m[b][i1]\n m = np.concatenate(m)\n m -= np.nanmedian(m)\n m = np.interp(model.time, time, m)\n return m\n", "role": "user" }, { "content": "FitCBVs", "role": "assistant" } ]
def x(campaign, model='nPLD'): statsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (campaign, model)) csvfile = os.path.join(os.path.dirname(EVEREST_SRC), 'docs', 'c%02d.csv' % campaign) epic, kp, cdpp6r, cdpp6, _, _, _, _, saturated = np.loadtxt(statsfile, unpack=True, skiprows=2) with open(csvfile, 'w') as f: print('c%02d' % campaign, file=f) for i in range(len(epic)): print('%09d,%.3f,%.3f,%.3f,%d' % (epic[i], kp[i], cdpp6r[i], cdpp6[i], int(saturated[i])), file=f)
StatsToCSV
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign, model='nPLD'):\n statsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (campaign, model))\n csvfile = os.path.join(os.path.dirname(EVEREST_SRC), 'docs', \n 'c%02d.csv' % campaign)\n epic, kp, cdpp6r, cdpp6, _, _, _, _, saturated = np.loadtxt(statsfile,\n unpack=True, skiprows=2)\n with open(csvfile, 'w') as f:\n print('c%02d' % campaign, file=f)\n for i in range(len(epic)):\n print('%09d,%.3f,%.3f,%.3f,%d' % (epic[i], kp[i], cdpp6r[i],\n cdpp6[i], int(saturated[i])), file=f)\n", "role": "user" }, { "content": "StatsToCSV", "role": "assistant" } ]
def x(self, item): score = self._dict.pop(item, None) if score is not None: self._sl.remove(score) return score
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item):\n score = self._dict.pop(item, None)\n if score is not None:\n self._sl.remove(score)\n return score\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(self): key = self.id + ':fields' encoding = self.client.encoding return tuple(sorted(f.decode(encoding) for f in self.client.smembers(key)))
fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n key = self.id + ':fields'\n encoding = self.client.encoding\n return tuple(sorted(f.decode(encoding) for f in self.client.smembers(key)))\n", "role": "user" }, { "content": "fields", "role": "assistant" } ]
def x(event, sender, **kwargs): key = sender._meta.app_label, sender._meta.name for callback in pending_lookups.pop(key, []): callback(sender)
do_pending_lookups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(event, sender, **kwargs):\n key = sender._meta.app_label, sender._meta.name\n for callback in pending_lookups.pop(key, []):\n callback(sender)\n", "role": "user" }, { "content": "do_pending_lookups", "role": "assistant" } ]
def x(field): from stdnet.odm import ModelType, StdModel, ForeignKey, CompositeIdField name_model = field.model._meta.name name_relmodel = field.relmodel._meta.name if name_model == name_relmodel: name_relmodel += '2' through = field.through if through is None: name = '{0}_{1}'.format(name_model, name_relmodel) class Meta: app_label = field.model._meta.app_label through = ModelType(name, (StdModel,), {'Meta': Meta}) field.through = through field1 = ForeignKey(field.model, related_name=field.name, related_manager_class=makeMany2ManyRelatedManager(field.relmodel, name_model, name_relmodel)) field1.register_with_model(name_model, through) field2 = ForeignKey(field.relmodel, related_name=field.related_name, related_manager_class=makeMany2ManyRelatedManager(field.model, name_relmodel, name_model)) field2.register_with_model(name_relmodel, through) pk = CompositeIdField(name_model, name_relmodel) pk.register_with_model('id', through)
Many2ManyThroughModel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(field):\n from stdnet.odm import ModelType, StdModel, ForeignKey, CompositeIdField\n name_model = field.model._meta.name\n name_relmodel = field.relmodel._meta.name\n if name_model == name_relmodel:\n name_relmodel += '2'\n through = field.through\n if through is None:\n name = '{0}_{1}'.format(name_model, name_relmodel)\n\n\n class Meta:\n app_label = field.model._meta.app_label\n through = ModelType(name, (StdModel,), {'Meta': Meta})\n field.through = through\n field1 = ForeignKey(field.model, related_name=field.name,\n related_manager_class=makeMany2ManyRelatedManager(field.relmodel,\n name_model, name_relmodel))\n field1.register_with_model(name_model, through)\n field2 = ForeignKey(field.relmodel, related_name=field.related_name,\n related_manager_class=makeMany2ManyRelatedManager(field.model,\n name_relmodel, name_model))\n field2.register_with_model(name_relmodel, through)\n pk = CompositeIdField(name_model, name_relmodel)\n pk.register_with_model('id', through)\n", "role": "user" }, { "content": "Many2ManyThroughModel", "role": "assistant" } ]
def x(formodel, name_relmodel, name_formodel): class _Many2ManyRelatedManager(Many2ManyRelatedManager): pass _Many2ManyRelatedManager.formodel = formodel _Many2ManyRelatedManager.name_relmodel = name_relmodel _Many2ManyRelatedManager.name_formodel = name_formodel return _Many2ManyRelatedManager
makeMany2ManyRelatedManager
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(formodel, name_relmodel, name_formodel):\n\n\n class _Many2ManyRelatedManager(Many2ManyRelatedManager):\n pass\n _Many2ManyRelatedManager.formodel = formodel\n _Many2ManyRelatedManager.name_relmodel = name_relmodel\n _Many2ManyRelatedManager.name_formodel = name_formodel\n return _Many2ManyRelatedManager\n", "role": "user" }, { "content": "makeMany2ManyRelatedManager", "role": "assistant" } ]
def x(self, session=None): if self.related_instance: session = self.related_instance.session if session is None: raise QuerySetError( 'Related manager can be accessed only from a loaded instance of its related model.' ) return session
session
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session=None):\n if self.related_instance:\n session = self.related_instance.session\n if session is None:\n raise QuerySetError(\n 'Related manager can be accessed only from a loaded instance of its related model.'\n )\n return session\n", "role": "user" }, { "content": "session", "role": "assistant" } ]
def x(self, value, session=None, **kwargs): s, instance = self.session_instance('add', value, session, **kwargs) return s.add(instance)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, session=None, **kwargs):\n s, instance = self.session_instance('add', value, session, **kwargs)\n return s.add(instance)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, value, session=None): s, instance = self.session_instance('remove', value, session) instance.get_state(iid=instance.pkvalue(), action='update') return s.delete(instance)
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, session=None):\n s, instance = self.session_instance('remove', value, session)\n instance.get_state(iid=instance.pkvalue(), action='update')\n return s.delete(instance)\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(words): for word in words: for w in double_metaphone(word): if w: w = w.strip() if w: yield w
metaphone_processor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(words):\n for word in words:\n for w in double_metaphone(word):\n if w:\n w = w.strip()\n if w:\n yield w\n", "role": "user" }, { "content": "metaphone_processor", "role": "assistant" } ]
def x(words): for word in words: r = 0 for w in double_metaphone(word): if w: w = w.strip() if w: r += 1 yield w if not r: yield word
tolerant_metaphone_processor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(words):\n for word in words:\n r = 0\n for w in double_metaphone(word):\n if w:\n w = w.strip()\n if w:\n r += 1\n yield w\n if not r:\n yield word\n", "role": "user" }, { "content": "tolerant_metaphone_processor", "role": "assistant" } ]
def x(words): stem = PorterStemmer().stem for word in words: word = stem(word, 0, len(word) - 1) yield word
stemming_processor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(words):\n stem = PorterStemmer().stem\n for word in words:\n word = stem(word, 0, len(word) - 1)\n yield word\n", "role": "user" }, { "content": "stemming_processor", "role": "assistant" } ]
def x(pool='AnyPool', **kwargs): if pool == 'MPIPool': return MPIPool(**kwargs) elif pool == 'MultiPool': return MultiPool(**kwargs) elif pool == 'SerialPool': return SerialPool(**kwargs) elif pool == 'AnyPool': if MPIPool.enabled(): return MPIPool(**kwargs) elif MultiPool.enabled(): return MultiPool(**kwargs) else: return SerialPool(**kwargs) else: raise ValueError('Invalid pool ``%s``.' % pool)
Pool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pool='AnyPool', **kwargs):\n if pool == 'MPIPool':\n return MPIPool(**kwargs)\n elif pool == 'MultiPool':\n return MultiPool(**kwargs)\n elif pool == 'SerialPool':\n return SerialPool(**kwargs)\n elif pool == 'AnyPool':\n if MPIPool.enabled():\n return MPIPool(**kwargs)\n elif MultiPool.enabled():\n return MultiPool(**kwargs)\n else:\n return SerialPool(**kwargs)\n else:\n raise ValueError('Invalid pool ``%s``.' % pool)\n", "role": "user" }, { "content": "Pool", "role": "assistant" } ]
def x(self): if self.is_master(): raise RuntimeError('Master node told to await jobs.') status = MPI.Status() while True: if self.debug: print('Worker {0} waiting for task.'.format(self.rank)) task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status) if self.debug: print('Worker {0} got task {1} with tag {2}.'.format(self.rank, type(task), status.tag)) if isinstance(task, _close_pool_message): if self.debug: print('Worker {0} told to quit.'.format(self.rank)) break if isinstance(task, _function_wrapper): self.function = task.function if self.debug: print('Worker {0} replaced its task function: {1}.'.format( self.rank, self.function)) continue result = self.function(task) if self.debug: print('Worker {0} sending answer {1} with tag {2}.'.format(self .rank, type(result), status.tag)) self.comm.isend(result, dest=0, tag=status.tag) if self.exit_on_end: sys.exit()
wait
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.is_master():\n raise RuntimeError('Master node told to await jobs.')\n status = MPI.Status()\n while True:\n if self.debug:\n print('Worker {0} waiting for task.'.format(self.rank))\n task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status)\n if self.debug:\n print('Worker {0} got task {1} with tag {2}.'.format(self.rank,\n type(task), status.tag))\n if isinstance(task, _close_pool_message):\n if self.debug:\n print('Worker {0} told to quit.'.format(self.rank))\n break\n if isinstance(task, _function_wrapper):\n self.function = task.function\n if self.debug:\n print('Worker {0} replaced its task function: {1}.'.format(\n self.rank, self.function))\n continue\n result = self.function(task)\n if self.debug:\n print('Worker {0} sending answer {1} with tag {2}.'.format(self\n .rank, type(result), status.tag))\n self.comm.isend(result, dest=0, tag=status.tag)\n if self.exit_on_end:\n sys.exit()\n", "role": "user" }, { "content": "wait", "role": "assistant" } ]
def x(self, function, tasks): ntask = len(tasks) if not self.is_master(): self.wait() return if function is not self.function: if self.debug: print('Master replacing pool function with {0}.'.format(function)) self.function = function F = _function_wrapper(function) requests = [] for i in range(self.size): r = self.comm.isend(F, dest=i + 1) requests.append(r) MPI.Request.waitall(requests) if not self.loadbalance or ntask <= self.size: requests = [] for i, task in enumerate(tasks): worker = i % self.size + 1 if self.debug: print('Sent task {0} to worker {1} with tag {2}.'.format( type(task), worker, i)) r = self.comm.isend(task, dest=worker, tag=i) requests.append(r) MPI.Request.waitall(requests) results = [] for i in range(ntask): worker = i % self.size + 1 if self.debug: print('Master waiting for worker {0} with tag {1}'.format( worker, i)) result = self.comm.recv(source=worker, tag=i) results.append(result) return results else: for i, task in enumerate(tasks[0:self.size]): worker = i + 1 if self.debug: print('Sent task {0} to worker {1} with tag {2}.'.format( type(task), worker, i)) self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched = self.size results = [None] * ntask for itask in range(ntask): status = MPI.Status() try: result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI. ANY_TAG, status=status) except Exception as e: self.close() raise e worker = status.source i = status.tag results[i] = result if self.debug: print('Master received from worker {0} with tag {1}'.format (worker, i)) if ntasks_dispatched < ntask: task = tasks[ntasks_dispatched] i = ntasks_dispatched if self.debug: print('Sent task {0} to worker {1} with tag {2}.'. format(type(task), worker, i)) self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched += 1 return results
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, function, tasks):\n ntask = len(tasks)\n if not self.is_master():\n self.wait()\n return\n if function is not self.function:\n if self.debug:\n print('Master replacing pool function with {0}.'.format(function))\n self.function = function\n F = _function_wrapper(function)\n requests = []\n for i in range(self.size):\n r = self.comm.isend(F, dest=i + 1)\n requests.append(r)\n MPI.Request.waitall(requests)\n if not self.loadbalance or ntask <= self.size:\n requests = []\n for i, task in enumerate(tasks):\n worker = i % self.size + 1\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.format(\n type(task), worker, i))\n r = self.comm.isend(task, dest=worker, tag=i)\n requests.append(r)\n MPI.Request.waitall(requests)\n results = []\n for i in range(ntask):\n worker = i % self.size + 1\n if self.debug:\n print('Master waiting for worker {0} with tag {1}'.format(\n worker, i))\n result = self.comm.recv(source=worker, tag=i)\n results.append(result)\n return results\n else:\n for i, task in enumerate(tasks[0:self.size]):\n worker = i + 1\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.format(\n type(task), worker, i))\n self.comm.isend(task, dest=worker, tag=i)\n ntasks_dispatched = self.size\n results = [None] * ntask\n for itask in range(ntask):\n status = MPI.Status()\n try:\n result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.\n ANY_TAG, status=status)\n except Exception as e:\n self.close()\n raise e\n worker = status.source\n i = status.tag\n results[i] = result\n if self.debug:\n print('Master received from worker {0} with tag {1}'.format\n (worker, i))\n if ntasks_dispatched < ntask:\n task = tasks[ntasks_dispatched]\n i = ntasks_dispatched\n if self.debug:\n print('Sent task {0} to worker {1} with tag {2}.'.\n format(type(task), worker, i))\n self.comm.isend(task, dest=worker, tag=i)\n ntasks_dispatched += 1\n return results\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(self): if self.is_master(): for i in range(self.size): self.comm.isend(_close_pool_message(), dest=i + 1)
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.is_master():\n for i in range(self.size):\n self.comm.isend(_close_pool_message(), dest=i + 1)\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(f): def x(self, *args, **kwargs): r = f(self, *args, **kwargs) return self.session.add(self) if self.session is not None else r _.__name__ = f.__name__ _.__doc__ = f.__doc__ return _
commit_when_no_transaction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n\n def x(self, *args, **kwargs):\n r = f(self, *args, **kwargs)\n return self.session.add(self) if self.session is not None else r\n _.__name__ = f.__name__\n _.__doc__ = f.__doc__\n return _\n", "role": "user" }, { "content": "commit_when_no_transaction", "role": "assistant" } ]
def x(self): session = self.session if session is not None: if self._field: return session.model(self._field.model).backend else: return session.model(self).backend
backend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n session = self.session\n if session is not None:\n if self._field:\n return session.model(self._field.model).backend\n else:\n return session.model(self).backend\n", "role": "user" }, { "content": "backend", "role": "assistant" } ]
def x(self): session = self.session if session is not None: if self._field: return session.model(self._field.model).read_backend else: return session.model(self).read_backend
read_backend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n session = self.session\n if session is not None:\n if self._field:\n return session.model(self._field.model).read_backend\n else:\n return session.model(self).read_backend\n", "role": "user" }, { "content": "read_backend", "role": "assistant" } ]
def x(self): if self.cache.cache is None: return self.read_backend_structure().size() else: return len(self.cache.cache)
size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.cache.cache is None:\n return self.read_backend_structure().size()\n else:\n return len(self.cache.cache)\n", "role": "user" }, { "content": "size", "role": "assistant" } ]
def x(self, data, callback=None): return self.backend.execute(self.value_pickler.load_iterable(data, self .session), callback)
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, callback=None):\n return self.backend.execute(self.value_pickler.load_iterable(data, self\n .session), callback)\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self): if self.cache.cache is None: backend = self.read_backend return backend.execute(backend.structure(self).values(), self. load_values) else: return self.cache.cache.values()
values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.cache.cache is None:\n backend = self.read_backend\n return backend.execute(backend.structure(self).values(), self.\n load_values)\n else:\n return self.cache.cache.values()\n", "role": "user" }, { "content": "values", "role": "assistant" } ]
def x(self, pair): if len(pair) == 1: return pair[0].score(), pair[0] elif len(pair) != 2: raise TypeError('add expected 2 arguments, got {0}'.format(len(pair))) else: return pair
pair
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pair):\n if len(pair) == 1:\n return pair[0].score(), pair[0]\n elif len(pair) != 2:\n raise TypeError('add expected 2 arguments, got {0}'.format(len(pair)))\n else:\n return pair\n", "role": "user" }, { "content": "pair", "role": "assistant" } ]
def x(self, *keys): dumps = self.pickler.dumps self.cache.remove([dumps(v) for v in keys])
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *keys):\n dumps = self.pickler.dumps\n self.cache.remove([dumps(v) for v in keys])\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(self, start, stop): s1 = self.pickler.dumps(start) s2 = self.pickler.dumps(stop) return self.backend_structure().count(s1, s2)
count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, stop):\n s1 = self.pickler.dumps(start)\n s2 = self.pickler.dumps(stop)\n return self.backend_structure().count(s1, s2)\n", "role": "user" }, { "content": "count", "role": "assistant" } ]
def x(self, start=0, end=-1, callback=None, withscores=True, **options): backend = self.read_backend res = backend.structure(self).irange(start, end, withscores=withscores, **options) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
irange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=0, end=-1, callback=None, withscores=True, **options):\n backend = self.read_backend\n res = backend.structure(self).irange(start, end, withscores=withscores,\n **options)\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n", "role": "user" }, { "content": "irange", "role": "assistant" } ]
def x(self, start, stop, callback=None, withscores=True): s1 = self.pickler.dumps(start) s2 = self.pickler.dumps(stop) backend = self.backend res = backend.structure(self).pop_range(s1, s2, withscores=withscores) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
pop_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, stop, callback=None, withscores=True):\n s1 = self.pickler.dumps(start)\n s2 = self.pickler.dumps(stop)\n backend = self.backend\n res = backend.structure(self).pop_range(s1, s2, withscores=withscores)\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n", "role": "user" }, { "content": "pop_range", "role": "assistant" } ]
def x(self, start=0, stop=-1, callback=None, withscores=True): backend = self.backend res = backend.structure(self).ipop_range(start, stop, withscores=withscores ) if not callback: callback = self.load_data if withscores else self.load_values return backend.execute(res, callback)
ipop_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=0, stop=-1, callback=None, withscores=True):\n backend = self.backend\n res = backend.structure(self).ipop_range(start, stop, withscores=withscores\n )\n if not callback:\n callback = self.load_data if withscores else self.load_values\n return backend.execute(res, callback)\n", "role": "user" }, { "content": "ipop_range", "role": "assistant" } ]
def x(self, value): self.cache.push_back(self.value_pickler.dumps(value)) return self
push_back
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self.cache.push_back(self.value_pickler.dumps(value))\n return self\n", "role": "user" }, { "content": "push_back", "role": "assistant" } ]